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Abstract
Combining offline and online reinforcement learn-
ing (RL) techniques is indeed crucial for achiev-
ing efficient and safe learning where data ac-
quisition is expensive. Existing methods replay
offline data directly in the online phase, result-
ing in a significant challenge of data distribu-
tion shift and subsequently causing inefficiency
in online fine-tuning. To address this issue,
we introduce an innovative approach, Energy-
guided DIffusion Sampling (EDIS), which uti-
lizes a diffusion model to extract prior knowl-
edge from the offline dataset and employs en-
ergy functions to distill this knowledge for en-
hanced data generation in the online phase. The
theoretical analysis demonstrates that EDIS ex-
hibits reduced suboptimality compared to solely
utilizing online data or directly reusing offline
data. EDIS is a plug-in approach and can be
combined with existing methods in offline-to-
online RL setting. By implementing EDIS to
off-the-shelf methods Cal-QL and IQL, we ob-
serve a notable 20% average improvement in
empirical performance on MuJoCo, AntMaze,
and Adroit environments. Code is available at
https://github.com/liuxhym/EDIS.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018)
has demonstrated remarkable efficacy in diverse decision-
making tasks, such as sequential recommendation sys-
tems (Wang et al., 2018; Zhao et al., 2018), robotic lo-
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comotion skill learning (Peng et al., 2020; Haarnoja et al.,
2018) and operations research (Hubbs et al., 2020; Wang
et al., 2023c; 2024; Ling et al., 2024). Notably, RL meth-
ods, including online (Mnih et al., 2015; Liu et al., 2021;
Chen et al., 2024) and offline (Fujimoto et al., 2019; Kumar
et al., 2020; Jin et al., 2022; Jia et al., 2024) ones, have
been employed to achieve superior performance. However,
online RL methods often demand extensive data collection
through interacting with the environment, a process that can
be time-consuming or risky. In contrast, offline RL methods
utilize pre-existing datasets to train a new policy, avoiding
the need for resource-intensive online interactions but often
suffering from suboptimality due to limited data.

To mitigate the challenges incurred due to data limitations in
online and offline RL, researchers have proposed the offline-
to-online setting, aiming to overcome the cost of online
interaction and the suboptimality inherent in offline learn-
ing. In this setting, the agent undergoes two learning phases:
first, it learns from an offline dataset, and then it fine-tunes
through a limited number of online interactions (Lee et al.,
2021; Kostrikov et al., 2022; Nakamoto et al., 2023). After
the offline phase, value functions or policies are derived and
used to initialize the online phase. Therefore, the algorithm
can utilize prior knowledge in the offline dataset to help
reduce the cost of the online phase. However, a significant
drawback in this paradigm arises from the incomplete uti-
lization of the offline dataset, as the information extracted is
limited to the pre-trained policy.

While previous works have effectively addressed the per-
formance drop because of the objective mismatch of the
two-stage learning in offline-to-online settings (Nakamoto
et al., 2023; Lee et al., 2021; Nair et al., 2020), the incom-
plete utilization of the prior knowledge in the offline dataset
remains an unexplored challenge. Some studies directly
replayed samples in the online phase for data augmenta-
tion (Lee et al., 2021), leading to performance improve-
ments. Nevertheless, this approach neglects the distribution
shift issue, as the data distribution in the offline dataset
may differ from that induced by the current policy. Distri-
bution shift has shown adverse effects even in off-policy
reinforcement learning (Sinha et al., 2022; Liu et al., 2021),
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which incorporates a replay buffer, let alone when utilizing
an offline dataset. Consequently, a fundamental question
arises:

Is it feasible to generate samples without distribution shift
based on an offline dataset?

Model-based methods (Wang et al., 2022; Rafailov et al.,
2023; Chen et al., 2023b) generate such samples by first
learning a model and using it for rollout. However, this
style of generation inevitably suffers from the issue of com-
pounding errors: the error of the learned model itself will
accumulate during the multi-step rollout. Therefore, we aim
to generate samples with the desired distribution directly.
Motivated by the recent achievements of the diffusion model
in image generation (Ho et al., 2020; Karras et al., 2022),
we want to explore its potential application in RL sample
generation. However, utilizing a diffusion model trained
on an offline dataset introduces a challenge—it can only
generate samples adhering to the dataset distribution, thus
still being susceptible to distribution shift issues.

The desired distribution for RL has three crucial character-
istics: i) the state distribution should align with that in the
online training phase, ii) actions should be consistent with
the current policy, and iii) the next states should conform to
the transition function. To achieve this, we formulate three
distinct energy functions to guide the diffusion sampling
process, ensuring alignment with the aforementioned fea-
tures. The developed algorithm is named as Energy-Guided
DIffusion Sampling (EDIS). By presenting the new algo-
rithm, we showcase the feasibility of generating additional,
useful samples while mitigating distribution shift, which
will effectively help leverage the offline dataset.

The theoretical analysis shows that EDIS exhibits reduced
suboptimality compared to solely utilizing online data or
directly replaying offline data. Additionally, it circum-
vents the compounding error issue commonly associated
with model-based methods. When incorporating EDIS into
existing methods, Cal-QL (Nakamoto et al., 2023) and
IQL (Kostrikov et al., 2022), we observe 20% performance
improvement on average across MuJoCo, AntMaze, and
Adroit environments. Furthermore, our experiments demon-
strate that purely model-based methods fail to achieve per-
formance improvements due to the compounding errors in
the model during rollouts, leading to an inaccurate state
distribution. The ablation study further validates the ef-
fectiveness of the energy functions to guide the diffusion
models.

2. Preliminaries
2.1. Markov Decision Process and RL

Let M = (S,A, P, r, γ, ρ0) be an MDP, where S is the
state space, A is the action space, P : S × A → ∆(S)

is the transition function (∆(·) is the probability simplex),
r : S × A → [0, Rmax] is the reward function, γ ∈ [0, 1)
is the discount faction and ρ0 is the initial distribution over
states. A policy π : S → ∆(A) describes a distribution over
actions for each state. The goal of RL is to learn the best
policy π∗ that maximizes cumulative discounted reward, i.e.,∑
t Eat∼π∗γtr(st, at). The value function and Q function

of policy π are V π(s) =
∑
t Eat∼π(st)[γtr(st, at)|s0 = s],

Qπ(s, a) =
∑
t Eat∼π(st)[γtr(st, at)|s0 = s, a0 = a]. V ∗

and Q∗ be the shorthand for V π
∗

and Qπ
∗

respectively. To
facilitate later analysis, we introduce the discounted station-
ary state distribution dπ(s) =

∑
t γ

tPr(st = s;π) and the
discounted stationary state-action distribution dπ(s, a) =∑
t γ

tPr(st = s, at = a;π). There are, in general, two
learning paradigms of RL: online RL, where the agent can
learn from interacting with the environment; and offline
RL, where the agent can only learn from a given dataset
D = {(s, a, r, s′)}, possibly collected by another policy.

2.2. Generative Modeling by Diffusion Model

Diffusion models (Ho et al., 2020; Karras et al., 2022) are
a class of generative models inspired by non-equilibrium
thermodynamics. Given a dataset {x(i)

0 }Ni=1 with N sam-
ples of D-dimensional random variable x from an unknown
data distribution p0(x0). Diffusion models gradually add
Gaussian noise at time 0 to T according to noise levels
σmax = σT > σT−1 > · · · > σ0 = 0 so that at each
noise level, x(i)

t ∼ p(xt;σt). The distribution of the end-
point x(i)

T ∼ N (0, σ2
maxI) is indistinguishable from pure

Gaussian noise, while the starting point x(i)
0 aligns with the

distribution of the original dataset. Then the reverse process
starts from a Gaussian distribution and iteratively denoises
samples using the trained model, ultimately recovering the
target distribution. The process can be interpreted as SDEs:

dx± = −σ̇(t)σ(t)∇x log p(x;σ(t))dt

±β(t)σ2(t)∇x log p(x;σ(t))dt+
√
2β(t)σ(t)dωt,

(1)

where ωt is a standard Wiener process, dx+ and dx− are
separate SDEs for moving forward and backward in time.
The only unknown term is the score function ∇x log pt(·).
Karras et al. (2022) considers training a denoiser Dθ(xt;σ)
on an L2 denoising minimization objective:

LVLB(θ) := Ex∼p0(x0),ϵ∼N (0,σ2I) ∥Dθ(x+ ϵ;σ)− x∥22 ,
(2)

where σ is the standard deviation of Gaussian noise. After
training a diffusion model for estimating the score function
with∇x log p0(x;σ) = (Dθ(x;σ)−x)/σ2 , we can fastly
generate samples by solving the backward SDE.
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3. EDIS: Energy-Guided Diffusion Sampling
To extract prior knowledge from the offline dataset and gen-
erate samples to conform to the online data distribution, we
introduce our innovative approach, named Energy-guided
DIffusion Sampling (EDIS). At the heart of our method
is to accurately generate a desired online data distribution,
denoted as qπ(s, a, s′), from pre-gathered data. The distri-
bution does not include reward r because we assume that
the reward function r(s, a) is accessible, either directly or
through learning from the dataset. To achieve this, we have
integrated a diffusion model into our framework, capital-
izing on its exceptional capability for modeling complex
distributions.

3.1. Distribution Adjustment via Energy Guidance

One challenge in this process is the inherent limitation of
directly training a diffusion model on an offline dataset.
Such a model typically yields an offline data distribution
pD(s, a, s

′), which does not align perfectly with online data
and causes distribution shift issues. To address this, our
method needs to guide the diffusion sampling process to-
wards the online distribution. This is achieved by decom-
posing the online data distribution into the following form:

qπ(s, a, s
′) ∝ pθ(s, a, s′)e−E(s,a,s′), (3)

where pθ(s, a, s′) is the distribution generated by the de-
noiser network, parameterized by θ. E(s, a, s′) is the energy
function, which serves as the guidance to bridge the gap
between generated distribution and online data distribution.
The following theorem shows such an energy function ex-
ists.

Theorem 3.1. Let pθ(s) be the marginal distribution of
pθ(s, a, s

′), pθ(a|s) and pθ(s′|s, a) be the conditional dis-
tribution of pθ(s, a, s′) given s and (s, a). Eq. (3) is valid if
the energy function E(s, a, s′) is structured as follows:

E(s, a, s′) = E1(s) + E2(a) + E3(s′), (4)

such that eE1(s) ∝ pθ(s)
dπ(s) , eE2(a) ∝ pθ(a|s)

π(a|s) , eE3(s
′) ∝

pθ(s
′|s,a)

T (s′|s,a) .

This theorem indicates that the energy function can be de-
composed into three distinct parts. Each part is responsible
for aligning the generated distribution with different aspects
of the online data: the online state distribution, the current
policy action distribution, and the environmental dynamics.

3.2. Learning Energy Guidance by Contrastive Energy
Prediction

First, we concentrate on the first component, E1(s). We
assume that the energy is estimated using a neural network

denoted as Eϕ1
(s). Let K and Kneg be two positive num-

bers. Given s1, s2, . . . , sK ,K i.i.d. samples drawn from the
distribution pθ(s), and s1i , s

2
i , . . . , s

Kneg
i , KNeg negative sam-

ples for si. We employ the Information Noise Contrastive
Estimation (InfoNCE) loss (van den Oord et al., 2018):

L(ϕ1) = −
K∑
i=1

log
e−Eϕ1 (si)

e−Eϕ1 (si) +
∑Kneg
j=1 e

−Eϕ1 (s
j
i )
, (5)

Then, we devise positive and negative samples to achieve
the target energy function established by Thm. 3.1. Suppose
the distribution of positive samples is µ(s), the distribution
of negative samples is ν(s), the final optimized results is
eEϕ1 (s) ∝ ν(s)

µ(s) (van den Oord et al., 2018). Compared to the
function indicated by Thm. 3.1, the result can be achieved
by selecting µ(s) = dπ(s), ν(s) = pθ(s). Following the ap-
proach of Sinha et al. (2022); Liu et al. (2021), we construct
a positive buffer, containing only a small set of trajecto-
ries from very recent policies. The data distribution in this
buffer can be viewed as an approximation of the on-policy
distribution dπ(s). While pθ(s) is the distribution of the
data generated during the denoising steps. Therefore, the
positive samples is sampled from the positive buffer and the
negative samples is sampled from the denoiser.

For the remaining terms E2(a) and E3(s′), we also parame-
terize them as Eϕ2(a) and Eϕ3(s

′), and employ infoNCE loss
to estimate them. Similarly, the loss computation requires
the generation of positive and negative samples. Differently
from Eϕ1

(s), here the samples from the offline buffer can
also used for positive-sample generation. For Eϕ2

(a), the
positive samples are obtained by first sampling s from the
offline and online distribution and outputting the action of
the current policy on s. For Eϕ3

(s′), positive samples are
obtained by sampling (s, a, s′) from the from the offline
and online distribution and outputting s′ directly. Negative
samples for both Eϕ2

(a) and Eϕ3
(s′) are generated using

the denoiser. For each positive samples of Eϕ2(a), the nega-
tive samples are generated conditioned on the given states.
While for each positive samples of Eϕ3

(s′), they are gener-
ated conditioned on the sampled states-action pairs. This
method of conditional sample generation is inspired by tech-
niques used in decision-making scenarios (Ajay et al., 2023;
Janner et al., 2022). The loss functions of parameterized
Eϕ2(a) and Eϕ3(s

′) are:

L(ϕ2) = −
K∑
i=1

log
e−Eϕ2 (ai)

e−Eϕ2 (ai) +
∑Kneg
j=1 e

−Eϕ2 (a
j
i )
, (6)

L(ϕ3) = −
K∑
i=1

log
e−Eϕ3 (s

′
i)

e−Eϕ3 (s
′
i) +

∑Kneg
j=1 e

−Eϕ3 (s
j′
i )
. (7)
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3.3. Sampling under Energy Guidance

To realize this distribution with diffusion models, we need to
calculate its score function in the sampling process, taking
into account the energy function designed in Sec. 3.2:

∇(s,a,s′) log qπ(s, a, s
′)

= ∇(s,a,s′) log pθ(s, a, s
′)−∇(s,a,s′)E(s, a, s′)

(8)

In the denoising process, we need to obtain the score func-
tion at each timestep. Denote the forward distribution at
time t starting from p0(s, a, s

′) as pt(s, a, s′). Remember
that the denoiser model Dθ(s, a, s

′;σ) is designed to match
the score with the expression:

∇ log pθ(s, a, s
′) = (Dθ(s, a, s

′;σ)− (s, a, s′))/σ2. (9)

Thus, we can obtain the gradient through the denoiser model.
Then, the key problem is to obtain the intermediate energy
guidance at time t, which is addressed in the following
theorem.

Theorem 3.2 (Thm. 3.1 in (Lu et al., 2023b)). De-
note qt(xt) :=

∫
qt(xt|x0)q0(x0)dx0 and pt(xt) :=∫

pt(xt|x0)p0(x0)dx0 as the marginal distributions at time
t, and define

Et(xt) :=

{
E(x0), t = 0,

− logEqt(x0|xt)[e
−E(x0)], t > 0.

Then the score functions satisfy

∇xt log qt(xt) = ∇xt log pt(xt)−∇xtEt(xt).

Let x0 denote the set of original positive samples. Accord-
ing to this theorem, we aim to formulate the energy function
at timestep t. Drawing inspiration from Sec. 3.2, we opt
for a contrastive learning approach. Within this method,
these positive samples for the energy function at t timestep
are derived from the original samples subjected to t steps
of noise addition, i.e., xt ∼ p(xi;σt), where σt is chosen
as (Karras et al., 2022):

σt =

(
σ

1
ρ
max +

t

T − 1
(σ

1
ρ

min − σ
1
ρ
max)

)ρ
and σT = 0,

where ρ, σmax and σmin are pre-defined constant numbers.
As for the negative samples, they are generated by the de-
noiser at time t. Then we start the denoising process defined
in Eq. (1). The psuedo-code of EDIS is demonstrated in
Appx. B.

4. Theoretical Analysis
In this section, we provide theoretical analysis on the sub-
optimality bound of our method and previous methods.

We follow the assumptions of Fitted-Q-iteration (Chen
& Jiang, 2019): Let F be the Q function class that sat-
isfies realizability: Q∗ ∈ F . F is closed under Bell-
man update: ∀f ∈ F , T πf ∈ F , where T πf(s, a) :=
r(s, a) + γEs′∼P (s,a)[V

π
f (s′)], V πf (s′) := Ea′∼πf(s′, a′)

and π can be any policy. Additionally, we assume F is
L-Lipschitz.

In the offline phase, we initialize a value functionQ0. Based
on Q0, we perform online learning by collecting n samples
each iteration. The naive method, which relies solely on the
information from n collected samples to update the policy,
is characterized by the following suboptimality bound.

Theorem 4.1. Suppose the learned Q function after the
offline phase satisfies (∥Q∗ −Q0∥∞ + ∥Qπ −Q0∥∞) ≤
ϵQ, where Q∗ is the Q function of the optimal policy π∗.
With probability at leaset 1 − δ, the output policy π after
one iteration of online phase satisfies

J(π∗)− J(π) ≤ 2γϵQ
1− γ

+

√
Cπ,π∗ + 1

1 + γ

1

(1− γ)2.5

√
56R2

max log
|F|2
δ

3n
,

whereCπ,π∗ = maxs,a
π1(a|s)
π2(a|s) , n is the number of collected

samples in one iteration.

Considering the performance bound after a single iteration
is reasonable, as subsequent iterations can be analyzed by
treating the output value function as the new initialization.
The suboptimality after one iteration is characterized by

the initialization error, augmented by a term of O
(√

1
n

)
.

Notably, this error is nonnegligible because of the relatively
small size of the online interaction samples.

A natural approach for leveraging offline data is augmenting
the online dataset with the available offline data. To establish
the suboptimality bound for such a method, we need to
introduce the concept of concentratability coefficient.

Definition 4.2 (Concentratability Coefficient). The concen-
tratbility coefficient C between state distribution ν and µ is
defined as ∀s ∈ S, ν(s)µ(s) ≤ C.

Assuming the concentratability coefficient between the state
distribution of current policy dπ and offline dataset D is Cd,
we have the following theorem:

Theorem 4.3. Under the conditions of Thm. 4.1, by replay-
ing offline data in the online iteration, the output policy π
after one iteration satisfies

J(π∗)− J(π) ≤ 2γϵQ
1− γ

+√
C̃dCπ,π∗ + 1

1 + γ

1

(1− γ)2.5

√
56R2

max log
|F|2
δ

3(n+N)
,
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where C̃d =
(n+N)Cd
N+nCd

,N is the number of samples in offline
dataset.

The error bound is characterized by an order of

O
(√

1
n+N

)
. Given the substantial difference in size,

where N is notably larger than n, replaying offline data
shows advantages to the previous method. This result
explains the improved performance resulting from online
dataset augmentation. However, the introduction of the
concentration coefficient Cd in the new method reflects the
consequences of the distribution shift issue. This coefficient
can assume a significantly large value, particularly if the
offline data fails to adequately cover a substantial portion of
the state space. It detriments the potential performance im-
provement attainable through enhanced utilization of prior
knowledge.

Based on the diffusion model generator, our new method
has access to synthetic samples (s̃, ã, r̃, s̃′) during the on-
line interaction phase. Let the distribution of s̃ be denoted
as d̃π, and the conditional distribution of s̃′ as T̃ (·|s̃, ã).
The state distribution error and model error of the diffu-
sion model are defined as:ϵd =

∥∥∥dπ − d̃π∥∥∥ , and ϵdm =∥∥∥T (·|s, a)− T̃ (·|s, a)∥∥∥
d̃π

.

Theorem 4.4. Under the conditions of Thm. 4.1, we assume
the data generator generates data with state distribution
error ϵd and model error ϵm, then the output policy π after
one iteration of online phase satisfies

J(π∗)− J(π) ≤ 2γ

1− γ
ϵQ+(√

Cπ,π∗ + 1
)( 1

(1− γ)2
Rmaxϵd +

γL

(1− γ)2
ϵdm

)
,

where L is Lipschitz constant of F .

Here, we simplify the analysis by disregarding the gener-
ation errors associated with ã and r̃. This simplification
is justified as modeling these errors is considerably more
straightforward compared to modeling the error associated
with s and s̃. Additionally, considering these two errors
leads to a similar analysis and does not alter the order of the
error term. According to the theorem, the error bound is not
directly related to the number of samples, but it is highly
dependent on the error of the diffusion model. Based on the
theory of supervised learning (von Luxburg & Schölkopf,

2011), the model error ϵm is O
(√

1
n+N

)
. The state distri-

bution error ϵd is the distribution matching error, which is

also O
(√

1
n+N

)
(Xu et al., 2021). Therefore, our method

exhibits the same convergence rate as the previous method
without introducing the distribution shift issue identified by
the concentration coefficient Cd.

Model-based method can also generate synthetic online

samples. Assume the model error of the model is ϵtm =∥∥∥T (·|s, a)− T̃ (·|s, a)∥∥∥
dπ

.

Theorem 4.5. Under the conditions of Thm. 4.1, we assume
the model has an error ϵtm, then the output policy π after
one iteration of online phase satisfies

J(π∗)− J(π) ≤ 2γ

1− γ
ϵQ+(√

Cπ,π∗ + 1
)( Rmax

(1− γ)3
ϵtm +

γL

(1− γ)2
ϵtm

)
.

The error of model-based approach is irrelevant to the Cd
term, illustrating that incorporating prior knowledge about
transitions from the offline dataset can address the issue
of distribution shift. Nevertheless, this method is subject
to a compounding error, with an error bound expressed
as O

(
1

(1−γ)3

)
. This limitation implies that model-based

methods may not surpass the performance of model-free
methods (Rafailov et al., 2023). In contrast, the error bound
for EDIS is lower, atO

(
1

(1−γ)2

)
, which effectively reduces

the impact of compounding error. In summary, EDIS over-
comes all the issues previous methods have in theory.

5. Experiments
In this section, we empirically validate the effectiveness of
EDIS. Sec. 5.1 showcases the considerable performance en-
hancement achieved by EDIS when integrated with off-the-
shelf offline-to-online algorithms. Sec. 5.2 investigates the
reasons for this improvement, highlighting two key factors:
i) the robust distribution modeling capability of diffusion
models, and ii) the focus on modeling data distribution in-
stead of the transition function, which effectively mitigates
compounding errors. Sec. 5.3 includes an ablation study
on three energy functions to underscore their critical role
in our algorithm. In this section, every experiment result is
averaged over five random seeds.

5.1. Enhanced Performance Achieved by EDIS

We evaluate the performance of EDIS on three benchmark
tasks from D4RL (Fu et al., 2020): MuJoCo Locomotion,
AntMaze Navigation, and Adroit Manipulation. We imple-
ment EDIS on top of base algorithms Cal-QL (Nakamoto
et al., 2023), a state-of-the-art offline-to-online method that
effectively calibrates over-conservatism of CQL (Kumar
et al., 2020), and IQL (Kostrikov et al., 2022), which adopts
AWR-style policy learning in both phases. The 0.2M fine-
tuning results after 1M pre-training are presented in Tab. 1.

Notably, the integration of EDIS with Cal-QL yields a sub-
stantial 26.3% improvement in overall performance, demon-
strating significant enhancements in the Adroit domain and
MuJoCo random datasets. The latter are characterized by
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Table 1. Enhanced performance achieved by EDIS after 0.2M online fine-tuning on base algorithms Cal-QL and IQL. Each result is the
average score over five random seeds ± standard deviation.

Dataset
Cal-QL IQL Avg.

Base Ours Base Ours Base Ours

hopper-random-v2 17.6±3.1 98.1±12.3 10.0±1.7 12.1±4.0 13.8±2.4 55.1±8.2
hopper-medium-replay-v2 102.2±4.6 109.9±0.8 99.0±4.7 101.1±1.6 100.6±4.7 105.5±1.2
hopper-medium-v2 97.6±1.4 105.0±4.1 59.2±7.9 73.1±4.4 78.4±4.7 89.1±4.3
hopper-medium-expert-v2 107.9±9.6 109.7±1.4 90.0±22.1 105.7±6.7 99.0±15.9 107.7±4.1
halfcheetah-random-v2 74.8±3.2 86.3±1.8 36.7±3.0 38.9±1.9 55.8±3.1 62.6±1.9
halfcheetah-medium-replay-v2 76.6±1.2 86.7±1.4 45.6±0.4 47.1±0.3 61.1±0.8 66.9±0.9
halfcheetah-medium-v2 72.3±2.1 83.9±1.0 48.6±0.2 49.8±0.2 60.5±1.2 66.9±0.6
halfcheetah-medium-expert-v2 91.0±0.6 98.6±0.5 87.9±4.3 85.4±2.7 89.5±2.5 92.0±1.6
walker2d-random-v2 15.1±3.5 61.6±12.6 6.5±0.7 16.2±2.9 10.8±2.1 38.9±7.8
walker2d-medium-replay-v2 87.3±8.5 112.9±6.4 83.6±2.0 95.3±1.4 85.5±5.3 104.1±3.9
walker2d-medium-v2 84.2±0.3 103.5±1.8 83.6±2.1 85.2±1.3 83.9±1.2 94.4±1.6
walker2d-medium-expert-v2 111.1±0.6 118.5±4.0 108.9±2.9 107.5±4.5 110.0±1.8 113.0±4.3

locomotion total 937.7 1174.7 759.6 856.3 848.7 1015.5

antmaze-umaze-v2 96.3±1.4 98.9±1.3 79.2±4.1 81.1±3.4 87.8±2.8 90.0±2.4
antmaze-umaze-diverse-v2 93.4±4.6 95.9±2.8 51.3±4.5 66.7±5.0 72.4±4.6 81.3±3.9
antmaze-medium-diverse-v2 81.4±3.9 89.3±4.8 75.6±1.9 81.8±4.8 78.5±2.9 85.6±4.8
antmaze-medium-play-v2 86.8±1.6 93.9±2.7 81.0±2.2 86.2±1.3 83.9±1.9 90.1±2.0
antmaze-large-play-v2 42.5±5.2 66.1±8.2 39.2±7.2 40.0±5.3 40.9±6.2 53.1±6.8
antmaze-large-diverse-v2 42.3±2.2 57.1±2.8 45.0±8.7 52.1±2.6 43.7±5.5 54.6±2.7
antmaze-umaze-diverse-v2 93.4±4.6 95.9±2.8 51.3±4.5 66.7±5.0 72.4±4.6 81.3 ± 3.9
antmaze-large-diverse-v2 42.3±2.2 57.1± 2.8 45.0±8.7 52.1±2.6 63.7± 5.5 54.6±2.7

antmaze total 442.7 501.2 371.3 407.9 407.0 454.6

relocate-human-v1 -0.4±0.2 0.2±0.2 1.4±0.3 1.7±0.4 0.5±0.3 1.0±0.3
pen-human-v1 68.4±8.7 95.6±6.2 91.2±5.2 103.6±4.2 79.8±7.0 99.6±5.2
door-human-v1 0.1±0.2 58.4±17.6 20.7±4.6 25.6±3.3 10.4±2.4 42.0±10.5

adroit total 68.1 154.2 113.3 130.9 90.7 142.3

total 1448.5 1830.1 1244.2 1395.1 1346.4 1612.4

a scarcity of successful demonstrations, creating a substan-
tial gap between offline and online distributions that poses
a challenge to previous methods. EDIS addresses this is-
sue by directly generating online samples, overcoming the
distribution shift issue. Even combined with IQL, where
the conservatism cannot be entirely dropped during online
fine-tuning due to its reliance on in-sample data, EDIS still
achieves an average performance improvement of 12.1%.
For more information on implementation details, please
refer to Appx. C.

5.2. Comparisons between EDIS and Basic Model-based
Methods

While EDIS demonstrates superior performance on the
D4RL benchmarks, a natural question arises: what con-
tributes to this improvement? We hypothesize two main
contributors to EDIS’s success: firstly, the superior repre-

sentational capabilities of diffusion models, and secondly,
the innovative modeling approach that focuses on the distri-
bution of (s, a, s′) tuples instead of modeling the transition
function as is common in traditional model-based methods.
To substantiate our hypothesis, we have undertaken further
experiments involving two models tasked with representing
the transition function of the environments. The models
have equivalent capacity as EDIS (i.e., having the same
number of parameters), allowing for a direct comparison.
These models are then used to rollout current policies within
the learned model, thereby augmenting online data. One
model employs a multi-layer perceptron (MLP) structure,
while the other utilizes a diffusion model. The base algo-
rithm is Cal-QL and the results are shown in Fig. 1. It can be
seen that the MLP model does not exhibit enhanced perfor-
mance compared to the original algorithm. According to the
theory outlined in Sec. 4, this suggests that the performance
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Figure 1. Comparison of EDIS and traditional model-based method. Diffusion transition and MLP transition mean the transition function
is modeled by diffusion model and MLP respectively.

drop induced by distribution shift and MLP model error is
similar.

In contrast, the diffusion transition model shows some im-
provement, indicating that diffusion model suffers smaller
model error than MLP model because of its superior distribu-
tion modeling ability. Despite this, simply employing a pow-
erful diffusion model in conjunction with traditional data
augmentation methods could not match the performance
achieved by EDIS. This is attributed to the compounding
error introduced by rolling out policies in a misspecified
transition model. The unique data generation approach of
EDIS, which directly generates online samples, proves cru-
cial in achieving its remarkable performance. To visualize
the effect of compounding error reduction, we compare the
state distribution generated by these models. The result is
defered to Appx. C.2 because of space limitation. In sum-
mary, the performance enhancement observed with EDIS
stems not only from the capability of the diffusion model
but also from its distinctive data generation methodology.

5.3. Ablation for Energy Functions in EDIS

The energy functions, as described in Sec. 3.1, align each
component in the generated distribution with their online
counterparts, including the state distribution, the action dis-
tribution under the current policy, and the transition fidelity.
We conduct ablation studies on each energy function by
omitting its guidance during the reverse-time SDE in hopper-
random-v2, antmaze-medium-diverse-v2, and door-human-
v1. We compare the divergence between the distribution
generated by diffusion models and the real environments.
For the state divergence, we calculate the JS divergence
between the two distributions. The details of JS divergence
and its calculation state distribution are shown in Appx. C.4.
For action divergence and state divergence, we calculate the
mean square loss of the action or next state generated by the
diffusion model and the current policy or the real dynamics.
As shown in Tab. 2, the guidance of the energy function
effectively decreases the divergence from the online sample

distribution, real-world transitions, and actions induced by
the policy interacting with the environment.

Furthermore, the results in Fig. 2 demonstrate that a larger
divergence of the three parts detriments the final perfor-
mance. Particularly, in environments like hopper-random-
v2, EDIS struggles to excel without the state energy func-
tion, demonstrating the ineffectiveness of merging unrelated
offline data directly into the online fine-tuning phase.

6. Related Work
In this section, we provide a brief summary of related work,
the complete version is in Appx. D.

Offline-to-online Reinforcement Learning. Offline-to-
online reinforcement learning methods are developed to
mitigate the dichotomy between the costly exploration in
online RL and the typically suboptimal performance of of-
fline RL. The learning process is typically divided into two
phases: Warming-up the policy and value functions in the
offline phase and using them as initialization in the online
phase (Nair et al., 2020; Wang et al., 2023a; Nakamoto et al.,
2023; Lee et al., 2021). These approaches often employ of-
fline RL methods based on policy constraints or pessimism
in the offline phase (Fujimoto et al., 2019; Fujimoto & Gu,
2021; Kumar et al., 2020). However, the conservatism con-
flicts with the online phase and may induce performance
degradation. Various strategies have been implemented to
tackle this issue, such as policy expansion (Zhang et al.,
2023), value function calibration (Nakamoto et al., 2023),
Q-ensemble techniques (Lee et al., 2021), and constraint
methods (Nair et al., 2020; Kostrikov et al., 2022; Li et al.,
2023). Despite the advancements, there has been less focus
on the crucial aspect of integrating useful data during the
fine-tuning phase to enhance training efficiency. Standard
practices include enriching the replay buffer with offline
data (Nakamoto et al., 2023; Zhang et al., 2023), adopting
balanced sampling methods for managing both online and
offline data sources (Lee et al., 2021; Ball et al., 2023), or
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Table 2. Divergence comparisons for energy function ablation study (lower is better). Each result is the average score over five random
seeds ± standard deviation.

Dataset
State Divergence Action Divergence Transition Divergence

w/o energy w/ energy w/o energy w/ energy w/o energy w/ energy

hopper-radnom-v2 0.85±0.02 0.73±0.03 0.51±0.04 0.39±0.02 0.69±0.03 0.66±0.04
antmaze-medium-diverse-v2 0.98±0.00 0.91±0.02 0.38±0.08 0.27±0.08 0.75±0.14 0.64±0.14
door-human-v1 0.40±0.04 0.24±0.02 0.54±0.07 0.41±0.08 2.57±0.06 2.52±0.05
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Figure 2. Energy Module Ablation Study of EDIS

building models to performance branch rollout (Rafailov
et al., 2023). However, directly replaying the offline data
causes a distribution shift, and adopting balanced sampling
methods introduces large variance (Nachum et al., 2019)
while rolling in the built model suffers from compounding
error (Janner et al., 2019). In contrast, our work breaks new
ground by proposing a diffusion-based generator specifi-
cally designed to generate useful samples by thoroughly
leveraging prior knowledge in offline data.

Diffusion Model in Reinforcement Learning. Diffusion
models have demonstrated exceptional capabilities in mod-
eling distribution (Saharia et al., 2022; Nichol et al., 2022;
Nichol & Dhariwal, 2021). Within the reinforcement learn-
ing research, Diffuser (Janner et al., 2022) uses a diffusion
model as a trajectory generator and learns a separate return
model to guide the reverse diffusion process toward sam-
ples of high-return trajectories. Decision Diffuser (Ajay
et al., 2023) introduces conditional diffusion with reward
or constraint guidance for decision-making tasks, further
boosting Diffuser’s performance. Expanding the application
of diffusion models, SYNTHER (Lu et al., 2023a) focuses
on leveraging the diffusion model for upsampling data in
both online and offline reinforcement learning scenarios.
Recently, several concurrent work also investigates gener-
ating samples with certain data distribution by diffusion
models. PolyGRAD (Rigter et al., 2023) and PGD (Jackson
et al., 2024) embed the policy for classifier-guided trajectory
generation, aiming at on-policy world modeling. However,
they still use the diffusion model to model the transition
function rather than the data distribution directly, which

does not eliminate the issue of compounding error. Finally,
in the context of offline-to-online reinforcement learning,
our research pioneers the utilization of diffusion-based mod-
els to actively generate valuable samples. This departure
from the passive reuse of offline data marks EDIS as a novel
approach, emphasizing the active role of diffusion models
in sample generation for offline-to-online RL.

7. Conclusion
This study underscores the crucial role of harnessing offline
data effectively to augment online fine-tuning. We introduce
Energy-guided Diffusion Sampling (EDIS), a powerful ap-
proach leveraging a state-of-the-art generative model with
energy guidance. In contrast to existing strategies that pri-
marily rely on initializing with offline-derived policies and
Q functions or replaying offline data, EDIS takes a proac-
tive stance by generating synthetic data within the online
data distribution, drawing information from all available
data sources. Theoretical analysis verifies that EDIS out-
performs prior methods in addressing distribution shift chal-
lenges and effectively mitigates compounding errors. As a
versatile solution, EDIS seamlessly integrates with preva-
lent offline-to-online frameworks. When combined with
methods like Cal-QL and IQL, EDIS showcases substantial
performance enhancements. This superior generative mod-
eling capabilities of EDIS mark it as a scalable approach,
providing promising potential for designing data-efficient
learning strategies in more complex environments with high-
dimensional state or action spaces.
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Toshev, A., and Susskind, J. M. Value function estimation
using conditional diffusion models for control. CoRR,
abs/2306.07290, 2023.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A.,
Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Nachum, O., Chow, Y., Dai, B., and Li, L. Dualdice:
Behavior-agnostic estimation of discounted stationary
distribution corrections. In Proceedings of the 32nd Neu-
ral Information Processing Systems (NeurIPS’19), pp.
2315–2325, Vancouver, Canada, 2019.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating
online reinforcement learning with offline datasets. CoRR,
abs/2006.09359, 2020.

Nakamoto, M., Zhai, Y., Singh, A., Mark, M. S., Ma, Y.,
Finn, C., Kumar, A., and Levine, S. Cal-ql: Calibrated
offline RL pre-training for efficient online fine-tuning.
CoRR, abs/2303.05479, 2023.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Conference
on Machine Learning (ICML’21), Virtual Event, 2021.

Nichol, A. Q., Dhariwal, P., Ramesh, A., Shyam, P.,
Mishkin, P., McGrew, B., Sutskever, I., and Chen, M.
GLIDE: towards photorealistic image generation and edit-
ing with text-guided diffusion models. In Proceedings of
the 39th International Conference on Machine Learning
(ICML’22), Baltimore, USA, 2022.

Peng, X. B., Coumans, E., Zhang, T., Lee, T. E., Tan, J., and
Levine, S. Learning agile robotic locomotion skills by
imitating animals. In Proceedings of the 14th Robotics:
Science and Systems (RSS’20), Virtual Event, 2020.

Rafailov, R., Hatch, K. B., Kolev, V., Martin, J. D., Phielipp,
M., and Finn, C. Moto: Offline pre-training to online fine-
tuning for model-based robot learning. In Conference on
Robot Learning (CoRL’23), pp. 3654–3671, 2023.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning complex
dexterous manipulation with deep reinforcement learning
and demonstrations. In Proceedings of the 12th Robotics:
Science and Systems (RSS’18), PA, USA, 2018.

10



Energy-Guided Diffusion Sampling for Offline-to-Online Reinforcement Learning

Rigter, M., Yamada, J., and Posner, I. World mod-
els via policy-guided trajectory diffusion. CoRR,
abs/2312.08533, 2023.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E. L., Ghasemipour, S. K. S., Lopes, R. G., Ayan,
B. K., Salimans, T., Ho, J., Fleet, D. J., and Norouzi, M.
Photorealistic text-to-image diffusion models with deep
language understanding. In Proceedings of the 35th Neu-
ral Information Processing Systems (NeurIPS’22), New
Orleans, USA, 2022.

Schaal, S. Learning from demonstration. Advances in neural
information processing systems, 9, 1996.

Sinha, S., Song, J., Garg, A., and Ermon, S. Experience
replay with likelihood-free importance weights. In Learn-
ing for Dynamics and Control Conference (L4RC’22),
Stanford, USA, 2022.

Song, Y., Zhou, Y., Sekhari, A., Bagnell, J. A., Krishna-
murthy, A., and Sun, W. Hybrid rl: Using both of-
fline and online data can make rl efficient. In The 11th
International Conference on Learning Representations
(ICLR’22), Virtual Event, 2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tarasov, D., Nikulin, A., Akimov, D., Kurenkov, V., and
Kolesnikov, S. CORL: Research-oriented deep offline re-
inforcement learning library. In 3rd Offline RL Workshop:
Offline RL as a ”Launchpad”, 2022.

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. CoRR,
abs/1807.03748, 2018.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O.,
Piot, B., Heess, N., Rothörl, T., Lampe, T., and Riedmiller,
M. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. CoRR,
abs/1707.08817, 2017.

von Luxburg, U. and Schölkopf, B. Statistical learning
theory: Models, concepts, and results. In Inductive Logic,
volume 10, pp. 651–706. Elsevier, 2011.

Wang, J., Wang, Z., Li, X., Kuang, Y., Shi, Z., Zhu, F.,
Yuan, M., Zeng, J., Zhang, Y., and Wu, F. Learning to cut
via hierarchical sequence/set model for efficient mixed-
integer programming. CoRR, abs/2008.06319, 2024.

Wang, S., Yang, Q., Gao, J., Lin, M. G., Chen, H., Wu,
L., Jia, N., Song, S., and Huang, G. Train once, get
a family: State-adaptive balances for offline-to-online
reinforcement learning. CoRR, abs/2310.17966, 2023a.

Wang, X., Chen, Y., Yang, J., Wu, L., Wu, Z., and Xie, X. A
reinforcement learning framework for explainable recom-
mendation. In Proceedings of the 18th International Con-
ference on Data Mining (ICDM’18), Singapore, 2018.

Wang, Z., Wang, J., Zhou, Q., Li, B., and Li, H. Sample-
efficient reinforcement learning via conservative model-
based actor-critic. Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI’22), 36(8):8612–8620,
Jun. 2022.

Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an
expressive policy class for offline reinforcement learning.
In The Eleventh International Conference on Learning
Representations (ICLR’23), Kigali, Rwanda, 2023b.

Wang, Z., Li, X., Wang, J., Kuang, Y., Yuan, M., Zeng, J.,
Zhang, Y., and Wu, F. Learning cut selection for mixed-
integer linear programming via hierarchical sequence
model. In The Eleventh International Conference on
Learning Representations (ICLR’23), 2023c.

Xu, T., Li, Z., and Yu, Y. Nearly minimax optimal ad-
versarial imitation learning with known and unknown
transitions. CoRR abs/2106.10424, 2021.

Zhang, H., Xu, W., and Yu, H. Policy expansion for
bridging offline-to-online reinforcement learning. In The
Eleventh International Conference on Learning Repre-
sentations(ICLR’23), Kigali, Rwanda, 2023.

Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., and Yin, D.
Recommendations with negative feedback via pairwise
deep reinforcement learning. In Proceedings of the 24th
International Conference on Knowledge Discovery &
Data Mining (KDD’18), London, UK, 2018.

Zhao, Y., Boney, R., Ilin, A., Kannala, J., and Pajari-
nen, J. Adaptive behavior cloning regularization for
stable offline-to-online reinforcement learning. CoRR,
abs/2210.13846, 2022.

Zhu, H., Gupta, A., Rajeswaran, A., Levine, S., and Ku-
mar, V. Dexterous manipulation with deep reinforcement
learning: Efficient, general, and low-cost. In Proceedings
of the 36th International Conference on Robotics and
Automation (ICRA’19), Montreal, Canada, 2019.

Zhu, Y., Wang, Z., Merel, J., Rusu, A. A., Erez, T., Cabi, S.,
Tunyasuvunakool, S., Kramár, J., Hadsell, R., de Freitas,
N., and Heess, N. Reinforcement and imitation learning
for diverse visuomotor skills. In Proceedings of the 12th
Robotics: Science and Systems (RSS’18), PA, USA, 2018.

11



Energy-Guided Diffusion Sampling for Offline-to-Online Reinforcement Learning

A. Proofs and additional Theory
A.1. Proof of Thm. 3.1

Because eE1(s) ∝ pθ(s)
dπ(s) , eE2(a) ∝ pθ(a|s)

π(a|s)) , eE3(s
′) ∝ pθ(s

′)
Tπ(s′|s,a)) , we have eE1(s) = k1

pθ(s)
dπ(s) , eE2(a) = k2

pθ(a|s)
π(a|s) , eE3(s

′) =

k3
pθ(s

′|s,a)
T (s′|s,a) , where k1, k2 and k3 are arbitrary positive constants.

e−(E1(s)+E2(a)+E3(s
′))

= k1k2k3
dπ(s)π(a|s)T (s′|s, a)
pθ(s)pθ(a|s)pθ(s′|s, a)

= k1k2k3
qπ(s, a, s

′)

pθ(s, a, s′)
,

where the last equation comes from qπ(s, a, s
′) = dπ(s)π(a|s)T (s′|s, a) and pθ(s, a, s

′) = pθ(s)pθ(a|s)pθ(s′|s, a).
Because k1k2k3 > 0, we conclude e−(E1(s)+E2(a)+E3(s

′)) ∝ qπ(s,a,s
′)

pθ(s,a,s′)
, then pθ(s, a, s′)e−E(s,a,s′) ∝ qπ(s, a, s′), and thus

Eq. (3) holds.

A.2. Proof of Thm. 4.1

Before proof this theorem, we introduce some new notations.

T πf(s, a) := r(s, a) + γEs′∼P (s,a)[V
π
f (s′)],

where V πf (s′) := Ea′∼πf(s′, a′). Recursively define (T π)j = (T π)(T π)j−1.

Similarly, we define
T f(s, a) := r(s, a) + γEs′∼P (s,a)[Vf (s

′)],

where Vf (s′) := maxa′ f(s
′, a′).

Given a function f : X 7→ R, define its norm ∥ · ∥µ with respect to distribution µ as:

∥f∥µ =

√∑
x

f2(x)µ(x).

Suppose ν(s) is a state state distribution π(a|s) is an action distribution based on given state s, then ν×π(s, a) = ν(s)π(a|s).
Lemma A.1 (Theorem 1 of (Sinha et al., 2022)). The Bellman operator T is a γ-contraction with respect to the ∥ · ∥dπ
norm, i.e.,

∥T πf − T πf ′∥dπ ≤ γ ∥f − f
′∥dπ , ∀f, f ′ ∈ F .

Lemma A.2. Let ν be any admissible state distribution, π1 and π2 be two policies, and Cπ1,π2
= maxs,a

π1(a|s)
π2(a|s) ,

∥·∥ν×π1
≤
√
Cπ1,π2 ∥·∥ν×π2

.

Proof. For any function f : S ×A → R, we have

∥f∥ν×π1
=

(∑
s,a

|f(s, a)|2ν(s)π1(a|s)

)1/2

≤

(∑
s,a

|f(s, a)|2Cπ1,π2
ν(s)π2(a|s)

)1/2

=
√
Cπ1,π2

(∑
s,a

|f(s, a)|2ν(s)π2(a|s)

)1/2

=
√
Cπ1,π2 ∥f∥ν×π2

.
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To simplify the notation, we use T̂ π to denote the Bellman operator under limited data, i.e.,

T̂ πf = argmin
g

N∑
i=1

(g − r − γV πf )2.

Lemma A.3. If f ∈ F , with probability at least 1− δ, we have∥∥∥(T̂ π)jf − (T π)jf
∥∥∥
dπ
≤ 1− γj

1− γ
56V 2

max log
|F|2
δ

3n
.

Proof. The proof is based on Lem. 16 of (Chen & Jiang, 2019).

First, we consider
∥∥∥T̂ πf − T πf∥∥∥

dπ
. Define

Ldπ (g, h) = Es,a∼dπ (g − r − γV πh )2

LD(g, h) = Es,a∼D(g − r − γV πh )2

Then we have T f = argming Ldπ (g, f) and T̂ f = argming LD(g, f).

To simplify the notations, we define

X(g, f, g∗) := (g(s, a)− r − γV πf (s′))2 − (g∗(s, a)− r − V πf (s′))2

Next, we bound the variance of X(g, f, g∗),

V [X(g, f, g∗)] ≤ E
[∥∥X2(g, f, g∗)

∥∥]
= E

[(
(g(s, a)− r − γV πf (s′))2 − (g∗(s, a)− r − V πf (s′))2

)]
= E

[
(g(s, a)− g∗(s, a))2(g(s, a) + g∗(s, a)− 2r − 2γV πf (s′))2

]
≤ 4V 2

maxE
[
(g(s, a)− g∗(s, a))2

]
= 4V 2

max ∥g − g∗∥
2
dπ

Note that

∥g − g∗∥2dπ
(a)

≤ 2(∥g − r − γV πf ∥2dπ + ∥r + γV πf − g∗∥2dπ )
= 2E[X(g, f, g∗)],

where (a) holds because (a+ b)2 ≤ 2(a2 + b2).

Finally, we apply Bernstein’s inequality and union bound over all f ∈ F . With probability at least 1− δ, we have

E[X(g, f, g∗)− 1

n

n∑
i=1

Xi(g, f, g
∗)

≤

√
2V [X(g, f, g∗)] log |F|2

δ

n
+

4V 2
max log

|F|2
δ

3n

≤

√
16V 2

maxE[X(g, f, g∗) log |F|2
δ

n
+

4V 2
max log

|F|2
δ

3n

Since T̂ πf minimizes LD(·, f), it also minimizes 1
nXi(·, f, g∗). This is because the two objectives only differ by a constant

LD(·, f). Therefore, we have

1

n

n∑
i=1

Xi(T̂ πf, f, T πf) ≤
1

n

n∑
i=1

Xi(T πf, f, T πf) = 0.
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Then

E[X(T̂ π, f, T πf) ≤

√
16V 2

maxE[X(g, f, g∗) log |F|2
δ

n
+

4V 2
max log

|F|2
δ

3n
.

Solving for the quadratic formula, we have

E[X(T̂ π, f, T πf) ≤
56V 2

max log
|F|2
δ

3n
.

Noticing that ∥∥∥T̂ πf − T πf∥∥∥2
dπ

= Ldπ (T̂ πf, f) + Ldπ (T πf, f)

= E[X(T̂ πf, f, T πf)] ≤ ϵ,
(10)

where ϵ = 56V 2
max log

|F|2
δ

3n .

For
∥∥∥(T̂ π)2f − (T π)2f

∥∥∥2
dπ

, note that

∥∥∥(T̂ π)2f − (T π)2f
∥∥∥2
dπ

=
∥∥∥T̂ π(T̂ πf)− T π(T πf)∥∥∥2

dπ

≤
∥∥∥T̂ π(T̂ πf)− T π(T̂ πf)∥∥∥2

dπ
+
∥∥∥T π(T̂ πf)− T π(T πf)∥∥∥2

dπ

(a)

≤ ϵ+
∥∥∥T π(T̂ πf)− T π(T πf)∥∥∥2

dπ

(b)

≤ ϵ+ γ2
∥∥∥T̂ πf − T πf∥∥∥2

dπ

(c)

≤ ϵ+ γ2ϵ,

where (a) and (c) use Eq. (10), (b) use Lem. A.1.

Recursively, we have ∥∥∥(T̂ π)2f − (T π)2f
∥∥∥2
dπ
≤

j∑
i=0

γ2iϵ =
1− γ2j

1− γ2
56V 2

max log
|F|2
δ

3n
.

Lemma A.4 (Lemma 14 in (Chen & Jiang, 2019)). Assume f, f ′ ∈ F and define πf,f ′ :=
argmaxa∈A max{f(s, a), f ′(s, a)}. Then we have ∀ν ∈ ∆(S ×A),

∥T f − T f ′∥ν ≤ γ ∥f − f
′∥ν×πf,f′ .

Suppose π is induced by Q0,

J(π∗)− J(π) =
∞∑
t=0

Es∼dπγt[V ∗(s)−Q∗(s, π)]

≤
∞∑
t=0

γtEs∼dπ [Q∗(s, π∗)− Q̃(s, π∗) + Q̃(s, π)−Q∗(s, π)]

≤
∞∑
t=0

(∑
s,a

dπ(s)π∗(a|s)
∣∣∣Q∗(s, a)− Q̃(s, a)

∣∣∣+∑
s,a

dπ(s)π(a|s)
∣∣∣Q∗(s, a)− Q̃(s, a)

∣∣∣)

≤
∞∑
t=0

γt
(∥∥∥Q∗ − Q̃

∥∥∥
dπ×π∗

+
∥∥∥Q∗ − Q̃

∥∥∥
dπ

)
(11)
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∥∥∥Q∗ − Q̃
∥∥∥
ν

=
∥∥∥Q∗ − T Q0 + T Q0 −Qπ +Qπ − Q̃

∥∥∥
ν

≤ ∥Q∗ − T Q0∥ν + ∥T Q0 −Qπ∥ν +
∥∥∥Qπ − Q̃∥∥∥

ν

= ∥Q∗ − T Q0∥ν + ∥Q
π − (T π)∞Q0∥ν +

∥∥∥(T π)∞Q0 − Q̃
∥∥∥
ν
+ ∥T Q0 −Qπ∥ν

= ∥T Q∗ − T Q0∥ν + ∥Q
π − (T π)∞Q0∥ν +

∥∥∥(T π)∞Q0 − Q̃
∥∥∥
ν
+ ∥T Q0 −Qπ∥ν

(a)

≤ γ ∥Q∗ −Q0∥ν×πQ∗,Q0
+ ∥Qπ − (T π)∞Q0∥ν +

∥∥∥(T π)∞Q0 − Q̃
∥∥∥
ν
+ ∥T Q0 −Qπ∥ν

= γ ∥Q∗ −Q0∥ν×πQ∗,Q0
+ ∥Qπ − (T π)∞Q0∥ν +

∥∥∥(T π)∞Q0 − (T̂ π)∞Q0

∥∥∥
ν
+ ∥T Q0 −Qπ∥ν ,

(12)

where (a) uses Lem. A.4. The last equality comes from the fact that Q̃ = (T̂ π)∞Q0.

When ν = dπ × π∗, we can use Lem. A.2 to obtain

∥·∥ν ≤
√
Cπ,π∗ ∥·∥dπ .

When ν = dπ × πQ∗,Q0 , note that πQ∗,Q0 is more similar to π than π∗, so

∥·∥ν×πQ∗,Q0
≤
√
Cπ,π∗ ∥·∥dπ .

Therefore, we only need to consider how to bound these terms when ν = dπ .

According to Lem. A.1,

∥T Q0 −Qπ∥dπ
(b)
= ∥T Q0 − T πQπ∥dπ = ∥T πQ0 − T πQπ∥dπ

(c)

≤ γ∥Qπ −Q0∥dπ ,

where (b) comes from π(a|s) = argmaxQ0(s, a), (c) uses Lem. A.1.

Let j →∞, we can apply Lem. A.3 to term
∥∥∥(T π)∞Q0 − (T̂ π)∞Q0

∥∥∥
dπ

,∥∥∥(T πk)∞Q0 − (T̂ π)∞Q0

∥∥∥
dπ
≤ ϵ′,

where ϵ′ =

√
1

1−γ2

56V 2
max log

|F|
δ

3n and the inequality holds with probability at least 1− δ.

For the term ∥Qπ − (T π)∞Q0∥dπ , note that

∥Qπ − (T π)∞Q0∥dπ = ∥T πQπ − T π(T π)∞Q0∥dπ
≤ γ ∥Qπ − (T π)∞Q0∥dπ

The inequality uses Lem. A.1. Recursively, we get ∥Qπ − (T π)∞Q0∥dπ = 0.

To sum up, we have

J(π∗)− J(π) ≤
∞∑
t=0

γt
(∥∥∥Q∗ − Q̃

∥∥∥
dπ×π∗

+
∥∥∥Q∗ − Q̃

∥∥∥
dπ

)

≤ 2γ

1− γ

(
∥Q∗ −Q0∥dπ×πQ∗,Q0

+ ∥Qπ −Q0∥dπ
)
+

√
Cπ,π∗ + 1

1 + γ

1

(1− γ)2.5

√
56R2

max log
|F|2
δ

3n

≤ 2γ

1− γ
(∥Q∗ −Q0∥∞ + ∥Qπ −Q0∥∞) +

√
Cπ,π∗ + 1

1 + γ

1

(1− γ)2.5

√
56R2

max log
|F|2
δ

3n
.

15



Energy-Guided Diffusion Sampling for Offline-to-Online Reinforcement Learning

Then we conclude the proof.

A.3. Proof of Thm. 4.3

Let the state distribution of the combined buffer as d(s), the concentratability coefficient between dπ and d as Cd, i.e.,
Cd = maxs

dπ(s)
d(s) . We introduce the following lemmas.

Lemma A.5. D1, D2 are two dataset containing N samples and n samples, respectively. If the distribution of D1 is µ
and D2 is ν, the concentratabilty coefficient between ν and µ is C, then the concentratability coefficient between ν and
combined buffer ρ is (N+n)C

N+nC .

Proof. The distribution of combined buffer is ρ = Nµ(s)+nν(s)
N+n .

max
s

ν(s)

ρ(s)
= max

s

(N + n)ν(s)

Nµ(s) + nν(s)

= max
s

N + n

N µ(s)
ν(s) + n

=
(N + n)C

N + nC
.

Lemma A.6 (Lemma 12 in (Chen & Jiang, 2019)). Let µ(s) be any admissible distribution, C be the concentratablility
coefficient of µ(s) and ν(s), then ∥ · ∥ν ≤

√
C∥ · ∥µ.

Note that Eq. (11) and (12) hold whatever the distribution of training data is. By replacing ν in Eq. (12) with d× π∗ and
d× πQ∗,Q0

, and apply Lem. A.6, Lem. A.1 and Lem. A.5:

∥·∥d×π∗ ≤
√
C̃dCπ,π∗ ∥·∥dπ ,

∥·∥d×πQ∗,Q0
≤
√
C̃dCπ,π∗ ∥·∥dπ ,

where C̃d =
(N+n)Cd
N+nCd

.

Similar to the derivation of last section, we have

J(π∗)− J(π) ≤ 2γ

1− γ
(∥Q∗ −Q0∥∞ + ∥Qπ −Q0∥∞) +

√
C̃dCπ,π∗ + 1

(1− γ)4
56R2

max log
|F|2
δ

3(n+N)

A.4. Proof of Thm. 4.4

Define th transition function learned by the model is T̃ . To simplify the notation, we use T̃ π to denote the Bellman operator
under learned model, i.e.,

T̂ πf = argmin
g

N∑
i=1

(g(s, a)− r(s, a)− γV πf (s̃′))2,

where s̃′ ∼ T̃ (s′|s, a).

Lemma A.7.
∥∥∥(T π)∞Q0 − (T̃ π)∞Q0

∥∥∥
d̂π
≤ γ

1−γLϵ
d
m

Proof. Note that ∥∥∥T πQ0 − T̃ πQ0

∥∥∥
d̂π

= γ ∥Q0(s
′, π)−Q0(s̃

′, π)∥d̂π ,

where s′ ∼ T , s̃′ ∼ T̃ .
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Since Q0 is L-Lipschitz,

∥Q0(s
′, π)−Q0(s̃

′, π)∥d̂π ≤ L ∥s
′ − s̃′∥d̂π ≤ Lϵ

d
m

Then, ∥∥∥(T π)2Q0 − (T̃ π)2Q0

∥∥∥
d̂π

= γ
∥∥∥(T πQ0)(s

′, π)− (T̃ πQ0)(s̃
′, π)

∥∥∥
d̂π

≤ γ
∥∥∥(T πQ0)(s

′, π)− (T̃ πQ0)(s
′, π)

∥∥∥
d̂π

+
∥∥∥(T̃ πQ0)(s

′, π)− (T̃ πQ0)(s̃
′, π)

∥∥∥
d̂π

(a)
= γ

∥∥∥(T πQ0)− (T̃ πQ0)
∥∥∥
d̂π

+
∥∥∥(T̃ πQ0)(s

′, π)− (T̃ πQ0)(s̃
′, π)

∥∥∥
d̂π

≤ γ2Lϵdm + γLϵdm,

where (a) is because dπ is stationary distribution.

Similarly, we have ∥∥∥(T π)∞Q0 − T̃ ∞Q0

∥∥∥
d̂π
≤

∞∑
t=1

γtLϵdm =
γ

1− γ
Lϵdm.

Lemma A.8. Let ν and µ be any state distribution, f : S → R be any function with |f | ≤ C,
∣∣∣∥f∥ν − ∥f∥µ∣∣∣ ≤ C ∥ν − µ∥.

Proof.

∣∣∣∥f∥ν − ∥f∥µ∣∣∣ =
∣∣∣∣∣∣
√∑

s

|f(s)|2ν(s)−
√∑

s

|f(s)|2µ(s)

∣∣∣∣∣∣
(a)
=

∣∣∥f∥2ν − ∥f∥2µ∣∣
∥f∥ν + ∥f∥µ

(b)

≤
√∣∣∥f∥2ν − ∥f∥2µ∣∣

≤
√
C2|ν(s)− µ(s)|

= C
√
∥ν − µ∥

(a) is because a1/2 − b1/2 = a−b√
a+

√
b
. (b) is because

√∣∣∥f∥2ν − ∥f∥2µ∣∣ ≤ ∥f∥ν + ∥f∥µ.

Similar to the analysis in the previous section,
∥∥∥Q∗ − Q̃

∥∥∥
ν

can be decomposed into three terms.

∥∥∥Q∗ − Q̃
∥∥∥
ν
≤ γ ∥Q∗ −Q0∥ν×πQ∗,Q0

+ ∥Qπ − (T π)∞Q0∥ν +
∥∥∥(T π)∞Q0 − (T̃ π)∞Q0

∥∥∥
ν

(13)

According to last section, we only need to consider ν = dπ , and obtain that ∥Qπ − (T π)∞Q0∥dπ = 0.

Therefore, we focus on the last term
∥∥∥(T π)∞Q0 − (T̃ π)∞Q0

∥∥∥
dπ

.
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∥∥∥(T π)∞Q0 − (T̃ π)∞Q0

∥∥∥
dπ

(a)

≤ Vmaxϵd +
∥∥∥(T π)∞Q0 − (T̃ π)∞Q0

∥∥∥
d̂π

(b)

≤ Vmaxϵd +
γ

1− γ
Lϵdm,

where (a) uses Lem. A.8, (b) uses Lem. A.7.

Then we have

J(π∗)− J(π) ≤ 2γ

1− γ
(∥Q∗ −Q0∥∞ + ∥Qπ −Q0∥∞) +

(√
Cπ,π∗ + 1

)( 1

1− γ
Vmaxϵd +

γ

(1− γ)2
Lϵdm

)
=

2γ

1− γ
(∥Q∗ −Q0∥∞ + ∥Qπ −Q0∥∞) +

(√
Cπ,π∗ + 1

)( 1

(1− γ)2
Rmaxϵd +

γ

(1− γ)2
Lϵdm

)

A.5. Proof of Thm. 4.5

Suppose the dataset generated by the traditional model is {(s, a, r, s′)}. Let the distribution of s in the dataset be d̃π. The
next lemma aims to bound the error between d̃π and the real distribution dπ:

Lemma A.9 (Lemma B.2 in (Janner et al., 2019)). The distance in the state marginal distribution is bounded as:∥∥∥d̃π − dπ∥∥∥ ≤ 1

1− γ
ϵtm.

By replacing ϵd with 1
1−γ ϵ

t
m, we get the final result:

J(π∗)− J(π) ≤ 2γ

1− γ
(∥Q∗ −Q0∥∞ + ∥Qπ −Q0∥∞) +

(√
Cπ,π∗ + 1

)( 1

(1− γ)3
Rmaxϵ

t
m +

γ

(1− γ)2
Lϵtm

)

B. Pseudo-Code

C. Experimental Details
C.1. Task Description

Adroit Manipulation. Our empirical evaluation on Adroit manipulation contains 3 domains: pen, door, relocate, where
the RL agent is required to solve dexterous manipulation tasks including rotating a pen in specific directions, opening a
door, and moving a ball, respectively. The offline datasets are human-v1 datasets in D4RL (Fu et al., 2020) benchmark,
which only contain a few successful non-markovian human demonstrations and thus is pretty difficult for most offline RL
approaches to acquire reasonable pre-training performances.

AntMaze Navigation. Our tests on Antmaze navigation benchmark consists of four datasets, namely umaze-v2, medium-
diverse-v2, medium-play-v2 and large-play-v2 from the D4RL (Fu et al., 2020). The objective is for an ant to learn how
to walk and navigate from the starting point to the destination in a maze environment, with only sparse rewards provided.
This task poses a challenge for online RL algorithms to explore high-quality data effectively without the support of offline
datasets or additional domain knowledge.

MuJoCo Locomotion. MuJoCo locomotion encompasses several standard locomotion tasks commonly utilized in RL
research, such as Hopper, Halfcheetah, Walker2d. In each task, the RL agent is tasked with controlling a robot to achieve
forward movement. The D4RL (Fu et al., 2020) benchmark provides four types of datasets with varying quality for each
task: random-v2, medium-v2, medium-replay-v2, medium-expert-v2.

C.2. Details on Comparison with Model-based Methods
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Algorithm 1 Energy-Guided Diffusion Sampling in Offline-to-Online Reinforcement Learning

Require: Offline phase loss function {LQψoffline,L
πω
offline}, online phase loss function {LQψonline,L

πω
online}, energy-based models

{Eϕ1 , Eϕ2 , Eϕ3}, noise prediction model Dθ.
Initialize ψ, θ, ϕ1, ϕ2, ϕ3, ω, offline replay buffer Doffline, online replay buffer Donline, diffusion replay buffer Ddiffusion.
while in offline training phase do

% offline policy training using batches from the offline replay buffer Doffline
ψ ← ψ − λQ∇ψLQoffline(ψ), ω ← ω − λπ∇ωLπoffline(ω).

end while
while in online training phase do

for each environment step do
Donline ← Donline ∪ {(s, a, s′, r)}

end for
if step meets Dθ update frequency then

Sample data from Doffline ∪ Donline.
Update Dθ by minimizing Eq. (2).
Sample positive samples from Donline and generate negative samples with Dθ based on the positive samples.
Update Eϕ1

by minimizing Eq. (5).
Sample positive samples from Donline ∪ Doffline and generate negative samples.
Update Eϕ2 by minimizing Eq. (6).
Sample positive samples from Donline ∪ Doffline and generate negative samples.
Update Eϕ3

by minimizing Eq. (7).
Score-based sampling with energy guidance and store them as Dϵ,Ddiffusion ← D ∪Dϵ.

end if
for each gradient step do

Sample data from Donline ∪ Ddiffusion.
ψ ← ψ − λQ∇ψLQonline(ψ)
ω ← ω − λπ∇ωLπonline(ω)

end for
end while

Start

Exit

Figure 3. Visualization of the Maze MDP.

We conduct the experiment on comparison of distribution differ-
ences between the real online distribution and the distribution
generated by models a Maze environment, which is visualized in
Figure 3. With going up, down, left, and right as selectable actions,
the agent starts at the upper left corner and the exit is at the lower
right corner. The black blocks are occupied and inaccessible. The
agent’s goal is to reach the exit as quickly as possible, with every
step the agent incurs a penalty or, when finally reaching the exit,
a reward.

We visualize the distribution difference in Fig. 4. To quantify this
difference, we compute the distribution difference as the deviation
in the number of times the agent visited each state, normalized by
a factor of 1000. Table C.3 explicitly illustrates the divergence val-
ues, underscoring that our EDIS effectively generates the intended
distribution. In contrast, model-based approaches, particularly
those utilizing MLP, struggle to accurately emulate the actual online distribution. While the distribution generated by the
transition modeled by diffusion model shows better result, verifying diffusion model has better capability of modeling
distributions. It is noteworthy that the offline dataset distribution exhibits a substantial divergence from the online distribution,
rendering direct replay of the offline dataset impractical. Despite the online buffer having a distribution comparable to the
real one, its limited dataset size poses a challenge to achieving optimal sample efficiency.
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C.3. Details and Hyperparameters for EDIS

We use the PyTorch implementation of Cal-QL and IQL from https://github.com/tinkoff-ai/CORL, and primarily followed
the author’s recommended parameters (Tarasov et al., 2022). The hyperparameters used in our EDIS module are detailed in
the Tab. 3:

Table 3. Hyperparameters and their values in EDIS

Hyperparameter Value

Network Type (Denoising) Residual MLP
Denoising Network Depth 6 layers
Denoising Steps 128 steps
Denoising Network Learning Rate 3× 10−4

Denoising Network Hidden Dimension 1024 units
Denoising Network Batch Size 256 samples
Denoising Network Activation Function ReLU
Denoising Network Optimizer Adam
Learning Rate Schedule (Denoising Network) Cosine Annealing
Training Epochs (Denoising Network) 50, 000 epochs
Training Interval Environment Step (Denoising Network) Every 10, 000 steps

Energy Network Hidden Dimension 256 units
Negative Samples (Energy Network Training) 10
Energy Network Learning Rate 1× 10−3

Energy Network Activation Function ReLU
Energy Network Optimizer Adam
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Figure 4. Illustration of the distribution differences between the actual online distribution and the three generated distributions in a Maze
environment.
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Table 4. Comparison of distribution divergence between the actual online distribution and generated data distributions in different methods

Offline Interaction MLP Transition Diffusion Transition Diffusion
Divergence 0.29 0.18 0.44 0.24 0.30

Table 5. Divergence comparisons for energy function ablation study

Dataset
State Divergence Action Divergence Transition Divergence

w/o energy w/ energy w/o energy w/ energy w/o energy w/ energy

hopper-radnom-v2 0.85±0.02 0.73±0.03 0.51±0.04 0.39±0.02 0.69±0.03 0.66±0.04
halfcheetah-medium-replay-v2 0.98±0.01 0.50±0.05 0.43±0.15 0.31±0.03 1.01±0.08 0.88±0.07
walker2d-medium-expert-v2 0.91±0.02 0.65±0.12 1.62±0.06 1.32±0.03 0.51±0.05 0.33±0.08
antmaze-medium-play-v2 0.99±0.01 0.95±0.02 0.68±0.09 0.54±0.05 2.05±0.13 1.85±0.14
antmaze-medium-diverse-v2 0.98±0.00 0.91±0.02 0.38±0.08 0.27±0.08 0.75±0.14 0.64±0.14
door-human-v1 0.40±0.04 0.24±0.02 0.54±0.07 0.41±0.08 2.57±0.06 2.52±0.05

C.4. Additional Ablation Study

We conducted additional ablation studies on each energy function by omitting their guidance during the reverse-time SDE
in a total of six environments, including hopper-random-v2, halfcheetah-medium-replay-v2, antmaze-medium-play-v2,
antmaze-medium-diverse-v2, and door-human-v1. It can be observed that each energy function plays a functional role and
reduces the corresponding divergence value.

The state divergence here is the JS divergence between the two state distributions, which is defined as:

DJS(p, q) =
1

2
(DKL(p, (p+ q)/2) +DKL(q, (p+ q)/2)) ,

where p and q are two distributions and DKL is

DKL(p, q) =

∫
log(p(x)/q(x))dx.

If the two distributions are similar, JS divergence will approach zero, or it will approach one. To calculate it, we apply the
techniques of GAN (Goodfellow et al., 2014). We learn a discriminator by minimizing the following loss function

V (D) = Ex∼p[logD(x)] + Ez∼q[log(1−D(z)],

and JS divergence can be derived according to the following formula:

max
D

V (D) = − log 4 + 2DJS(p, q).

The aggregated learning curves, summarizing outcomes across all environments from Tab.1, are displayed in Fig 6 and Fig. 7.
They compare the performance of Cal-QL and IQL, both augmented with EDIS, against their respective base algorithms. For
the evaluation of the normalized score in sparse reward domains, we computed a metric that represents the goal achievement
rate for each method. For example, in the adroit environment door-human, we assessed the success rate of opening the door.

C.5. Experiments on Visual Environment

We conduct extra experiments on DMC, which is pixel-based state observations. Our EDIS operates on encoded represen-
tations, which are relatively low-dimensional. By integrating EDIS with CQL+SAC, a commonly used offline to online
baseline, we observed significant improvements on walker-walk and cheetah-run tasks. In future work, we will explore even
more complex environments. This expansion will help further refine our approach and validate its generalization.
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Figure 5. Energy Module Abaltion Study of EDIS
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Figure 6. Aggregated learning curves of Cal-QL and Cal-QL-EDIS on MuJoCo Locomotion, AntMaze Navigation and Adroit Manipulation
tasks
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Figure 7. Aggregated learning curves of IQL and IQL-EDIS on MuJoCo Locomotion, AntMaze Navigation and Adroit Manipulation tasks
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Table 6. Experiments on the remaining antmaze environments.
Environment Cal-QL Cal-QL-EDIS IQL IQL-EDIS

antmaze-umaze-diverse-v2 93.4±4.6 95.9±2.8 51.3±4.5 66.7±5.0
antmaze-large-diverse-v2 42.3±2.2 57.1± 2.8 45.0±8.7 52.1±2.6
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Figure 8. Sensitivity analysis on the training steps for the diffusion model.

C.6. Experiments on Sensitivity Analysis

In our sensitivity analysis, we evaluated the effect of varying the diffusion model’s denoising steps and the number of
negative samples. We tested denoising steps within the range of 64 to 256 and found comparable performance across this
spectrum, indicating that EDIS is robust to changes in this hyperparameter. On the other hand, reducing the number of
negative samples from 10 to 5 resulted in a noticeable decline in performance. However, maintaining a minimum of 10
negative samples ensures that performance remains consistent and unaffected.

C.7. Computational Resources

We train EDIS integrated with base algorithms on an NVIDIA RTX 4090, with approximately 4 hours required for 0.2M
fine-tuning on MuJoCo Locomotion and Adroit Manipulation, while 6 hours for AntMaze Navigation. Specifically, the
time cost for each time training our EDIS every time for 50000 epochs is about 10 minutes. The detailed computational
consumption is shown in Tab. 6. As pointed out in (Karras et al., 2022), the sampling time is faster than prior diffusion
designs, which is much shorter compared with training. The introduction of the diffusion model does indeed entail an
inevitable increase in computational and time costs. However, this tradeoff between improved performance and higher
computational cost is a common consideration in diffusion model research. As the field progresses, we anticipate that better
solutions will emerge. In our future work, we aim to further refine and optimize the extra costs.

D. Additional Related Work
D.1. Offline-to-online Reinforcement Learning.

Offline-to-online reinforcement learning methods are developed to mitigate the dichotomy between the costly exploration
in online RL and the typically suboptimal performance of offline RL. Previous existing methods do this in a variety of
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Figure 9. Sensitivity analysis on the number of negative samples.
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Table 7. Computational consumption of different algorithms.
Algorithm Online phase training time Maximal GPU memory

Cal-QL (MuJoCo) 3h 2GB
Cal-QL-EDIS (MuJoCo) 5h 2GB
Cal-QL (AntMaze) 3h 2GB
Cal-QL-EDIS (AntMaze) 5h 3GB
Cal-QL (Adroit) 3h 2GB
Cal-QL-EDIS (Adroit) 6h 3GB
IQL (MuJoCo) 2h 2GB
IQL-EDIS (MuJoCo) 3h 3GB
IQL (AntMaze) 3h 2GB
IQL-EDIS (AntMaze) 7h 3GB
IQL (Adroit) 2h 2GB
IQL-EDIS (Adroit) 5h 3GB

ways: incorporating the offline data into the replay buffer of online RL (Schaal, 1996; Vecerik et al., 2017; Song et al.,
2022; Hester et al., 2018), imitating offline policy as auxiliary losses (Zhu et al., 2018; Rajeswaran et al., 2018; Zhu et al.,
2019), or extracting a high-level skill space for downstream online RL (Gupta et al., 2019; Ajay et al., 2021). Although
these methods improve the sample efficiency of online RL from scratch, they cannot eliminate the need to actively rollout
poor policies for data collection (Nakamoto et al., 2023).

Another line of work, typically divide the learning process into two phases. Warming up the policy and value functions in
the offline phase and use them as initialization in the online phase (Zhao et al., 2022; Nair et al., 2020; Wang et al., 2023a;
Nakamoto et al., 2023; Lee et al., 2021; Kostrikov et al., 2022). These approaches often employ offline RL methods based
on policy constraints or pessimism (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Kumar et al., 2020) in the offline phase.
However, the conservatism conflicts with the online phase and may induce performance degradation. Various strategies have
been implemented to tackle this issue, such as policy expansion (Zhang et al., 2023), value function calibration (Nakamoto
et al., 2023), Q-ensemble techniques (Lee et al., 2021), and constraint methods (Nair et al., 2020; Kostrikov et al., 2022; Li
et al., 2023).

Despite the advancements, there has been less focus on the crucial aspect of integrating useful data during the fine-tuning
phase to enhance training efficiency. Standard practices includes enriching the replay buffer with offline data (Nakamoto
et al., 2023; Zhang et al., 2023), adopting balanced sampling methods for managing both online and offline data sources
(Lee et al., 2021; Ball et al., 2023), or building models to performance branch rollout (Rafailov et al., 2023). However,
directly replaying the offline data causes a distribution shift, and adopting balanced sampling methods introduces large
variance (Nachum et al., 2019) while rolling in the built model suffers from compounding error (Janner et al., 2019). In
contrast, our work breaks new ground by proposing a diffusion-based generator specifically designed to generate useful
samples by thoroughly leveraging prior knowledge in offline data.

D.2. Diffusion Model in Reinforcement Learning

Diffusion models have demonstrated exceptional capabilities in modeling distribution (Saharia et al., 2022; Nichol et al.,
2022; Nichol & Dhariwal, 2021). Within the reinforcement learning research, Diffuser (Janner et al., 2022) uses a diffusion
model as a trajectory generator and learns a separate return model to guide the reverse diffusion process toward samples of
high-return trajectories. The consequent work, Decision Diffuser (Ajay et al., 2023) introduces conditional diffusion with
reward or constraint guidance for decision-making tasks, further boosting Diffuser’s performance. Diffusion-QL (Wang
et al., 2023b) tracks the gradients of the actions sampled from the behavior diffusion policy to guide generated actions to
high Q-value area. SfBC (Chen et al., 2023a) and Diffusion-QL both employ the technique of resampling actions from
multiple behavior action candidates using predicted Q-values as sampling weights. Expanding the application of diffusion
models, SYNTHER (Lu et al., 2023a) focuses on leveraging the diffusion model for upsampling data in both online and
offline reinforcement learning scenarios. DVF (Mazoure et al., 2023) introduces a diffusion model to learn the transition
dynamics, which can then be used to estimate the value function. Recently, several concurrent work also investigates
generating samples with certain data distribution by diffusion models. PolyGRAD (Rigter et al., 2023) and PGD (Jackson
et al., 2024) embed the policy for classifier-guided trajectory generation, aiming at on-policy world modeling. However,
these studies do not focus on the offline-to-online setting, and they model the transition function rather than the distribution
directly, which does not eliminate the issue of compounding error. In the context of offline-to-online reinforcement learning,
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our research pioneers the utilization of diffusion-based models to actively generate valuable samples. This departure from
passive reuse of offline data marks a novel approach, emphasizing the active role of diffusion models in sample generation
for enhanced learning outcomes.
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