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ABSTRACT

Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-medalist
capabilities and producing formal proofs that span thousands of lines. Although such proofs
are mechanically verified by formal systems like Lean, their excessive length renders them
difficult for humans to comprehend and limits their usefulness for mathematical insight.
Proof simplification is therefore a critical bottleneck. Yet, training data for this task is scarce,
and existing methods—mainly agentic scaffolding with off-the-shelf LLMs—struggle with
the extremely long proofs generated by RL-trained provers. We introduce ProofOptimizer,
the first language model trained to simplify Lean proofs without requiring additional human
supervision. ProofOptimizer is trained via expert iteration and reinforcement learning,
using Lean to verify simplifications and provide training signal. At inference time, it
operates within an iterative proof-shortening workflow, progressively reducing proof length.
Experiments show that ProofOptimizer substantially compresses proofs generated by state-
of-the-art RL-trained provers on standard benchmarks, reducing proof length by 87% on
miniF2F, 57% on PutnamBench, and 50% on Seed-Prover’s IMO 2025 proofs. Beyond
conciseness, the simplified proofs check faster in Lean and further improve downstream
prover performance when reused as training data for supervised finetuning.

1 INTRODUCTION

Theorem proving in formal environments such as Lean (de Moura et al., 2015) provides an excellent testbed
for training large language models (LLMs) in mathematical reasoning via reinforcement learning (RL). Since
Lean can mechanically verify proofs, it filters hallucinations and provides reliable reward signals, and enables
enables unlimited high-quality synthetic reasoning data. Leveraging these benefits, LLMs finetuned with RL
have achieved near gold-medal performance on the International Mathematical Olympiad (IMO) (Chen et al.,
2025) and shown strong results on difficult college-level benchmarks like PutnamBench (Lin et al., 2025b).

However, RL-trained provers often generate proofs that are correct but excessively long and inscrutable.
Since their only reward signal is the correctness of generated proofs, the resulting models produce proofs
that are correct yet suboptimal: convoluted, bloated with redundant steps, or reliant on unnecessarily strong
automation where a simple step would suffice. For example, Seed-Prover (Chen et al., 2025)’s Lean proof of
IMO 2025 P1 consists of 4,357 lines of code, 16x longer (by character count) than its informal counterpart.
Such proofs pose several practical drawbacks: they are (1) difficult for humans to comprehend, limiting
their value as a source of mathematical insight; (2) less suitable as synthetic training data, since models may
struggle to learn from convoluted proofs; and (3) computationally inefficient to compile in Lean, which is
especially problematic when integrated into existing formal libraries like mathlib (mathlib Community, 2019).

These challenges highlight the need for proof simplification: transforming existing formal proofs into simpler
forms while preserving correctness. In this work, we adopt a natural notion of simplicity: proof length,
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measured by the number of Lean tokens. However, our approach is agnostic to the choice of simplicity metric:
it is not restricted to proof length, but applies to any automatically computable measure (Kinyon, 2018).

Prior work on proof simplification (Ahuja et al., 2024) focuses on agentic scaffolding around API-only
LLMs such as GPT-4o. While these methods can shorten human-written Lean proofs, they are ineffective at
simplifying the long proofs generated by SoTA RL-trained LLM provers such as Seed-Prover and Goedel-
Prover-V2 (Lin et al., 2025b), precisely the setting where simplification is most valuable. A natural alternative
is to finetune LLMs directly for proof simplification, but progress in this direction is limited by the lack of
suitable training data, namely aligned pairs of proofs before and after simplification.

We introduce ProofOptimizer, an LLM-based system for simplifying long and convoluted proofs in Lean.
ProofOptimizer integrates three components: (i) a symbolic Lean linter that identifies and removes redundant
steps, (ii) a 7B parameter language model finetuned specifically for proof simplification, and (iii) an iterative
inference-time algorithm for progressively shortening proofs. Given an input proof, the Lean linter first elimi-
nates the most obvious redundancies. The language model then generates multiple candidate simplifications,
and the iterative algorithm repeatedly applies the model to the currently shortest proof, further reducing its
length. Training follows two paradigms. In expert iteration, the model proposes simplifications that are
verified by Lean and incorporated into the training data for supervised finetuning. In reinforcement learning,
proof length and correctness serve as the reward signal. Both approaches enable continual improvement
without requiring any human-annotated simplification data.

First, we evaluate ProofOptimizer on long proofs generated by state-of-the-art neural theorem provers. Specif-
ically, we consider proofs produced by Goedel-Prover-V2 on two standard benchmarks—MiniF2F (Zheng
et al., 2021) and PutnamBench—as well as four proofs released by Seed-Prover for IMO 2025. Our final
models achieve significant results (Fig. 1), shortening MiniF2F proofs by an average of 63% in a single shot
and PutnamBench proofs by 26% with 32 attempts, substantially outperforming Gemini-2.5-Pro (Sec. 4.1).
At inference time, test-time RL improves single-shot miniF2F performance to 72%. With with iterative
shortening, we achieve further per-proof average reductions of 87% (MiniF2F) and 57% (PutnamBench) and
reduce the length of three out of four Seed-Prover IMO 2025 proofs by more than half.

Second, we conduct ablation studies to evaluate the effect of key design choices. During training, RL achieves
the best single-sample performance but reduces multi-sample diversity. At inference time, using the same
RL recipe further improves single-shot performance (Sec. 4.1). Repairing incorrect simplifications from
execution feedback with Goedel-Prover-V2 effectively corrects errors, but leads to repaired proofs even longer
than the originals (Sec. 4.2). Overall, iterative proof shortening offers the best balance between performance
and diversity, achieving the strongest results (Sec. 4.3).

Third, we conduct preliminary experiments suggesting two downstream benefits of proof shortening. Training
our base model on shortened proofs leads to 2% better performance on miniF2F relative to training on
unshortened proofs (Sec. 5.1). Also, shortening proofs often decreases their execution time, with 28% of
proofs showing at least a 1.5x speedup after shortening (Sec. 5.2).
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: 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=  

   h_main : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi := 
     h₁ : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2)) := 
       h₁₁ : ∀ (x : ℝ), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2) := 
         x

         h₁₂ : (1 + x^2 : ℝ) ≠ 0 :=  
         h₁₃ : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4 := 
          
          <;>

          sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)
         h₁₄ : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4) / (1 + x^2) := 
          h₁₃]

        rw [h₁₄]

        h₁₂  <;>  <;> h₁₂] <;> 
      
       x

      h₁₁ x
    h₁
    

   h_final : 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 
    h_main
    <;>

    Real.pi_pos
  

   h_final

putnam_1968_a1


-- (...70 lines omitted) 



theorem 
: 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 

 ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^2) = 

           (x ^6 - 4 * x ^5 + 5 * x ^4 - 

            4 * x ^2 + 4 - 4 / (1 + x ^2)) 
     x

    
    

  <;>  Real.pi_pos

putnam_1968_a1
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Figure 1: ProofOptimizer reduces the shortest generated proof of a Putnam problem from 1097 to 76 tokens.
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2 PROOF SIMPLIFICATION: TASK AND METRICS

Task Definition We formalize the proof simplification task as minimizing the complexity of a given proof.
Specifically, for a valid formal statement s with proof p, the goal is to produce an alternative proof p∗ of s
that minimizes a complexity measure L: p∗ = argminx proves s L(x). Our method is agnostic to the choice of
complexity measure L, provided that it is deterministic and can be automatically computed from the proof.
This flexibility encompasses the metrics used in prior work (Ahuja et al., 2024). In the rest of this paper, we
adopt proof length as the measure of complexity, defined as the number of tokens produced by a Lean-specific
tokenizer. Our proof length measure correlates with character count but does not penalize long identifier
names, and it ignores comments and line breaks. We denote the length of a proof x by |x|, i.e., L(x) = |x|.
Evaluation Metrics Given an original proof p and k candidate simplifications generated by the model,
p′1, p

′
2, . . . , p

′
k, we define li = min(|p|, |p′i|) if p′i is a valid proof and li = |p| otherwise. (Intuitively, an

invalid attempt reverts to the original proof length). We evaluate proof simplification using two metrics:

• min@k ≜ mini {li} denotes the minimum shortened proof length (lower is better).

• red@k ≜ maxi

{
|p|−li
|p|

}
= 1− min@k

|p| denotes the maximum relative proof length reduction from the
original proof (higher is better).

3 PROOFOPTIMIZER: LLMS FOR PROOF SIMPLIFICATION

3.1 TRAINING

Lean Base Model First, we train a general-purpose Lean model by fine-tuning Qwen-2.5-7B-Instruct
on a combination of five tasks: natural language problem solving, Lean 4 code completion, auto-formalization
(problems and solutions), formal theorem proving, and tactic/proof state prediction.

Dataset for Proof Simplification We employ a four-stage pipeline to generate high-quality proof simplifica-
tion training data.

1. Problem Collection: We first compile a dataset of theorem proving problems from Goedel-Pset,
filtering out simple computational problems. Each problem consists of a natural language problem,
solution, and Lean problem statement.

2. Proof Sketching: We train a model that formalizes a problem’s natural language solution into a Lean
proof sketch consisting of a few high-level proof steps (usually 2-10) with lower level details omitted
and filled in with Lean’s sorry tactic.

3. Theorem Extraction and Filtering: For each proof sketch, we extract each proof step into its own separate
theorem. At the core, we are taking longer proofs and breaking them down into separate sub-theorems.
We collect a total of 518K theorems this way. As we found some of these theorems to be trivial, we
design an automation tactic to filter these out, leaving 307K theorems remaining.

4. Proof Generation: We use Goedel-Prover-V2-32B to generate proofs of these theorems. The
model successfully produces Lean proofs of 145K theorems, which we use as our dataset for training.

For more details about our base model and dataset collection, see Appendix B. Next, we describe our two
training recipes: expert iteration and online reinforcement learning.

3.1.1 PROOFOPTIMIZER-EXPIT: EXPERT ITERATION

We leverage a STaR-like (Zelikman et al., 2022) iterative training algorithm to improve our model. At a high
level, we start with our base model π0 and the collection of 145K proofs P0. At each iteration, we attempt to

3
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simplify each proof, train our model on successful proof simplifications, and use the collection of simplified
proofs as seed proofs for the next iteration. More precisely, at each iteration i, we do the following:

1. Sample: For each proof x ∈ Pi, use πi to sample 4 simplifications Yp ≜ {y1x, y2x, y3x, y4x} ∼ πi(x).
2. Filter: Use the Lean compiler to find the shortest correct simplification yx ∈ {x}∪Yx. Create a training

dataset of proof simplifications Di = {(x, yx) | len(yx) ≤ 0.8 · len(x), x ∈ Pi}. The length constraint
is designed to encourage the model to learn more substantial simplifications rather than trivial ones. For
iterations after the first, as x may have been simplified from a more complex proof x′ ∈ P0, we also
add (x′, yx) pairs to Di, which are valid and larger proof simplifications. Also, collect simplified proofs
πi+1 = {sx | x ∈ Pi} for the next iteration.

3. Train: Fine-tune πi on Di to get πi+1.

3.1.2 PROOFOPTIMIZER-RL: ONLINE REINFORCEMENT LEARNING

In addition to expert iteration as described in the previous section, we train a proof optimizer model with
online reinforcement learning. Using the same dataset as in expert iteration, the reinforcement learning task
consists in producing a valid but shorter proof y for a statement given an initial proof x. The reward is defined
as the relative shortening R(x, y) = |y|−|x|

|x| if y is valid and |y| ≤ |x|, and R(x, y) = 0 otherwise. We employ
an asynchronous variant of the GRPO algorithm (Shao et al., 2024) with advantage Ai = Ri − 1

k

∑
j≤k Rj

baselined with the average reward of k = 8 samples, no advantage normalization by standard deviation (Liu
et al., 2025b), no KL regularization, and omitting sequences with zero advantage.

3.2 INFERENCE-TIME TECHNIQUES

First, we implement a symbolic linter that removes extraneous tactics via Lean’s linter.unusedTactic
linter, which detects tactics that do not change the proof state and provides messages like ’norm num’
tactic does nothing. We then compare the following techniques on the linted proofs:

• Test-Time RL: We use the setup described in Section 3.1.2 and perform reinforcement learning on our
two evaluation sets (jointly). Our test-time RL keeps the input proof fixed, meaning improvements occur
solely in the model’s parameters.

• Repair with Execution Feedback: In this scheme, if ProofOptimizer fails to simplify a proof, we
collect the execution feedback and ask Goedel-Prover-V2-32B to repair the proof with the error
messages. Then, we apply the symbolic linter on the new proofs to further shorten successful repairs.

• Iterative Proof Shortening: For a given proof, we sample k candidate shortenings and take the shortest
correct one. Then, we sample k shortenings of the new proof, take the shortest correct one – and so on.

4 EXPERIMENTS

For all evaluations, we use proofs generated by Goedel-Prover-V2 (Lin et al., 2025a) on two popular datasets
in formal math, miniF2F (Zheng et al., 2021) and PutnamBench (Tsoukalas et al., 2024). For miniF2F, we use
n = 194 proofs (average length 334), and for PutnamBench, we use n = 75 proofs (average length 1468).
More details and examples of proofs in our evaluation set can be found in Appendix G.

4.1 EXPERT ITERATION VS. RL VS. TEST-TIME RL

First, we compare our two training schemes: expert iteration and RL. Starting from our Lean base model, we
train ProofOptimizer-ExpIt by performing three rounds of expert iteration (Sec. 3.1.1) and ProofOptimizer-RL

4
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by performing online RL (Sec. 3.1.2) after two rounds of expert iteration. Table 1 shows min@k and red@k
scores with respect to linted proofs. We observe steady improvements during each round of expert iteration
for both @1 and @32 metrics. Our final model outperforms Gemini-2.5-Pro, a strong reasoning model,
even when given proof state annotations similar to Chain-of-States in ImProver (Ahuja et al., 2024).

Next, we see that ProofOptimizer-RL significantly improves single sample (@1) metrics at the expense
of diversity collapse, an issue commonly identified during RL training (Gehring et al., 2024; Walder &
Karkhanis, 2025; Yue et al., 2025). In Fig. 2 (a, b), we show the evolution of red@1 during training, observing
that miniF2F reduction steadily rises while PutnamBench reduction experiences oscillations. This tension is
likely because the distribution of training data is more similar in length to miniF2F than PutnamBench, which
has a mean proof length of 4x that of the training set.

Finally, we find that test-time RL leads to even further improvements on min@1 and red@1. This is expected,
as the model is able to directly tune its weights to learn from successful simplifications at test-time. However,
like ProofOptimizer-RL, we observe an even smaller gap between @1 and @32 metrics. In Fig. 2 (c, d), we
observe a much more stable evaluation red@1 curve because the distribution gap between the training and
evaluation sets is eliminated.

Table 1: Min@k and Red@k throughout expert iteration and online RL. Our RL model has strong @1
results, while our ExpIt model has strong @32 results. RL metrics are Gaussian-smoothed.

Dataset Category Model Min@1 ↓ Min@32 ↓ Red@1 ↑ Red@32 ↑

miniF2F

Linted 302 0.0%
Gemini-2.5-Pro 280 207 24.3% 57.2%

Gemini-2.5-Pro + States 283 207 26.4% 58.7%
Base (7B) 283 202 17.6% 56.2%

ExpIt
Base + It 1 266 178 33.4% 67.0%
Base + It 2 251 166 45.1% 70.6%

ProofOptimizer-ExpIt 241 153 49.0% 72.3%

RL ProofOptimizer-RL 190 152 63.6% 70.9%
It 2 + Test-Time RL 160 154 72.5% 73.4%

Putnam
Bench

Linted 1359 0.0%
Gemini-2.5-Pro 1348 1303 5.5% 18.0%

Gemini-2.5-Pro + States 1371 1319 6.1% 19.2%
Base (7B) 1341 1222 3.9% 20.5%

ExpIt
Base + It 1 1341 1215 5.2% 22.5%
Base + It 2 1335 1186 6.9% 24.7%

ProofOptimizer-ExpIt 1328 1161 8.2% 26.3%

RL ProofOptimizer-RL 1303 1258 14.9% 21.1%
It 2 + Test-Time RL 1260 1255 23.8% 24.2%
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Figure 2: Evolution of proof reduction (red@1) during RL training (a, b) and test-time RL (c, d). We
use Gaussian smoothing (σ = 5 evaluation intervals for RL training and σ = 3 for test-time RL). See Fig. 8
for the corresponding red@32 metrics.

4.2 ANALYSIS OF REPAIR WITH EXECUTION FEEDBACK

As described in Sec. 3.2, we (1) sample 64 simplifications for each proof with ProofOptimizer-ExpIt, (2) repair
incorrect proofs with Goedel-Prover-V2-32B, and (3) shorten successful repairs with our linter. Overall, we
find while repair with execution feedback leads to improvements, it underperforms resampling because
repaired proofs are often even longer than the original proofs. Fig. 3 (left) shows the average proof
length and reduction % after sampling, repair, and linting. We our linter to be effective on repaired proofs,
decreasing the average repaired proof length from 644 → 576 (miniF2F) and 877 → 788 (PutnamBench). In
Fig. 3 (right), we plot the proof length of the original proofs (before Step 1) against simplified proofs (Step 1)
and repaired proofs (Step 2). A majority of the repaired proofs (green dots) are above the y = x line, meaning
they are longer than the original proofs, let alone the simplified proofs (blue dots).
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Figure 3: Analysis of execution-based repair with Goedel-Prover-V2 on PutnamBench.

In Table 2, we analyze the success rate of each step of our pipeline. However, the key issue remains to be the
high length of the repaired proofs. Even after linting, only 4.8% (miniF2F) / 1.8% (Putnam) of post-linted
proofs are shorter than the best proof found by ProofOptimizer during simplification. We refer the reader to
Appendix F for further analysis and examples.

4.3 ITERATIVE PROOF SHORTENING

In Fig. 4 (left), we show the results of iterative proof shortening on miniF2F and PutnamBench proofs using
ProofOptimizer-ExpIt. First, we do 64 samples per iteration for 6 iterations, observing steady improvement
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Table 2: Step-by-step success rates, revealing the main bottleneck of long repaired proofs.

Dataset Simplification Repair Shorter than best (before/after linter)

miniF2F 7852
12416 (63.2%) 2840

4564 (62.2%) 76
2840 → 137

2840 (2.7% → 4.8%)

PutnamBench 1288
4800 (26.8%) 613

3512 (17.4%) 5
613 → 11

613 (0.8% → 1.8%)

at each iteration. To demonstrate the potential of further scaling, we do 1024 samples at iterations 7 and 8
and see significant improvement (see Appendix D.2 for analysis on sample size). Overall, ProofOptimizer
combined with iterative proof shortening is very effective on miniF2F and PutnamBench, as average
proof length is reduced from 334 → 75 and 1468 → 811, for an average per-proof reduction of
87.9%/57.2%. In Fig. 4 (right), we plot the overall shortening against the length of the original proof,
observing that longer proofs remain challenging to simplify.
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Figure 4: Iterative Shortening: per-iteration improvement (left) and effect of proof length (right)

Finally, in Table 3, we demonstrate the effectiveness of ProofOptimizer on an out-of-distribution dataset,
Seed-Prover’s four IMO 2025 proofs. With an order of magnitude higher sampling budget, we achieve a
significant reduction in the proof length for all four problems, showcasing the potential of our model and
technique. Details about our full setup are in Appendix D.3.

Table 3: Iterative shortening achieves significant reduction for Seed-Prover’s IMO 2025 proofs.

P1 P3 P4 P5
Original Proof Length 36478 16377 29147 8658

Simplified Proof Length 20506 7907 14531 4002
Length Reduction 43.8% 51.7% 50.1% 53.8%
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5 ADDITIONAL BENEFITS OF PROOF SIMPLIFICATION

5.1 TRAINING ON SIMPLIFIED PROOFS IMPROVES GENERATION

Next, we investigate whether fine-tuning on simplified proofs can be advantageous compared to fine-tuning
on longer, raw proofs. To do so, we prepare two datasets of identical problems, the first containing a
set of proofs generated by Goedel-Prover-V2 and the second containing the same proofs simplified
by ProofOptimizer-ExpIt. The average proof length of the original and simplified proofs is 147 and 85,
respectively. We do continued supervised fine-tuning (SFT) starting from our base model (Sec. B.1) with a
standard negative log-likelihood (NLL) loss.

In Fig. 5 (left), we compare the training loss between the two datasets. As expected, the initial loss when
using original proofs is higher, as models have not seen such long proofs during initial fine-tuning. However,
the losses quickly converge. We observe that training on original proofs causes occasional loss spikes, which
we suspect are due to several data batches that are hard to learn (e.g. extremely long proofs). Decreasing the
learning rate mitigated these training loss spikes but did not improve validation accuracy. In Fig. 5 (right), we
compare the miniF2F scores of the two models during SFT, showing that training on simplified proofs results
in slightly higher evaluation accuracy despite the two settings having identical training losses.
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Figure 5: Training loss (left) and miniF2F score (right) after SFT on simplified vs. original proofs.

5.2 SIMPLIFIED PROOFS HAVE A SHORTER EXECUTION TIME

We also observe that proofs simplified by ProofOptimizer often exhibit a faster execution time. We measure
proof execution time with lake env lean --profile, excluded library import time (imports are
always the same but actual time may vary due to caching effects). We compare the execution times of each
proof before and after iterative shortening in Fig. 6 (scatter). For both datasets, we visibly observe that a
majority of points lie below the y = x line, signifying speedup. Fig. 6 (histograms) also show the distribution
of speedup ratios timeorig

timenew
. Of the 75 PutnamBench proofs, 50/75 have a speedup of over 10%, and 22/75 of

those have a speedup of over 50%. We also observe that proofs with a higher original execution time tend to
show more speedup. The same trends hold for miniF2F, where 114/194 and 56/194 proofs have a speedup
over 10% and 50%, respectively. Finally, we observe 25% and 81% speedups on Seed-Prover’s proofs for P3
and P4 of the IMO 2025 (Sec. D.3).

Upon qualitatively analyzing the proofs, we observe that the original proofs often have extraneous tactics that
are eliminated by the simplified proofs. However, we also find several cases where the simplified proofs are
much slower than the original proof, which usually occurs when a faster proof algorithm is replaced by a
shorter but slower method (e.g. brute force with interval cases). We provide two examples of each in
Appendix I. Finally, we remark that all of our training and inference pipelines can also be applied to proof
speedup as well by adjusting the reward function from proof length to proof execution time.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0 3 6 9
Original Time (s)

0

3

6

9
Si

m
pl

ifi
ed

 T
im

e 
(s

)
Execution Times (Putnam)

0 0.5 1 1.5 2 2.5 3+
Speedup Ratio

0

5

10

15

20

Fr
eq

ue
nc

y

Speedup Distribution (Putnam)

0 5 10 15
Original Time (s)

0

5

10

15

Si
m

pl
ifi

ed
 T

im
e 

(s
)

Execution Times (miniF2F)

0 0.5 1 1.5 2 2.5 3 3.5 4+
Speedup Ratio

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Speedup Distribution (miniF2F)

Figure 6: Simplified proofs are frequently faster than original proofs on miniF2F and PutnamBench.

6 RELATED WORKS

LLMs for Theorem Proving in Lean Formal theorem proving is a rapidly growing frontier in AI for
mathematics and software verification (Yang et al., 2024b; Li et al., 2024). Progress is typically measured
with benchmarks of mathematical theorems in Lean such as miniF2F (Zheng et al., 2021), PutnamBench
(Tsoukalas et al., 2024), and ProofNet (Azerbayev et al., 2023). Recently, there have been many LLMs
developed for Lean such as Seed-Prover (Chen et al., 2025), Goedel-Prover (Lin et al., 2025a), DeepSeek-
Prover (Ren et al., 2025), and Kimina-Prover (Wang et al., 2025). There have also been post-training
techniques built on top of these models, such as with expert iteration (Lin et al., 2024), proof sketching (Cao
et al., 2025), tree search (Lample et al., 2022; Zimmer et al., 2025), self-play (Dong & Ma, 2025), proof
repair (Ospanov et al., 2025), and RL (Gloeckle et al., 2024).

AI for Program Simplification A related line of work makes programs shorter or more efficient (Schkufza
et al., 2013; Mankowitz et al., 2023; Shypula et al., 2023; Gautam et al., 2024). In parallel, library learning
aims to discover reusable abstractions, often eliminated repeated code and shortening programs (Ellis et al.,
2023; Grand et al., 2023; Kaliszyk & Urban, 2015; Wang et al., 2023; Zhou et al., 2024; Berlot-Attwell
et al., 2024). Finally, symbolic reasoning techniques like program slicing (Weiser, 2009), super-optimization
(Sasnauskas et al., 2017), or partial evaluation (Jones, 1996) can also shorten and optimize low-level code.

Automated Proof Shortening Frieder et al. (2024) study factors that make Lean proofs easier to understand,
motivating shorter proofs for maintainability. Classically, there have also been many symbolic methods
targeting shortening proofs in SAT and first-order logic languages (Rahul & Necula, 2001; Vyskočil et al.,
2010; Wernhard & Bibel, 2024; Gladshtein et al., 2024; Kinyon, 2018). On the neural side, GPT-f (Polu &
Sutskever, 2020) generated 23 verified proofs shorter than those in the Metamath library. Most related to our
work, ImProver (Ahuja et al., 2024), is an inference-time method for proof shortening using GPT-4o with
proof states and retrieval. In contrast, we use training-time approaches (expert iteration and RL), analyze
complementary inference-time techniques, and focus on shortening longer proofs generated by SoTA LLMs.

7 CONCLUSION

We present ProofOptimizer, the first language model trained to simplify Lean proofs. Unlike prior work that
wraps existing LLMs around agentic scaffolding, we train a model using expert iteration and RL, coupled
with a symbolic linter and iterative proof shortening at inference time.
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A DISCLOSURE OF USE OF LLMS (ICLR 2026 REQUIREMENT)

In line with the LLM usage disclosure policy for ICLR 2026 submissions, we report our usage of LLMs as
the following:

• Design and polish matplotlib and seaborn figures in the paper (ChatGPT)
• Write LaTeX code for tables, figures, and listings, including aesthetically enhancing the styles

(ChatGPT)
• Polish and edit text in the paper (ChatGPT)
• Find relevant citations for related work (ChatGPT)
• Assist in producing code for experiments (GitHub Copilot in VSCode, ChatGPT)

15

https://blog.iclr.cc/2025/08/26/policies-on-large-language-model-usage-at-iclr-2026/


705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

B LEAN BASE MODEL AND PROOF SIMPLIFICATION DATA DETAILS

B.1 GENERAL BASE MODEL FOR LEAN

First, we train a general-purpose base model in Lean by fine-tuning Qwen-2.5-7B-Instruct (Yang
et al., 2024a) on around 1B Lean tokens. The model is fine-tuned on a combination of diverse math and
Lean-related tasks, as follows:

• Natural Language Problem Solving: The model is trained on natural language mathematics prob-
lems with associated solutions so that it has general math capabilities. We use NuminaMath-1.5
(LI et al., 2024), a high-quality set of such pairs.

• Lean Code Completion: We use a subset of Lean code from GitHub, using GPT-4o with heuristics
to classify whether code is Lean 3 or Lean 4. We include only the Lean 4 subset of the code.

• Auto-formalization: In order to teach the model to associate natural language with Lean, we train
the model to perform auto-formalization of both problems and solutions from natural language
to Lean 4 in our data mix. For problems, we use natural language problems with Lean problem
statement formalizations from high-quality datasets: CombiBench (Liu et al., 2025a), Compfiles,
FormalMATH (Yu et al., 2025), Goedel-Pset (Lin et al., 2025a), Lean Workbook (Ying et al., 2024),
miniF2F (Zheng et al., 2021), ProofNet (Azerbayev et al., 2023), and PutnamBench (Tsoukalas
et al., 2024). We include solution autoformalization data from the Goedel-Pset-v1-Solved
dataset by mapping Lean solutions with natural language solutions.

• Formal Theorem Proving: We use a set of conjectures and proofs from STP (Dong & Ma, 2025),
which is a diverse collection of theorems and proofs in Lean 4 generated via expert iteration while
training their model.

• Tactic and Proof State Prediction: Finally, to teach the model about proof states, we use pre-
extracted data from LeanUniverse (Aram H. Markosyan, 2024) and extract additional data using
the Pantograph (Aniva et al., 2025) tool. For each proof in STP, we extract each tactic, as well as the
proof states before and after the tactic. The model is given the proof state before the tactic and asked
to predict both the tactic and the proof state following the tactic.

B.2 GENERATING A DATASET OF THEOREMS AND PROOFS FOR SHORTENING

After creating a Lean base model, we next describe how we generate a training dataset of proofs to be
shortened. To do so, we first present a recipe for generating interesting theorems.

Formalizing Proofs with Sketches to Derive Subtheorems While there are many datasets such as
Goedel-Pset and Lean Workbook, we find that they have a high density of simple computational
problems posed as proofs rather than high-quality proving problems. In Goedel-Pset, we estimate that
only 5% of the problems are proof problems1, leading to a lack of high-quality theorem proving data. To
combat this, we develop a technique to generate diverse and interesting theorems based on the idea of proof
sketching (Jiang et al., 2022).

The key idea is that we can leverage existing natural language solutions to identify core steps in a proof. We
first train our Lean base model to take a natural language solution and auto-formalizing into a high-level
proof, which we call a proof sketch, an example shown in Listing 1. In the proof sketch, core steps are
represented via have statements, and lower-level details are omitted and left as sorry statements. We then
filter sketches are then filtered by the Lean compiler to remove non-compiling sketches.

1We estimate whether a problem is a computational problem via a heuristic filter of whether the problem has any of
the keywords: prove, show, establish, demonstrate, verify
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Once we have a set of compiling sketches, we extract each sorry goal into a new theorem via the
extract goal tactic, which turns it into a theorem that is equivalent to what needs to be proved at
that particular sorry. For example, extracting the second sorry in Listing 1 results in the theorem shown
in Listing 2. By extracting these sorry statements, we are able to generate 518K theorems.

theorem lean_workbook_plus_22532 (a b : N → R)
(h0 : 0 < a ∧ 0 < b)
(h1 : ∀ n, a (n + 1) = a n + 2)
(h2 : ∀ n, b (n + 1) = b n * 2)
(h3 : a 1 = 1)
(h4 : b 1 = 1)
(h5 : Σ k in Finset.range 3, b k = 7) :
Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2ˆn + 3 := by
-- Lemma 1: Prove that the sequence {a_n} is an arithmetic sequence.
have lemma1 : ∀ n, a (n + 1) = a n + 2 := by
sorry

-- Lemma 2: Express a_n in terms of n.
have lemma2 : ∀ n, a n = 2 * n - 1 := by
sorry

-- Lemma 3: Express b_n in terms of n.
have lemma3 : ∀ n, b n = 2ˆ(n - 1) := by
sorry

-- Lemma 4: Calculate the sum of the first n terms of the sequence {a_n b_n}.
have lemma4 : ∀ n, Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2ˆn + 3 := by
sorry

-- Apply lemma4 to conclude the theorem.
exact lemma4 n

Listing 1: Example of a proof sketch

theorem lean_workbook_plus_22532.extracted_1_1 (a b : N → R) (h0 : 0 < a ∧ 0 < b) (h1 : ∀ (n :
↪→ N), a (n + 1) = a n + 2)

(h2 : ∀ (n : N), b (n + 1) = b n * 2) (h3 : a 1 = 1) (h4 : b 1 = 1) (h5 : Σ k ∈ Finset.range
↪→ 3, b k = 7)

(lemma1 : ∀ (n : N), a (n + 1) = a n + 2) (n : N) : a n = 2 * ↑n - 1 := sorry

Listing 2: Example of an extracted theorem

Fine-Tuning our Model for Proof Sketching In order to fine-tune our model for proof sketching, we first
curate a dataset of natural language problems (with corresponding Lean problem formalizations) and solutions
by combining Goedel-Pset-v1 (Lin et al., 2025a) with NuminaMath-1.5 (LI et al., 2024). Then, we use
Qwen-2.5-32B-Instruct to produce proof-sketches based on these natural language solutions similar
to that in Listing 1. We filter out compiling sketches and train our Lean base model on them. In Table 4, we
show the results of fine-tuning. Since it can be tricky to measure the objective correctness of a sketch, we use
the proxy of compile rate, finding our model performs better than Qwen2.5-32B and is smaller and can do
inference faster.
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Table 4: Proof sketching ability of models

Model compile@1 compile@16
Qwen2.5 7B (zero-shot) 3.6 7.0
Qwen2.5 7B (one-shot) 4.9 19.0

Qwen2.5 32B (zero-shot) 21.1 62.0
Qwen2.5 32B (one-shot) 35.1 75.0

Ours (7B) 54.8 89.1

Generating Proofs for Simplification Because proof sketching can generate steps or sub-theorems that are
too incremental, we first filter out trivial theorems that can be easily solved by automation tactics in Lean. For
example, the first sorry in Listing 1 is just a restatement of hypothesis h1 and can be solved via rfl. While
this theorem is correct, it is not challenging for the model. Therefore, we design an AUTO tactic (Listing
3) that tries a series of Lean automation tactics such as linarith and aesop to filter out these simple
theorems, leaving 307K of the original 518K theorems (filtering out 41%).

For the remaining theorems, we attempt to generate proofs of these theorems with
Goedel-Prover-V2-32B, a strong open-source proving model. With 4 attempts per theorem,
the model is able to prove 145K theorems, which we use as targets for proof simplification. Statistics and
examples of these proofs can be found in the next section, Appendix B.3.

macro "AUTO" : tactic =>
‘(tactic|
repeat’

(try rfl
try tauto
try assumption
try norm_num
try ring
try ring_nf at *
try ring_nf! at *
try native_decide
try omega
try simp [*] at *
try field_simp at *
try positivity
try linarith
try nlinarith
try exact?
try aesop))

Listing 3: AUTO tactic for filtering trivial theorems

B.3 STATISTICS OF PROOF SIMPLIFICATION TRAINING DATASET

The minimum, Q1, median, Q3, and maximum proof lengths of our training dataset are 1, 103, 204, 411, and
10958. The mean is 334. In Fig. 7, we show the distribution of lengths, observing its right-skewed nature.
Examples of proofs are shown in Listings 4 and 5. Compared to the proofs in our evaluation sets, we observe
that training proofs often have more unused hypotheses, as they are derived from extracting the proof state,
which may contain hypotheses that are not used for that particular sub-goal.
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Figure 7: Histogram of proof lengths.

theorem extracted_1 (a b : R) (ha : 0 ≤ a) (ha1 : a ≤ 1) (hb : b = a ˆ 3 + 1 / (1 + a))
(lemma1 : 1 - a + a ˆ 2 - a ˆ 3 ≤ 1 / (1 + a)) (lemma2 : b ≥ 1 - a + a ˆ 2) (lemma3 : 1 - a

↪→ + a ˆ 2 ≥ 3 / 4)
(lemma4 : b ≤ 3 / 2) : 3 / 4 < b := by
have h_main : 3 / 4 < b := by
by_contra h
-- Assume for contradiction that b ≤ 3/4
have h1 : b ≤ 3 / 4 := by linarith
-- From lemma2, b ≥ 1 - a + ²a, and from lemma3, 1 - a + ²a ≥ 3/4
have h2 : 1 - a + a ˆ 2 ≤ 3 / 4 := by

linarith
-- But from lemma3, 1 - a + ²a ≥ 3/4, so 1 - a + ²a = 3/4
have h3 : 1 - a + a ˆ 2 = 3 / 4 := by

linarith
-- Solve 1 - a + ²a = 3/4 to get a = 1/2
have h4 : a = 1 / 2 := by

have h41 : a ˆ 2 - a + 1 / 4 = 0 := by
nlinarith

have h42 : (a - 1 / 2) ˆ 2 = 0 := by
nlinarith

have h43 : a - 1 / 2 = 0 := by
nlinarith

linarith
-- Substitute a = 1/2 into b = ³a + 1/(1 + a)
have h5 : b = 19 / 24 := by

rw [hb]
rw [h4]
norm_num

-- But 19/24 > 3/4, so b > 3/4, contradiction
have h6 : b > 3 / 4 := by

rw [h5]
norm_num

linarith
exact h_main

Listing 4: Example of Proof Simplification Training Task (Length 158)
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theorem extracted_1 (n : N) (hn : 3 ≤ n) (lemma1 : Nat.card ↑{k | k ≤ n ∧ k ̸= 0} = n) :
Nat.card ↑{k | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by
have h_main : Nat.card ↑{k : N | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by
have h1 : {k : N | k ≤ n - 1 ∧ k ̸= 0} = Set.Icc 1 (n - 1) := by

apply Set.ext
intro k
simp only [Set.mem_setOf_eq, Set.mem_Icc]
constructor
· intro h

have h2 : k ≤ n - 1 := h.1
have h3 : k ̸= 0 := h.2
have h4 : 1 ≤ k := by
by_contra h4

-- If k < 1, then k = 0 since k is a natural number
have h5 : k = 0 := by

omega
contradiction

exact ⟨h4, h2⟩
· intro h

have h2 : 1 ≤ k := h.1
have h3 : k ≤ n - 1 := h.2
have h4 : k ≤ n - 1 := h3

have h5 : k ̸= 0 := by
by_contra h5

-- If k = 0, then 1 ≤ k would be false
have h6 : k = 0 := by simpa using h5

omega
exact ⟨h4, h5⟩

rw [h1]
-- Calculate the cardinality of the set {1, . . ., n - 1}
have h2 : Nat.card (Set.Icc 1 (n - 1) : Set N) = n - 1 := by

-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
have h3 : n - 1 ≥ 1 := by

have h4 : n ≥ 3 := hn
omega

-- Use the formula for the cardinality of the interval [a, b]
rw [Nat.card_eq_fintype_card]
-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
rw [Fintype.card_ofFinset]
-- Convert the set to a finset and calculate its cardinality
<;> simp [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> cases n with
| zero => contradiction
| succ n =>

cases n with
| zero => contradiction
| succ n =>
cases n with
| zero => contradiction
| succ n =>

simp_all [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> ring_nf at *
<;> omega

rw [h2]
exact h_main

Listing 5: Example of Proof Simplification Training Task (Length 295)
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C TRAINING METRICS THROUGHOUT RL

In Section 4.1, we observed that expert iteration leads to higher diversity as witnessed by better @32 metrics,
while reinforcement learning with standard reinforcement learning algorithms maximizing expected rewards
leads to higher @1 metrics. In Figure 8, we show the evolution of proof shortening red@1 alongside red@32.
Initial @32 metrics are slowly distilled into @1, but the improvement on @32 metrics is limited.
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Figure 8: Reduction metrics @1 and @32 over the course of RL. GRPO maximizes red@1 at the cost of
diversity, as red@32 only marginally increases in comparison.
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D FULL RESULTS AND ADDITIONAL ANALYSIS OF ITERATIVE PROOF SHORTENING

D.1 TABLE OF ITERATIVE PROOF SHORTENING RESULTS

Table 5 is a tabular form of Fig. 4, showing the proof length after each iteration of proof shortening.

Table 5: Min@64 (rounded to nearest integer) and reduction (%) of miniF2F and PutnamBench proofs across
inference-time iterations. Iterations 1− 6 are done with 64 samples, and 7− 8 with 1024 samples.

Dataset Model Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F Min@64 334 302 144 126 121 117 106 104 88 75
Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Putnam Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811
Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

D.2 EFFECT OF K ON MIN@K AND RED@K THROUGHOUT SIMPLIFICATION

In this section, we analyze the effect of increasing k on min@k and red@k. First, we analyze this trend when
attempting to simplify the initial, linted proof, shown in Table 6 and Fig. 9. We observe a relatively log-linear
gain in both metrics.

For comparison, we analyze the same trend but for simplifying proofs that have already gone many iterations
of simplification. In Fig. 10, we analyze proofs that have gone 7 iterations of proof simplification. We see
a different pattern, where min@k falls slower for lower k and then log-linearly afterwards. Intuitively, as
proofs become more simplified, they become harder to simplify in a low-shot setting, and exploring more
diverse simplifications becomes crucial.

Table 6: Min@k and Red@k for increasing values of k

Dataset Metric Original Linter @1 @2 @4 @8 @16

miniF2F Min@k 334 302 142 141 139 137 134
Red@k (%) 0.0% 9.2% 77.1% 77.3% 77.7% 78.1% 78.6%

PutnamBench Min@k 1468 1359 1120 1117 1112 1105 1094
Red@k (%) 0.0% 7.4% 35.2% 35.5% 35.9% 36.5% 37.3%

Dataset Metric @32 @64 @128 @256 @512 @1024

miniF2F Min@k 130 126 122 118 114 110
Red@k (%) 79.2% 79.9% 80.6% 81.2% 81.8% 82.4%

PutnamBench Min@k 1080 1063 1043 1023 1004 987
Red@k (%) 38.4% 39.7% 41.3% 42.9% 44.3% 45.7%
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Figure 9: Effect of scaling k (sample count) on Min@k and Red@k (initial iteration)
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Figure 10: Effect of scaling k (sample count) on Min@k and Red@k (later iteration)

D.3 DETAILS ON SEED-PROVER IMO PROOF SHORTENING

Earlier in 2025, Seed-Prover released Lean proofs of four problems that the model successfully solved from
the 2025 International Mathematical Olympiad (IMO) (Chen et al., 2025). They solved problems 3, 4, and 5
were solved during the contest window, and problem 1 later after the competition. However, the proofs of
these problems are extremely verbose, especially compared to their informal counterparts. Using iterative
proof shortening, our ProofOptimizer is able to successfully reduce the proof length of their proofs for P3, P4,
and P5 by over half, as well as the longer P1 by 43.8%. In addition, we find that our shortened proofs for P4
and P5 show a 25% and 81% (respectively) speedup over the original proofs (Table 7).

Table 7: Results for ProofOptimizer + Iterative Shortening on IMO 2025 Proof Simplification

Problem Length Runtime
Original Simplified Reduction Original Simplified Speedup

P1 36478 20506 43.79% 399.7 392.3 1.02×
P3 16377 7907 51.72% 39.7 39.1 1.02×
P4 29147 14531 50.15% 453.8 362.5 1.25×
P5 8658 4002 53.78% 61.0 33.7 1.81×

We use proofs from the official GitHub repository using Mathlib 4.14.0 (our model was trained on Mathlib
4.19.0). Before shortening, we replace invocations of exact? and apply? with the actual proof that
is found. Each of the proofs is divided into a collection of smaller lemmas and theorems (problems 1, 3,
4, and 5 have 80, 52, 88, and 14 theorems, respectively). Since running iterative shortening on the entire
proof will suffer from long context issues, we treat each sub-lemma/sub-theorem as an individual target for
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shortening. At the end, we combine the shortened theorems to produce the complete shortened proof. When
feeding a sub-theorem into ProofOptimizer, we include as context the theorem definition (but not proof) of
all other theorems that occur in its proof. Finally, to ensure the correctness of our simplified proofs, we use
SafeVerify to confirm that all four simplified proofs match the specification of the original proof without
any environmental manipulation. We remark that our setup does not consider the space of structure-level
simplifications, as we retain all sub-theorem statements from the original proof and only simplify their proofs.
In addition, as our proof length metric only measures the length of proofs, it does not take into account
unnecessarily long or redundant sub-theorem statements.

As this experiment aims to provide a simple demonstration of the potential of our approach rather than
perform a controlled scientific study, we do not fix the number of iterations or samples per iteration across
problems. Approximately, we use 15-20 iterations of shortening with 64-4096 samples per iteration. Taking
inspiration from the analysis in Sec. D.2, we generally use less samples for the first few iterations and increase
the number of samples for later iterations to maximize reduction per sample. We also allocate more samples
to sub-theorems that show more simplification potential in early iterations. In total, we used approximately
3000 H100 GPU hours per problem.
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E COMPARISON WITH QWEN2.5, GPT-4O, AND GEMINI-2.5-PRO

In Table 8, we compare ProofOptimizer models with several off the shelf models, namely Qwen 2.5 (Team,
2024), GPT-4o (Achiam et al., 2023), and Gemini-2.5-Pro (Comanici et al., 2025). For all models, we feed
the output of the symbolic linter as input, and report overall reduction with respect to the original (unlinted)
proof.

Table 8: Proof length of miniF2F and PutnamBench proofs for various models. Specially trained proof
minimization models outperform prompted off-the-shelf models. Reinforcement learning achieves best @1
metrics but at the cost of reducing diversity, as witnessed by improved @32 metrics with expert iteration.

Dataset Model Min@1 Min@32 Red@1 Red@32

miniF2F

Original 334 0.0%
Linter 302 9.2%

Qwen2.5-7B 294 267 25.7% 41.8%
Qwen2.5-32B 288 252 30.0% 47.3%

GPT-4o 283 258 35.2% 47.9%
GPT-4o + States 266 290 32.9% 46.5%
Gemini-2.5-Pro 280 207 31.6% 62.0%

Gemini-2.5-Pro + States 283 208 31.6% 62.0%
ProofOptimizer-ExpIt 241 153 53.9% 74.9%
ProofOptimizer-RL 190 152 67.1% 73.4%

Putnam
Bench

Original 1468 0.0%
Linter 1359 7.4%

Qwen2.5-7B 1358 1339 9.0% 14.8%
Qwen2.5-32B 1353 1304 10.9% 20.7%

GPT-4o 1355 1336 10.9% 18.2%
GPT-4o + States 1379 1358 9.3% 15.9%
Gemini-2.5-Pro 1348 1303 12.7% 24.5%

Gemini-2.5-Pro + States 1371 1319 11.5% 24.1%
ProofOptimizer-ExpIt 1328 1161 15.2% 31.9%
ProofOptimizer-RL 1303 1258 21.6% 27.1%

In Fig. 11, we compare the specific optimized proofs between Gemini and ProofOptimizer. For both
data sets it can be seen that the longer the proof, the more challenging it is to shorten it. This is because
although long proofs have more potential for shortening, the models struggle to maintain correctness of them.
Still, ProofOptimizer is able to bring some improvements for the long proofs (see the top right part of the
PutnamBench plot). In miniF2F, there is a significant number of proofs that can be minimized to just one step,
which typically boils down to invoking one proof automation tactic (like linarith instead of applying a
sequence of more explicit proof steps.
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Figure 11: Comparison of optimized proofs between ProofOptimizer (green) and Gemini 2.5 Pro (yellow)
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F FULL RESULTS AND EXTENDED ANALYSIS OF REPAIR WITH EXECUTION
FEEDBACK

This section contains the full results of the experiments in Sec. 4.2. All simplification attempts are done on the
set of linted proofs. Table 9, Figure 12, and Figure 13 are extended versions of Fig. 3 for both PutnamBench
and miniF2F. The settings are as follows:

• ProofOptimizer: ProofOptimizer-ExpIt, with 64 simplification attempts per proof.
• + Repair: The previous setting, with 1 attempted repair by Goedel-Prover-V2-32B.
• + Repair + Linter: The previous setting, with our linter applied to all proofs.
• ProofOptimizer (@128): ProofOptimizer-ExpIt, with 128 simplification attempts per proof
• ProofOptimizer (@64x2): ProofOptimizer-ExpIt with 64 simplification attempts per proof, and the

best simplified proof for each problem is then fed back for an additional 64 attempts.

We remark that these baselines are normalizing for sample count rather than running time. Sampling a repair
from Goedel-Prover-V2-32B takes considerably longer than sampling a simplification from our model.
This is both because it is a larger model (32B vs. 7B) and because their model relies on CoT, causing their
average response length to be significantly longer than ours.

Table 9: Results of execution-based repair strategies

Dataset Model Min@64 Min@64 × 2 Red@64 Red@64 × 2

miniF2F

Linter 302 9.2%
ProofOptimizer 144 - 75.5% -

+ Repair - 136 - 77.3%
+ Repair + Linter - 132 - 77.9%

ProofOptimizer (@128) - 130 - 78.9%
ProofOptimizer (It 2) - 125 - 80.2%

Putnam
Bench

Linter 1359 7.4%
ProofOptimizer 1123 - 32.9% -

+ Repair - 1113 - 35.3%
+ Repair + Linter - 1107.2 - 35.7%

ProofOptimizer (@128) - 1099 - 36.5%
ProofOptimizer (@64x2) - 1095 - 37.0%
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Figure 12: Results of Execution-Based Repair with Goedel-Prover
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Figure 13: Comparison of Proof Lengths with Execution-Based Repair

Finally, in Listings 6 and 7, we show an example of a proof that was successfully repaired. Note that the
repaired proof has many components in common with the original proof.

theorem mathd_numbertheory_314
(r n : N) (h0 : r = 1342 % 13) (h1 : 0 < n)
(h2 : 1342|n) (h3 : n % 13 < r)
: 6710 ≤ n := by
have h_r : r = 3 := by rw [h0]
have h_main : 6710 ≤ n := by
have h4 : n % 13 < 3 := by

rw [h_r] at h3

exact h3

obtain ⟨k, rfl⟩ := h2

have h5 : 0 < k := by
by_contra h
push_neg at h
have h6 : k = 0 := by omega
simp [h6] at h1

by_contra! h6

have h7 : k ≤ 4 := by
by_contra h8

have h9 : k ≥ 5 := by omega
have h10 : 1342 * k ≥ 1342 * 5 := by

↪→ nlinarith
omega

interval_cases k <;> norm_num [Nat.
↪→ mul_mod, Nat.add_mod, Nat.mod_mod] at
↪→ h4 ⊢

exact h_main

Listing 6: Original Lean Proof (Length 126)

theorem mathd_numbertheory_314 -- Wrong
(. . . statement omitted) := by
rw [h0] at h3

have : n % 13 < 3 := by omega
obtain ⟨k, rfl⟩ := h2

omega

theorem mathd_numbertheory_314 -- Correct
(. . . statement omitted) := by
have h_r : r = 3 := by
rw [h0]
<;> norm_num
<;> rfl

have h_main : 6710 ≤ n := by
have h4 : n % 13 < 3 := by

rw [h_r] at h3

exact h3

obtain ⟨k, rfl⟩ := h2

by_contra! h
have h5 : k ≤ 4 := by

omega
interval_cases k <;> norm_num [Nat.
↪→ mul_mod, Nat.add_mod, Nat.mod_mod] at
↪→ h4 ⊢ <;>
(try omega) <;> (try contradiction)

exact h_main

Listing 7: Wrong Simplification and Correct
Repair (Length 93)
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G EVALUATION DATASET DETAILS

For our evaluation datasets, we use miniF2F and PutnamBench proofs sampled from
Goedel-LM/Goedel-Prover-V2-32B. For miniF2F, we sample with temperature 1 and top-p
0.95. For PutnamBench, we use proofs provided by the team. In both cases, we take the shortest passing proof
for each problem in Mathlib 4.19.0, resulting in 194 proofs for miniF2F and 75 proofs for PutnamBench.
Table 10 and Figure 14 show summary statistics of our dataset. One sample from each dataset is shown in
Listings 8 and 9.

As a sidenote, we observe a discrepency in Goedel-Prover-V2-32B’s results with Lean versions. Upon testing
their model, we measured 90% (pass@64) and 86 (pass@184) on miniF2F and PutnamBench with Mathlib
4.9, but only 80% (pass@64) and 75 (pass@184) with Mathlib 4.19. In this paper, we use Mathlib 4.19 rather
than 4.9, as it is more recent and likely more useful to the Lean community.

Table 10: Summary statistics of proof lengths in evaluation dataset

Dataset n Min Q1 Median Q3 Max Mean
MiniF2F 194 13 64 167 499 2980 334

PutnamBench 75 2 608 1179 2110 5420 1468
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Figure 14: Histograms of proof lengths for our miniF2F and PutnamBench evaluation sets.

theorem mathd_numbertheory_185
(n : N)
(h0 : n % 5 = 3) :
(2 * n) % 5 = 1 := by
have h1 : (2 * n) % 5 = 1 := by
have h2 : (2 * n) % 5 = (2 * (n % 5)) % 5 := by

simp [Nat.mul_mod, Nat.mod_mod]
<;> ring_nf at *
<;> omega

rw [h2]
rw [h0]
<;> norm_num
<;> rfl

exact h1

Listing 8: Example of miniF2F Eval Task (Length 65)
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theorem putnam_1993_a2
(x : N → R)
(xnonzero : ∀ n : N, x n ̸= 0)
(hx : ∀ n ≥ 1, (x n) ˆ 2 - x (n - 1) * x (n + 1) = 1)
: ∃ a : R, ∀ n ≥ 1, x (n + 1) = a * x n - x (n - 1) := by

have h_main : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
intro n hn
have h1 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x (n + 2) + x n) / x (n + 1)
↪→ := by
intro n hn
have h2 : (x (n + 1)) ˆ 2 - x n * x (n + 2) = 1 := by

have h3 := hx (n + 1) (by linarith)
simpa [Nat.add_assoc] using h3

have h3 : (x n) ˆ 2 - x (n - 1) * x (n + 1) = 1 := hx n hn
have h4 : x (n + 2) * x n + (x n) ˆ 2 - (x (n + 1)) ˆ 2 - x (n - 1) * x (n + 1) = 0 := by

linarith
have h5 : (x (n + 2) + x n) * x n - (x (n + 1) + x (n - 1)) * x (n + 1) = 0 := by

ring_nf at h4 ⊢
linarith

have h6 : x n ̸= 0 := xnonzero n
have h7 : x (n + 1) ̸= 0 := xnonzero (n + 1)
have h8 : (x (n + 2) + x n) / x (n + 1) - (x (n + 1) + x (n - 1)) / x n = 0 := by

field_simp [h6, h7] at h5 ⊢
nlinarith

linarith

have h2 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
intro n hn
induction’ hn with n hn IH
·

norm_num
·

have h3 := h1 n hn
have h4 := h1 (n + 1) (by linarith)
simp [Nat.add_assoc] at h3 h4 ⊢
<;>
(try norm_num at * <;>
try linarith) <;>
(try simp_all [Nat.add_assoc]) <;>
(try ring_nf at * <;>
try linarith) <;>
(try field_simp [xnonzero] at * <;>
try nlinarith)
<;>
linarith

exact h2 n hn

have h_exists_a : ∃ (a : R), ∀ (n : N), n ≥ 1 → x (n + 1) = a * x n - x (n - 1) := by
use (x 2 + x 0) / x 1
intro n hn
have h1 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := h_main n hn
have h2 : x n ̸= 0 := xnonzero n
have h3 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by rw [h1]
have h4 : x (n + 1) + x (n - 1) = ((x 2 + x 0) / x 1) * x n := by

field_simp [h2] at h3 ⊢
<;> nlinarith

have h5 : x (n + 1) = ((x 2 + x 0) / x 1) * x n - x (n - 1) := by linarith
exact h5

exact h_exists_a

Listing 9: Example of PutnamBench Eval Task (Length 715)
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H EXAMPLES OF PROOFS SIMPLIFIED BY PROOFOPTIMIZER

In Listings 10 to 17, we show proofs successfully optimized with ProofOptimizer and iterative shortening.
Some proofs were syntactically modified to fit on the page (new lines removed, multiple lines compressed
into one).

theorem mathd_algebra_338 -- Original Proof
(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have h3 : b = a + 6 := by
have h31 : -a + b = 6 := by

have h32 : (a + 3 * b + c) - (3 * a + b
↪→ + c) = 9 - (-3) := by

linarith
linarith

linarith

have h4 : c = a + 11 := by
have h41 : -a + c = 11 := by

have h42 : (a + b + 3 * c) - (3 * a + b
↪→ + c) = 19 - (-3) := by

linarith
linarith

linarith

have h5 : a = -4 := by
have h51 : 3 * a + b + c = -3 := h0

rw [h3, h4] at h51

ring_nf at h51 ⊢
linarith

have h6 : b = 2 := by
rw [h3]
rw [h5]
<;> norm_num

have h7 : c = 7 := by
rw [h4]
rw [h5]
<;> norm_num

have h8 : a * b * c = -56 := by
rw [h5, h6, h7]
<;> norm_num

exact h8

Listing 10: Original Proof (Length 214)

theorem mathd_algebra_338
(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have : a = -4 := by linarith
subst_vars
nlinarith

Listing 11: Simplified Proof (Length 11)
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theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
have h1 : ∀ n : N, (a (n + 10) : Z) ≡ - (a n : Z) [ZMOD 181] := by
intro n
induction’ n using Nat.strong_induction_on with n ih
rcases n with (_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | n) <;>

simp_all [Int.ModEq, abase, arec] <;> omega
have h2 : (a 5 : Z) ≡ 0 [ZMOD 181] := by norm_num [Int.ModEq, abase, arec]
have h3 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by
have h4 : ∀ k : N, (a (10 * k + 5) : Z) ≡ 0 [ZMOD 181] := by

intro k
induction’ k with k ih
· norm_num [Int.ModEq] at h2 ⊢

<;> simpa [abase, arec] using h2

· have h5 := h1 (10 * k + 5)
have h6 := h1 (10 * k + 6)
have h7 := h1 (10 * k + 7)
have h8 := h1 (10 * k + 8)
have h9 := h1 (10 * k + 9)
have h10 := h1 (10 * k + 10)
norm_num [Int.ModEq] at h5 h6 h7 h8 h9 h10 ih ⊢
<;> ring_nf at * <;> omega

have h5 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by
have h6 : (a (10 * 201 + 5) : Z) ≡ 0 [ZMOD 181] := h4 201
norm_num at h6 ⊢
<;> simpa [add_assoc] using h6

exact h5

exact Int.dvd_of_emod_eq_zero h3

Listing 12: Original Proof (Length 324)

theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
rw [show 2015 = 10 * 202 - 5 by norm_num]
have h1 : ∀ n : N, a (10 * n + 5) ≡ 0 [ZMOD 181] := by
intro n
induction’ n with k ih
· norm_num [abase, arec, Int.ModEq]
· rw [Nat.mul_succ]

simp_all [Int.ModEq, arec]
omega

have h2 := h1 201
exact Int.dvd_of_emod_eq_zero h2

Listing 13: Simplified Proof (Length 82)
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theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))ˆ2 ̸= 0)
(h2 : (4 * xˆ2) / (1 - Real.sqrt (1 + 2*x))ˆ2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· set s := Real.sqrt (1 + 2 * x) with hs
have h51 : 0 ≤ 1 + 2 * x := h0

have h52 : s ≥ 0 := Real.sqrt_nonneg _
have h53 : s ˆ 2 = 1 + 2 * x := by

rw [hs]
rw [Real.sq_sqrt] <;> linarith

have h54 : (1 - s) ˆ 2 ̸= 0 := by simpa [hs] using h1

have h55 : s ̸= 1 := by
intro h
have h551 : (1 - s) ˆ 2 = 0 := by

rw [h]
norm_num

contradiction
have h56 : (s + 1) ˆ 2 * (s - 1) ˆ 2 = (s ˆ 2 - 1) ˆ 2 := by

ring
have h57 : (s ˆ 2 - 1 : R) ˆ 2 = 4 * x ˆ 2 := by

rw [h53]
ring

have h58 : (4 : R) * x ˆ 2 / (s - 1) ˆ 2 = (s + 1) ˆ 2 := by
have h581 : (s - 1 : R) ˆ 2 ̸= 0 := by

intro h
have h582 : (1 - s : R) ˆ 2 = 0 := by
calc

(1 - s : R) ˆ 2 = (s - 1 : R) ˆ 2 := by ring
_ = 0 := by rw [h]

contradiction
field_simp [h581] at h57 ⊢
nlinarith

have h59 : (4 : R) * x ˆ 2 / (1 - s) ˆ 2 = (s + 1) ˆ 2 := by
rw [← h58]
ring

nlinarith [sq_nonneg (s - 1)]

Listing 14: Original Proof (Length 330)

theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))ˆ2 ̸= 0)
(h2 : (4 * xˆ2) / (1 - Real.sqrt (1 + 2*x))ˆ2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· have h57 : (4 : R) * x ˆ 2 / (1 - Real.sqrt (1 + 2 * x)) ˆ 2 = (1 + Real.sqrt (1 + 2 * x))

↪→ ˆ 2 := by
have h58 : (1 - Real.sqrt (1 + 2 * x)) ˆ 2 ̸= 0 := by assumption
field_simp [h58]
nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption)]

nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption),
Real.sqrt_nonneg (1 + 2 * x)]

Listing 15: Simplified Proof (Length 125)
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theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).1 + ((fun n : N => (n)!, fun n : N =
↪→ > 2 ˆ n) : (N → Z) × (N → Z) ).2 :=

by
have h_main : ∀ (n : N), T n = (n ! : Z) + 2 ˆ n := by
intro n
have h1 : T n = (n ! : Z) + 2 ˆ n := by
have h2 : ∀ n : N, T n = (n ! : Z) + 2 ˆ n := by

intro n
induction n using Nat.strong_induction_on with
| h n ih =>

match n with
| 0 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 1 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 2 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| n + 3 =>
have h3 := hTn n
have h4 := ih n (by omega)
have h5 := ih (n + 1) (by omega)
have h6 := ih (n + 2) (by omega)
simp [h4, h5, h6, pow_add, pow_one, Nat.factorial_succ, Nat.mul_add, Nat.add_mul] at h3 ⊢
<;>
ring_nf at h3 ⊢ <;>
norm_cast at h3 ⊢ <;>
simp_all [Nat.factorial_succ, pow_add, pow_one, mul_assoc]
<;>
ring_nf at * <;>
norm_num at * <;>
nlinarith

exact h2 n
exact h1

have h_final : T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).1 + ((fun n : N => (n)!,
↪→ fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).2 := by

funext n
have h1 : T n = (n ! : Z) + 2 ˆ n := h_main n
simp [h1, Pi.add_apply]
<;> norm_cast <;> simp [Nat.cast_add] <;> ring_nf

apply h_final

theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z)).1 + ((fun n : N => (n)!, fun n : N =>
↪→ 2 ˆ n) : (N → Z) × (N → Z)).2 := by

ext n
induction’ n using Nat.strong_induction_on with n ih
match n with
| 0 => simp_all
| 1 => simp_all
| 2 => simp_all
| n + 3 =>
simp_all [Nat.factorial_succ]
ring_nf

Listing 16: Original Proof (Length 320) and Simplified Proof (Length 34)

34



1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by

have h_main : (
∫

x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2)) = 22/7 - Real.pi := by
have h1 : (

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2)) = (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 :

↪→ R) - 4 / (1 + xˆ2)) := by
have h11 : ∀ (x : R), xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) = (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) - 4 / (1 + xˆ2)
↪→ := by

intro x
have h12 : (1 + xˆ2 : R) ̸= 0 := by nlinarith
have h13 : xˆ4 * (1 - x)ˆ4 = (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) * (1 + xˆ2) - 4 := by

ring_nf <;> nlinarith [sq_nonneg (x ˆ 2), sq_nonneg (x ˆ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)]
have h14 : xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) = ((xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) * (1 + xˆ2) - 4) / (1 +

↪→ xˆ2) := by
rw [h13]

rw [h14]
field_simp [h12] <;> ring_nf <;> field_simp [h12] <;> ring_nf

congr
ext x
rw [h11 x]

rw [h1]
have h2 : (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) - 4 / (1 + xˆ2)) = (

∫
x in (0)..1, (xˆ6 - 4

↪→ *xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R)) - (
∫

x in (0)..1, (4 : R) / (1 + xˆ2)) := by
apply intervalIntegral.integral_sub
· apply Continuous.intervalIntegrable

continuity
· apply Continuous.intervalIntegrable

have h3 : Continuous (fun x : R => (4 : R) / (1 + x ˆ 2)) := by
apply Continuous.div
· exact continuous_const
· exact Continuous.add continuous_const (continuous_pow 2)
· intro x
have h4 : (1 + x ˆ 2 : R) ̸= 0 := by nlinarith
exact h4

exact h3
rw [h2]
have h3 : (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R)) = (22 / 7 : R) := by

norm_num [integral_id, mul_comm] <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]
have h4 : (

∫
x in (0)..1, (4 : R) / (1 + xˆ2)) = Real.pi := by

have h41 : (
∫

x in (0)..1, (4 : R) / (1 + x ˆ 2)) = 4 * (
∫

x in (0)..1, (1 : R) / (1 + x ˆ 2)) := by
have h42 : (

∫
x in (0)..1, (4 : R) / (1 + x ˆ 2)) = (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ˆ 2)) := by

congr
ext x <;> ring_nf

rw [h42]
have h43 : (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ˆ 2)) = 4 * (

∫
x in (0)..1, (1 : R) / (1 + x ˆ 2)) :=

↪→ by
simp [intervalIntegral.integral_comp_mul_left (fun x => (1 : R) / (1 + x ˆ 2))] <;>
norm_num <;> field_simp <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]

rw [h43]
rw [h41]
have h44 : (

∫
x in (0)..1, (1 : R) / (1 + x ˆ 2)) = Real.pi / 4 := by

have h45 : (
∫

x in (0)..1, (1 : R) / (1 + x ˆ 2)) = Real.arctan 1 - Real.arctan 0 := by
rw [integral_one_div_one_add_sq] <;> norm_num

rw [h45]
have h46 : Real.arctan 1 = Real.pi / 4 := by

norm_num [Real.arctan_one]
have h47 : Real.arctan 0 = 0 := by

norm_num [Real.arctan_zero]
rw [h46, h47] <;> ring_nf <;> norm_num

rw [h44] <;> ring_nf <;> norm_num
rw [h3, h4] <;> ring_nf <;> norm_num

have h_final : 22/7 - Real.pi =
∫

x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by
rw [h_main] <;> linarith [Real.pi_pos]

exact h_final

theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by

simp_rw [show ∀ x : R, x ˆ 4 * (1 - x) ˆ 4 / (1 + x ˆ2) = (x ˆ6 - 4 * x ˆ5 + 5 * x ˆ4 - 4 * x ˆ2 + 4 - 4 / (1
↪→ + x ˆ2)) by

intro x
field_simp
ring]

ring_nf
norm_num
<;> linarith [Real.pi_pos]

Listing 17: Original Proof (Length 1097) and Simplified Proof (Length 76)
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I EXAMPLES OF PROOF SPEEDUP AND SLOWDOWN AFTER SIMPLIFICATION

We analyze two examples of proof speedup and slowdown. In Listing 18, we observe that the original proof
uses an extraneous amount of tactics within nlinarith in order to prove the main conjecture. By removing
a majority of these, the simplified proof achieves a 4.7x speedup. In Listing 19, we observe a more extreme
case, where the original proof is significantly overcomplicated and can be reduced to one omega invocation.
Goedel-Prover-V2-32B never found this single-tactic proof (with 64 samples) and instead produces
proofs with many unnecessary subgoals, leading to a proof with slow execution time.

In several occurrences, we observe that simplified proofs can be significantly slower than the original proof.
This is usually because the simplified proof is notationally shorter, but uses a slower approach to complete
the proof. For example, in Listing 20, ProofOptimizer finds a shorter proof, but the proof is reliant on
simp all, Finset.sum range succ, and linarith, which expand the goal into large proof terms
that are time-consuming, causing the new proof to be over 10× slower. Another example is shown in Listing
21. Here, the original proof first iterates over all m ≤ 71 with interval cases m, tries to simplify
using omega, and then iterates over all n ≤ 71 with interval cases n. ProofOptimizer, however,
removes the try omega, directly doing an exhaustive search over (m,n). The try omega statement in
the original proof made it much faster, removing 69 of the 71 goals, whereas the simplified proof had to
iterate through n for these goals.

theorem imo_1983_p6 -- Original Proof, Time: 5.57s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
have h_main : 0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),

mul_nonneg h0.1.le h0.2.1.le, mul_nonneg h0.2.1.le h0.2.2.le, mul_nonneg h0.2.2.le h0.1.le
↪→ ,
mul_nonneg (sq_nonneg (a - b)) h0.2.2.le, mul_nonneg (sq_nonneg (b - c)) h0.1.le,
mul_nonneg (sq_nonneg (c - a)) h0.2.1.le, mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0.2.2,
mul_pos h0.2.2 h0.1, mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2),
mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1),
sq_nonneg (a + b - 2 * c), sq_nonneg (b + c - 2 * a), sq_nonneg (c + a - 2 * b)]

exact h_main

theorem imo_1983_p6 -- Simplified Proof, Time: 1.20s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
nlinarith [mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2), mul_pos (sub_pos.mpr h2) (sub_pos.mpr h

↪→ 3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1), sq_nonneg (a - b), sq_nonneg (b - c),
↪→ sq_nonneg (c - a)]

Listing 18: Example of Speedup after Simplification (orig: 5.6s, new: 1.2s)
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theorem mathd_numbertheory_765 -- Original Proof, Time: 2.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
have h_main : x ≤ -449 := by
by_contra! h
have h2 : -448 ≤ x := by linarith
have h3 : x < 0 := h0

have h4 : (24 * x) % 1199 = 15 := h1

have h5 : x ≥ -448 := by linarith
have h6 : x ≤ -1 := by

omega
-- We will check all possible values of x from -448 to -1 and show that none satisfy (24 *
↪→ x) % 1199 = 15
have h7 : False := by

-- Use the fact that x is between -448 and -1 to check each possible value
have h8 : x ≥ -448 := by linarith
have h9 : x ≤ -1 := by omega
-- Use interval_cases to check each possible value of x
interval_cases x <;> norm_num [Int.mul_emod, Int.add_emod] at h4 ⊢ <;> omega

exact h7

exact h_main

theorem mathd_numbertheory_765 -- Simplified Proof, Time: 0.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
omega

Listing 19: Example of Speedup after Simplification (orig: 2.5s, new: 0.5s)
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theorem aime_1984_p1 -- Original Proof, Time: 0.91s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
have h2 : ∀ (n : N), u n = u 0 + n := by
(. . . 14 lines omitted)

have h3 : 98 * u 0 + 4851 = 137 := by
have h4 : Σ k in Finset.range 98, u (k.succ) = 137 := h1

have h5 : Σ k in Finset.range 98, u (k.succ) = Σ k in Finset.range 98, (u 0 + (k.succ : Q)
↪→ ) := by
apply Finset.sum_congr rfl
intro k _
rw [h2 (k.succ)]
<;> simp [Nat.cast_add, Nat.cast_one]
<;> ring_nf
<;> norm_num

rw [h5] at h4

have h6 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = 98 * u 0 + 4851 := by
have h7 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = Σ k in Finset.range 98, (u 0 :

↪→ Q) + Σ k in Finset.range 98, (k.succ : Q) := by
rw [Finset.sum_add_distrib]

rw [h7]
have h8 : Σ k in Finset.range 98, (u 0 : Q) = 98 * u 0 := by

simp [Finset.sum_const, Finset.card_range]
<;> ring_nf

rw [h8]
have h9 : Σ k in Finset.range 98, (k.succ : Q) = 4851 := by

norm_num [Finset.sum_range_succ, Finset.sum_range_succ, Finset.sum_range_succ]
<;>
rfl

rw [h9]
<;> ring_nf

rw [h6] at h4

norm_num at h4 ⊢
<;> linarith

have h4 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 49 * u 0 + 2450 := by
-- (. . . 25 lines omitted)

have h5 : 49 * u 0 = -2357 := by
-- (. . . 6 lines omitted)

have h6 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
-- (. . . 4 lines omitted)
linarith

exact h6

theorem aime_1984_p1 -- Simplified Proof, Time: 10.84s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
simp_all [Finset.sum_range_succ]
linarith

Listing 20: Example of Slowdown after Simplification (orig: 0.9s, new: 10.8s)
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theorem mathd_numbertheory_711 -- Original Proof, 4.87s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have h_product : m * n = 896 := by
-- (. . . 5 lines omitted)

have h_main : 72 ≤ m + n := by
have h3 : 0 < m := h0.1
have h4 : 0 < n := h0.2
have h5 : m * n = 896 := h_product
have h6 : Nat.gcd m n = 8 := h1

have h7 : Nat.lcm m n = 112 := h2

have h8 : m + n ≥ 72 := by
by_contra! h
-- (. . . 4 lines omitted)
have h11 : m ≤ 71 := by nlinarith
have h12 : n ≤ 71 := by nlinarith
interval_cases m <;> norm_num at h5 ⊢ <;>

(try omega) <;>
(try {
interval_cases n <;> norm_num at h5 h6 h7 ⊢ <;>
-- (. . . 5 lines omitted)

}) <;>
-- (. . . 5 lines omitted)

exact h8

exact h_main

theorem mathd_numbertheory_711 -- Simplified Proof, 74.63s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have : m * n = 896 := by
rw [← Nat.gcd_mul_lcm m n]
simp_all

by_contra!
have : m ≤ 71 := by nlinarith
have : n ≤ 71 := by nlinarith
interval_cases m <;> interval_cases n <;> simp_all

Listing 21: Example of Slowdown after Simplification (orig: 4.9s, new: 74.6s)
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J DERIVATION OF CLOSED FORM FOR MIN@K AND MAX@K

In this section, we derive the closed form expression we use for estimating max@k from n samples based off
the classic pass@k metric:

max@k =
1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi.

Let X be a real random variable, X1, . . . , Xk independent realizations of X and X(k) = maxi≤k Xi their
maximum. We would like to give an estimator for E[X(k)] given n ≥ k independent samples x1 ≤ . . . ≤ xn

of X sorted by size.

Consider the estimator M = 1

(nk)

∑
i≤n

(
i−1
k−1

)
xi, with the idea being that there exist

(
n
k

)
ways to choose k

out of the n samples overall, out of which
(
i−1
k−1

)
select the i-th and then k − 1 with a smaller index.

We compute

Exi

 1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi

 = Exi

 1(
n
k

) ∑
I⊆{1,...,n},|I|=k

xmax I


=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi [xmax I ]

=
1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi

[
max
j∈I

xj

]
=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

E
[
X(k)

]
= E

[
X(k)

]
by the counting argument explained above, linearity of expectation, ordering of the xi and independence.

Note that this is a generalization of the pass@k metric, which covers the case of Bernoulli distributed X
(Chen et al., 2021).

We recommend using a numerically stable implementation that computes the ratio (i−1
k−1)
(nk)

by canceling a

(k − 1)! factor and pairing up numerator and denominator factors.

Moreover, the min@k estimator can be obtained as min@k(x1, . . . , xn) = −max@k(−x1, . . . ,−xn).
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K HYPERPARAMETERS

In this section, we detail the hyperparameters we use throughout our various training and inference experi-
ments. Prompts can be found in the next section, Appendix L.

Iterative Training (Sec. 3.1.1): For each round of SFT, we use an effective batch size of 64 (2 nodes, 8
H100/node, 4 gradient accumulation steps) and learning rate 1e-5. We use a cosine scheduler with minimum
learning rate 1e-8 and 100 steps of warm-up starting from 1e-30. For inference, we use τ = 1.0 and top-p
0.95.

Reinforcement learning (Sec 3.1.2): Our setup is asynchronous online reinforcement learning with 16 trainer
and 16 worker GPUs, and 16 environment copies per worker GPU. We use a global training batch size of 32
(local batch size 2 per trainer), a constant learning rate of 6e-8 following a linear warmup over 200 steps, a
GRPO group size of 8, mean normalization but no variance normalziation, no KL penalty and model updates
sent to workers every 100 steps. Workers use For inference, we use τ = 1.0 and top-p 1.0, and evaluations
use τ = 1.0 and top-p 0.95.

For test-time reinforcement learning we use the same settings but halve the number of trainers and workers.

Execution Feedback and Goedel-Prover for Repair (Sec. 4.2): We use temperature τ = 0.2 and top-p 0.95
with a maximum prompt length of 8192 and a maximum generation length of 32768.

Iterative Shortening (Sec. 4.3): For iterations 1 through 6, we use temperature τ = 1.0 and top-p 0.95. We
increase the temperature to τ = 1.2 for iteration 7, and to τ = 1.5 for iteration 8. We find that the higher
temperatures in later iterations are helpful for increasing diversity with 1024 samples.

Lean Base Model (Sec. B.1): We use an effective batch size of 512 (2 nodes, 8 H100/node, 32 gradient
accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a
maximum sequence length of 8192 for 2000 steps.

Proof Sketching (Sec. B.2): We use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient
accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a
maximum sequence length of 8192 for 50 steps. Evaluation is done with temperature τ = 0.8 and top-p 0.95.

Comparison with Leading Models (Sec. E): For our model and Qwen2.5-32B, we use τ = 1.0 and top-p
0.95. For GPT-4o and Gemini-2.5-Pro, we use the default settings with τ = 1.0.
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L PROMPTS

L.1 PROOF SIMPLIFICATION PROMPT

You are given a correct Lean 4 proof of a mathematical theorem.
Your goal is to simplify and clean up the proof, making it shorter and more readable while ensuring it

↪→ is still correct.

Here is the original proof:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your simplified proof. Do NOT modify the theorem or header, and surround your proof in
↪→ ‘‘‘lean4 and ‘‘‘ tags.

Listing 22: Zero-shot Proof Sketching Prompt

L.2 PROOF SKETCHING PROMPTS

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the
↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for

↪→ clarity. Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton

↪→ would compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your Lean 4 proof sketch. Do NOT modify the theorem or header, and surround your proof
↪→ sketch in ‘‘‘lean4 and ‘‘‘ tags.

Listing 23: Zero-shot Proof Sketching Prompt

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the
↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for

↪→ clarity. Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton

↪→ would compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Here is an example:

Problem:
Prove that if p, q are primes such that q is divisible by p, then p must be equal to q.

Solution:
Since q is prime, it only has 2 divisors: 1 and itself. Therefore, since p divides q, either $p=1$ or

↪→ $p=q$. Because $p$ is a prime, $p \ne 1$, so $p=q$.

Lean 4 Statement:
‘‘‘lean4
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import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by
↪→ sorry

‘‘‘

Lean 4 Proof Sketch:
‘‘‘lean4
import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by
-- Lemma 1: Since q is prime, it only has 2 divisors: 1 and itself.
have lemma1 : p = 1 ∨ p = q := by
sorry

-- Lemma 2: Since p is prime, p ̸= 1.
have lemma2 : p ̸= 1 := by
sorry

-- Now, do case analysis on lemma1 to conclude p = q.
cases lemma1 with
| inl h_left =>
contradiction

| inr h_right =>
exact h_right

‘‘‘

Now, it is your turn to provide your Lean 4 proof sketch for a new problem. Do NOT modify the theorem
↪→ or header, and surround your proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Lean 4 Proof Sketch

Listing 24: One-shot Proof Sketching Prompt

L.3 GOEDEL-PROVER REPAIR PROMPT

In Listing 25, use a modified version of Goedel-Prover’s repair prompt found in their codebase. The main
difference is that because we do not have proofs annotated with CoT’s, our lean proof only contains a
proof.
Complete the following Lean 4 code:

‘‘‘lean4
{formal_statement}‘‘‘

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan
↪→ outlining the main proof steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the
↪→ construction of the final formal proof.

Here is the proof:
‘‘‘lean4
{lean_proof}‘‘‘

The proof (Round 1) is not correct. Following is the compilation error message, where we use <error></
↪→ error> to signal the position of the error.
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{error_message_for_prev_round}

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed analysis of
↪→ the error message.

Listing 25: Goedel-Prover Repair Prompt
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