
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

PROOFOPTIMIZER: TRAINING LANGUAGE MODELS TO
SIMPLIFY PROOFS WITHOUT HUMAN DEMONSTRATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-medalist
capabilities and producing formal proofs that span thousands of lines. Although such proofs
are mechanically verified by formal systems like Lean, their excessive length renders them
difficult for humans to comprehend and limits their usefulness for mathematical insight.
Proof simplification is therefore a critical bottleneck. Yet, training data for this task is scarce,
and existing methods—mainly agentic scaffolding with off-the-shelf LLMs—struggle with
the extremely long proofs generated by RL-trained provers. We introduce ProofOptimizer,
the first language model trained to simplify Lean proofs without requiring additional human
supervision. ProofOptimizer is trained via expert iteration and reinforcement learning,
using Lean to verify simplifications and provide training signal. At inference time, it
operates within an iterative proof-shortening workflow, progressively reducing proof length.
Experiments show that ProofOptimizer substantially compresses proofs generated by state-
of-the-art RL-trained provers on standard benchmarks, reducing proof length by 87% on
miniF2F, 57% on PutnamBench, and 50% on Seed-Prover’s IMO 2025 proofs. Beyond
conciseness, the simplified proofs check faster in Lean and further improve downstream
prover performance when reused as training data for supervised finetuning.

1 INTRODUCTION

Theorem proving in formal environments such as Lean (de Moura et al., 2015) provides an excellent testbed
for training large language models (LLMs) in mathematical reasoning via reinforcement learning (RL). Since
Lean can mechanically verify proofs, it filters hallucinations and provides reliable reward signals, and enables
enables unlimited high-quality synthetic reasoning data. Leveraging these benefits, LLMs finetuned with RL
have achieved near gold-medal performance on the International Mathematical Olympiad (IMO) (Chen et al.,
2025) and shown strong results on difficult college-level benchmarks like PutnamBench (Lin et al., 2025b).

However, RL-trained provers often generate proofs that are correct but excessively long and inscrutable.
Since their only reward signal is the correctness of generated proofs, the resulting models produce proofs
that are correct yet suboptimal: convoluted, bloated with redundant steps, or reliant on unnecessarily strong
automation where a simple step would suffice. For example, Seed-Prover (Chen et al., 2025)’s Lean proof of
IMO 2025 P1 consists of 4,357 lines of code, 16x longer (by character count) than its informal counterpart.
Such proofs pose several practical drawbacks: they are (1) difficult for humans to comprehend, limiting
their value as a source of mathematical insight; (2) less suitable as synthetic training data, since models may
struggle to learn from convoluted proofs; and (3) computationally inefficient to compile in Lean, which is
especially problematic when integrated into existing formal libraries like mathlib (mathlib Community, 2019).

These challenges highlight the need for proof simplification: transforming existing formal proofs into simpler
forms while preserving correctness. In this work, we adopt a natural notion of simplicity: proof length,

1

https://github.com/ByteDance-Seed/Seed-Prover/blob/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/IMO2025/P1.lean
https://github.com/ByteDance-Seed/Seed-Prover/blob/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/IMO2025/P1.lean
https://github.com/ByteDance-Seed/Seed-Prover/blob/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/p1_proof.pdf


047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

measured by the number of Lean tokens. However, our approach is agnostic to the choice of simplicity metric:
it is not restricted to proof length, but applies to any automatically computable measure (Kinyon, 2018).

Prior work on proof simplification (Ahuja et al., 2024) focuses on agentic scaffolding around API-only
LLMs such as GPT-4o. While these methods can shorten human-written Lean proofs, they are ineffective at
simplifying the long proofs generated by SoTA RL-trained LLM provers such as Seed-Prover and Goedel-
Prover-V2 (Lin et al., 2025b), precisely the setting where simplification is most valuable. A natural alternative
is to finetune LLMs directly for proof simplification, but progress in this direction is limited by the lack of
suitable training data, namely aligned pairs of proofs before and after simplification.

We introduce ProofOptimizer, an LLM-based system for simplifying long and convoluted proofs in Lean.
ProofOptimizer integrates three components: (i) a symbolic Lean linter that identifies and removes redundant
steps, (ii) a 7B parameter language model finetuned specifically for proof simplification, and (iii) an iterative
inference-time algorithm for progressively shortening proofs. Given an input proof, the Lean linter first elimi-
nates the most obvious redundancies. The language model then generates multiple candidate simplifications,
and the iterative algorithm repeatedly applies the model to the currently shortest proof, further reducing its
length. Training follows two paradigms. In expert iteration, the model proposes simplifications that are
verified by Lean and incorporated into the training data for supervised finetuning. In reinforcement learning,
proof length and correctness serve as the reward signal. Both approaches enable continual improvement
without requiring any human-annotated simplification data.

First, we evaluate ProofOptimizer on long proofs generated by state-of-the-art neural theorem provers. Specif-
ically, we consider proofs produced by Goedel-Prover-V2 on two standard benchmarks—MiniF2F (Zheng
et al., 2021) and PutnamBench—as well as four proofs released by Seed-Prover for IMO 2025. Our final
models achieve significant results (Fig. 1), shortening MiniF2F proofs by an average of 63% in a single shot
and PutnamBench proofs by 26% with 32 attempts, substantially outperforming Gemini-2.5-Pro (Sec. 4.1).
At inference time, test-time RL improves single-shot miniF2F performance to 72%. With with iterative
shortening, we achieve further per-proof average reductions of 87% (MiniF2F) and 57% (PutnamBench) and
reduce the length of three out of four Seed-Prover IMO 2025 proofs by more than half.

Second, we conduct ablation studies to evaluate the effect of key design choices. During training, RL achieves
the best single-sample performance but reduces multi-sample diversity. At inference time, using the same
RL recipe further improves single-shot performance (Sec. 4.1). Repairing incorrect simplifications from
execution feedback with Goedel-Prover-V2 effectively corrects errors, but leads to repaired proofs even longer
than the originals (Sec. 4.2). Overall, iterative proof shortening offers the best balance between performance
and diversity, achieving the strongest results (Sec. 4.3).

Third, we conduct preliminary experiments suggesting two downstream benefits of proof shortening. Training
our base model on shortened proofs leads to 2% better performance on miniF2F relative to training on
unshortened proofs (Sec. 5.1). Also, shortening proofs often decreases their execution time, with 28% of
proofs showing at least a 1.5x speedup after shortening (Sec. 5.2).

theorem
in by

have in by

have in by

have by

intro
have by nlinarith

have by

ring_nf


nlinarith [ ]

have by

rw [

field_simp [ ] ring_nf field_simp [ ring_nf

congr

ext
rw [ ]


rw [ ]


have in by

rw [ ]


linarith [ ]


exact

 
: 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=  

   h_main : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi := 
     h₁ : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2)) := 
       h₁₁ : ∀ (x : ℝ), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2) := 
         x

         h₁₂ : (1 + x^2 : ℝ) ≠ 0 :=  
         h₁₃ : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4 := 
          
          <;>

          sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)
         h₁₄ : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4) / (1 + x^2) := 
          h₁₃]

        rw [h₁₄]

        h₁₂  <;>  <;> h₁₂] <;> 
      
       x

      h₁₁ x
    h₁
    

   h_final : 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 
    h_main
    <;>

    Real.pi_pos
  

   h_final

putnam_1968_a1


-- (...70 lines omitted) 



theorem 
: 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 

 ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^2) = 

           (x ^6 - 4 * x ^5 + 5 * x ^4 - 

            4 * x ^2 + 4 - 4 / (1 + x ^2)) 
     x

    
    

  <;>  Real.pi_pos

putnam_1968_a1

by


  simp_rw [show

by

intro
field_simp

ring]


  ring_nf

  norm_num


linarith [ ]

Before ProofOptimizer After ProofOptimizer

Figure 1: ProofOptimizer reduces the shortest generated proof of a Putnam problem from 1097 to 76 tokens.

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

2 PROOF SIMPLIFICATION: TASK AND METRICS

Task Definition We formalize the proof simplification task as minimizing the complexity of a given proof.
Specifically, for a valid formal statement s with proof p, the goal is to produce an alternative proof p∗ of s
that minimizes a complexity measure L: p∗ = argminx proves s L(x). Our method is agnostic to the choice of
complexity measure L, provided that it is deterministic and can be automatically computed from the proof.
This flexibility encompasses the metrics used in prior work (Ahuja et al., 2024). In the rest of this paper, we
adopt proof length as the measure of complexity, defined as the number of tokens produced by a Lean-specific
tokenizer. Our proof length measure correlates with character count but does not penalize long identifier
names, and it ignores comments and line breaks. We denote the length of a proof x by |x|, i.e., L(x) = |x|.
Evaluation Metrics Given an original proof p and k candidate simplifications generated by the model,
p′1, p

′
2, . . . , p

′
k, we define li = min(|p|, |p′i|) if p′i is a valid proof and li = |p| otherwise. (Intuitively, an

invalid attempt reverts to the original proof length). We evaluate proof simplification using two metrics:

• min@k ≜ mini {li} denotes the minimum shortened proof length (lower is better).

• red@k ≜ maxi

{
|p|−li
|p|

}
= 1− min@k

|p| denotes the maximum relative proof length reduction from the
original proof (higher is better).

3 PROOFOPTIMIZER: LLMS FOR PROOF SIMPLIFICATION

3.1 TRAINING

Lean Base Model First, we train a general-purpose Lean model by fine-tuning Qwen-2.5-7B-Instruct
on a combination of five tasks: natural language problem solving, Lean 4 code completion, auto-formalization
(problems and solutions), formal theorem proving, and tactic/proof state prediction.

Dataset for Proof Simplification We employ a four-stage pipeline to generate high-quality proof simplifica-
tion training data.

1. Problem Collection: We first compile a dataset of theorem proving problems from Goedel-Pset,
filtering out simple computational problems. Each problem consists of a natural language problem,
solution, and Lean problem statement.

2. Proof Sketching: We train a model that formalizes a problem’s natural language solution into a Lean
proof sketch consisting of a few high-level proof steps (usually 2-10) with lower level details omitted
and filled in with Lean’s sorry tactic.

3. Theorem Extraction and Filtering: For each proof sketch, we extract each proof step into its own separate
theorem. At the core, we are taking longer proofs and breaking them down into separate sub-theorems.
We collect a total of 518K theorems this way. As we found some of these theorems to be trivial, we
design an automation tactic to filter these out, leaving 307K theorems remaining.

4. Proof Generation: We use Goedel-Prover-V2-32B to generate proofs of these theorems. The
model successfully produces Lean proofs of 145K theorems, which we use as our dataset for training.

For more details about our base model and dataset collection, see Appendix B. Next, we describe our two
training recipes: expert iteration and online reinforcement learning.

3.1.1 PROOFOPTIMIZER-EXPIT: EXPERT ITERATION

We leverage a STaR-like (Zelikman et al., 2022) iterative training algorithm to improve our model. At a high
level, we start with our base model π0 and the collection of 145K proofs P0. At each iteration, we attempt to

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

simplify each proof, train our model on successful proof simplifications, and use the collection of simplified
proofs as seed proofs for the next iteration. More precisely, at each iteration i, we do the following:

1. Sample: For each proof x ∈ Pi, use πi to sample 4 simplifications Yp ≜ {y1x, y2x, y3x, y4x} ∼ πi(x).
2. Filter: Use the Lean compiler to find the shortest correct simplification yx ∈ {x}∪Yx. Create a training

dataset of proof simplifications Di = {(x, yx) | len(yx) ≤ 0.8 · len(x), x ∈ Pi}. The length constraint
is designed to encourage the model to learn more substantial simplifications rather than trivial ones. For
iterations after the first, as x may have been simplified from a more complex proof x′ ∈ P0, we also
add (x′, yx) pairs to Di, which are valid and larger proof simplifications. Also, collect simplified proofs
πi+1 = {sx | x ∈ Pi} for the next iteration.

3. Train: Fine-tune πi on Di to get πi+1.

3.1.2 PROOFOPTIMIZER-RL: ONLINE REINFORCEMENT LEARNING

In addition to expert iteration as described in the previous section, we train a proof optimizer model with
online reinforcement learning. Using the same dataset as in expert iteration, the reinforcement learning task
consists in producing a valid but shorter proof y for a statement given an initial proof x. The reward is defined
as the relative shortening R(x, y) = |y|−|x|

|x| if y is valid and |y| ≤ |x|, and R(x, y) = 0 otherwise. We employ
an asynchronous variant of the GRPO algorithm (Shao et al., 2024) with advantage Ai = Ri − 1

k

∑
j≤k Rj

baselined with the average reward of k = 8 samples, no advantage normalization by standard deviation (Liu
et al., 2025b), no KL regularization, and omitting sequences with zero advantage.

3.2 INFERENCE-TIME TECHNIQUES

First, we implement a symbolic linter that removes extraneous tactics via Lean’s linter.unusedTactic
linter, which detects tactics that do not change the proof state and provides messages like ’norm num’
tactic does nothing. We then compare the following techniques on the linted proofs:

• Test-Time RL: We use the setup described in Section 3.1.2 and perform reinforcement learning on our
two evaluation sets (jointly). Our test-time RL keeps the input proof fixed, meaning improvements occur
solely in the model’s parameters.

• Repair with Execution Feedback: In this scheme, if ProofOptimizer fails to simplify a proof, we
collect the execution feedback and ask Goedel-Prover-V2-32B to repair the proof with the error
messages. Then, we apply the symbolic linter on the new proofs to further shorten successful repairs.

• Iterative Proof Shortening: For a given proof, we sample k candidate shortenings and take the shortest
correct one. Then, we sample k shortenings of the new proof, take the shortest correct one – and so on.

4 EXPERIMENTS

For all evaluations, we use proofs generated by Goedel-Prover-V2 (Lin et al., 2025a) on two popular datasets
in formal math, miniF2F (Zheng et al., 2021) and PutnamBench (Tsoukalas et al., 2024). For miniF2F, we use
n = 194 proofs (average length 334), and for PutnamBench, we use n = 75 proofs (average length 1468).
More details and examples of proofs in our evaluation set can be found in Appendix G.

4.1 EXPERT ITERATION VS. RL VS. TEST-TIME RL

First, we compare our two training schemes: expert iteration and RL. Starting from our Lean base model, we
train ProofOptimizer-ExpIt by performing three rounds of expert iteration (Sec. 3.1.1) and ProofOptimizer-RL

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

by performing online RL (Sec. 3.1.2) after two rounds of expert iteration. Table 1 shows min@k and red@k
scores with respect to linted proofs. We observe steady improvements during each round of expert iteration
for both @1 and @32 metrics. Our final model outperforms Gemini-2.5-Pro, a strong reasoning model,
even when given proof state annotations similar to Chain-of-States in ImProver (Ahuja et al., 2024).

Next, we see that ProofOptimizer-RL significantly improves single sample (@1) metrics at the expense
of diversity collapse, an issue commonly identified during RL training (Gehring et al., 2024; Walder &
Karkhanis, 2025; Yue et al., 2025). In Fig. 2 (a, b), we show the evolution of red@1 during training, observing
that miniF2F reduction steadily rises while PutnamBench reduction experiences oscillations. This tension is
likely because the distribution of training data is more similar in length to miniF2F than PutnamBench, which
has a mean proof length of 4x that of the training set.

Finally, we find that test-time RL leads to even further improvements on min@1 and red@1. This is expected,
as the model is able to directly tune its weights to learn from successful simplifications at test-time. However,
like ProofOptimizer-RL, we observe an even smaller gap between @1 and @32 metrics. In Fig. 2 (c, d), we
observe a much more stable evaluation red@1 curve because the distribution gap between the training and
evaluation sets is eliminated.

Table 1: Min@k and Red@k throughout expert iteration and online RL. Our RL model has strong @1
results, while our ExpIt model has strong @32 results. RL metrics are Gaussian-smoothed.

Dataset Category Model Min@1 ↓ Min@32 ↓ Red@1 ↑ Red@32 ↑

miniF2F

Linted 302 0.0%
Gemini-2.5-Pro 280 207 24.3% 57.2%

Gemini-2.5-Pro + States 283 207 26.4% 58.7%
Base (7B) 283 202 17.6% 56.2%

ExpIt
Base + It 1 266 178 33.4% 67.0%
Base + It 2 251 166 45.1% 70.6%

ProofOptimizer-ExpIt 241 153 49.0% 72.3%

RL ProofOptimizer-RL 190 152 63.6% 70.9%
It 2 + Test-Time RL 160 154 72.5% 73.4%

Putnam
Bench

Linted 1359 0.0%
Gemini-2.5-Pro 1348 1303 5.5% 18.0%

Gemini-2.5-Pro + States 1371 1319 6.1% 19.2%
Base (7B) 1341 1222 3.9% 20.5%

ExpIt
Base + It 1 1341 1215 5.2% 22.5%
Base + It 2 1335 1186 6.9% 24.7%

ProofOptimizer-ExpIt 1328 1161 8.2% 26.3%

RL ProofOptimizer-RL 1303 1258 14.9% 21.1%
It 2 + Test-Time RL 1260 1255 23.8% 24.2%

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

0 50 100 150
Step (k)

50

55

60

65
R

el
at

iv
e 

sh
or

te
ni

ng
 (%

)

(a) miniF2F (train)

0 50 100 150
Step (k)

10

12

14

16

(b) Putnam (train)

0 1 2 3 4 5
Step (k)

50

55

60

65

70

(c) miniF2F (test-time)

0 1 2 3 4 5
Step (k)

10

15

20

(d) Putnam (test-time)

Figure 2: Evolution of proof reduction (red@1) during RL training (a, b) and test-time RL (c, d). We
use Gaussian smoothing (σ = 5 evaluation intervals for RL training and σ = 3 for test-time RL). See Fig. 8
for the corresponding red@32 metrics.

4.2 ANALYSIS OF REPAIR WITH EXECUTION FEEDBACK

As described in Sec. 3.2, we (1) sample 64 simplifications for each proof with ProofOptimizer-ExpIt, (2) repair
incorrect proofs with Goedel-Prover-V2-32B, and (3) shorten successful repairs with our linter. Overall, we
find while repair with execution feedback leads to improvements, it underperforms resampling because
repaired proofs are often even longer than the original proofs. Fig. 3 (left) shows the average proof
length and reduction % after sampling, repair, and linting. We our linter to be effective on repaired proofs,
decreasing the average repaired proof length from 644 → 576 (miniF2F) and 877 → 788 (PutnamBench). In
Fig. 3 (right), we plot the proof length of the original proofs (before Step 1) against simplified proofs (Step 1)
and repaired proofs (Step 2). A majority of the repaired proofs (green dots) are above the y = x line, meaning
they are longer than the original proofs, let alone the simplified proofs (blue dots).

1090 1100 1110 1120
Proof Length

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

33.0 34.5 36.0
Reduction %

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

102 103

Original Length (log scale)

102

103

W
ro

ng
/R

ep
ai

re
d 

Le
ng

th
 (l

og
 sc

al
e)

Simplified (Wrong)
Simplified (Correct)
Repaired (Correct)
y=x

Figure 3: Analysis of execution-based repair with Goedel-Prover-V2 on PutnamBench.

In Table 2, we analyze the success rate of each step of our pipeline. However, the key issue remains to be the
high length of the repaired proofs. Even after linting, only 4.8% (miniF2F) / 1.8% (Putnam) of post-linted
proofs are shorter than the best proof found by ProofOptimizer during simplification. We refer the reader to
Appendix F for further analysis and examples.

4.3 ITERATIVE PROOF SHORTENING

In Fig. 4 (left), we show the results of iterative proof shortening on miniF2F and PutnamBench proofs using
ProofOptimizer-ExpIt. First, we do 64 samples per iteration for 6 iterations, observing steady improvement

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 2: Step-by-step success rates, revealing the main bottleneck of long repaired proofs.

Dataset Simplification Repair Shorter than best (before/after linter)

miniF2F 7852
12416 (63.2%) 2840

4564 (62.2%) 76
2840 → 137

2840 (2.7% → 4.8%)

PutnamBench 1288
4800 (26.8%) 613

3512 (17.4%) 5
613 → 11

613 (0.8% → 1.8%)

at each iteration. To demonstrate the potential of further scaling, we do 1024 samples at iterations 7 and 8
and see significant improvement (see Appendix D.2 for analysis on sample size). Overall, ProofOptimizer
combined with iterative proof shortening is very effective on miniF2F and PutnamBench, as average
proof length is reduced from 334 → 75 and 1468 → 811, for an average per-proof reduction of
87.9%/57.2%. In Fig. 4 (right), we plot the overall shortening against the length of the original proof,
observing that longer proofs remain challenging to simplify.

0 1 2 3 4 5 6 7* 8*
60

120

180

240

300

Pr
oo

f L
en

gt
h 

(
)

Min@64 (miniF2F)

0 1 2 3 4 5 6 7* 8*

900

1050

1200

1350

Min@64 (Putnam)

0 1 2 3 4 5 6 7* 8*
Iteration

20

40

60

80

%
 R

ed
uc

tio
n 

(
)

Red@64 (miniF2F)

0 1 2 3 4 5 6 7* 8*
Iteration

15

30

45

60
Red@64 (Putnam)

10 50 100 500 1000 5000
Original Proof Length (log scale)

20

40

60

80

100

%
 R

ed
uc

tio
n 

(
)

Reduction vs. Proof Length

Dataset
Putnam
MiniF2F

Figure 4: Iterative Shortening: per-iteration improvement (left) and effect of proof length (right)

Finally, in Table 3, we demonstrate the effectiveness of ProofOptimizer on an out-of-distribution dataset,
Seed-Prover’s four IMO 2025 proofs. With an order of magnitude higher sampling budget, we achieve a
significant reduction in the proof length for all four problems, showcasing the potential of our model and
technique. Details about our full setup are in Appendix D.3.

Table 3: Iterative shortening achieves significant reduction for Seed-Prover’s IMO 2025 proofs.

P1 P3 P4 P5
Original Proof Length 36478 16377 29147 8658

Simplified Proof Length 20506 7907 14531 4002
Length Reduction 43.8% 51.7% 50.1% 53.8%

7

https://github.com/ByteDance-Seed/Seed-Prover/tree/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/IMO2025


329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

5 ADDITIONAL BENEFITS OF PROOF SIMPLIFICATION

5.1 TRAINING ON SIMPLIFIED PROOFS IMPROVES GENERATION

Next, we investigate whether fine-tuning on simplified proofs can be advantageous compared to fine-tuning
on longer, raw proofs. To do so, we prepare two datasets of identical problems, the first containing a
set of proofs generated by Goedel-Prover-V2 and the second containing the same proofs simplified
by ProofOptimizer-ExpIt. The average proof length of the original and simplified proofs is 147 and 85,
respectively. We do continued supervised fine-tuning (SFT) starting from our base model (Sec. B.1) with a
standard negative log-likelihood (NLL) loss.

In Fig. 5 (left), we compare the training loss between the two datasets. As expected, the initial loss when
using original proofs is higher, as models have not seen such long proofs during initial fine-tuning. However,
the losses quickly converge. We observe that training on original proofs causes occasional loss spikes, which
we suspect are due to several data batches that are hard to learn (e.g. extremely long proofs). Decreasing the
learning rate mitigated these training loss spikes but did not improve validation accuracy. In Fig. 5 (right), we
compare the miniF2F scores of the two models during SFT, showing that training on simplified proofs results
in slightly higher evaluation accuracy despite the two settings having identical training losses.

0 400 800 1200 1600 2000
Step

0.05

0.10

0.15
Training Loss

Original
Simplified

0 400 800 1200 1600 2000
Step

59

60

61

62

63

miniF2F Pass@32 (T=0.8)
Original
Simplified

Figure 5: Training loss (left) and miniF2F score (right) after SFT on simplified vs. original proofs.

5.2 SIMPLIFIED PROOFS HAVE A SHORTER EXECUTION TIME

We also observe that proofs simplified by ProofOptimizer often exhibit a faster execution time. We measure
proof execution time with lake env lean --profile, excluded library import time (imports are
always the same but actual time may vary due to caching effects). We compare the execution times of each
proof before and after iterative shortening in Fig. 6 (scatter). For both datasets, we visibly observe that a
majority of points lie below the y = x line, signifying speedup. Fig. 6 (histograms) also show the distribution
of speedup ratios timeorig

timenew
. Of the 75 PutnamBench proofs, 50/75 have a speedup of over 10%, and 22/75 of

those have a speedup of over 50%. We also observe that proofs with a higher original execution time tend to
show more speedup. The same trends hold for miniF2F, where 114/194 and 56/194 proofs have a speedup
over 10% and 50%, respectively. Finally, we observe 25% and 81% speedups on Seed-Prover’s proofs for P3
and P4 of the IMO 2025 (Sec. D.3).

Upon qualitatively analyzing the proofs, we observe that the original proofs often have extraneous tactics that
are eliminated by the simplified proofs. However, we also find several cases where the simplified proofs are
much slower than the original proof, which usually occurs when a faster proof algorithm is replaced by a
shorter but slower method (e.g. brute force with interval cases). We provide two examples of each in
Appendix I. Finally, we remark that all of our training and inference pipelines can also be applied to proof
speedup as well by adjusting the reward function from proof length to proof execution time.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0 3 6 9
Original Time (s)

0

3

6

9
Si

m
pl

ifi
ed

 T
im

e 
(s

)
Execution Times (Putnam)

0 0.5 1 1.5 2 2.5 3+
Speedup Ratio

0

5

10

15

20

Fr
eq

ue
nc

y

Speedup Distribution (Putnam)

0 5 10 15
Original Time (s)

0

5

10

15

Si
m

pl
ifi

ed
 T

im
e 

(s
)

Execution Times (miniF2F)

0 0.5 1 1.5 2 2.5 3 3.5 4+
Speedup Ratio

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Speedup Distribution (miniF2F)

Figure 6: Simplified proofs are frequently faster than original proofs on miniF2F and PutnamBench.

6 RELATED WORKS

LLMs for Theorem Proving in Lean Formal theorem proving is a rapidly growing frontier in AI for
mathematics and software verification (Yang et al., 2024b; Li et al., 2024). Progress is typically measured
with benchmarks of mathematical theorems in Lean such as miniF2F (Zheng et al., 2021), PutnamBench
(Tsoukalas et al., 2024), and ProofNet (Azerbayev et al., 2023). Recently, there have been many LLMs
developed for Lean such as Seed-Prover (Chen et al., 2025), Goedel-Prover (Lin et al., 2025a), DeepSeek-
Prover (Ren et al., 2025), and Kimina-Prover (Wang et al., 2025). There have also been post-training
techniques built on top of these models, such as with expert iteration (Lin et al., 2024), proof sketching (Cao
et al., 2025), tree search (Lample et al., 2022; Zimmer et al., 2025), self-play (Dong & Ma, 2025), proof
repair (Ospanov et al., 2025), and RL (Gloeckle et al., 2024).

AI for Program Simplification A related line of work makes programs shorter or more efficient (Schkufza
et al., 2013; Mankowitz et al., 2023; Shypula et al., 2023; Gautam et al., 2024). In parallel, library learning
aims to discover reusable abstractions, often eliminated repeated code and shortening programs (Ellis et al.,
2023; Grand et al., 2023; Kaliszyk & Urban, 2015; Wang et al., 2023; Zhou et al., 2024; Berlot-Attwell
et al., 2024). Finally, symbolic reasoning techniques like program slicing (Weiser, 2009), super-optimization
(Sasnauskas et al., 2017), or partial evaluation (Jones, 1996) can also shorten and optimize low-level code.

Automated Proof Shortening Frieder et al. (2024) study factors that make Lean proofs easier to understand,
motivating shorter proofs for maintainability. Classically, there have also been many symbolic methods
targeting shortening proofs in SAT and first-order logic languages (Rahul & Necula, 2001; Vyskočil et al.,
2010; Wernhard & Bibel, 2024; Gladshtein et al., 2024; Kinyon, 2018). On the neural side, GPT-f (Polu &
Sutskever, 2020) generated 23 verified proofs shorter than those in the Metamath library. Most related to our
work, ImProver (Ahuja et al., 2024), is an inference-time method for proof shortening using GPT-4o with
proof states and retrieval. In contrast, we use training-time approaches (expert iteration and RL), analyze
complementary inference-time techniques, and focus on shortening longer proofs generated by SoTA LLMs.

7 CONCLUSION

We present ProofOptimizer, the first language model trained to simplify Lean proofs. Unlike prior work that
wraps existing LLMs around agentic scaffolding, we train a model using expert iteration and RL, coupled
with a symbolic linter and iterative proof shortening at inference time.

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. (Cited on pg. 25)

Riyaz Ahuja, Jeremy Avigad, Prasad Tetali, and Sean Welleck. Improver: Agent-based automated proof
optimization. arXiv preprint arXiv:2410.04753, 2024. (Cited on pg. 2, 3, 5, 9)

Leni Aniva, Chuyue Sun, Brando Miranda, Clark Barrett, and Sanmi Koyejo. Pantograph: A machine-to-
machine interaction interface for advanced theorem proving, high level reasoning, and data extraction in
lean 4. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 104–123. Springer, 2025. (Cited on pg. 16)

Hugh Leather Aram H. Markosyan, Gabriel Synnaeve. Leanuniverse: A library for consistent and scalable
lean4 dataset management. https://github.com/facebookresearch/LeanUniverse, 2024.
(Cited on pg. 16)

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and Jeremy
Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics. arXiv preprint
arXiv:2302.12433, 2023. (Cited on pg. 9, 16)

Ian Berlot-Attwell, Frank Rudzicz, and Xujie Si. Library learning doesn’t: The curious case of the single-use”
library”. arXiv preprint arXiv:2410.20274, 2024. (Cited on pg. 9)

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Reviving dsp for
advanced theorem proving in the era of reasoning models. arXiv preprint arXiv:2506.11487, 2025. (Cited
on pg. 9)

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin,
Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem proving,
2025. URL https://arxiv. org/abs/2507.23726, 2025. (Cited on pg. 1, 9, 23)

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating large language models trained on code, 2021. URL https://arxiv.org/abs/2107.
03374. (Cited on pg. 40)

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon,
Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with ad-
vanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025. (Cited on pg. 25)

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp (eds.), Automated
Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August 1-
7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer Science, pp. 378–388. Springer, 2015. doi:

10

https://github.com/facebookresearch/LeanUniverse
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374


470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

10.1007/978-3-319-21401-6\ 26. URL https://doi.org/10.1007/978-3-319-21401-6_
26. (Cited on pg. 1)

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and proving.
arXiv preprint arXiv:2502.00212, 2025. (Cited on pg. 9, 16)

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke Hewitt,
Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable, interpretable
knowledge with wake–sleep bayesian program learning. Philosophical Transactions of the Royal Society
A, 381(2251):20220050, 2023. (Cited on pg. 9)

Simon Frieder, Jonas Bayer, Katherine M Collins, Julius Berner, Jacob Loader, András Juhász, Fabian Ruehle,
Sean Welleck, Gabriel Poesia, Ryan-Rhys Griffiths, et al. Data for mathematical copilots: Better ways of
presenting proofs for machine learning. arXiv preprint arXiv:2412.15184, 2024. (Cited on pg. 9)

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam. Refac-
torbench: Evaluating stateful reasoning in language agents through code. In NeurIPS 2024 Workshop on
Open-World Agents, 2024. (Cited on pg. 9)

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and Gabriel
Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning. arXiv preprint
arXiv:2410.02089, 2024. (Cited on pg. 5)

Vladimir Gladshtein, George Pı̂rlea, and Ilya Sergey. Small scale reflection for the working lean user. arXiv
preprint arXiv:2403.12733, 2024. (Cited on pg. 9)

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. Abel: Sample efficient online
reinforcement learning for neural theorem proving. In The 4th Workshop on Mathematical Reasoning and
AI at NeurIPS’24, 2024. (Cited on pg. 9)

Gabriel Grand, Lionel Wong, Maddy Bowers, Theo X Olausson, Muxin Liu, Joshua B Tenenbaum, and Jacob
Andreas. Lilo: Learning interpretable libraries by compressing and documenting code. arXiv preprint
arXiv:2310.19791, 2023. (Cited on pg. 9)

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs. arXiv preprint arXiv:2210.12283, 2022. (Cited on pg. 16)

Neil D Jones. An introduction to partial evaluation. ACM Computing Surveys (CSUR), 28(3):480–503, 1996.
(Cited on pg. 9)

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas. Journal of
symbolic computation, 69:109–128, 2015. (Cited on pg. 9)

Michael Kinyon. Proof simplification and automated theorem proving. CoRR, abs/1808.04251, 2018. URL
http://arxiv.org/abs/1808.04251. (Cited on pg. 2, 9)

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat, Thibaut
Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem proving. Advances
in neural information processing systems, 35:26337–26349, 2022. (Cited on pg. 9)

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul,
Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample,
and Stanislas Polu. Numinamath. [https://huggingface.co/AI-MO/NuminaMath-1.
5](https://github.com/project-numina/aimo-progress-prize/blob/main/
report/numina_dataset.pdf), 2024. (Cited on pg. 16, 17)

11

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
http://arxiv.org/abs/1808.04251
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si. A
survey on deep learning for theorem proving. arXiv preprint arXiv:2404.09939, 2024. (Cited on pg. 9)

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave thinking and
proving. arXiv preprint arXiv:2407.10040, 2024. (Cited on pg. 9)

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi
Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving.
arXiv preprint arXiv:2502.07640, 2025a. (Cited on pg. 4, 9, 16, 17)

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei
Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis
and self-correction. arXiv preprint arXiv:2508.03613, 2025b. (Cited on pg. 1, 2)

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi, Haiming
Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking llm capability for combinatorial
mathematics. arXiv preprint arXiv:2505.03171, 2025a. (Cited on pg. 16)

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
Understanding r1-zero-like training: A critical perspective, 2025b. URL https://arxiv.org/abs/
2503.20783. (Cited on pg. 4)

Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru, Edouard
Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms discovered using
deep reinforcement learning. Nature, 618(7964):257–263, 2023. (Cited on pg. 9)

The mathlib Community. The lean mathematical library. CoRR, abs/1910.09336, 2019. URL http:
//arxiv.org/abs/1910.09336. (Cited on pg. 1)

Azim Ospanov, Farzan Farnia, and Roozbeh Yousefzadeh. Apollo: Automated llm and lean collaboration for
advanced formal reasoning. arXiv preprint arXiv:2505.05758, 2025. (Cited on pg. 9)

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393, 2020. (Cited on pg. 9)

Shree Prakash Rahul and George C Necula. Proof optimization using lemma extraction. Computer Science
Division, University of California, 2001. (Cited on pg. 9)

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via
reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801, 2025. (Cited on pg.
9)

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John
Regehr. Souper: A synthesizing superoptimizer. arXiv preprint arXiv:1711.04422, 2017. (Cited on pg. 9)

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ACM SIGARCH Computer
Architecture News, 41(1):305–316, 2013. (Cited on pg. 9)

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models, 2024. URL https://arxiv.org/abs/2402.03300. (Cited on pg. 4)

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Graham Neubig,
Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning performance-improving
code edits. arXiv preprint arXiv:2302.07867, 2023. (Cited on pg. 9)

12

https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
http://arxiv.org/abs/1910.09336
http://arxiv.org/abs/1910.09336
https://arxiv.org/abs/2402.03300


564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github.
io/blog/qwen2.5/. (Cited on pg. 25)

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural theorem-provers on the putnam mathe-
matical competition. Advances in Neural Information Processing Systems, 37:11545–11569, 2024. (Cited
on pg. 4, 9, 16)

Jiřı́ Vyskočil, David Stanovskỳ, and Josef Urban. Automated proof compression by invention of new
definitions. In International Conference on Logic for Programming Artificial Intelligence and Reasoning,
pp. 447–462. Springer, 2010. (Cited on pg. 9)

Christian Walder and Deep Karkhanis. Pass@ k policy optimization: Solving harder reinforcement learning
problems. arXiv preprint arXiv:2505.15201, 2025. (Cited on pg. 5)

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing libraries. arXiv
preprint arXiv:2310.00656, 2023. (Cited on pg. 9)

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung, Marina
Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal reasoning models
with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025. (Cited on pg. 9)

Mark Weiser. Program slicing. IEEE Transactions on software engineering, (4):352–357, 2009. (Cited on pg.
9)

Christoph Wernhard and Wolfgang Bibel. Investigations into proof structures. Journal of Automated
Reasoning, 68(4):24, 2024. (Cited on pg. 9)

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin,
Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang,
Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei,
Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui,
Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024a. (Cited
on pg. 16)

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn Song.
Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075, 2024b. (Cited on
pg. 9)

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-
scale lean problem set formalized from natural language math problems. Advances in Neural Information
Processing Systems, 37:105848–105863, 2024. (Cited on pg. 16)

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang, Zheng
Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathematical reasoning of
large language models. arXiv preprint arXiv:2505.02735, 2025. (Cited on pg. 16)

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model?, 2025. URL
https://arxiv.org/abs/2504.13837. (Cited on pg. 5)

13

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2504.13837


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022. (Cited on pg. 3)

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal
olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021. (Cited on pg. 2, 4, 9, 16)

Jin Peng Zhou, Yuhuai Wu, Qiyang Li, and Roger Grosse. Refactor: Learning to extract theorems from
proofs. arXiv preprint arXiv:2402.17032, 2024. (Cited on pg. 9)

Matthieu Zimmer, Xiaotong Ji, Rasul Tutunov, Anthony Bordg, Jun Wang, and Haitham Bou Ammar. Bour-
baki: Self-generated and goal-conditioned mdps for theorem proving. arXiv preprint arXiv:2507.02726,
2025. (Cited on pg. 9)

14



658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

A DISCLOSURE OF USE OF LLMS (ICLR 2026 REQUIREMENT)

In line with the LLM usage disclosure policy for ICLR 2026 submissions, we report our usage of LLMs as
the following:

• Design and polish matplotlib and seaborn figures in the paper (ChatGPT)
• Write LaTeX code for tables, figures, and listings, including aesthetically enhancing the styles

(ChatGPT)
• Polish and edit text in the paper (ChatGPT)
• Find relevant citations for related work (ChatGPT)
• Assist in producing code for experiments (GitHub Copilot in VSCode, ChatGPT)

15

https://blog.iclr.cc/2025/08/26/policies-on-large-language-model-usage-at-iclr-2026/


705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

B LEAN BASE MODEL AND PROOF SIMPLIFICATION DATA DETAILS

B.1 GENERAL BASE MODEL FOR LEAN

First, we train a general-purpose base model in Lean by fine-tuning Qwen-2.5-7B-Instruct (Yang
et al., 2024a) on around 1B Lean tokens. The model is fine-tuned on a combination of diverse math and
Lean-related tasks, as follows:

• Natural Language Problem Solving: The model is trained on natural language mathematics prob-
lems with associated solutions so that it has general math capabilities. We use NuminaMath-1.5
(LI et al., 2024), a high-quality set of such pairs.

• Lean Code Completion: We use a subset of Lean code from GitHub, using GPT-4o with heuristics
to classify whether code is Lean 3 or Lean 4. We include only the Lean 4 subset of the code.

• Auto-formalization: In order to teach the model to associate natural language with Lean, we train
the model to perform auto-formalization of both problems and solutions from natural language
to Lean 4 in our data mix. For problems, we use natural language problems with Lean problem
statement formalizations from high-quality datasets: CombiBench (Liu et al., 2025a), Compfiles,
FormalMATH (Yu et al., 2025), Goedel-Pset (Lin et al., 2025a), Lean Workbook (Ying et al., 2024),
miniF2F (Zheng et al., 2021), ProofNet (Azerbayev et al., 2023), and PutnamBench (Tsoukalas
et al., 2024). We include solution autoformalization data from the Goedel-Pset-v1-Solved
dataset by mapping Lean solutions with natural language solutions.

• Formal Theorem Proving: We use a set of conjectures and proofs from STP (Dong & Ma, 2025),
which is a diverse collection of theorems and proofs in Lean 4 generated via expert iteration while
training their model.

• Tactic and Proof State Prediction: Finally, to teach the model about proof states, we use pre-
extracted data from LeanUniverse (Aram H. Markosyan, 2024) and extract additional data using
the Pantograph (Aniva et al., 2025) tool. For each proof in STP, we extract each tactic, as well as the
proof states before and after the tactic. The model is given the proof state before the tactic and asked
to predict both the tactic and the proof state following the tactic.

B.2 GENERATING A DATASET OF THEOREMS AND PROOFS FOR SHORTENING

After creating a Lean base model, we next describe how we generate a training dataset of proofs to be
shortened. To do so, we first present a recipe for generating interesting theorems.

Formalizing Proofs with Sketches to Derive Subtheorems While there are many datasets such as
Goedel-Pset and Lean Workbook, we find that they have a high density of simple computational
problems posed as proofs rather than high-quality proving problems. In Goedel-Pset, we estimate that
only 5% of the problems are proof problems1, leading to a lack of high-quality theorem proving data. To
combat this, we develop a technique to generate diverse and interesting theorems based on the idea of proof
sketching (Jiang et al., 2022).

The key idea is that we can leverage existing natural language solutions to identify core steps in a proof. We
first train our Lean base model to take a natural language solution and auto-formalizing into a high-level
proof, which we call a proof sketch, an example shown in Listing 1. In the proof sketch, core steps are
represented via have statements, and lower-level details are omitted and left as sorry statements. We then
filter sketches are then filtered by the Lean compiler to remove non-compiling sketches.

1We estimate whether a problem is a computational problem via a heuristic filter of whether the problem has any of
the keywords: prove, show, establish, demonstrate, verify

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Once we have a set of compiling sketches, we extract each sorry goal into a new theorem via the
extract goal tactic, which turns it into a theorem that is equivalent to what needs to be proved at
that particular sorry. For example, extracting the second sorry in Listing 1 results in the theorem shown
in Listing 2. By extracting these sorry statements, we are able to generate 518K theorems.

theorem lean_workbook_plus_22532 (a b : N → R)
(h0 : 0 < a ∧ 0 < b)
(h1 : ∀ n, a (n + 1) = a n + 2)
(h2 : ∀ n, b (n + 1) = b n * 2)
(h3 : a 1 = 1)
(h4 : b 1 = 1)
(h5 : Σ k in Finset.range 3, b k = 7) :
Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2ˆn + 3 := by
-- Lemma 1: Prove that the sequence {a_n} is an arithmetic sequence.
have lemma1 : ∀ n, a (n + 1) = a n + 2 := by
sorry

-- Lemma 2: Express a_n in terms of n.
have lemma2 : ∀ n, a n = 2 * n - 1 := by
sorry

-- Lemma 3: Express b_n in terms of n.
have lemma3 : ∀ n, b n = 2ˆ(n - 1) := by
sorry

-- Lemma 4: Calculate the sum of the first n terms of the sequence {a_n b_n}.
have lemma4 : ∀ n, Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2ˆn + 3 := by
sorry

-- Apply lemma4 to conclude the theorem.
exact lemma4 n

Listing 1: Example of a proof sketch

theorem lean_workbook_plus_22532.extracted_1_1 (a b : N → R) (h0 : 0 < a ∧ 0 < b) (h1 : ∀ (n :
↪→ N), a (n + 1) = a n + 2)

(h2 : ∀ (n : N), b (n + 1) = b n * 2) (h3 : a 1 = 1) (h4 : b 1 = 1) (h5 : Σ k ∈ Finset.range
↪→ 3, b k = 7)

(lemma1 : ∀ (n : N), a (n + 1) = a n + 2) (n : N) : a n = 2 * ↑n - 1 := sorry

Listing 2: Example of an extracted theorem

Fine-Tuning our Model for Proof Sketching In order to fine-tune our model for proof sketching, we first
curate a dataset of natural language problems (with corresponding Lean problem formalizations) and solutions
by combining Goedel-Pset-v1 (Lin et al., 2025a) with NuminaMath-1.5 (LI et al., 2024). Then, we use
Qwen-2.5-32B-Instruct to produce proof-sketches based on these natural language solutions similar
to that in Listing 1. We filter out compiling sketches and train our Lean base model on them. In Table 4, we
show the results of fine-tuning. Since it can be tricky to measure the objective correctness of a sketch, we use
the proxy of compile rate, finding our model performs better than Qwen2.5-32B and is smaller and can do
inference faster.

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Table 4: Proof sketching ability of models

Model compile@1 compile@16
Qwen2.5 7B (zero-shot) 3.6 7.0
Qwen2.5 7B (one-shot) 4.9 19.0

Qwen2.5 32B (zero-shot) 21.1 62.0
Qwen2.5 32B (one-shot) 35.1 75.0

Ours (7B) 54.8 89.1

Generating Proofs for Simplification Because proof sketching can generate steps or sub-theorems that are
too incremental, we first filter out trivial theorems that can be easily solved by automation tactics in Lean. For
example, the first sorry in Listing 1 is just a restatement of hypothesis h1 and can be solved via rfl. While
this theorem is correct, it is not challenging for the model. Therefore, we design an AUTO tactic (Listing
3) that tries a series of Lean automation tactics such as linarith and aesop to filter out these simple
theorems, leaving 307K of the original 518K theorems (filtering out 41%).

For the remaining theorems, we attempt to generate proofs of these theorems with
Goedel-Prover-V2-32B, a strong open-source proving model. With 4 attempts per theorem,
the model is able to prove 145K theorems, which we use as targets for proof simplification. Statistics and
examples of these proofs can be found in the next section, Appendix B.3.

macro "AUTO" : tactic =>
‘(tactic|
repeat’

(try rfl
try tauto
try assumption
try norm_num
try ring
try ring_nf at *
try ring_nf! at *
try native_decide
try omega
try simp [*] at *
try field_simp at *
try positivity
try linarith
try nlinarith
try exact?
try aesop))

Listing 3: AUTO tactic for filtering trivial theorems

B.3 STATISTICS OF PROOF SIMPLIFICATION TRAINING DATASET

The minimum, Q1, median, Q3, and maximum proof lengths of our training dataset are 1, 103, 204, 411, and
10958. The mean is 334. In Fig. 7, we show the distribution of lengths, observing its right-skewed nature.
Examples of proofs are shown in Listings 4 and 5. Compared to the proofs in our evaluation sets, we observe
that training proofs often have more unused hypotheses, as they are derived from extracting the proof state,
which may contain hypotheses that are not used for that particular sub-goal.

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750 2000
Proof Length

0

5K

10K

15K

20K

25K

Fr
eq

ue
nc

y

Histogram of Proof Lengths

Figure 7: Histogram of proof lengths.

theorem extracted_1 (a b : R) (ha : 0 ≤ a) (ha1 : a ≤ 1) (hb : b = a ˆ 3 + 1 / (1 + a))
(lemma1 : 1 - a + a ˆ 2 - a ˆ 3 ≤ 1 / (1 + a)) (lemma2 : b ≥ 1 - a + a ˆ 2) (lemma3 : 1 - a

↪→ + a ˆ 2 ≥ 3 / 4)
(lemma4 : b ≤ 3 / 2) : 3 / 4 < b := by
have h_main : 3 / 4 < b := by
by_contra h
-- Assume for contradiction that b ≤ 3/4
have h1 : b ≤ 3 / 4 := by linarith
-- From lemma2, b ≥ 1 - a + ²a, and from lemma3, 1 - a + ²a ≥ 3/4
have h2 : 1 - a + a ˆ 2 ≤ 3 / 4 := by

linarith
-- But from lemma3, 1 - a + ²a ≥ 3/4, so 1 - a + ²a = 3/4
have h3 : 1 - a + a ˆ 2 = 3 / 4 := by

linarith
-- Solve 1 - a + ²a = 3/4 to get a = 1/2
have h4 : a = 1 / 2 := by

have h41 : a ˆ 2 - a + 1 / 4 = 0 := by
nlinarith

have h42 : (a - 1 / 2) ˆ 2 = 0 := by
nlinarith

have h43 : a - 1 / 2 = 0 := by
nlinarith

linarith
-- Substitute a = 1/2 into b = ³a + 1/(1 + a)
have h5 : b = 19 / 24 := by

rw [hb]
rw [h4]
norm_num

-- But 19/24 > 3/4, so b > 3/4, contradiction
have h6 : b > 3 / 4 := by

rw [h5]
norm_num

linarith
exact h_main

Listing 4: Example of Proof Simplification Training Task (Length 158)

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

theorem extracted_1 (n : N) (hn : 3 ≤ n) (lemma1 : Nat.card ↑{k | k ≤ n ∧ k ̸= 0} = n) :
Nat.card ↑{k | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by
have h_main : Nat.card ↑{k : N | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by
have h1 : {k : N | k ≤ n - 1 ∧ k ̸= 0} = Set.Icc 1 (n - 1) := by

apply Set.ext
intro k
simp only [Set.mem_setOf_eq, Set.mem_Icc]
constructor
· intro h

have h2 : k ≤ n - 1 := h.1
have h3 : k ̸= 0 := h.2
have h4 : 1 ≤ k := by
by_contra h4

-- If k < 1, then k = 0 since k is a natural number
have h5 : k = 0 := by

omega
contradiction

exact ⟨h4, h2⟩
· intro h

have h2 : 1 ≤ k := h.1
have h3 : k ≤ n - 1 := h.2
have h4 : k ≤ n - 1 := h3

have h5 : k ̸= 0 := by
by_contra h5

-- If k = 0, then 1 ≤ k would be false
have h6 : k = 0 := by simpa using h5

omega
exact ⟨h4, h5⟩

rw [h1]
-- Calculate the cardinality of the set {1, . . ., n - 1}
have h2 : Nat.card (Set.Icc 1 (n - 1) : Set N) = n - 1 := by

-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
have h3 : n - 1 ≥ 1 := by

have h4 : n ≥ 3 := hn
omega

-- Use the formula for the cardinality of the interval [a, b]
rw [Nat.card_eq_fintype_card]
-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
rw [Fintype.card_ofFinset]
-- Convert the set to a finset and calculate its cardinality
<;> simp [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> cases n with
| zero => contradiction
| succ n =>

cases n with
| zero => contradiction
| succ n =>
cases n with
| zero => contradiction
| succ n =>

simp_all [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> ring_nf at *
<;> omega

rw [h2]
exact h_main

Listing 5: Example of Proof Simplification Training Task (Length 295)

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

C TRAINING METRICS THROUGHOUT RL

In Section 4.1, we observed that expert iteration leads to higher diversity as witnessed by better @32 metrics,
while reinforcement learning with standard reinforcement learning algorithms maximizing expected rewards
leads to higher @1 metrics. In Figure 8, we show the evolution of proof shortening red@1 alongside red@32.
Initial @32 metrics are slowly distilled into @1, but the improvement on @32 metrics is limited.

0 50 100 150
Step (k)

50

55

60

65

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(a) miniF2F red@1

0 50 100 150
Step (k)

10

12

14

16

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(b) PutnamBench red@1

0 25 50 75 100
Step (k)

66

68

70

72

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(c) miniF2F red@32

0 25 50 75 100
Step (k)

18

20

22

R
el

at
iv

e 
sh

or
te

ni
ng

 (%
)

(d) PutnamBench red@32

Figure 8: Reduction metrics @1 and @32 over the course of RL. GRPO maximizes red@1 at the cost of
diversity, as red@32 only marginally increases in comparison.

21



987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

D FULL RESULTS AND ADDITIONAL ANALYSIS OF ITERATIVE PROOF SHORTENING

D.1 TABLE OF ITERATIVE PROOF SHORTENING RESULTS

Table 5 is a tabular form of Fig. 4, showing the proof length after each iteration of proof shortening.

Table 5: Min@64 (rounded to nearest integer) and reduction (%) of miniF2F and PutnamBench proofs across
inference-time iterations. Iterations 1− 6 are done with 64 samples, and 7− 8 with 1024 samples.

Dataset Model Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F Min@64 334 302 144 126 121 117 106 104 88 75
Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Putnam Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811
Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

D.2 EFFECT OF K ON MIN@K AND RED@K THROUGHOUT SIMPLIFICATION

In this section, we analyze the effect of increasing k on min@k and red@k. First, we analyze this trend when
attempting to simplify the initial, linted proof, shown in Table 6 and Fig. 9. We observe a relatively log-linear
gain in both metrics.

For comparison, we analyze the same trend but for simplifying proofs that have already gone many iterations
of simplification. In Fig. 10, we analyze proofs that have gone 7 iterations of proof simplification. We see
a different pattern, where min@k falls slower for lower k and then log-linearly afterwards. Intuitively, as
proofs become more simplified, they become harder to simplify in a low-shot setting, and exploring more
diverse simplifications becomes crucial.

Table 6: Min@k and Red@k for increasing values of k

Dataset Metric Original Linter @1 @2 @4 @8 @16

miniF2F Min@k 334 302 142 141 139 137 134
Red@k (%) 0.0% 9.2% 77.1% 77.3% 77.7% 78.1% 78.6%

PutnamBench Min@k 1468 1359 1120 1117 1112 1105 1094
Red@k (%) 0.0% 7.4% 35.2% 35.5% 35.9% 36.5% 37.3%

Dataset Metric @32 @64 @128 @256 @512 @1024

miniF2F Min@k 130 126 122 118 114 110
Red@k (%) 79.2% 79.9% 80.6% 81.2% 81.8% 82.4%

PutnamBench Min@k 1080 1063 1043 1023 1004 987
Red@k (%) 38.4% 39.7% 41.3% 42.9% 44.3% 45.7%

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

1 2 4 8 16 64 256 1024
k

112

120

128

136

M
in

@
k

Min@k (miniF2F)

1 2 4 8 16 64 256 1024
k

78.0

79.5

81.0

82.5

Re
du

ct
io

n 
(%

)

Red@k (miniF2F)

1 2 4 8 16 64 256 1024
k

990

1020

1050

1080

1110

M
in

@
k

Min@k (PutnamBench)

1 2 4 8 16 64 256 1024
k

35.0

37.5

40.0

42.5

45.0

Re
du

ct
io

n 
(%

)

Red@k (PutnamBench)

Figure 9: Effect of scaling k (sample count) on Min@k and Red@k (initial iteration)

1 2 4 8 16 64 256 1024
k

75

78

81

84

87

M
in

@
k

Min@k (miniF2F)

1 2 4 8 16 64 256 1024
k

86.0

86.5

87.0

87.5

Re
du

ct
io

n 
(%

)

Red@k (miniF2F)

1 2 4 8 16 64 256 1024
k

820

840

860

880

M
in

@
k

Min@k (PutnamBench)

1 2 4 8 16 64 256 1024
k

52.5

54.0

55.5

57.0

Re
du

ct
io

n 
(%

)

Red@k (PutnamBench)

Figure 10: Effect of scaling k (sample count) on Min@k and Red@k (later iteration)

D.3 DETAILS ON SEED-PROVER IMO PROOF SHORTENING

Earlier in 2025, Seed-Prover released Lean proofs of four problems that the model successfully solved from
the 2025 International Mathematical Olympiad (IMO) (Chen et al., 2025). They solved problems 3, 4, and 5
were solved during the contest window, and problem 1 later after the competition. However, the proofs of
these problems are extremely verbose, especially compared to their informal counterparts. Using iterative
proof shortening, our ProofOptimizer is able to successfully reduce the proof length of their proofs for P3, P4,
and P5 by over half, as well as the longer P1 by 43.8%. In addition, we find that our shortened proofs for P4
and P5 show a 25% and 81% (respectively) speedup over the original proofs (Table 7).

Table 7: Results for ProofOptimizer + Iterative Shortening on IMO 2025 Proof Simplification

Problem Length Runtime
Original Simplified Reduction Original Simplified Speedup

P1 36478 20506 43.79% 399.7 392.3 1.02×
P3 16377 7907 51.72% 39.7 39.1 1.02×
P4 29147 14531 50.15% 453.8 362.5 1.25×
P5 8658 4002 53.78% 61.0 33.7 1.81×

We use proofs from the official GitHub repository using Mathlib 4.14.0 (our model was trained on Mathlib
4.19.0). Before shortening, we replace invocations of exact? and apply? with the actual proof that
is found. Each of the proofs is divided into a collection of smaller lemmas and theorems (problems 1, 3,
4, and 5 have 80, 52, 88, and 14 theorems, respectively). Since running iterative shortening on the entire
proof will suffer from long context issues, we treat each sub-lemma/sub-theorem as an individual target for

23

https://github.com/ByteDance-Seed/Seed-Prover/tree/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/IMO2025


1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

shortening. At the end, we combine the shortened theorems to produce the complete shortened proof. When
feeding a sub-theorem into ProofOptimizer, we include as context the theorem definition (but not proof) of
all other theorems that occur in its proof. Finally, to ensure the correctness of our simplified proofs, we use
SafeVerify to confirm that all four simplified proofs match the specification of the original proof without
any environmental manipulation. We remark that our setup does not consider the space of structure-level
simplifications, as we retain all sub-theorem statements from the original proof and only simplify their proofs.
In addition, as our proof length metric only measures the length of proofs, it does not take into account
unnecessarily long or redundant sub-theorem statements.

As this experiment aims to provide a simple demonstration of the potential of our approach rather than
perform a controlled scientific study, we do not fix the number of iterations or samples per iteration across
problems. Approximately, we use 15-20 iterations of shortening with 64-4096 samples per iteration. Taking
inspiration from the analysis in Sec. D.2, we generally use less samples for the first few iterations and increase
the number of samples for later iterations to maximize reduction per sample. We also allocate more samples
to sub-theorems that show more simplification potential in early iterations. In total, we used approximately
3000 H100 GPU hours per problem.

24

https://github.com/GasStationManager/SafeVerify


1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

E COMPARISON WITH QWEN2.5, GPT-4O, AND GEMINI-2.5-PRO

In Table 8, we compare ProofOptimizer models with several off the shelf models, namely Qwen 2.5 (Team,
2024), GPT-4o (Achiam et al., 2023), and Gemini-2.5-Pro (Comanici et al., 2025). For all models, we feed
the output of the symbolic linter as input, and report overall reduction with respect to the original (unlinted)
proof.

Table 8: Proof length of miniF2F and PutnamBench proofs for various models. Specially trained proof
minimization models outperform prompted off-the-shelf models. Reinforcement learning achieves best @1
metrics but at the cost of reducing diversity, as witnessed by improved @32 metrics with expert iteration.

Dataset Model Min@1 Min@32 Red@1 Red@32

miniF2F

Original 334 0.0%
Linter 302 9.2%

Qwen2.5-7B 294 267 25.7% 41.8%
Qwen2.5-32B 288 252 30.0% 47.3%

GPT-4o 283 258 35.2% 47.9%
GPT-4o + States 266 290 32.9% 46.5%
Gemini-2.5-Pro 280 207 31.6% 62.0%

Gemini-2.5-Pro + States 283 208 31.6% 62.0%
ProofOptimizer-ExpIt 241 153 53.9% 74.9%
ProofOptimizer-RL 190 152 67.1% 73.4%

Putnam
Bench

Original 1468 0.0%
Linter 1359 7.4%

Qwen2.5-7B 1358 1339 9.0% 14.8%
Qwen2.5-32B 1353 1304 10.9% 20.7%

GPT-4o 1355 1336 10.9% 18.2%
GPT-4o + States 1379 1358 9.3% 15.9%
Gemini-2.5-Pro 1348 1303 12.7% 24.5%

Gemini-2.5-Pro + States 1371 1319 11.5% 24.1%
ProofOptimizer-ExpIt 1328 1161 15.2% 31.9%
ProofOptimizer-RL 1303 1258 21.6% 27.1%

In Fig. 11, we compare the specific optimized proofs between Gemini and ProofOptimizer. For both
data sets it can be seen that the longer the proof, the more challenging it is to shorten it. This is because
although long proofs have more potential for shortening, the models struggle to maintain correctness of them.
Still, ProofOptimizer is able to bring some improvements for the long proofs (see the top right part of the
PutnamBench plot). In miniF2F, there is a significant number of proofs that can be minimized to just one step,
which typically boils down to invoking one proof automation tactic (like linarith instead of applying a
sequence of more explicit proof steps.

25



1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

1

10

100

1000

1 10 100 1000
Original

O
pt

im
iz

ed

Model Gemini−2.5−Pro ProofOptimizer

miniF2F

1

10

100

1000

1 10 100 1000
Original

O
pt

im
iz

ed

Model Gemini−2.5−Pro ProofOptimizer

PutnamBench

1

10

100

1000

1 10 100 1000
Original

O
pt

im
iz

ed

Model Gemini−2.5−Pro ProofOptimizer

PutnamBench

Figure 11: Comparison of optimized proofs between ProofOptimizer (green) and Gemini 2.5 Pro (yellow)

26



1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

F FULL RESULTS AND EXTENDED ANALYSIS OF REPAIR WITH EXECUTION
FEEDBACK

This section contains the full results of the experiments in Sec. 4.2. All simplification attempts are done on the
set of linted proofs. Table 9, Figure 12, and Figure 13 are extended versions of Fig. 3 for both PutnamBench
and miniF2F. The settings are as follows:

• ProofOptimizer: ProofOptimizer-ExpIt, with 64 simplification attempts per proof.
• + Repair: The previous setting, with 1 attempted repair by Goedel-Prover-V2-32B.
• + Repair + Linter: The previous setting, with our linter applied to all proofs.
• ProofOptimizer (@128): ProofOptimizer-ExpIt, with 128 simplification attempts per proof
• ProofOptimizer (@64x2): ProofOptimizer-ExpIt with 64 simplification attempts per proof, and the

best simplified proof for each problem is then fed back for an additional 64 attempts.

We remark that these baselines are normalizing for sample count rather than running time. Sampling a repair
from Goedel-Prover-V2-32B takes considerably longer than sampling a simplification from our model.
This is both because it is a larger model (32B vs. 7B) and because their model relies on CoT, causing their
average response length to be significantly longer than ours.

Table 9: Results of execution-based repair strategies

Dataset Model Min@64 Min@64 × 2 Red@64 Red@64 × 2

miniF2F

Linter 302 9.2%
ProofOptimizer 144 - 75.5% -

+ Repair - 136 - 77.3%
+ Repair + Linter - 132 - 77.9%

ProofOptimizer (@128) - 130 - 78.9%
ProofOptimizer (It 2) - 125 - 80.2%

Putnam
Bench

Linter 1359 7.4%
ProofOptimizer 1123 - 32.9% -

+ Repair - 1113 - 35.3%
+ Repair + Linter - 1107.2 - 35.7%

ProofOptimizer (@128) - 1099 - 36.5%
ProofOptimizer (@64x2) - 1095 - 37.0%

1090 1100 1110 1120

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Proof Length (miniF2F)

33.0 34.5 36.0

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Reduction % (miniF2F)

1090 1100 1110 1120

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Proof Length (Putnam)

33.0 34.5 36.0

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Reduction % (Putnam)

Figure 12: Results of Execution-Based Repair with Goedel-Prover

27



1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

101 102 103

Original Length (log scale)

101

102

103

W
ro

ng
 a

nd
 R

ep
ai

re
d 

Le
ng

th
s (

lo
g 

sc
al

e)
Goedel Repair (miniF2F)

Simplified (Wrong)
Simplified (Correct)
Repaired (Correct)
y=x

102 103

Original Length (log scale)

102

103

W
ro

ng
 a

nd
 R

ep
ai

re
d 

Le
ng

th
s (

lo
g 

sc
al

e)

Goedel Repair (Putnam)
Simplified (Wrong)
Simplified (Correct)
Repaired (Correct)
y=x

Figure 13: Comparison of Proof Lengths with Execution-Based Repair

Finally, in Listings 6 and 7, we show an example of a proof that was successfully repaired. Note that the
repaired proof has many components in common with the original proof.

theorem mathd_numbertheory_314
(r n : N) (h0 : r = 1342 % 13) (h1 : 0 < n)
(h2 : 1342|n) (h3 : n % 13 < r)
: 6710 ≤ n := by
have h_r : r = 3 := by rw [h0]
have h_main : 6710 ≤ n := by
have h4 : n % 13 < 3 := by

rw [h_r] at h3

exact h3

obtain ⟨k, rfl⟩ := h2

have h5 : 0 < k := by
by_contra h
push_neg at h
have h6 : k = 0 := by omega
simp [h6] at h1

by_contra! h6

have h7 : k ≤ 4 := by
by_contra h8

have h9 : k ≥ 5 := by omega
have h10 : 1342 * k ≥ 1342 * 5 := by

↪→ nlinarith
omega

interval_cases k <;> norm_num [Nat.
↪→ mul_mod, Nat.add_mod, Nat.mod_mod] at
↪→ h4 ⊢

exact h_main

Listing 6: Original Lean Proof (Length 126)

theorem mathd_numbertheory_314 -- Wrong
(. . . statement omitted) := by
rw [h0] at h3

have : n % 13 < 3 := by omega
obtain ⟨k, rfl⟩ := h2

omega

theorem mathd_numbertheory_314 -- Correct
(. . . statement omitted) := by
have h_r : r = 3 := by
rw [h0]
<;> norm_num
<;> rfl

have h_main : 6710 ≤ n := by
have h4 : n % 13 < 3 := by

rw [h_r] at h3

exact h3

obtain ⟨k, rfl⟩ := h2

by_contra! h
have h5 : k ≤ 4 := by

omega
interval_cases k <;> norm_num [Nat.
↪→ mul_mod, Nat.add_mod, Nat.mod_mod] at
↪→ h4 ⊢ <;>
(try omega) <;> (try contradiction)

exact h_main

Listing 7: Wrong Simplification and Correct
Repair (Length 93)

28



1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

G EVALUATION DATASET DETAILS

For our evaluation datasets, we use miniF2F and PutnamBench proofs sampled from
Goedel-LM/Goedel-Prover-V2-32B. For miniF2F, we sample with temperature 1 and top-p
0.95. For PutnamBench, we use proofs provided by the team. In both cases, we take the shortest passing proof
for each problem in Mathlib 4.19.0, resulting in 194 proofs for miniF2F and 75 proofs for PutnamBench.
Table 10 and Figure 14 show summary statistics of our dataset. One sample from each dataset is shown in
Listings 8 and 9.

As a sidenote, we observe a discrepency in Goedel-Prover-V2-32B’s results with Lean versions. Upon testing
their model, we measured 90% (pass@64) and 86 (pass@184) on miniF2F and PutnamBench with Mathlib
4.9, but only 80% (pass@64) and 75 (pass@184) with Mathlib 4.19. In this paper, we use Mathlib 4.19 rather
than 4.9, as it is more recent and likely more useful to the Lean community.

Table 10: Summary statistics of proof lengths in evaluation dataset

Dataset n Min Q1 Median Q3 Max Mean
MiniF2F 194 13 64 167 499 2980 334

PutnamBench 75 2 608 1179 2110 5420 1468

0 200 400 600 800 1000 1200 1400
Proof Length

0
10
20
30
40
50

Fr
eq

ue
nc

y

MiniF2F Evaluation Set Lengths (n=194)

0 1000 2000 3000 4000 5000
Proof Length

0

5

10

15

Fr
eq

ue
nc

y

PutnamBench Eval Set Lengths (n=75)

Figure 14: Histograms of proof lengths for our miniF2F and PutnamBench evaluation sets.

theorem mathd_numbertheory_185
(n : N)
(h0 : n % 5 = 3) :
(2 * n) % 5 = 1 := by
have h1 : (2 * n) % 5 = 1 := by
have h2 : (2 * n) % 5 = (2 * (n % 5)) % 5 := by

simp [Nat.mul_mod, Nat.mod_mod]
<;> ring_nf at *
<;> omega

rw [h2]
rw [h0]
<;> norm_num
<;> rfl

exact h1

Listing 8: Example of miniF2F Eval Task (Length 65)

29



1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

theorem putnam_1993_a2
(x : N → R)
(xnonzero : ∀ n : N, x n ̸= 0)
(hx : ∀ n ≥ 1, (x n) ˆ 2 - x (n - 1) * x (n + 1) = 1)
: ∃ a : R, ∀ n ≥ 1, x (n + 1) = a * x n - x (n - 1) := by

have h_main : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
intro n hn
have h1 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x (n + 2) + x n) / x (n + 1)
↪→ := by
intro n hn
have h2 : (x (n + 1)) ˆ 2 - x n * x (n + 2) = 1 := by

have h3 := hx (n + 1) (by linarith)
simpa [Nat.add_assoc] using h3

have h3 : (x n) ˆ 2 - x (n - 1) * x (n + 1) = 1 := hx n hn
have h4 : x (n + 2) * x n + (x n) ˆ 2 - (x (n + 1)) ˆ 2 - x (n - 1) * x (n + 1) = 0 := by

linarith
have h5 : (x (n + 2) + x n) * x n - (x (n + 1) + x (n - 1)) * x (n + 1) = 0 := by

ring_nf at h4 ⊢
linarith

have h6 : x n ̸= 0 := xnonzero n
have h7 : x (n + 1) ̸= 0 := xnonzero (n + 1)
have h8 : (x (n + 2) + x n) / x (n + 1) - (x (n + 1) + x (n - 1)) / x n = 0 := by

field_simp [h6, h7] at h5 ⊢
nlinarith

linarith

have h2 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
intro n hn
induction’ hn with n hn IH
·

norm_num
·

have h3 := h1 n hn
have h4 := h1 (n + 1) (by linarith)
simp [Nat.add_assoc] at h3 h4 ⊢
<;>
(try norm_num at * <;>
try linarith) <;>
(try simp_all [Nat.add_assoc]) <;>
(try ring_nf at * <;>
try linarith) <;>
(try field_simp [xnonzero] at * <;>
try nlinarith)
<;>
linarith

exact h2 n hn

have h_exists_a : ∃ (a : R), ∀ (n : N), n ≥ 1 → x (n + 1) = a * x n - x (n - 1) := by
use (x 2 + x 0) / x 1
intro n hn
have h1 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := h_main n hn
have h2 : x n ̸= 0 := xnonzero n
have h3 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by rw [h1]
have h4 : x (n + 1) + x (n - 1) = ((x 2 + x 0) / x 1) * x n := by

field_simp [h2] at h3 ⊢
<;> nlinarith

have h5 : x (n + 1) = ((x 2 + x 0) / x 1) * x n - x (n - 1) := by linarith
exact h5

exact h_exists_a

Listing 9: Example of PutnamBench Eval Task (Length 715)

30



1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

H EXAMPLES OF PROOFS SIMPLIFIED BY PROOFOPTIMIZER

In Listings 10 to 17, we show proofs successfully optimized with ProofOptimizer and iterative shortening.
Some proofs were syntactically modified to fit on the page (new lines removed, multiple lines compressed
into one).

theorem mathd_algebra_338 -- Original Proof
(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have h3 : b = a + 6 := by
have h31 : -a + b = 6 := by

have h32 : (a + 3 * b + c) - (3 * a + b
↪→ + c) = 9 - (-3) := by

linarith
linarith

linarith

have h4 : c = a + 11 := by
have h41 : -a + c = 11 := by

have h42 : (a + b + 3 * c) - (3 * a + b
↪→ + c) = 19 - (-3) := by

linarith
linarith

linarith

have h5 : a = -4 := by
have h51 : 3 * a + b + c = -3 := h0

rw [h3, h4] at h51

ring_nf at h51 ⊢
linarith

have h6 : b = 2 := by
rw [h3]
rw [h5]
<;> norm_num

have h7 : c = 7 := by
rw [h4]
rw [h5]
<;> norm_num

have h8 : a * b * c = -56 := by
rw [h5, h6, h7]
<;> norm_num

exact h8

Listing 10: Original Proof (Length 214)

theorem mathd_algebra_338
(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have : a = -4 := by linarith
subst_vars
nlinarith

Listing 11: Simplified Proof (Length 11)

31



1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
have h1 : ∀ n : N, (a (n + 10) : Z) ≡ - (a n : Z) [ZMOD 181] := by
intro n
induction’ n using Nat.strong_induction_on with n ih
rcases n with (_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | n) <;>

simp_all [Int.ModEq, abase, arec] <;> omega
have h2 : (a 5 : Z) ≡ 0 [ZMOD 181] := by norm_num [Int.ModEq, abase, arec]
have h3 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by
have h4 : ∀ k : N, (a (10 * k + 5) : Z) ≡ 0 [ZMOD 181] := by

intro k
induction’ k with k ih
· norm_num [Int.ModEq] at h2 ⊢

<;> simpa [abase, arec] using h2

· have h5 := h1 (10 * k + 5)
have h6 := h1 (10 * k + 6)
have h7 := h1 (10 * k + 7)
have h8 := h1 (10 * k + 8)
have h9 := h1 (10 * k + 9)
have h10 := h1 (10 * k + 10)
norm_num [Int.ModEq] at h5 h6 h7 h8 h9 h10 ih ⊢
<;> ring_nf at * <;> omega

have h5 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by
have h6 : (a (10 * 201 + 5) : Z) ≡ 0 [ZMOD 181] := h4 201
norm_num at h6 ⊢
<;> simpa [add_assoc] using h6

exact h5

exact Int.dvd_of_emod_eq_zero h3

Listing 12: Original Proof (Length 324)

theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
rw [show 2015 = 10 * 202 - 5 by norm_num]
have h1 : ∀ n : N, a (10 * n + 5) ≡ 0 [ZMOD 181] := by
intro n
induction’ n with k ih
· norm_num [abase, arec, Int.ModEq]
· rw [Nat.mul_succ]

simp_all [Int.ModEq, arec]
omega

have h2 := h1 201
exact Int.dvd_of_emod_eq_zero h2

Listing 13: Simplified Proof (Length 82)

32



1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))ˆ2 ̸= 0)
(h2 : (4 * xˆ2) / (1 - Real.sqrt (1 + 2*x))ˆ2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· set s := Real.sqrt (1 + 2 * x) with hs
have h51 : 0 ≤ 1 + 2 * x := h0

have h52 : s ≥ 0 := Real.sqrt_nonneg _
have h53 : s ˆ 2 = 1 + 2 * x := by

rw [hs]
rw [Real.sq_sqrt] <;> linarith

have h54 : (1 - s) ˆ 2 ̸= 0 := by simpa [hs] using h1

have h55 : s ̸= 1 := by
intro h
have h551 : (1 - s) ˆ 2 = 0 := by

rw [h]
norm_num

contradiction
have h56 : (s + 1) ˆ 2 * (s - 1) ˆ 2 = (s ˆ 2 - 1) ˆ 2 := by

ring
have h57 : (s ˆ 2 - 1 : R) ˆ 2 = 4 * x ˆ 2 := by

rw [h53]
ring

have h58 : (4 : R) * x ˆ 2 / (s - 1) ˆ 2 = (s + 1) ˆ 2 := by
have h581 : (s - 1 : R) ˆ 2 ̸= 0 := by

intro h
have h582 : (1 - s : R) ˆ 2 = 0 := by
calc

(1 - s : R) ˆ 2 = (s - 1 : R) ˆ 2 := by ring
_ = 0 := by rw [h]

contradiction
field_simp [h581] at h57 ⊢
nlinarith

have h59 : (4 : R) * x ˆ 2 / (1 - s) ˆ 2 = (s + 1) ˆ 2 := by
rw [← h58]
ring

nlinarith [sq_nonneg (s - 1)]

Listing 14: Original Proof (Length 330)

theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))ˆ2 ̸= 0)
(h2 : (4 * xˆ2) / (1 - Real.sqrt (1 + 2*x))ˆ2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· have h57 : (4 : R) * x ˆ 2 / (1 - Real.sqrt (1 + 2 * x)) ˆ 2 = (1 + Real.sqrt (1 + 2 * x))

↪→ ˆ 2 := by
have h58 : (1 - Real.sqrt (1 + 2 * x)) ˆ 2 ̸= 0 := by assumption
field_simp [h58]
nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption)]

nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption),
Real.sqrt_nonneg (1 + 2 * x)]

Listing 15: Simplified Proof (Length 125)

33



1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).1 + ((fun n : N => (n)!, fun n : N =
↪→ > 2 ˆ n) : (N → Z) × (N → Z) ).2 :=

by
have h_main : ∀ (n : N), T n = (n ! : Z) + 2 ˆ n := by
intro n
have h1 : T n = (n ! : Z) + 2 ˆ n := by
have h2 : ∀ n : N, T n = (n ! : Z) + 2 ˆ n := by

intro n
induction n using Nat.strong_induction_on with
| h n ih =>

match n with
| 0 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 1 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 2 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| n + 3 =>
have h3 := hTn n
have h4 := ih n (by omega)
have h5 := ih (n + 1) (by omega)
have h6 := ih (n + 2) (by omega)
simp [h4, h5, h6, pow_add, pow_one, Nat.factorial_succ, Nat.mul_add, Nat.add_mul] at h3 ⊢
<;>
ring_nf at h3 ⊢ <;>
norm_cast at h3 ⊢ <;>
simp_all [Nat.factorial_succ, pow_add, pow_one, mul_assoc]
<;>
ring_nf at * <;>
norm_num at * <;>
nlinarith

exact h2 n
exact h1

have h_final : T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).1 + ((fun n : N => (n)!,
↪→ fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).2 := by

funext n
have h1 : T n = (n ! : Z) + 2 ˆ n := h_main n
simp [h1, Pi.add_apply]
<;> norm_cast <;> simp [Nat.cast_add] <;> ring_nf

apply h_final

theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z)).1 + ((fun n : N => (n)!, fun n : N =>
↪→ 2 ˆ n) : (N → Z) × (N → Z)).2 := by

ext n
induction’ n using Nat.strong_induction_on with n ih
match n with
| 0 => simp_all
| 1 => simp_all
| 2 => simp_all
| n + 3 =>
simp_all [Nat.factorial_succ]
ring_nf

Listing 16: Original Proof (Length 320) and Simplified Proof (Length 34)

34



1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by

have h_main : (
∫

x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2)) = 22/7 - Real.pi := by
have h1 : (

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2)) = (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 :

↪→ R) - 4 / (1 + xˆ2)) := by
have h11 : ∀ (x : R), xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) = (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) - 4 / (1 + xˆ2)
↪→ := by

intro x
have h12 : (1 + xˆ2 : R) ̸= 0 := by nlinarith
have h13 : xˆ4 * (1 - x)ˆ4 = (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) * (1 + xˆ2) - 4 := by

ring_nf <;> nlinarith [sq_nonneg (x ˆ 2), sq_nonneg (x ˆ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)]
have h14 : xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) = ((xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) * (1 + xˆ2) - 4) / (1 +

↪→ xˆ2) := by
rw [h13]

rw [h14]
field_simp [h12] <;> ring_nf <;> field_simp [h12] <;> ring_nf

congr
ext x
rw [h11 x]

rw [h1]
have h2 : (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) - 4 / (1 + xˆ2)) = (

∫
x in (0)..1, (xˆ6 - 4

↪→ *xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R)) - (
∫

x in (0)..1, (4 : R) / (1 + xˆ2)) := by
apply intervalIntegral.integral_sub
· apply Continuous.intervalIntegrable

continuity
· apply Continuous.intervalIntegrable

have h3 : Continuous (fun x : R => (4 : R) / (1 + x ˆ 2)) := by
apply Continuous.div
· exact continuous_const
· exact Continuous.add continuous_const (continuous_pow 2)
· intro x
have h4 : (1 + x ˆ 2 : R) ̸= 0 := by nlinarith
exact h4

exact h3
rw [h2]
have h3 : (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R)) = (22 / 7 : R) := by

norm_num [integral_id, mul_comm] <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]
have h4 : (

∫
x in (0)..1, (4 : R) / (1 + xˆ2)) = Real.pi := by

have h41 : (
∫

x in (0)..1, (4 : R) / (1 + x ˆ 2)) = 4 * (
∫

x in (0)..1, (1 : R) / (1 + x ˆ 2)) := by
have h42 : (

∫
x in (0)..1, (4 : R) / (1 + x ˆ 2)) = (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ˆ 2)) := by

congr
ext x <;> ring_nf

rw [h42]
have h43 : (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ˆ 2)) = 4 * (

∫
x in (0)..1, (1 : R) / (1 + x ˆ 2)) :=

↪→ by
simp [intervalIntegral.integral_comp_mul_left (fun x => (1 : R) / (1 + x ˆ 2))] <;>
norm_num <;> field_simp <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]

rw [h43]
rw [h41]
have h44 : (

∫
x in (0)..1, (1 : R) / (1 + x ˆ 2)) = Real.pi / 4 := by

have h45 : (
∫

x in (0)..1, (1 : R) / (1 + x ˆ 2)) = Real.arctan 1 - Real.arctan 0 := by
rw [integral_one_div_one_add_sq] <;> norm_num

rw [h45]
have h46 : Real.arctan 1 = Real.pi / 4 := by

norm_num [Real.arctan_one]
have h47 : Real.arctan 0 = 0 := by

norm_num [Real.arctan_zero]
rw [h46, h47] <;> ring_nf <;> norm_num

rw [h44] <;> ring_nf <;> norm_num
rw [h3, h4] <;> ring_nf <;> norm_num

have h_final : 22/7 - Real.pi =
∫

x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by
rw [h_main] <;> linarith [Real.pi_pos]

exact h_final

theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by

simp_rw [show ∀ x : R, x ˆ 4 * (1 - x) ˆ 4 / (1 + x ˆ2) = (x ˆ6 - 4 * x ˆ5 + 5 * x ˆ4 - 4 * x ˆ2 + 4 - 4 / (1
↪→ + x ˆ2)) by

intro x
field_simp
ring]

ring_nf
norm_num
<;> linarith [Real.pi_pos]

Listing 17: Original Proof (Length 1097) and Simplified Proof (Length 76)

35



1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

I EXAMPLES OF PROOF SPEEDUP AND SLOWDOWN AFTER SIMPLIFICATION

We analyze two examples of proof speedup and slowdown. In Listing 18, we observe that the original proof
uses an extraneous amount of tactics within nlinarith in order to prove the main conjecture. By removing
a majority of these, the simplified proof achieves a 4.7x speedup. In Listing 19, we observe a more extreme
case, where the original proof is significantly overcomplicated and can be reduced to one omega invocation.
Goedel-Prover-V2-32B never found this single-tactic proof (with 64 samples) and instead produces
proofs with many unnecessary subgoals, leading to a proof with slow execution time.

In several occurrences, we observe that simplified proofs can be significantly slower than the original proof.
This is usually because the simplified proof is notationally shorter, but uses a slower approach to complete
the proof. For example, in Listing 20, ProofOptimizer finds a shorter proof, but the proof is reliant on
simp all, Finset.sum range succ, and linarith, which expand the goal into large proof terms
that are time-consuming, causing the new proof to be over 10× slower. Another example is shown in Listing
21. Here, the original proof first iterates over all m ≤ 71 with interval cases m, tries to simplify
using omega, and then iterates over all n ≤ 71 with interval cases n. ProofOptimizer, however,
removes the try omega, directly doing an exhaustive search over (m,n). The try omega statement in
the original proof made it much faster, removing 69 of the 71 goals, whereas the simplified proof had to
iterate through n for these goals.

theorem imo_1983_p6 -- Original Proof, Time: 5.57s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
have h_main : 0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),

mul_nonneg h0.1.le h0.2.1.le, mul_nonneg h0.2.1.le h0.2.2.le, mul_nonneg h0.2.2.le h0.1.le
↪→ ,
mul_nonneg (sq_nonneg (a - b)) h0.2.2.le, mul_nonneg (sq_nonneg (b - c)) h0.1.le,
mul_nonneg (sq_nonneg (c - a)) h0.2.1.le, mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0.2.2,
mul_pos h0.2.2 h0.1, mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2),
mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1),
sq_nonneg (a + b - 2 * c), sq_nonneg (b + c - 2 * a), sq_nonneg (c + a - 2 * b)]

exact h_main

theorem imo_1983_p6 -- Simplified Proof, Time: 1.20s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
nlinarith [mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2), mul_pos (sub_pos.mpr h2) (sub_pos.mpr h

↪→ 3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1), sq_nonneg (a - b), sq_nonneg (b - c),
↪→ sq_nonneg (c - a)]

Listing 18: Example of Speedup after Simplification (orig: 5.6s, new: 1.2s)

36



1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

theorem mathd_numbertheory_765 -- Original Proof, Time: 2.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
have h_main : x ≤ -449 := by
by_contra! h
have h2 : -448 ≤ x := by linarith
have h3 : x < 0 := h0

have h4 : (24 * x) % 1199 = 15 := h1

have h5 : x ≥ -448 := by linarith
have h6 : x ≤ -1 := by

omega
-- We will check all possible values of x from -448 to -1 and show that none satisfy (24 *
↪→ x) % 1199 = 15
have h7 : False := by

-- Use the fact that x is between -448 and -1 to check each possible value
have h8 : x ≥ -448 := by linarith
have h9 : x ≤ -1 := by omega
-- Use interval_cases to check each possible value of x
interval_cases x <;> norm_num [Int.mul_emod, Int.add_emod] at h4 ⊢ <;> omega

exact h7

exact h_main

theorem mathd_numbertheory_765 -- Simplified Proof, Time: 0.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
omega

Listing 19: Example of Speedup after Simplification (orig: 2.5s, new: 0.5s)

37



1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

Under review as a conference paper at ICLR 2026

theorem aime_1984_p1 -- Original Proof, Time: 0.91s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
have h2 : ∀ (n : N), u n = u 0 + n := by
(. . . 14 lines omitted)

have h3 : 98 * u 0 + 4851 = 137 := by
have h4 : Σ k in Finset.range 98, u (k.succ) = 137 := h1

have h5 : Σ k in Finset.range 98, u (k.succ) = Σ k in Finset.range 98, (u 0 + (k.succ : Q)
↪→ ) := by
apply Finset.sum_congr rfl
intro k _
rw [h2 (k.succ)]
<;> simp [Nat.cast_add, Nat.cast_one]
<;> ring_nf
<;> norm_num

rw [h5] at h4

have h6 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = 98 * u 0 + 4851 := by
have h7 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = Σ k in Finset.range 98, (u 0 :

↪→ Q) + Σ k in Finset.range 98, (k.succ : Q) := by
rw [Finset.sum_add_distrib]

rw [h7]
have h8 : Σ k in Finset.range 98, (u 0 : Q) = 98 * u 0 := by

simp [Finset.sum_const, Finset.card_range]
<;> ring_nf

rw [h8]
have h9 : Σ k in Finset.range 98, (k.succ : Q) = 4851 := by

norm_num [Finset.sum_range_succ, Finset.sum_range_succ, Finset.sum_range_succ]
<;>
rfl

rw [h9]
<;> ring_nf

rw [h6] at h4

norm_num at h4 ⊢
<;> linarith

have h4 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 49 * u 0 + 2450 := by
-- (. . . 25 lines omitted)

have h5 : 49 * u 0 = -2357 := by
-- (. . . 6 lines omitted)

have h6 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
-- (. . . 4 lines omitted)
linarith

exact h6

theorem aime_1984_p1 -- Simplified Proof, Time: 10.84s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
simp_all [Finset.sum_range_succ]
linarith

Listing 20: Example of Slowdown after Simplification (orig: 0.9s, new: 10.8s)

38



1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

Under review as a conference paper at ICLR 2026

theorem mathd_numbertheory_711 -- Original Proof, 4.87s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have h_product : m * n = 896 := by
-- (. . . 5 lines omitted)

have h_main : 72 ≤ m + n := by
have h3 : 0 < m := h0.1
have h4 : 0 < n := h0.2
have h5 : m * n = 896 := h_product
have h6 : Nat.gcd m n = 8 := h1

have h7 : Nat.lcm m n = 112 := h2

have h8 : m + n ≥ 72 := by
by_contra! h
-- (. . . 4 lines omitted)
have h11 : m ≤ 71 := by nlinarith
have h12 : n ≤ 71 := by nlinarith
interval_cases m <;> norm_num at h5 ⊢ <;>

(try omega) <;>
(try {
interval_cases n <;> norm_num at h5 h6 h7 ⊢ <;>
-- (. . . 5 lines omitted)

}) <;>
-- (. . . 5 lines omitted)

exact h8

exact h_main

theorem mathd_numbertheory_711 -- Simplified Proof, 74.63s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have : m * n = 896 := by
rw [← Nat.gcd_mul_lcm m n]
simp_all

by_contra!
have : m ≤ 71 := by nlinarith
have : n ≤ 71 := by nlinarith
interval_cases m <;> interval_cases n <;> simp_all

Listing 21: Example of Slowdown after Simplification (orig: 4.9s, new: 74.6s)

39



1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

Under review as a conference paper at ICLR 2026

J DERIVATION OF CLOSED FORM FOR MIN@K AND MAX@K

In this section, we derive the closed form expression we use for estimating max@k from n samples based off
the classic pass@k metric:

max@k =
1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi.

Let X be a real random variable, X1, . . . , Xk independent realizations of X and X(k) = maxi≤k Xi their
maximum. We would like to give an estimator for E[X(k)] given n ≥ k independent samples x1 ≤ . . . ≤ xn

of X sorted by size.

Consider the estimator M = 1

(nk)

∑
i≤n

(
i−1
k−1

)
xi, with the idea being that there exist

(
n
k

)
ways to choose k

out of the n samples overall, out of which
(
i−1
k−1

)
select the i-th and then k − 1 with a smaller index.

We compute

Exi

 1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi

 = Exi

 1(
n
k

) ∑
I⊆{1,...,n},|I|=k

xmax I


=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi [xmax I ]

=
1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi

[
max
j∈I

xj

]
=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

E
[
X(k)

]
= E

[
X(k)

]
by the counting argument explained above, linearity of expectation, ordering of the xi and independence.

Note that this is a generalization of the pass@k metric, which covers the case of Bernoulli distributed X
(Chen et al., 2021).

We recommend using a numerically stable implementation that computes the ratio (i−1
k−1)
(nk)

by canceling a

(k − 1)! factor and pairing up numerator and denominator factors.

Moreover, the min@k estimator can be obtained as min@k(x1, . . . , xn) = −max@k(−x1, . . . ,−xn).

40



1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926

Under review as a conference paper at ICLR 2026

K HYPERPARAMETERS

In this section, we detail the hyperparameters we use throughout our various training and inference experi-
ments. Prompts can be found in the next section, Appendix L.

Iterative Training (Sec. 3.1.1): For each round of SFT, we use an effective batch size of 64 (2 nodes, 8
H100/node, 4 gradient accumulation steps) and learning rate 1e-5. We use a cosine scheduler with minimum
learning rate 1e-8 and 100 steps of warm-up starting from 1e-30. For inference, we use τ = 1.0 and top-p
0.95.

Reinforcement learning (Sec 3.1.2): Our setup is asynchronous online reinforcement learning with 16 trainer
and 16 worker GPUs, and 16 environment copies per worker GPU. We use a global training batch size of 32
(local batch size 2 per trainer), a constant learning rate of 6e-8 following a linear warmup over 200 steps, a
GRPO group size of 8, mean normalization but no variance normalziation, no KL penalty and model updates
sent to workers every 100 steps. Workers use For inference, we use τ = 1.0 and top-p 1.0, and evaluations
use τ = 1.0 and top-p 0.95.

For test-time reinforcement learning we use the same settings but halve the number of trainers and workers.

Execution Feedback and Goedel-Prover for Repair (Sec. 4.2): We use temperature τ = 0.2 and top-p 0.95
with a maximum prompt length of 8192 and a maximum generation length of 32768.

Iterative Shortening (Sec. 4.3): For iterations 1 through 6, we use temperature τ = 1.0 and top-p 0.95. We
increase the temperature to τ = 1.2 for iteration 7, and to τ = 1.5 for iteration 8. We find that the higher
temperatures in later iterations are helpful for increasing diversity with 1024 samples.

Lean Base Model (Sec. B.1): We use an effective batch size of 512 (2 nodes, 8 H100/node, 32 gradient
accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a
maximum sequence length of 8192 for 2000 steps.

Proof Sketching (Sec. B.2): We use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient
accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a
maximum sequence length of 8192 for 50 steps. Evaluation is done with temperature τ = 0.8 and top-p 0.95.

Comparison with Leading Models (Sec. E): For our model and Qwen2.5-32B, we use τ = 1.0 and top-p
0.95. For GPT-4o and Gemini-2.5-Pro, we use the default settings with τ = 1.0.

41



1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973

Under review as a conference paper at ICLR 2026

L PROMPTS

L.1 PROOF SIMPLIFICATION PROMPT

You are given a correct Lean 4 proof of a mathematical theorem.
Your goal is to simplify and clean up the proof, making it shorter and more readable while ensuring it

↪→ is still correct.

Here is the original proof:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your simplified proof. Do NOT modify the theorem or header, and surround your proof in
↪→ ‘‘‘lean4 and ‘‘‘ tags.

Listing 22: Zero-shot Proof Sketching Prompt

L.2 PROOF SKETCHING PROMPTS

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the
↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for

↪→ clarity. Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton

↪→ would compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your Lean 4 proof sketch. Do NOT modify the theorem or header, and surround your proof
↪→ sketch in ‘‘‘lean4 and ‘‘‘ tags.

Listing 23: Zero-shot Proof Sketching Prompt

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the
↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for

↪→ clarity. Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton

↪→ would compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Here is an example:

Problem:
Prove that if p, q are primes such that q is divisible by p, then p must be equal to q.

Solution:
Since q is prime, it only has 2 divisors: 1 and itself. Therefore, since p divides q, either $p=1$ or

↪→ $p=q$. Because $p$ is a prime, $p \ne 1$, so $p=q$.

Lean 4 Statement:
‘‘‘lean4

42



1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

Under review as a conference paper at ICLR 2026

import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by
↪→ sorry

‘‘‘

Lean 4 Proof Sketch:
‘‘‘lean4
import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by
-- Lemma 1: Since q is prime, it only has 2 divisors: 1 and itself.
have lemma1 : p = 1 ∨ p = q := by
sorry

-- Lemma 2: Since p is prime, p ̸= 1.
have lemma2 : p ̸= 1 := by
sorry

-- Now, do case analysis on lemma1 to conclude p = q.
cases lemma1 with
| inl h_left =>
contradiction

| inr h_right =>
exact h_right

‘‘‘

Now, it is your turn to provide your Lean 4 proof sketch for a new problem. Do NOT modify the theorem
↪→ or header, and surround your proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Lean 4 Proof Sketch

Listing 24: One-shot Proof Sketching Prompt

L.3 GOEDEL-PROVER REPAIR PROMPT

In Listing 25, use a modified version of Goedel-Prover’s repair prompt found in their codebase. The main
difference is that because we do not have proofs annotated with CoT’s, our lean proof only contains a
proof.
Complete the following Lean 4 code:

‘‘‘lean4
{formal_statement}‘‘‘

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan
↪→ outlining the main proof steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the
↪→ construction of the final formal proof.

Here is the proof:
‘‘‘lean4
{lean_proof}‘‘‘

The proof (Round 1) is not correct. Following is the compilation error message, where we use <error></
↪→ error> to signal the position of the error.

43

https://github.com/Goedel-LM/Goedel-Prover-V2


2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067

Under review as a conference paper at ICLR 2026

{error_message_for_prev_round}

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed analysis of
↪→ the error message.

Listing 25: Goedel-Prover Repair Prompt

44


	Introduction
	Proof Simplification: Task and Metrics
	ProofOptimizer: LLMs for Proof Simplification
	Training
	ProofOptimizer-ExpIt: Expert Iteration
	ProofOptimizer-RL: Online Reinforcement Learning

	Inference-Time Techniques

	Experiments
	Expert Iteration vs. RL vs. Test-Time RL
	Analysis of Repair with Execution Feedback
	Iterative Proof Shortening

	Additional Benefits of Proof Simplification
	Training on Simplified Proofs Improves Generation
	Simplified Proofs Have a Shorter Execution Time

	Related Works
	Conclusion
	Disclosure of Use of LLMs (ICLR 2026 Requirement)
	Lean Base Model and Proof Simplification Data Details
	General Base Model for Lean
	Generating a Dataset of Theorems and Proofs for Shortening
	Statistics of Proof Simplification Training Dataset

	Training Metrics throughout RL
	Full Results and Additional Analysis of Iterative Proof Shortening
	Table of Iterative Proof Shortening Results
	Effect of k on min@k and red@k throughout simplification
	Details on Seed-Prover IMO Proof Shortening

	Comparison with Qwen2.5, GPT-4o, and Gemini-2.5-Pro
	Full Results and Extended Analysis of Repair with Execution Feedback
	Evaluation Dataset Details
	Examples of Proofs Simplified by ProofOptimizer
	Examples of Proof Speedup and Slowdown after Simplification
	Derivation of Closed Form for min@k and max@k
	Hyperparameters
	Prompts
	Proof Simplification Prompt
	Proof Sketching Prompts
	Goedel-Prover Repair Prompt


