PROOFOPTIMIZER: TRAINING LANGUAGE MODELS TO SIMPLIFY PROOFS WITHOUT HUMAN DEMONSTRATIONS

Anonymous authors

000

001

002 003 004

005

006 007 008

010 011

012

013

014

015

016

018

019

020

021

023

024

027

029 030

031

033

035 036

037

038

040

041

042

043

045

Paper under double-blind review

ABSTRACT

Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-medalist capabilities and producing formal proofs that span thousands of lines. Although such proofs are mechanically verified by formal systems like Lean, their excessive length renders them difficult for humans to comprehend and limits their usefulness for mathematical insight. Proof simplification is therefore a critical bottleneck. Yet, training data for this task is scarce, and existing methods—mainly agentic scaffolding with off-the-shelf LLMs—struggle with the extremely long proofs generated by RL-trained provers. We introduce *ProofOptimizer*, the first language model trained to simplify Lean proofs without requiring additional human supervision. ProofOptimizer is trained via expert iteration and reinforcement learning, using Lean to verify simplifications and provide training signal. At inference time, it operates within an iterative proof-shortening workflow, progressively reducing proof length. Experiments show that ProofOptimizer substantially compresses proofs generated by stateof-the-art RL-trained provers on standard benchmarks, reducing proof length by 87% on miniF2F, 57% on PutnamBench, and 50% on Seed-Prover's IMO 2025 proofs. Beyond conciseness, the simplified proofs check faster in Lean and further improve downstream prover performance when reused as training data for supervised finetuning.

1 Introduction

Theorem proving in formal environments such as Lean (de Moura et al., 2015) provides an excellent testbed for training large language models (LLMs) in mathematical reasoning via reinforcement learning (RL). Since Lean can mechanically verify proofs, it filters hallucinations and provides reliable reward signals, and enables enables unlimited high-quality synthetic reasoning data. Leveraging these benefits, LLMs finetuned with RL have achieved near gold-medal performance on the International Mathematical Olympiad (IMO) (Chen et al., 2025) and shown strong results on difficult college-level benchmarks like PutnamBench (Lin et al., 2025b).

However, RL-trained provers often generate proofs that are correct but excessively long and inscrutable. Since their only reward signal is the *correctness of generated proofs*, the resulting models produce proofs that are *correct* yet *suboptimal*: convoluted, bloated with redundant steps, or reliant on unnecessarily strong automation where a simple step would suffice. For example, Seed-Prover (Chen et al., 2025)'s Lean proof of IMO 2025 P1 consists of 4,357 lines of code, 16x longer (by character count) than its informal counterpart. Such proofs pose several practical drawbacks: they are (1) difficult for humans to comprehend, limiting their value as a source of mathematical insight; (2) less suitable as synthetic training data, since models may struggle to learn from convoluted proofs; and (3) computationally inefficient to compile in Lean, which is especially problematic when integrated into existing formal libraries like mathlib (mathlib Community, 2019).

These challenges highlight the need for proof simplification: transforming existing formal proofs into simpler forms while preserving correctness. In this work, we adopt a natural notion of simplicity: proof length,

measured by the number of Lean tokens. However, our approach is agnostic to the choice of simplicity metric: it is not restricted to proof length, but applies to any automatically computable measure (Kinyon, 2018).

Prior work on proof simplification (Ahuja et al., 2024) focuses on agentic scaffolding around API-only LLMs such as GPT-4o. While these methods can shorten human-written Lean proofs, they are ineffective at simplifying the long proofs generated by SoTA RL-trained LLM provers such as Seed-Prover and Goedel-Prover-V2 (Lin et al., 2025b), precisely the setting where simplification is most valuable. A natural alternative is to finetune LLMs directly for proof simplification, but progress in this direction is limited by the lack of suitable training data, namely aligned pairs of proofs before and after simplification.

We introduce *ProofOptimizer*, an LLM-based system for simplifying long and convoluted proofs in Lean. ProofOptimizer integrates three components: (i) a symbolic Lean linter that identifies and removes redundant steps, (ii) a 7B parameter language model finetuned specifically for proof simplification, and (iii) an iterative inference-time algorithm for progressively shortening proofs. Given an input proof, the Lean linter first eliminates the most obvious redundancies. The language model then generates multiple candidate simplifications, and the iterative algorithm repeatedly applies the model to the currently shortest proof, further reducing its length. Training follows two paradigms. In expert iteration, the model proposes simplifications that are verified by Lean and incorporated into the training data for supervised finetuning. In reinforcement learning, proof length and correctness serve as the reward signal. Both approaches enable continual improvement without requiring any human-annotated simplification data.

First, we evaluate ProofOptimizer on long proofs generated by state-of-the-art neural theorem provers. Specifically, we consider proofs produced by Goedel-Prover-V2 on two standard benchmarks—MiniF2F (Zheng et al., 2021) and PutnamBench—as well as four proofs released by Seed-Prover for IMO 2025. Our final models achieve significant results (Fig. 1), shortening MiniF2F proofs by an average of 63% in a single shot and PutnamBench proofs by 26% with 32 attempts, substantially outperforming Gemini-2.5-Pro (Sec. 4.1). At inference time, test-time RL improves single-shot miniF2F performance to 72%. With with iterative shortening, we achieve further per-proof average reductions of 87% (MiniF2F) and 57% (PutnamBench) and reduce the length of three out of four Seed-Prover IMO 2025 proofs by more than half.

Second, we conduct ablation studies to evaluate the effect of key design choices. During training, RL achieves the best single-sample performance but reduces multi-sample diversity. At inference time, using the same RL recipe further improves single-shot performance (Sec. 4.1). Repairing incorrect simplifications from execution feedback with Goedel-Prover-V2 effectively corrects errors, but leads to repaired proofs even longer than the originals (Sec. 4.2). Overall, iterative proof shortening offers the best balance between performance and diversity, achieving the strongest results (Sec. 4.3).

Third, we conduct preliminary experiments suggesting two downstream benefits of proof shortening. Training our base model on shortened proofs leads to 2% better performance on miniF2F relative to training on unshortened proofs (Sec. 5.1). Also, shortening proofs often decreases their execution time, with 28% of proofs showing at least a 1.5x speedup after shortening (Sec. 5.2).

Figure 1: ProofOptimizer reduces the shortest generated proof of a Putnam problem from 1097 to 76 tokens.

2 PROOF SIMPLIFICATION: TASK AND METRICS

Task Definition We formalize the proof simplification task as minimizing the complexity of a given proof. Specifically, for a valid formal statement s with proof p, the goal is to produce an alternative proof p^* of s that minimizes a complexity measure \mathcal{L} : $p^* = \arg\min_{x \text{ proves } s} \mathcal{L}(x)$. Our method is agnostic to the choice of complexity measure \mathcal{L} , provided that it is deterministic and can be automatically computed from the proof. This flexibility encompasses the metrics used in prior work (Ahuja et al., 2024). In the rest of this paper, we adopt proof length as the measure of complexity, defined as the number of tokens produced by a Lean-specific tokenizer. Our proof length measure correlates with character count but does not penalize long identifier names, and it ignores comments and line breaks. We denote the length of a proof x by |x|, i.e., $\mathcal{L}(x) = |x|$.

Evaluation Metrics Given an original proof p and k candidate simplifications generated by the model, p'_1, p'_2, \ldots, p'_k , we define $l_i = \min(|p|, |p'_i|)$ if p'_i is a valid proof and $l_i = |p|$ otherwise. (Intuitively, an invalid attempt reverts to the original proof length). We evaluate proof simplification using two metrics:

- $\min @k \triangleq \min_i \{l_i\}$ denotes the minimum shortened proof length (lower is better).
- $\operatorname{red}@k \triangleq \max_i \left\{\frac{|p|-l_i}{|p|}\right\} = 1 \frac{\min@k}{|p|}$ denotes the maximum relative proof length reduction from the original proof (higher is better).

3 PROOFOPTIMIZER: LLMs for Proof Simplification

3.1 Training

Lean Base Model First, we train a general-purpose Lean model by fine-tuning Qwen-2.5-7B-Instruct on a combination of five tasks: natural language problem solving, Lean 4 code completion, auto-formalization (problems and solutions), formal theorem proving, and tactic/proof state prediction.

Dataset for Proof Simplification We employ a four-stage pipeline to generate high-quality proof simplification training data.

- 1. *Problem Collection*: We first compile a dataset of theorem proving problems from Goedel-Pset, filtering out simple computational problems. Each problem consists of a natural language problem, solution, and Lean problem statement.
- 2. *Proof Sketching*: We train a model that formalizes a problem's natural language solution into a Lean proof sketch consisting of a few high-level proof steps (usually 2-10) with lower level details omitted and filled in with Lean's sorry tactic.
- 3. *Theorem Extraction and Filtering*: For each proof sketch, we extract each proof step into its own separate theorem. At the core, we are taking longer proofs and breaking them down into separate sub-theorems. We collect a total of 518K theorems this way. As we found some of these theorems to be trivial, we design an automation tactic to filter these out, leaving 307K theorems remaining.
- 4. *Proof Generation*: We use Goedel-Prover-V2-32B to generate proofs of these theorems. The model successfully produces Lean proofs of 145K theorems, which we use as our dataset for training.

For more details about our base model and dataset collection, see Appendix B. Next, we describe our two training recipes: expert iteration and online reinforcement learning.

3.1.1 PROOFOPTIMIZER-EXPIT: EXPERT ITERATION

We leverage a STaR-like (Zelikman et al., 2022) iterative training algorithm to improve our model. At a high level, we start with our base model π_0 and the collection of 145K proofs P_0 . At each iteration, we attempt to

simplify each proof, train our model on successful proof simplifications, and use the collection of simplified proofs as seed proofs for the next iteration. More precisely, at each iteration i, we do the following:

- 1. **Sample**: For each proof $x \in P_i$, use π_i to sample 4 simplifications $Y_p \triangleq \{y_x^1, y_x^2, y_x^3, y_x^4\} \sim \pi_i(x)$.
- 2. Filter: Use the Lean compiler to find the shortest correct simplification $y_x \in \{x\} \cup Y_x$. Create a training dataset of proof simplifications $D_i = \{(x,y_x) \mid \text{len}(y_x) \leq 0.8 \cdot \text{len}(x), x \in P_i\}$. The length constraint is designed to encourage the model to learn more substantial simplifications rather than trivial ones. For iterations after the first, as x may have been simplified from a more complex proof $x' \in P_0$, we also add (x',y_x) pairs to D_i , which are valid and larger proof simplifications. Also, collect simplified proofs $\pi_{i+1} = \{s_x \mid x \in P_i\}$ for the next iteration.
- 3. **Train**: Fine-tune π_i on D_i to get π_{i+1} .

3.1.2 PROOFOPTIMIZER-RL: ONLINE REINFORCEMENT LEARNING

In addition to expert iteration as described in the previous section, we train a proof optimizer model with online reinforcement learning. Using the same dataset as in expert iteration, the reinforcement learning task consists in producing a valid but shorter proof y for a statement given an initial proof x. The reward is defined as the relative shortening $R(x,y) = \frac{|y|-|x|}{|x|}$ if y is valid and $|y| \le |x|$, and R(x,y) = 0 otherwise. We employ an asynchronous variant of the GRPO algorithm (Shao et al., 2024) with advantage $A_i = R_i - \frac{1}{k} \sum_{j \le k} R_j$ baselined with the average reward of k = 8 samples, no advantage normalization by standard deviation (Liu et al., 2025b), no KL regularization, and omitting sequences with zero advantage.

3.2 Inference-Time Techniques

First, we implement a symbolic linter that removes extraneous tactics via Lean's linter.unusedTactic linter, which detects tactics that do not change the proof state and provides messages like 'norm_num' tactic does nothing. We then compare the following techniques on the linted proofs:

- **Test-Time RL**: We use the setup described in Section 3.1.2 and perform reinforcement learning on our two evaluation sets (jointly). Our test-time RL keeps the input proof fixed, meaning improvements occur solely in the model's parameters.
- **Repair with Execution Feedback**: In this scheme, if ProofOptimizer fails to simplify a proof, we collect the execution feedback and ask Goedel-Prover-V2-32B to repair the proof with the error messages. Then, we apply the symbolic linter on the new proofs to further shorten successful repairs.
- Iterative Proof Shortening: For a given proof, we sample k candidate shortenings and take the shortest correct one. Then, we sample k shortenings of the new proof, take the shortest correct one and so on.

4 EXPERIMENTS

For all evaluations, we use proofs generated by Goedel-Prover-V2 (Lin et al., 2025a) on two popular datasets in formal math, miniF2F (Zheng et al., 2021) and PutnamBench (Tsoukalas et al., 2024). For miniF2F, we use n=194 proofs (average length 334), and for PutnamBench, we use n=75 proofs (average length 1468). More details and examples of proofs in our evaluation set can be found in Appendix G.

4.1 EXPERT ITERATION VS. RL VS. TEST-TIME RL

First, we compare our two training schemes: expert iteration and RL. Starting from our Lean base model, we train *ProofOptimizer-ExpIt* by performing three rounds of expert iteration (Sec. 3.1.1) and *ProofOptimizer-RL*

by performing online RL (Sec. 3.1.2) after two rounds of expert iteration. Table 1 shows min@k and red@k scores with respect to linted proofs. We observe steady improvements during each round of expert iteration for both @1 and @32 metrics. **Our final model outperforms Gemini-2.5-Pro**, a strong reasoning model, even when given proof state annotations similar to Chain-of-States in ImProver (Ahuja et al., 2024).

Next, we see that **ProofOptimizer-RL** significantly improves single sample (@1) metrics at the expense of diversity collapse, an issue commonly identified during RL training (Gehring et al., 2024; Walder & Karkhanis, 2025; Yue et al., 2025). In Fig. 2 (a, b), we show the evolution of red@1 during training, observing that miniF2F reduction steadily rises while PutnamBench reduction experiences oscillations. This tension is likely because the distribution of training data is more similar in length to miniF2F than PutnamBench, which has a mean proof length of 4x that of the training set.

Finally, we find that test-time RL leads to even further improvements on min@1 and red@1. This is expected, as the model is able to directly tune its weights to learn from successful simplifications at test-time. However, like ProofOptimizer-RL, we observe an even smaller gap between @1 and @32 metrics. In Fig. 2 (c, d), we observe a much more stable evaluation red@1 curve because the distribution gap between the training and evaluation sets is eliminated.

Table 1: Min@k and Red@k throughout expert iteration and online RL. Our RL model has strong @1 results, while our ExpIt model has strong @32 results. RL metrics are Gaussian-smoothed.

Dataset	Category	Model	$\mathbf{Min@1} \downarrow$	$\mathbf{Min@32} \downarrow$	$Red@1\uparrow$	Red@32 ↑
		Linted	3	02	0.	0%
		Gemini-2.5-Pro	280	207	24.3%	57.2%
		Gemini-2.5-Pro + States	283	207	26.4%	58.7%
miniE2E		Base (7B)	283	202	17.6%	56.2%
miniF2F		Base + It 1	266	178	33.4%	67.0%
	ExpIt	Base + It 2	251	166	45.1%	70.6%
	-	ProofOptimizer-ExpIt	241	153	49.0%	72.3%
	D.I.	ProofOptimizer-RL	190	152	63.6%	70.9%
	RL	It 2 + Test-Time RL	160	154	72.5%	73.4 %
		Linted	1.	359	0.	0%
		Gemini-2.5-Pro	1348	1303	5.5%	18.0%
		Gemini-2.5-Pro + States	1371	1319	6.1%	19.2%
Putnam		Base (7B)	1341	1222	3.9%	20.5%
Bench		Base + It 1	1341	1215	5.2%	22.5%
Benen	ExpIt	Base + It 2	1335	1186	6.9%	24.7%
	•	ProofOptimizer-ExpIt	1328	1161	8.2%	26.3%
	DI	ProofOptimizer-RL	1303	1258	14.9%	21.1%
	RL	It 2 + Test-Time RL	1260	1255	23.8%	24.2%

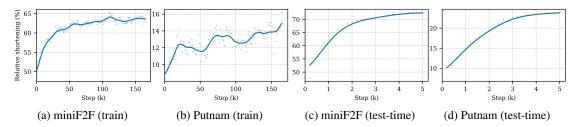


Figure 2: Evolution of proof reduction (red@1) during RL training (a, b) and test-time RL (c, d). We use Gaussian smoothing ($\sigma = 5$ evaluation intervals for RL training and $\sigma = 3$ for test-time RL). See Fig. 8 for the corresponding red@32 metrics.

4.2 Analysis of Repair with Execution Feedback

As described in Sec. 3.2, we (1) sample 64 simplifications for each proof with ProofOptimizer-ExpIt, (2) repair incorrect proofs with Goedel-Prover-V2-32B, and (3) shorten successful repairs with our linter. **Overall, we find while repair with execution feedback leads to improvements, it underperforms resampling because repaired proofs are often even longer than the original proofs.** Fig. 3 (left) shows the average proof length and reduction % after sampling, repair, and linting. We our linter to be effective on repaired proofs, decreasing the average repaired proof length from $644 \rightarrow 576$ (miniF2F) and $877 \rightarrow 788$ (PutnamBench). In Fig. 3 (right), we plot the proof length of the original proofs (before Step 1) against simplified proofs (Step 1) and repaired proofs (Step 2). A majority of the repaired proofs (green dots) are above the y = x line, meaning they are longer than the original proofs, let alone the simplified proofs (blue dots).

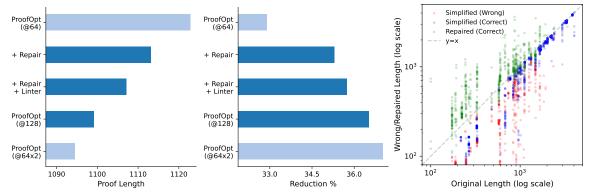


Figure 3: Analysis of execution-based repair with Goedel-Prover-V2 on PutnamBench.

In Table 2, we analyze the success rate of each step of our pipeline. However, the key issue remains to be the high length of the repaired proofs. Even after linting, only 4.8% (miniF2F) / 1.8% (Putnam) of post-linted proofs are shorter than the best proof found by ProofOptimizer during simplification. We refer the reader to Appendix F for further analysis and examples.

4.3 ITERATIVE PROOF SHORTENING

In Fig. 4 (left), we show the results of iterative proof shortening on miniF2F and PutnamBench proofs using *ProofOptimizer-ExpIt*. First, we do 64 samples per iteration for 6 iterations, observing steady improvement

Table 2: Step-by-step success rates, revealing the main bottleneck of long repaired proofs.

Dataset	Simplification	Repair	Shorter than best (before/after linter)
miniF2F	$\frac{7852}{12416}$ (63.2%)	$\frac{2840}{4564}$ (62.2%)	$\frac{76}{2840} \to \frac{137}{2840} (2.7\% \to 4.8\%)$
PutnamBench	$\frac{1288}{4800}$ (26.8%)	$\frac{613}{3512}$ (17.4%)	$\frac{5}{613} o \frac{11}{613} (0.8\% o 1.8\%)$

at each iteration. To demonstrate the potential of further scaling, we do 1024 samples at iterations 7 and 8 and see significant improvement (see Appendix D.2 for analysis on sample size). Overall, ProofOptimizer combined with iterative proof shortening is very effective on miniF2F and PutnamBench, as average proof length is reduced from $334 \rightarrow 75$ and $1468 \rightarrow 811$, for an average per-proof reduction of 87.9%/57.2%. In Fig. 4 (right), we plot the overall shortening against the length of the original proof, observing that longer proofs remain challenging to simplify.

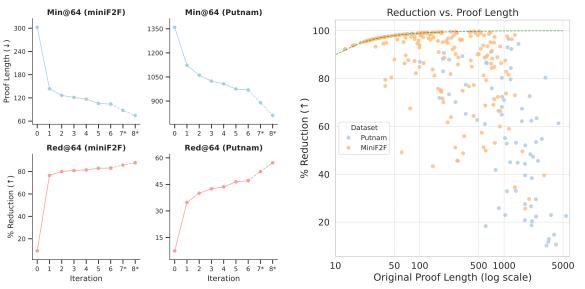


Figure 4: Iterative Shortening: per-iteration improvement (left) and effect of proof length (right)

Finally, in Table 3, we demonstrate the effectiveness of ProofOptimizer on an out-of-distribution dataset, Seed-Prover's four IMO 2025 proofs. With an order of magnitude higher sampling budget, we achieve a significant reduction in the proof length for all four problems, showcasing the potential of our model and technique. Details about our full setup are in Appendix D.3.

Table 3: Iterative shortening achieves significant reduction for Seed-Prover's IMO 2025 proofs.

	P1	P3	P4	P5
Original Proof Length	36478	16377	29147	8658
Simplified Proof Length	20506	7907	14531	4002
Length Reduction	43.8%	51.7%	50.1%	53.8%

5 ADDITIONAL BENEFITS OF PROOF SIMPLIFICATION

5.1 Training on Simplified Proofs Improves Generation

Next, we investigate whether fine-tuning on simplified proofs can be advantageous compared to fine-tuning on longer, raw proofs. To do so, we prepare two datasets of identical problems, the first containing a set of proofs generated by Goedel-Prover-V2 and the second containing the same proofs simplified by ProofOptimizer-ExpIt. The average proof length of the original and simplified proofs is 147 and 85, respectively. We do continued supervised fine-tuning (SFT) starting from our base model (Sec. B.1) with a standard negative log-likelihood (NLL) loss.

In Fig. 5 (left), we compare the training loss between the two datasets. As expected, the initial loss when using original proofs is higher, as models have not seen such long proofs during initial fine-tuning. However, the losses quickly converge. We observe that training on original proofs causes occasional loss spikes, which we suspect are due to several data batches that are hard to learn (e.g. extremely long proofs). Decreasing the learning rate mitigated these training loss spikes but did not improve validation accuracy. In Fig. 5 (right), we compare the miniF2F scores of the two models during SFT, showing that training on simplified proofs results in slightly higher evaluation accuracy despite the two settings having identical training losses.

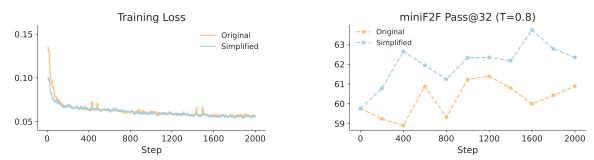


Figure 5: Training loss (left) and miniF2F score (right) after SFT on simplified vs. original proofs.

5.2 SIMPLIFIED PROOFS HAVE A SHORTER EXECUTION TIME

We also observe that proofs simplified by ProofOptimizer often exhibit a faster execution time. We measure proof execution time with lake env lean --profile, excluded library import time (imports are always the same but actual time may vary due to caching effects). We compare the execution times of each proof before and after iterative shortening in Fig. 6 (scatter). For both datasets, we visibly observe that a majority of points lie below the y=x line, signifying speedup. Fig. 6 (histograms) also show the distribution of speedup ratios $\frac{\text{time}_{\text{orig}}}{\text{time}_{\text{new}}}$. Of the 75 PutnamBench proofs, 50/75 have a speedup of over 10%, and 22/75 of those have a speedup of over 50%. We also observe that proofs with a higher original execution time tend to show more speedup. The same trends hold for miniF2F, where 114/194 and 56/194 proofs have a speedup over 10% and 50%, respectively. Finally, we observe 25% and 81% speedups on Seed-Prover's proofs for P3 and P4 of the IMO 2025 (Sec. D.3).

Upon qualitatively analyzing the proofs, we observe that the original proofs often have extraneous tactics that are eliminated by the simplified proofs. However, we also find several cases where the simplified proofs are much slower than the original proof, which usually occurs when a faster proof algorithm is replaced by a shorter but slower method (e.g. brute force with interval_cases). We provide two examples of each in Appendix I. Finally, we remark that all of our training and inference pipelines can also be applied to proof speedup as well by adjusting the reward function from proof length to proof execution time.

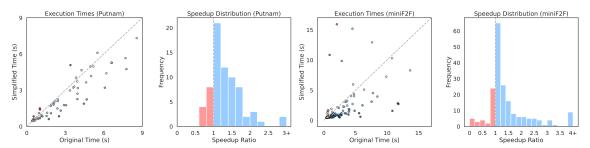


Figure 6: Simplified proofs are frequently faster than original proofs on miniF2F and PutnamBench.

6 RELATED WORKS

LLMs for Theorem Proving in Lean Formal theorem proving is a rapidly growing frontier in AI for mathematics and software verification (Yang et al., 2024b; Li et al., 2024). Progress is typically measured with benchmarks of mathematical theorems in Lean such as miniF2F (Zheng et al., 2021), PutnamBench (Tsoukalas et al., 2024), and ProofNet (Azerbayev et al., 2023). Recently, there have been many LLMs developed for Lean such as Seed-Prover (Chen et al., 2025), Goedel-Prover (Lin et al., 2025a), DeepSeek-Prover (Ren et al., 2025), and Kimina-Prover (Wang et al., 2025). There have also been post-training techniques built on top of these models, such as with expert iteration (Lin et al., 2024), proof sketching (Cao et al., 2025), tree search (Lample et al., 2022; Zimmer et al., 2025), self-play (Dong & Ma, 2025), proof repair (Ospanov et al., 2025), and RL (Gloeckle et al., 2024).

AI for Program Simplification A related line of work makes programs shorter or more efficient (Schkufza et al., 2013; Mankowitz et al., 2023; Shypula et al., 2023; Gautam et al., 2024). In parallel, library learning aims to discover reusable abstractions, often eliminated repeated code and shortening programs (Ellis et al., 2023; Grand et al., 2023; Kaliszyk & Urban, 2015; Wang et al., 2023; Zhou et al., 2024; Berlot-Attwell et al., 2024). Finally, symbolic reasoning techniques like program slicing (Weiser, 2009), super-optimization (Sasnauskas et al., 2017), or partial evaluation (Jones, 1996) can also shorten and optimize low-level code.

Automated Proof Shortening Frieder et al. (2024) study factors that make Lean proofs easier to understand, motivating shorter proofs for maintainability. Classically, there have also been many symbolic methods targeting shortening proofs in SAT and first-order logic languages (Rahul & Necula, 2001; Vyskočil et al., 2010; Wernhard & Bibel, 2024; Gladshtein et al., 2024; Kinyon, 2018). On the neural side, GPT-f (Polu & Sutskever, 2020) generated 23 verified proofs shorter than those in the Metamath library. Most related to our work, ImProver (Ahuja et al., 2024), is an inference-time method for proof shortening using GPT-40 with proof states and retrieval. In contrast, we use training-time approaches (expert iteration and RL), analyze complementary inference-time techniques, and focus on shortening longer proofs generated by SoTA LLMs.

7 Conclusion

We present ProofOptimizer, the first language model trained to simplify Lean proofs. Unlike prior work that wraps existing LLMs around agentic scaffolding, we train a model using expert iteration and RL, coupled with a symbolic linter and iterative proof shortening at inference time.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023. (Cited on pg. 25)
- Riyaz Ahuja, Jeremy Avigad, Prasad Tetali, and Sean Welleck. Improver: Agent-based automated proof optimization. *arXiv preprint arXiv:2410.04753*, 2024. (Cited on pg. 2, 3, 5, 9)
- Leni Aniva, Chuyue Sun, Brando Miranda, Clark Barrett, and Sanmi Koyejo. Pantograph: A machine-to-machine interaction interface for advanced theorem proving, high level reasoning, and data extraction in lean 4. In *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, pp. 104–123. Springer, 2025. (Cited on pg. 16)
- Hugh Leather Aram H. Markosyan, Gabriel Synnaeve. Leanuniverse: A library for consistent and scalable lean4 dataset management. https://github.com/facebookresearch/LeanUniverse, 2024. (Cited on pg. 16)
- Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics. *arXiv* preprint *arXiv*:2302.12433, 2023. (Cited on pg. 9, 16)
- Ian Berlot-Attwell, Frank Rudzicz, and Xujie Si. Library learning doesn't: The curious case of the single-use" library". *arXiv preprint arXiv:2410.20274*, 2024. (Cited on pg. 9)
- Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Reviving dsp for advanced theorem proving in the era of reasoning models. *arXiv preprint arXiv:2506.11487*, 2025. (Cited on pg. 9)
- Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. *URL https://arxiv. org/abs/2507.23726*, 2025. (Cited on pg. 1, 9, 23)
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374. (Cited on pg. 40)
- Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv* preprint *arXiv*:2507.06261, 2025. (Cited on pg. 25)
- Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp (eds.), *Automated Deduction CADE-25 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings*, volume 9195 of *Lecture Notes in Computer Science*, pp. 378–388. Springer, 2015. doi:

- Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and proving. *arXiv preprint arXiv:2502.00212*, 2025. (Cited on pg. 9, 16)
- Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable, interpretable knowledge with wake–sleep bayesian program learning. *Philosophical Transactions of the Royal Society A*, 381(2251):20220050, 2023. (Cited on pg. 9)
- Simon Frieder, Jonas Bayer, Katherine M Collins, Julius Berner, Jacob Loader, András Juhász, Fabian Ruehle, Sean Welleck, Gabriel Poesia, Ryan-Rhys Griffiths, et al. Data for mathematical copilots: Better ways of presenting proofs for machine learning. *arXiv preprint arXiv:2412.15184*, 2024. (Cited on pg. 9)
- Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam. Refactorbench: Evaluating stateful reasoning in language agents through code. In *NeurIPS 2024 Workshop on Open-World Agents*, 2024. (Cited on pg. 9)
- Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning. arXiv preprint arXiv:2410.02089, 2024. (Cited on pg. 5)
- Vladimir Gladshtein, George Pîrlea, and Ilya Sergey. Small scale reflection for the working lean user. *arXiv* preprint arXiv:2403.12733, 2024. (Cited on pg. 9)
- Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. Abel: Sample efficient online reinforcement learning for neural theorem proving. In *The 4th Workshop on Mathematical Reasoning and AI at NeurIPS* '24, 2024. (Cited on pg. 9)
- Gabriel Grand, Lionel Wong, Maddy Bowers, Theo X Olausson, Muxin Liu, Joshua B Tenenbaum, and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting code. *arXiv* preprint *arXiv*:2310.19791, 2023. (Cited on pg. 9)
- Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem provers with informal proofs. *arXiv preprint arXiv:2210.12283*, 2022. (Cited on pg. 16)
- Neil D Jones. An introduction to partial evaluation. *ACM Computing Surveys (CSUR)*, 28(3):480–503, 1996. (Cited on pg. 9)
- Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas. *Journal of symbolic computation*, 69:109–128, 2015. (Cited on pg. 9)
- Michael Kinyon. Proof simplification and automated theorem proving. *CoRR*, abs/1808.04251, 2018. URL http://arxiv.org/abs/1808.04251. (Cited on pg. 2, 9)
- Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat, Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem proving. *Advances in neural information processing systems*, 35:26337–26349, 2022. (Cited on pg. 9)
- Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.co/AI-MO/NuminaMath-1.5] (https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024. (Cited on pg. 16, 17)

- Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si. A survey on deep learning for theorem proving. *arXiv preprint arXiv:2404.09939*, 2024. (Cited on pg. 9)
 - Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave thinking and proving. *arXiv preprint arXiv:2407.10040*, 2024. (Cited on pg. 9)
 - Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving. *arXiv* preprint arXiv:2502.07640, 2025a. (Cited on pg. 4, 9, 16, 17)
 - Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis and self-correction. *arXiv* preprint arXiv:2508.03613, 2025b. (Cited on pg. 1, 2)
 - Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi, Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking llm capability for combinatorial mathematics. *arXiv preprint arXiv:2505.03171*, 2025a. (Cited on pg. 16)
 - Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Understanding r1-zero-like training: A critical perspective, 2025b. URL https://arxiv.org/abs/2503.20783. (Cited on pg. 4)
 - Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms discovered using deep reinforcement learning. *Nature*, 618(7964):257–263, 2023. (Cited on pg. 9)
 - The mathlib Community. The lean mathematical library. *CoRR*, abs/1910.09336, 2019. URL http://arxiv.org/abs/1910.09336. (Cited on pg. 1)
 - Azim Ospanov, Farzan Farnia, and Roozbeh Yousefzadeh. Apollo: Automated llm and lean collaboration for advanced formal reasoning. *arXiv preprint arXiv:2505.05758*, 2025. (Cited on pg. 9)
 - Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. *arXiv* preprint arXiv:2009.03393, 2020. (Cited on pg. 9)
 - Shree Prakash Rahul and George C Necula. *Proof optimization using lemma extraction*. Computer Science Division, University of California, 2001. (Cited on pg. 9)
 - ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via reinforcement learning for subgoal decomposition. *arXiv preprint arXiv:2504.21801*, 2025. (Cited on pg. 9)
 - Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John Regehr. Souper: A synthesizing superoptimizer. *arXiv preprint arXiv:1711.04422*, 2017. (Cited on pg. 9)
 - Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. *ACM SIGARCH Computer Architecture News*, 41(1):305–316, 2013. (Cited on pg. 9)
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300. (Cited on pg. 4)
 - Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning performance-improving code edits. *arXiv preprint arXiv:2302.07867*, 2023. (Cited on pg. 9)

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github.io/blog/qwen2.5/. (Cited on pg. 25)

- George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural theorem-provers on the putnam mathematical competition. *Advances in Neural Information Processing Systems*, 37:11545–11569, 2024. (Cited on pg. 4, 9, 16)
- Jiří Vyskočil, David Stanovskỳ, and Josef Urban. Automated proof compression by invention of new definitions. In *International Conference on Logic for Programming Artificial Intelligence and Reasoning*, pp. 447–462. Springer, 2010. (Cited on pg. 9)
- Christian Walder and Deep Karkhanis. Pass@ k policy optimization: Solving harder reinforcement learning problems. *arXiv preprint arXiv:2505.15201*, 2025. (Cited on pg. 5)
- Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing libraries. *arXiv* preprint arXiv:2310.00656, 2023. (Cited on pg. 9)
- Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.11354*, 2025. (Cited on pg. 9)
- Mark Weiser. Program slicing. *IEEE Transactions on software engineering*, (4):352–357, 2009. (Cited on pg. 9)
- Christoph Wernhard and Wolfgang Bibel. Investigations into proof structures. *Journal of Automated Reasoning*, 68(4):24, 2024. (Cited on pg. 9)
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024a. (Cited on pg. 16)
- Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn Song. Formal mathematical reasoning: A new frontier in ai. *arXiv preprint arXiv:2412.16075*, 2024b. (Cited on pg. 9)
- Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale lean problem set formalized from natural language math problems. *Advances in Neural Information Processing Systems*, 37:105848–105863, 2024. (Cited on pg. 16)
- Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang, Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathematical reasoning of large language models. *arXiv preprint arXiv:2505.02735*, 2025. (Cited on pg. 16)
- Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?, 2025. URL https://arxiv.org/abs/2504.13837. (Cited on pg. 5)

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022. (Cited on pg. 3) Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021. (Cited on pg. 2, 4, 9, 16) Jin Peng Zhou, Yuhuai Wu, Qiyang Li, and Roger Grosse. Refactor: Learning to extract theorems from proofs. arXiv preprint arXiv:2402.17032, 2024. (Cited on pg. 9) Matthieu Zimmer, Xiaotong Ji, Rasul Tutunov, Anthony Bordg, Jun Wang, and Haitham Bou Ammar. Bour-baki: Self-generated and goal-conditioned mdps for theorem proving. arXiv preprint arXiv:2507.02726, 2025. (Cited on pg. 9)

A DISCLOSURE OF USE OF LLMS (ICLR 2026 REQUIREMENT)

In line with the LLM usage disclosure policy for ICLR 2026 submissions, we report our usage of LLMs as the following:

- Design and polish matplotlib and seaborn figures in the paper (ChatGPT)
- Write LaTeX code for tables, figures, and listings, including aesthetically enhancing the styles (ChatGPT)
- Polish and edit text in the paper (ChatGPT)
- Find relevant citations for related work (ChatGPT)
- Assist in producing code for experiments (GitHub Copilot in VSCode, ChatGPT)

B LEAN BASE MODEL AND PROOF SIMPLIFICATION DATA DETAILS

B.1 GENERAL BASE MODEL FOR LEAN

 First, we train a general-purpose base model in Lean by fine-tuning <code>Qwen-2.5-7B-Instruct</code> (Yang et al., 2024a) on around 1B Lean tokens. The model is fine-tuned on a combination of diverse math and Lean-related tasks, as follows:

- Natural Language Problem Solving: The model is trained on natural language mathematics problems with associated solutions so that it has general math capabilities. We use NuminaMath-1.5 (LI et al., 2024), a high-quality set of such pairs.
- Lean Code Completion: We use a subset of Lean code from GitHub, using GPT-40 with heuristics to classify whether code is Lean 3 or Lean 4. We include only the Lean 4 subset of the code.
- Auto-formalization: In order to teach the model to associate natural language with Lean, we train the model to perform auto-formalization of both problems and solutions from natural language to Lean 4 in our data mix. For problems, we use natural language problems with Lean problem statement formalizations from high-quality datasets: CombiBench (Liu et al., 2025a), Compfiles, FormalMATH (Yu et al., 2025), Goedel-Pset (Lin et al., 2025a), Lean Workbook (Ying et al., 2024), miniF2F (Zheng et al., 2021), ProofNet (Azerbayev et al., 2023), and PutnamBench (Tsoukalas et al., 2024). We include solution autoformalization data from the Goedel-Pset-v1-Solved dataset by mapping Lean solutions with natural language solutions.
- Formal Theorem Proving: We use a set of conjectures and proofs from STP (Dong & Ma, 2025), which is a diverse collection of theorems and proofs in Lean 4 generated via expert iteration while training their model.
- Tactic and Proof State Prediction: Finally, to teach the model about proof states, we use preextracted data from LeanUniverse (Aram H. Markosyan, 2024) and extract additional data using the Pantograph (Aniva et al., 2025) tool. For each proof in STP, we extract each tactic, as well as the proof states before and after the tactic. The model is given the proof state before the tactic and asked to predict both the tactic and the proof state following the tactic.

B.2 GENERATING A DATASET OF THEOREMS AND PROOFS FOR SHORTENING

After creating a Lean base model, we next describe how we generate a training dataset of proofs to be shortened. To do so, we first present a recipe for generating interesting theorems.

Formalizing Proofs with Sketches to Derive Subtheorems While there are many datasets such as Goedel-Pset and Lean Workbook, we find that they have a high density of simple computational problems posed as proofs rather than high-quality proving problems. In Goedel-Pset, we estimate that only 5% of the problems are proof problems¹, leading to a lack of high-quality theorem proving data. To combat this, we develop a technique to generate diverse and interesting theorems based on the idea of proof sketching (Jiang et al., 2022).

The key idea is that we can leverage existing natural language solutions to identify core steps in a proof. We first train our Lean base model to take a natural language solution and auto-formalizing into a high-level proof, which we call a *proof sketch*, an example shown in Listing 1. In the proof sketch, core steps are represented via have statements, and lower-level details are omitted and left as sorry statements. We then filter sketches are then filtered by the Lean compiler to remove non-compiling sketches.

¹We estimate whether a problem is a computational problem via a heuristic filter of whether the problem has any of the keywords: *prove*, *show*, *establish*, *demonstrate*, *verify*

Once we have a set of compiling sketches, we extract each sorry goal into a new theorem via the extract_goal tactic, which turns it into a theorem that is equivalent to what needs to be proved at that particular sorry. For example, extracting the second sorry in Listing 1 results in the theorem shown in Listing 2. By extracting these sorry statements, we are able to generate 518K theorems.

```
theorem lean_workbook_plus_22532 (a b : \mathbb{N} \to \mathbb{R})
  (h_0 : 0 < a \land 0 < b)
  (h_1 : \forall n, a (n + 1) = a n + 2)
  (h_2 : \forall n, b (n + 1) = b n * 2)
  (h_3 : a 1 = 1)

(h_4 : b 1 = 1)
  (h<sub>5</sub> : \Sigma k in Finset.range 3, b k = 7) :
  \Sigma k in Finset.range n, (a k * b k) = (2 * n - 3) * 2^n + 3 := by
   -- Lemma 1: Prove that the sequence {a_n} is an arithmetic sequence.
 have lemma1 : \forall n, a (n + 1) = a n + 2 := by
    sorry
 -- Lemma 2: Express a_n in terms of n. have lemma2 : \forall n, a n = 2 * n - 1 := by
    sorry
   -- Lemma 3: Express b_n in terms of n.
 have lemma3 : \forall n, b n = 2^(n - 1) := by
    sorry
   - Lemma 4: Calculate the sum of the first n terms of the sequence {a_n b_n}.
 have lemma4 : \forall n, \Sigma k in Finset.range n, (a k * b k) = (2 * n - 3) * 2^n + 3 := by
   -- Apply lemma4 to conclude the theorem.
 exact lemma4 n
```

Listing 1: Example of a proof sketch

```
theorem lean_workbook_plus_22532.extracted_1_1 (a b : \mathbb{N} \to \mathbb{R}) (h<sub>0</sub> : 0 < a \wedge 0 < b) (h<sub>1</sub> : \forall (n : \hookrightarrow \mathbb{N}), a (n + 1) = a n + 2) (h<sub>2</sub> : \forall (n : \mathbb{N}), b (n + 1) = b n * 2) (h<sub>3</sub> : a 1 = 1) (h<sub>4</sub> : b 1 = 1) (h<sub>5</sub> : \Sigma k \in Finset.range \hookrightarrow 3, b k = 7) (lemmal : \forall (n : \mathbb{N}), a (n + 1) = a n + 2) (n : \mathbb{N}) : a n = 2 * \uparrown - 1 := sorry
```

Listing 2: Example of an extracted theorem

Fine-Tuning our Model for Proof Sketching In order to fine-tune our model for proof sketching, we first curate a dataset of natural language problems (with corresponding Lean problem formalizations) and solutions by combining <code>Goedel-Pset-v1</code> (Lin et al., 2025a) with NuminaMath-1.5 (LI et al., 2024). Then, we use <code>Qwen-2.5-32B-Instruct</code> to produce proof-sketches based on these natural language solutions similar to that in Listing 1. We filter out compiling sketches and train our Lean base model on them. In Table 4, we show the results of fine-tuning. Since it can be tricky to measure the objective correctness of a sketch, we use the proxy of compile rate, finding our model performs better than <code>Qwen2.5-32B</code> and is smaller and can do inference faster.

Table 4: Proof sketching ability of models

Model	compile@1	compile@16
Qwen2.5 7B (zero-shot)	3.6	7.0
Qwen2.5 7B (one-shot)	4.9	19.0
Qwen2.5 32B (zero-shot)	21.1	62.0
Qwen2.5 32B (one-shot)	35.1	75.0
Ours (7B)	54.8	89.1

Generating Proofs for Simplification Because proof sketching can generate steps or sub-theorems that are too incremental, we first filter out trivial theorems that can be easily solved by automation tactics in Lean. For example, the first sorry in Listing 1 is just a restatement of hypothesis h_1 and can be solved via rfl. While this theorem is correct, it is not challenging for the model. Therefore, we design an AUTO tactic (Listing 3) that tries a series of Lean automation tactics such as linarith and aesop to filter out these simple theorems, leaving 307K of the original 518K theorems (filtering out 41%).

For the remaining theorems, we attempt to generate proofs of these theorems with Goedel-Prover-V2-32B, a strong open-source proving model. With 4 attempts per theorem, the model is able to prove 145K theorems, which we use as targets for proof simplification. Statistics and examples of these proofs can be found in the next section, Appendix B.3.

```
macro "AUTO" : tactic =>
  '(tactic|
   repeat'
      (try rfl
      try tauto
      try assumption
      try norm_num
      try ring
      try ring_nf at *
      try ring nf! at *
      try native_decide
      try omega
      try simp [*] at *
      try field_simp at *
      try positivity
      try linarith
      try nlinarith
          exact?
      try aesop))
```

Listing 3: AUTO tactic for filtering trivial theorems

B.3 STATISTICS OF PROOF SIMPLIFICATION TRAINING DATASET

The minimum, Q1, median, Q3, and maximum proof lengths of our training dataset are 1, 103, 204, 411, and 10958. The mean is 334. In Fig. 7, we show the distribution of lengths, observing its right-skewed nature. Examples of proofs are shown in Listings 4 and 5. Compared to the proofs in our evaluation sets, we observe that training proofs often have more unused hypotheses, as they are derived from extracting the proof state, which may contain hypotheses that are not used for that particular sub-goal.

847

848 849

850 851

852853854855

856 857

858

859 860

861 862

863864865

866 867

868 869 870

871 872

873874875

876

877

878

879

880

881

882

883

884

885

886

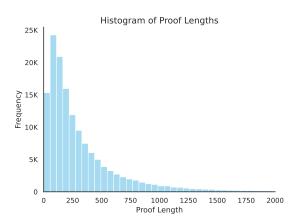


Figure 7: Histogram of proof lengths.

```
theorem extracted_1 (a b : \mathbb{R}) (ha : 0 \le a) (hal : a \le 1) (hb : b = a ^3 + 1 / (1 + a)) (lemmal : 1 - a + a ^2 - a ^3 \le 1 / (1 + a)) (lemma2 : b \ge 1 - a + a ^2) (lemma3 : 1 - a + a ^2 \ge 3 / 4)
   (lemma4 : b \le 3 / 2) : 3 / 4 < b := by
have h_main : 3 / 4 < b := by
     by_contra h
     -- Assume for contradiction that b \le 3/4 have h_1: b \le 3 \ / \ 4:= by linarith -- From lemma2, b \ge 1 - a + ^2a, and from lemma3, 1 - a + ^2a \ge 3/4 have h_2: 1 - a + a ^ 2 \le 3 \ / \ 4:= by
        linarith
      -- But from lemma3, 1 - a + ^2a \geq 3/4, so 1 - a + ^2a = 3/4 have h_3 : 1 - a + a ^ 2 = 3 / 4 := by
         linarith
      -- Solve 1 - a + ^2a = 3/4 to get a = 1/2 have h_4 : a = 1 / 2 := by have h_{41} : a ^ 2 - a + 1 / 4 = 0 := by
            nlinarith
         have h_{42}: (a - 1 / 2) ^ 2 = 0 := by
            nlinarith
         have h_{43} : a - 1 / 2 = 0 := by
            nlinarith
         linarith
         - Substitute a = 1/2 into b = 3a + 1/(1 + a)
      have h_5: b = 19 / 24 := by
         rw [h<sub>4</sub>]
         norm_num
         - But 19/24 > 3/4, so b > 3/4, contradiction
      have h_6 : b > 3 / 4 := by
         rw [h<sub>5</sub>]
         norm_num
      linarith
   exact h_main
```

Listing 4: Example of Proof Simplification Training Task (Length 158)

```
893
894
               theorem extracted_1 (n : \mathbb{N}) (hn : 3 \leq n) (lemma1 : Nat.card \uparrow \{k \mid k \leq n \land k \neq 0\} = n) :
                 Nat.card \uparrow{k | k \le n - 1 \land k \neq 0} = n - 1 := by have h_main : Nat.card \uparrow{k : N | k \le n - 1 \land k \neq 0} = n - 1 := by
895
896
                   have h_1: \{k : \mathbb{N} \mid k \leq n-1 \land k \neq 0\} = Set.Icc 1 (n-1) := by
897
                     apply Set.ext
                      intro k
898
                      simp only [Set.mem_setOf_eq, Set.mem_Icc]
899
                      constructor
                      · intro h
900
                        have h_2: k \le n - 1 := h.1
                        have h_3 : k \neq 0 := h.2
have h_4 : 1 \leq k := by
901
902
                          by_contra h<sub>4</sub>
903
                             - If k < 1, then k = 0 since k is a natural number
                           have h_5: k = 0 := by
904
                             omega
905
                          contradiction
                        exact \langle h_4, h_2 \rangle
906
                      · intro h
907
                        have h_2: 1 \le k := h.1
                        have h_3 : k \le n - 1 := h.2
908
                        have h_3 : k \le n - 1 := h_3
have h_5 : k \ne 0 := by
909
                          by_contra h<sub>5</sub>
910
                            -- If k = 0, then 1 \le k would be false
911
                          have h_6: k = 0 := by simpa using <math>h_5
                          omega
912
                        exact \langle h_4, h_5 \rangle
913
                   rw [h1]
                   -- Calculate the cardinality of the set \{1, \ldots, n-1\} have h_2: Nat.card (Set.Icc 1 (n-1): Set \mathbb{N}) = n-1 := by
914
                      -- Use the fact that the cardinality of the interval [1, n - 1] is n - 1 have h_3 : n - 1 \geq 1 := by
915
916
                       have h_4 : n \ge 3 := hn
917
                       omega
                      -- Use the formula for the cardinality of the interval [a, b]
918
                      rw [Nat.card_eq_fintype_card]
919
                       -- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
                      rw [Fintype.card_ofFinset]
920
                       -- Convert the set to a finset and calculate its cardinality
921
                      <;> simp [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
                      <;> cases n with
922
                      | zero => contradiction
923
                      | succ n =>
                        cases n with
924
                        | zero => contradiction
925
                        | succ n =>
                           cases n with
926
                           | zero => contradiction
927
                           | succ n =>
                             simp_all [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
928
                             <;> ring_nf at *
                             <;> omega
929
                   rw [h_2]
930
                 exact h_main
931
```

Listing 5: Example of Proof Simplification Training Task (Length 295)

C TRAINING METRICS THROUGHOUT RL

In Section 4.1, we observed that expert iteration leads to higher diversity as witnessed by better @32 metrics, while reinforcement learning with standard reinforcement learning algorithms maximizing expected rewards leads to higher @1 metrics. In Figure 8, we show the evolution of proof shortening red@1 alongside red@32. Initial @32 metrics are slowly distilled into @1, but the improvement on @32 metrics is limited.

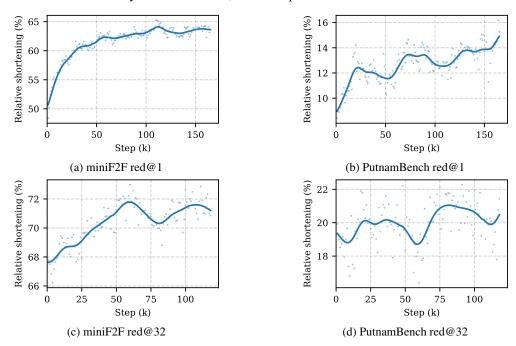


Figure 8: Reduction metrics @1 and @32 over the course of RL. GRPO maximizes red@1 at the cost of diversity, as red@32 only marginally increases in comparison.

D FULL RESULTS AND ADDITIONAL ANALYSIS OF ITERATIVE PROOF SHORTENING

TABLE OF ITERATIVE PROOF SHORTENING RESULTS

Table 5 is a tabular form of Fig. 4, showing the proof length after each iteration of proof shortening.

Table 5: Min@64 (rounded to nearest integer) and reduction (%) of miniF2F and PutnamBench proofs across inference-time iterations. Iterations 1-6 are done with 64 samples, and 7-8 with 1024 samples.

Dataset	Model	Orig	Lint	It 1	It 2	It 3	It 4	It 5	It 6	It 7*	It 8*
miniF2F	Min@64 Red@64 (%)	334 0.0				121 81.0				88 85.7	75 87.9
Putnam	Min@64 Red@64 (%)		1359 7.4	1123 34.8		1024 42.5				890 52.2	811 57.2

D.2 EFFECT OF K ON MIN@K AND RED@K THROUGHOUT SIMPLIFICATION

In this section, we analyze the effect of increasing k on min@k and red@k. First, we analyze this trend when attempting to simplify the initial, linted proof, shown in Table 6 and Fig. 9. We observe a relatively log-linear gain in both metrics.

For comparison, we analyze the same trend but for simplifying proofs that have already gone many iterations of simplification. In Fig. 10, we analyze proofs that have gone 7 iterations of proof simplification. We see a different pattern, where min@k falls slower for lower k and then log-linearly afterwards. Intuitively, as proofs become more simplified, they become harder to simplify in a low-shot setting, and exploring more diverse simplifications becomes crucial.

Table 6: Min@k and Red@k for increasing values of k

Dataset	Metric	Original	Linter	@1	@2	@4	@8	@16
miniF2F	Min@k	334	302	142	141	139	137	134
	Red@k (%)	0.0%	9.2%	77.1%	77.3%	77.7%	78.1%	78.6%
PutnamBench	Min@k	1468	1359	1120	1117	1112	1105	1094
	Red@k (%)	0.0%	7.4%	35.2%	35.5%	35.9%	36.5%	37.3%

Dataset	Metric	@32	@64	@128	@256	@512	@1024
miniF2F	Min@k	130	126	122	118	114	110
	Red@k (%)	79.2%	79.9%	80.6%	81.2%	81.8%	82.4%
PutnamBench	Min@k	1080	1063	1043	1023	1004	987
	Red@k (%)	38.4%	39.7%	41.3%	42.9%	44.3%	45.7%

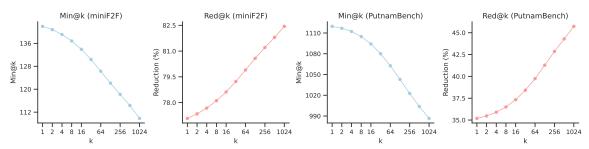


Figure 9: Effect of scaling k (sample count) on Min@k and Red@k (initial iteration)

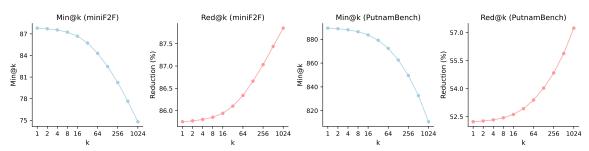


Figure 10: Effect of scaling k (sample count) on Min@k and Red@k (later iteration)

D.3 DETAILS ON SEED-PROVER IMO PROOF SHORTENING

Earlier in 2025, Seed-Prover released Lean proofs of four problems that the model successfully solved from the 2025 International Mathematical Olympiad (IMO) (Chen et al., 2025). They solved problems 3, 4, and 5 were solved during the contest window, and problem 1 later after the competition. However, the proofs of these problems are extremely verbose, especially compared to their informal counterparts. Using iterative proof shortening, our ProofOptimizer is able to successfully reduce the proof length of their proofs for P3, P4, and P5 by over half, as well as the longer P1 by 43.8%. In addition, we find that our shortened proofs for P4 and P5 show a 25% and 81% (respectively) speedup over the original proofs (Table 7).

Table 7: Results for ProofO	ptimizer + Iterative	Shortening on IMC	2025 Proof Simplification

Problem		Length			Runtime			
110010111	Original	al Simplified Reduct	Reduction	Original	Simplified	Speedup		
P1	36478	20506	43.79%	399.7	392.3	1.02×		
P3	16377	7907	51.72%	39.7	39.1	$1.02 \times$		
P4	29147	14531	50.15%	453.8	362.5	$1.25 \times$		
P5	8658	4002	53.78%	61.0	33.7	$1.81 \times$		

We use proofs from the official GitHub repository using Mathlib 4.14.0 (our model was trained on Mathlib 4.19.0). Before shortening, we replace invocations of exact? and apply? with the actual proof that is found. Each of the proofs is divided into a collection of smaller lemmas and theorems (problems 1, 3, 4, and 5 have 80, 52, 88, and 14 theorems, respectively). Since running iterative shortening on the entire proof will suffer from long context issues, we treat each sub-lemma/sub-theorem as an individual target for

shortening. At the end, we combine the shortened theorems to produce the complete shortened proof. When feeding a sub-theorem into ProofOptimizer, we include as context the theorem definition (but not proof) of all other theorems that occur in its proof. Finally, to ensure the correctness of our simplified proofs, we use SafeVerify to confirm that all four simplified proofs match the specification of the original proof without any environmental manipulation. We remark that our setup does *not* consider the space of structure-level simplifications, as we retain all sub-theorem statements from the original proof and only simplify their proofs. In addition, as our proof length metric only measures the length of proofs, it does not take into account unnecessarily long or redundant sub-theorem statements.

As this experiment aims to provide a simple demonstration of the potential of our approach rather than perform a controlled scientific study, we do not fix the number of iterations or samples per iteration across problems. Approximately, we use 15-20 iterations of shortening with 64-4096 samples per iteration. Taking inspiration from the analysis in Sec. D.2, we generally use less samples for the first few iterations and increase the number of samples for later iterations to maximize reduction per sample. We also allocate more samples to sub-theorems that show more simplification potential in early iterations. In total, we used approximately 3000 H100 GPU hours per problem.

E COMPARISON WITH QWEN2.5, GPT-40, AND GEMINI-2.5-PRO

In Table 8, we compare *ProofOptimizer* models with several off the shelf models, namely Qwen 2.5 (Team, 2024), GPT-40 (Achiam et al., 2023), and Gemini-2.5-Pro (Comanici et al., 2025). For all models, we feed the output of the symbolic linter as input, and report overall reduction with respect to the *original* (*unlinted*) proof.

Table 8: **Proof length of miniF2F and PutnamBench proofs for various models.** Specially trained proof minimization models outperform prompted off-the-shelf models. Reinforcement learning achieves best @1 metrics but at the cost of reducing diversity, as witnessed by improved @32 metrics with expert iteration.

Dataset	Model	Min@1	Min@32	Red@1	Red@32
	Original	3	334	0.	0%
	Linter	3	802	9.	2%
	Qwen2.5-7B	294	267	25.7%	41.8%
miniF2F	Qwen2.5-32B	288	252	30.0%	47.3%
ШШГ2Г	GPT-4o	283	258	35.2%	47.9%
	GPT-40 + States	266	290	32.9%	46.5%
	Gemini-2.5-Pro	280	207	31.6%	62.0%
	Gemini-2.5-Pro + States	283	208	31.6%	62.0%
	ProofOptimizer-ExpIt	241	153	53.9%	74.9%
	ProofOptimizer-RL	190	152	67.1%	73.4%
	Original	1.	468	0.	0%
	Linter	1.	359	7.	4%
	Qwen2.5-7B	1358	1339	9.0%	14.8%
Putnam	Qwen2.5-32B	1353	1304	10.9%	20.7%
Bench	GPT-4o	1355	1336	10.9%	18.2%
	GPT-40 + States	1379	1358	9.3%	15.9%
	Gemini-2.5-Pro	1348	1303	12.7%	24.5%
	Gemini-2.5-Pro + States	1371	1319	11.5%	24.1%
	ProofOptimizer-ExpIt	1328	1161	15.2%	31.9%
	ProofOptimizer-RL	1303	1258	21.6%	27.1%

In Fig. 11, we compare the specific optimized proofs between Gemini and ProofOptimizer. For both data sets it can be seen that the longer the proof, the more challenging it is to shorten it. This is because although long proofs have more potential for shortening, the models struggle to maintain correctness of them. Still, ProofOptimizer is able to bring some improvements for the long proofs (see the top right part of the PutnamBench plot). In miniF2F, there is a significant number of proofs that can be minimized to just one step, which typically boils down to invoking one proof automation tactic (like linarith instead of applying a sequence of more explicit proof steps.

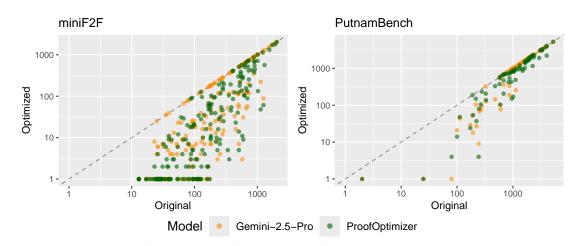


Figure 11: Comparison of optimized proofs between ProofOptimizer (green) and Gemini 2.5 Pro (yellow)

F FULL RESULTS AND EXTENDED ANALYSIS OF REPAIR WITH EXECUTION FEEDBACK

This section contains the full results of the experiments in Sec. 4.2. All simplification attempts are done on the set of linted proofs. Table 9, Figure 12, and Figure 13 are extended versions of Fig. 3 for both PutnamBench and miniF2F. The settings are as follows:

- **ProofOptimizer**: *ProofOptimizer-ExpIt*, with 64 simplification attempts per proof.
- + Repair: The previous setting, with 1 attempted repair by Goedel-Prover-V2-32B.
- + Repair + Linter: The previous setting, with our linter applied to all proofs.
- ProofOptimizer (@128): ProofOptimizer-Explt, with 128 simplification attempts per proof
- **ProofOptimizer** (@**64x2**): *ProofOptimizer-Explt* with 64 simplification attempts per proof, and the best simplified proof for each problem is then fed back for an additional 64 attempts.

We remark that these baselines are normalizing for sample count rather than running time. Sampling a repair from Goedel-Prover-V2-32B takes considerably longer than sampling a simplification from our model. This is both because it is a larger model (32B vs. 7B) and because their model relies on CoT, causing their average response length to be significantly longer than ours.

Table 9: Results of execution-based repair strategies

Dataset	Model	Min@64	$Min@64\times 2$	Red@64	$Red@64\times 2$
	Linter		302		9.2%
	ProofOptimizer	144	-	75.5%	_
	+ Repair	-	136	_	77.3%
miniF2F	+ Repair + Linter	-	132	_	77.9%
	ProofOptimizer (@128)	-	130	_	78.9%
	ProofOptimizer (lt 2) - 130 ProofOptimizer (lt 2) - 125	=	80.2%		
	Linter		1359		7.4%
	ProofOptimizer	1123	-	32.9%	-
Putnam	+ Repair	-	1113	_	35.3%
Bench	+ Repair + Linter	-	1107.2	_	35.7%
	ProofOptimizer (@128)	-	1099	-	36.5%
	ProofOptimizer (@64x2)	-	1095	_	37.0%

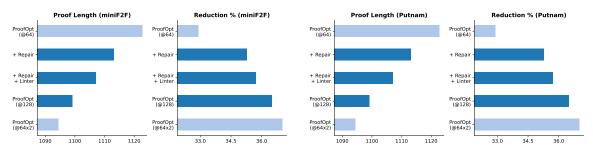


Figure 12: Results of Execution-Based Repair with Goedel-Prover

1270

1271

1272

1273 1274

1275

1285

1286

1287

1288 1289

1290

1291 1292 1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

131313141315

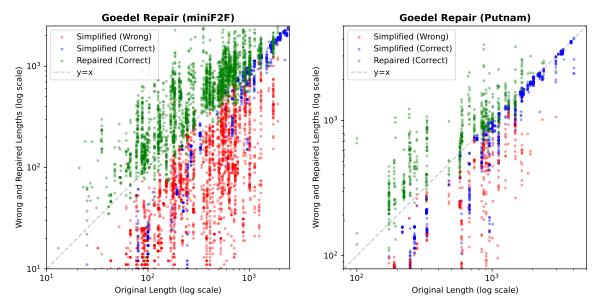


Figure 13: Comparison of Proof Lengths with Execution-Based Repair

Finally, in Listings 6 and 7, we show an example of a proof that was successfully repaired. Note that the repaired proof has many components in common with the original proof.

```
theorem mathd_numbertheory_314
   (r n : \mathbb{N}) (h_0 : r = 1342 \% 13) (h_1 : 0 < n)
  (h<sub>2</sub> : 1342|n) (h<sub>3</sub> : n % 13 < r)
  : 6710 \le n := by
  have h_r : r = 3 := by rw [h_0]
  have h_{main}: 6710 \leq n := by
    have h_4: n % 13 < 3 := by
       rw [h_r] at h3
       exact h_3
     obtain \langle k, rfl \rangle := h_2
    have h_5: 0 < k := by
       by_contra h
       push_neg at h
       have h_6: k = 0 := by omega
       simp [h_6] at h_1
    by_contra! h<sub>6</sub>
     have h_7: k < 4 := by
       by_contra h<sub>8</sub>
       have h_9: k \geq 5 := by omega
       have h_{10}: 1342 * k \geq 1342 * 5 := by
      \hookrightarrow nlinarith
       omega
     interval_cases k <;> norm_num [Nat.
     \hookrightarrow \texttt{mul\_mod, Nat.add\_mod, Nat.mod\_mod]} \ \ \texttt{at}
      \hookrightarrow h<sub>4</sub> \vdash
  exact h main
```

Listing 6: Original Lean Proof (Length 126)

```
theorem mathd_numbertheory_314 -- Wrong
  (... statement omitted) := by
  rw [h<sub>0</sub>] at h<sub>3</sub>
  have : n % 13
                   < 3 := by omega
  obtain \langle k, rfl \rangle := h_2
theorem mathd_numbertheory_314
                                      -- Correct
  (... statement omitted) := by
 have h_r : r = 3 := by
    rw [ho]
    <;> norm num
    <;> rfl
 have h_{main} : 6710 \le n := by
    have h_4: n % 13 < 3 := by
      rw [h_r] at h3
      exact h<sub>3</sub>
    obtain \langle k, rfl \rangle := h_2
    by contra! h
    have h_5: k \le 4 := by
      omega
    interval cases k <; > norm num [Nat.
     \hookrightarrow mul_mod, Nat.add_mod, Nat.mod_mod] at
     \hookrightarrow h<sub>4</sub> \vdash <;>
      (try omega) <; > (try contradiction)
  exact h main
```

Listing 7: Wrong Simplification and Correct Repair (Length 93)

G EVALUATION DATASET DETAILS

 For our evaluation datasets, we use miniF2F and PutnamBench proofs sampled from Goedel-LM/Goedel-Prover-V2-32B. For miniF2F, we sample with temperature 1 and top-p 0.95. For PutnamBench, we use proofs provided by the team. In both cases, we take the shortest passing proof for each problem in Mathlib 4.19.0, resulting in 194 proofs for miniF2F and 75 proofs for PutnamBench. Table 10 and Figure 14 show summary statistics of our dataset. One sample from each dataset is shown in Listings 8 and 9.

As a sidenote, we observe a discrepency in Goedel-Prover-V2-32B's results with Lean versions. Upon testing their model, we measured 90% (pass@64) and 86 (pass@184) on miniF2F and PutnamBench with Mathlib 4.9, but only 80% (pass@64) and 75 (pass@184) with Mathlib 4.19. In this paper, we use Mathlib 4.19 rather than 4.9, as it is more recent and likely more useful to the Lean community.

Table 10: Summary statistics of proof lengths in evaluation dataset

Dataset	n	Min	Q1	Median	Q3	Max	Mean
MiniF2F	194	13	64	167	499	2980	334
PutnamBench	75	2	608	1179	2110	5420	1468

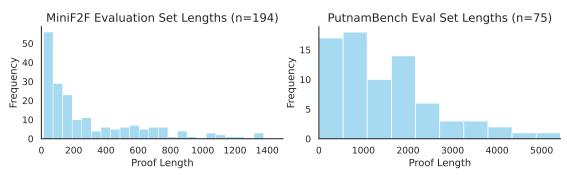


Figure 14: Histograms of proof lengths for our miniF2F and PutnamBench evaluation sets.

```
theorem mathd_numbertheory_185
    (n : N)
    (h_0 : n % 5 = 3) :
    (2 * n) % 5 = 1 := by
    have h_1 : (2 * n) % 5 = 1 := by
    have h_2 : (2 * n) % 5 = (2 * (n % 5)) % 5 := by
    simp [Nat.mul_mod, Nat.mod_mod]
    <;> ring_nf at *
    <;> omega
    rw [h_2]
    rw [h_0]
    <;> norm_num
    <;> rfl
    exact h_1

Listing 8: Example of miniF2F Eval Task (Length 65)
```

```
1363
1364
              theorem putnam_1993_a2
1365
              (x : \mathbb{N} \to \mathbb{R})
              (xnonzero : \forall n : \mathbb{N}, x n \neq 0)
(hx : \forall n \geq 1, (x n) ^ 2 - x (n - 1) * x (n + 1) = 1)
: \exists a : \mathbb{R}, \forall n \geq 1, x (n + 1) = a * x n - x (n - 1) := by
1366
1367
                have h_main : \forall (n : \mathbb{N}), n \ge 1 \rightarrow (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
1368
1369
                   have h_1: \forall (n: \mathbb{N}), n \ge 1 \to (x (n+1) + x (n-1)) / x n = (x (n+2) + x n) / x (n+1)
1370
                     intro n hn
                     have h_2: (x (n + 1)) ^ 2 - x n * x (n + 2) = 1 := by
1371
                       have h_3 := hx (n + 1) (by linarith)
1372
                       simpa [Nat.add_assoc] using h<sub>3</sub>
1373
                     have h_3: (x n) ^2 - x (n - 1) * x (n + 1) = 1 := hx n hn
                     have h_4: x (n + 2) * x n + (x n) ^ 2 - (x (n + 1)) ^ 2 - x (n - 1) * x (n + 1) = 0 := by
1374
                       linarith
1375
                     have h_5: (x (n + 2) + x n) * x n - (x (n + 1) + x (n - 1)) * x (n + 1) = 0 := by
                       ring_nf at h4 -
1376
                       linarith
1377
                     have h_6: x n \neq 0 := xnonzero n
                     have h_7: x (n + 1) \neq 0 := xnonzero (n + 1) have h_8: (x (n + 2) + x n) / x (n + 1) - (x (n + 1) + x (n - 1)) / x n = 0 := by
1378
                       field_simp [h_6, h_7] at h_5 \vdash
1379
                       nlinarith
1380
                     linarith
1381
                  have h_2 : \forall (n : \mathbb{N}), n \ge 1 \to (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by
1382
                     intro n hn
                     induction' hn with n hn IH
1383
1384
                       norm_num
1385
                       have h_3 := h_1 n hn
have h_4 := h_1 (n + 1) (by linarith)
1387
                       simp [Nat.add_assoc] at h3 h4 +
                       <;>
1388
                       (try norm_num at * <;>
                       try linarith) <;>
(try simp_all [Nat.add_assoc]) <;>
1389
1390
                       (try ring_nf at * <;>
                       try linarith) <;>
1391
                       (try field_simp [xnonzero] at * <;>
1392
                       try nlinarith)
1393
                       <:>
                       linarith
1394
                  \verb|exact| h_2 \ n \ hn|
1395
                have h_exists_a : \exists (a : \mathbb{R}), \forall (n : \mathbb{N}), n \ge 1 \to x (n + 1) = a * x n - x (n - 1) := by
1396
                  use (x 2 + x 0) / x 1
1397
                   intro n hn
                   have h_1: (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := h_main n hn
1398
                  1399
                  have h_3: (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by rw [h<sub>1</sub>]
                  have h_4: x (n + 1) + x (n - 1) = ((x 2 + x 0) / x 1) * x n := by
1400
                     field_simp [h_2] at h_3 \vdash
1401
                     <;> nlinarith
                  have h_5: x (n + 1) = ((x 2 + x 0) / x 1) * x n - x (n - 1) := by linarith
1402
                   exact h<sub>5</sub>
1403
                exact h_exists_a
1404
1405
```

Listing 9: Example of PutnamBench Eval Task (Length 715)

1411 1412

1413

1414

1415 1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

142714281429

1430

1431

1432

1434

1435

1436

1437

1438

1439

1440

1441 1442

1443

1444

14451446

H EXAMPLES OF PROOFS SIMPLIFIED BY PROOFOPTIMIZER

In Listings 10 to 17, we show proofs successfully optimized with ProofOptimizer and iterative shortening. Some proofs were syntactically modified to fit on the page (new lines removed, multiple lines compressed into one).

```
theorem mathd_algebra_338 -- Original Proof
  (abc: \mathbb{R})
  (h_0 : 3 * a + b + c = -3)
  (h_1 : a + 3 * b + c = 9)
  (h_2 : a + b + 3 * c = 19) :
 a * b * c = -56 := by
have h_3 : b = a + 6 := by
    have h_{31}: -a + b = 6 := by
      have h_{32}: (a + 3 * b + c) - (3 * a + b)

\hookrightarrow + c) = 9 - (-3) := by
         linarith
       linarith
     linarith
  have h_4 : c = a + 11 := by
    have h_{41} : -a + c = 11 := by
     have h_{42}: (a + b + 3 * c) - (3 * a + b \hookrightarrow + c) = 19 - (-3) := by linarith
       linarith
     linarith
  have h_5: a = -4 := by
    have h_{51}: 3 * a + b + c = -3 := h_0
     rw [h_3, h_4] at h_{51}
     ring_nf at h<sub>51</sub> ⊢
     linarith
  have h_6: b = 2 := by
    rw [h<sub>3</sub>]
     rw [h<sub>5</sub>]
     <;> norm_num
  have h_7: c = 7 := by
     rw [h4]
     rw [h<sub>5</sub>]
     <;> norm_num
  have h_8 : a * b * c = -56 := by
     rw [h<sub>5</sub>, h<sub>6</sub>, h<sub>7</sub>]
     <;> norm_num
  exact h<sub>8</sub>
```

```
theorem mathd_algebra_338 

(a b c : \mathbb{R}) 

(h<sub>0</sub> : 3 * a + b + c = -3) 

(h<sub>1</sub> : a + 3 * b + c = 9) 

(h<sub>2</sub> : a + b + 3 * c = 19) : 

a * b * c = -56 := by 

have : a = -4 := by linarith 

subst_vars 

nlinarith
```

Listing 11: Simplified Proof (Length 11)

Listing 10: Original Proof (Length 214)

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496 1497

```
1457
1458
             theorem putnam_2015_a2
1459
             (a : \mathbb{N} \to \mathbb{Z})
             (abase : a 0 = 1 \wedge a 1 = 2)
1460
             (arec : \forall n \geq 2, a n = 4 * a (n - 1) - a (n - 2))
1461
             : Odd ((181) : \mathbb{N}) \wedge ((181) : \mathbb{N}).Prime \wedge ((((181) : \mathbb{N}) : \mathbb{Z}) | a 2015) := by
               constructor
1462
               \cdot decide
1463
               constructor
               · norm_num [Nat.Prime]
1464
               have h_1: \forall n: \mathbb{N}, (a (n+10): \mathbb{Z}) \equiv - (a n: \mathbb{Z}) [ZMOD 181] := by
1465
                 intro n
                  induction' n using Nat.strong_induction_on with n ih
1466
               1467
1468
               have h_3: (a 2015 : \mathbb{Z}) \equiv 0 [ZMOD 181] :=
                                                              by
1469
                 have h_4: \forall k: \mathbb{N}, (a (10 * k + 5) : \mathbb{Z}) \equiv 0 [ZMOD 181] := by
                    intro k
1470
                   induction' k with k ih
1471
                    \cdot norm_num [Int.ModEq] at h<sub>2</sub> \vdash
                      <;> simpa [abase, arec] using h2
1472
                    • have h_5 := h_1 (10 * k + 5)
                     have h_6 := h_1 (10 * k + 6)
1473
                      have h_7 := h_1 (10 * k + 7)
1474
                      have h_8 := h_1 (10 * k + 8)
                      have h_9 := h_1 (10 * k + 9)
1475
                      have h_{10} := h_1 (10 * k + 10)
1476
                      norm_num [Int.ModEq] at h_5 h_6 h_7 h_8 h_9 h_{10} ih \vdash
1477
                      <;> ring_nf at * <;> omega
                 have h_5: (a 2015 : \mathbb{Z}) \equiv 0 [ZMOD 181] := by
1478
                   have h_6: (a (10 * 201 + 5) : \mathbb{Z}) \equiv 0 [ZMOD 181] := h_4 201
1479
                    norm_num at h_6 \vdash
                    <;> simpa [add_assoc] using h<sub>6</sub>
1480
                  exact hs
               exact Int.dvd_of_emod_eq_zero h3
1481
1482
```

Listing 12: Original Proof (Length 324)

```
theorem putnam_2015_a2
(a : \mathbb{N} \to \mathbb{Z})
(abase : a 0 = 1 \land a 1 = 2)
(arec : \forall n \geq 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : \mathbb{N}) \wedge ((181) : \mathbb{N}). Prime \wedge ((((181) : \mathbb{N}) : \mathbb{Z}) | a 2015) := by
 constructor
  · decide
 constructor
  norm_num [Nat.Prime]
  rw [show 2015 = 10 * 202 - 5 by norm_num]
  have h_1 : \forall n : \mathbb{N}, a (10 * n + 5) \equiv 0 [ZMOD 181] := by
   intro n
    induction' n with k ih
    · norm_num [abase, arec, Int.ModEq]
    · rw [Nat.mul succ]
      simp_all [Int.ModEq, arec]
      omega
  have h_2 := h_1 201
  exact Int.dvd of emod eg zero ho
```

Listing 13: Simplified Proof (Length 82)

1537

1538

1539

1540 1541

1542

1543

1544

1545 1546

```
1504
1505
               theorem imo_1960_p2
1506
                  (x : ℝ)
                  (h_0 : 0 \le 1 + 2 * x)
1507
                  (h_1 : (1 - Real.sqrt (1 + 2 * x))^2 \neq 0)
                  (h_2 : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9)
1508
                  (h_3 : x \neq 0) :
1509
                  -(1 / 2) \le x \wedge x < 45 / 8 := by
1510
                  constructor
                  \cdot nlinarith [sq_nonneg (x + 1 / 2)]
1511
                  · set s := Real.sqrt (1 + 2 * x) with hs
                    have h_{51}: 0 \le 1 + 2 * x := h_0
1512
                    have h_{52}: s \ge 0 := Real.sqrt_nonneg _ have h_{53}: s \stackrel{?}{\sim} 2 = 1 + 2 * x := by
1513
1514
                      rw [hs]
                    rw [Real.sq_sqrt] <;> linarith have h_{54} : (1 - s) ^ 2 \neq 0 := by simpa [hs] using h_1 have h_{55} : s \neq 1 := by
1515
1516
                       intro h
1517
                      have h_{551}: (1 - s) ^2 = 0 := by
1518
                         rw [h]
                         norm num
1519
                       contradiction
                    have h_{56}: (s + 1) ^ 2 * (s - 1) ^ 2 = (s ^ 2 - 1) ^ 2 := by
1520
                      ring
1521
                    have h_{57}: (s ^ 2 - 1 : \mathbb{R}) ^ 2 = 4 * x ^ 2 := by
1522
                      rw [hsal
                      ring
1523
                    have h_{58} : (4 : \mathbb{R}) * x ^ 2 / (s - 1) ^ 2 = (s + 1) ^ 2 := by have h_{581} : (s - 1 : \mathbb{R}) ^ 2 \neq 0 := by
1524
                         intro h
1525
                         have h_{582} : (1 - s : \mathbb{R}) ^ 2 = 0 := by
1526
                            calc
                              (1 - s : \mathbb{R}) \hat{2} = (s - 1 : \mathbb{R}) \hat{2} := by ring
1527
                                = 0 := by rw [h]
                         contradiction
1528
                       field_simp [h_{581}] at h_{57} \vdash
1529
                       nlinarith
                    have h_{\mathbf{59}} : (4 : \mathbb{R}) * x ^ 2 / (1 - s) ^ 2 = (s + 1) ^ 2 := by
1530
                       \texttt{rw} \ [\leftarrow \texttt{h}_{58}]
1531
                       ring
                    nlinarith [sq_nonneg (s - 1)]
1532
1533
                                                    Listing 14: Original Proof (Length 330)
1534
               theorem imo_1960_p2
1535
```

```
theorem imo_1960_p2 

(x : \mathbb{R}) 

(h<sub>0</sub> : 0 \le 1 + 2 * x) 

(h<sub>1</sub> : (1 - Real.sqrt (1 + 2 * x))^2 \neq 0) 

(h<sub>2</sub> : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9) 

(h<sub>3</sub> : x \neq 0) : 

-(1 / 2) \le x \wedge x \wedge 4 x \le 45 / 8 := by 

constructor 

· nlinarith [sq_nonneg (x + 1 / 2)] 

· have h<sub>57</sub> : (4 : \mathbb{R}) * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 = (1 + Real.sqrt (1 + 2 * x)) 

\hookrightarrow ^ 2 := by 

have h<sub>58</sub> : (1 - Real.sqrt (1 + 2 * x)) ^ 2 \neq 0 := by assumption 

field_simp [h<sub>58</sub>] 

nlinarith [sq_sqrt (show 0 \le 1 + 2 * x by assumption)] 

nlinarith [sq_sqrt (show 0 \le 1 + 2 * x by assumption), 

Real.sqrt_nonneg (1 + 2 * x)]
```

Listing 15: Simplified Proof (Length 125)

```
1551
1552
                      theorem putnam_1990_a1
                           The moderation of the path and product (T:N \rightarrow Z) (hT012:T0 = 2 \land T1 = 3 \land T2 = 6) (hT012:T0 = 2 \land T1 = 3 \land T2 = 6) (hTn:\forall n, T(n+3) = (n+7) * T(n+2) - 4 * (n+3) * T(n+1) + (4 * n+4) * Tn): T = ((fun n:N => (n)!, fun n:N => 2 ^n):(N \rightarrow Z) \times (N \rightarrow Z) ).1 + ((fun n:N => (n)!, fun n:N = \rightarrow > 2 ^n):(N \rightarrow Z) \times (N \rightarrow Z) ).2 :=
1553
1554
1555
1556
                        have h main : \forall (n : \mathbb{N}), T n = (n ! : \mathbb{Z}) + 2 ^ n := by
1557
                           have h_1: T n = (n ! : \mathbb{Z}) + 2 ^ n := by have h_2: \forall n : \mathbb{N}, T n = (n ! : \mathbb{Z}) + 2 ^ n := by intro n
1558
1559
                                   induction n using Nat.strong_induction_on with
                                   | h n ih =
1560
                                     match n with
1561
                                     | 0 =>
                                         norm_num [hT012]
1562
                                        simp_all [Nat.factorial]
1563
                                         <;>
                                         norm_num
1564
                                     | 1 =>
                                         norm_num [hT012]
1565
1566
                                        simp_all [Nat.factorial]
1567
                                         norm_num
1568
                                         norm_num [hT012]
1569
                                         <;>
                                        simp_all [Nat.factorial]
1570
                                     norm_num
| n + 3 =>
1571
1572
                                         have h_3 := hTn n
                                         have h_4 := ih n (by omega)
have h_5 := ih (n + 1) (by omega)
have h_6 := ih (n + 2) (by omega)
1573
                                         1575
                                         ring_nf at h_3 \vdash <;> norm_cast at h_3 \vdash <;>
1576
                                         simp_all [Nat.factorial_succ, pow_add, pow_one, mul_assoc]
1577
                                         ring_nf at * <;>
1578
                                         norm_num at * <;>
1579
                                         nlinarith
                               exact h2 n
1580
                           exact h_1
                        exact \Pi have h_final : T = ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N \rightarrow Z) \times (N \rightarrow Z) ).1 + ((fun n : N => (n)!, \rightarrow fun n : N => 2 ^ n) : (N \rightarrow Z) \times (N \rightarrow Z) ).2 := by
1581
                            funext n
1582
                            have h_1: T n = (n ! : \mathbb{Z}) + 2 ^ n := h_main n
1583
                            simp [h<sub>1</sub>, Pi.add_apply]
                            <;> norm_cast <;> simp [Nat.cast_add] <;> ring_nf
1584
                        apply h_final
1585
                      theorem putnam_1990_a1
1586
                            (T : \mathbb{N} \to \mathbb{Z})
                            (hT012 : T 0 = 2 \land T 1 = 3 \land T 2 = 6)
1587
                            \begin{array}{l} \text{(hID12. I = 2 \times 1 = 3 \times 1 = 3 \times 1 = -6)} \\ \text{(hID1: } \forall \ n, \ T \ (n + 3) = (n + 7) * T \ (n + 2) - 4 * (n + 3) * T \ (n + 1) + (4 * n + 4) * T \ n) : \\ T = ((\text{fun } n : \mathbb{N} \Rightarrow (n)!, \text{ fun } n : \mathbb{N} \Rightarrow 2 \ ^n) : (\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})).1 + ((\text{fun } n : \mathbb{N} \Rightarrow (n)!, \text{ fun } n : \mathbb{N} \Rightarrow 2 \ ^n) : (\mathbb{N} \rightarrow \mathbb{Z}) \times (\mathbb{N} \rightarrow \mathbb{Z})).2 := \text{by} \\ \end{array} 
1588
1589
                        induction' n using Nat.strong_induction_on with n ih
1590
                        match n with
1591
                         | 0 => simp_all
                         | 1 => simp_all
| 2 => simp_all
1592
                         | n + 3 =>
1593
                            simp all [Nat.factorial succ]
                            ring_nf
1594
1595
```

Listing 16: Original Proof (Length 320) and Simplified Proof (Length 34)

```
1598
1599
                                          theorem putnam_1968_a1
                                        Theorem pathematical pathemati
1600
1601
1602
                                                           have h_{11}: \forall (x : \mathbb{R}), x^4 * (1 - x) 4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : \mathbb{R}) - 4 / (1 + x^2)
1603
                                                                 intro x
                                                                intro x have h_{12}: (1 + x^2 : \mathbb{R}) \neq 0:= by nlinarith have h_{13}: x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : \mathbb{R}) * (1 + x^2) - 4:= by ring_nf <;> nlinarith [sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)] have h_{14}: x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : \mathbb{R}) * (1 + x^2) - 4) / (1 + x^2)
1604
1605
1606
                                                          \hookrightarrow x^2) := by rw [h<sub>13</sub>]
1607
                                                                 rw [h<sub>14</sub>]
1608
                                                                 congr
1609
                                                           rw [h_{11} x]
1610
                                                      rw [h<sub>1</sub>]
                                                     have hg: (\int x \text{ in }(0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4: \mathbb{R}) - 4 / (1 + x^2)) = (\int x \text{ in }(0)..1, (x^6 - 4 \leftrightarrow x^5 + 5*x^4 - 4*x^2 + 4: \mathbb{R})) - (\int x \text{ in }(0)..1, (4: \mathbb{R}) / (1 + x^2)) := \text{by}
1611
1612
                                                           apply intervalIntegral.integral_sub
                                                            \cdot \ {\tt apply \ Continuous.intervalIntegrable}
1613
                                                                continuity
                                                            · apply Continuous.intervalIntegrable
1614
                                                                 have hg : Continuous (fun x : \mathbb{R} => (4 : \mathbb{R}) / (1 + x ^ 2)) := by apply Continuous.div
1615
                                                                              exact continuous_const
1616
                                                                        · exact Continuous.add continuous_const (continuous_pow 2)
                                                                       · intro x
1617
                                                                              have h_4: (1 + x ^2 : \mathbb{R}) \neq 0 := by nlinarith
                                                                              exact h<sub>4</sub>
1618
                                                                  exact h<sub>3</sub>
1619
                                                      rw [h2]
                                                     have h_3: (\int x \text{ in } (0)...1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : \mathbb{R})) = (22 / 7 : \mathbb{R}) := by
                                                    norm_num [integral_id, mul_comn] <> ring_nf <>> rorm_num <>> linarith [Real.pi_pos] have h_4: (\int x \text{ in } (0)..1, (4:\mathbb{R}) / (1+x^2)) = \text{Real.pi} := \text{by}  have h_{41}: (\int x \text{ in } (0)..1, (4:\mathbb{R}) / (1+x^2)) = 4*(\int x \text{ in } (0)..1, (1:\mathbb{R}) / (1+x^2)) := \text{by} 
1620
1621
                                                                have h_{42}: (\int x \text{ in } (0) ... 1, (4 : \mathbb{R}) / (1 + x ^2)) = (\int x \text{ in } (0) ... 1, 4 * (1 : \mathbb{R}) / (1 + x ^2)) := by
1622
                                                                      congr
1623
                                                                        ext x <;> ring_nf
                                                                  rw [h_{42}]
1624
                                                                 have h_{43} : (\int x \text{ in } (0) \dots 1, 4 * (1 : \mathbb{R}) / (1 + x ^ 2)) = 4 * (\int x \text{ in } (0) \dots 1, (1 : \mathbb{R}) / (1 + x ^ 2)) :=
                                                           \hookrightarrow by
1625
                                                                        simp [intervalIntegral.integral_comp_mul_left (fun x => (1 : \mathbb{R}) / (1 + x ^ 2))] <;> norm_num <;> field_simp <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]
1626
                                                                  rw [h<sub>43</sub>]
1627
                                                            rw [h41]
                                                           have h<sub>44</sub> : (\int x in (0)..1, (1 : \mathbb{R}) / (1 + x ^ 2)) = Real.pi / 4 := by have h<sub>45</sub> : (\int x in (0)..1, (1 : \mathbb{R}) / (1 + x ^ 2)) = Real.arctan 1 - Real.arctan 0 := by
1628
                                                                        rw [integral_one_div_one_add_sq] <; > norm_num
1629
                                                                  rw [h45]
                                                                  have h_{46} : Real.arctan 1 = Real.pi / 4 := by
1630
                                                                 norm\_num [Real.arctan\_one]
have h_{47}: Real.arctan 0 = 0 := by
1631
                                                                        norm_num [Real.arctan_zero]
1632
                                                           rw [h<sub>46</sub>, h<sub>47</sub>] <;> ring_nf <;> norm_num
rw [h<sub>44</sub>] <;> ring_nf <;> norm_num
1633
                                              rw [h_3, h_4] < r > ring_nf < r > norm_num
have h_final : 22/7 - Real.pi = \int x in (0) ...1, x^4 * (1 - x)^4 / (1 + x^2) := by
1634
                                                    rw [h_main] <; > linarith [Real.pi_pos]
1635
                                              exact h final
1636
                                        theorem putnam_1968_a1 : 22/7 - Real.pi = \int x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by simp_rw [show \forall x : \mathbb{R}, x ^4 * (1 - x) ^4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 * x ^2 + 4 - 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 + 4 + 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 + 4 + 4 / (1 + x^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 + 4 + 4 / (1 + x ^4) = (x ^6 - 4 * x ^5 + 5 * x ^4 + 4 + 4 / (1 + x ^4) = (x ^6 - 4 * x ^5 + 5 * x ^4 + 4 + 4 / (1 + x ^4) = (x ^6 - 4 * x ^5 + 5 * x ^4 + 4 + 4 / (1 + x ^4) = (x ^6 - 4 * x ^5 + 5 * x ^4 + 4 + 4 / (1 + x ^4) = (x ^6 - 4 * x ^5) = (x ^6 -
1637
1638
                                                          \hookrightarrow + x ^2)) by
1639
                                                     intro x
                                                    field_simp
1640
                                                     ringl
                                               ring_nf
1641
                                               norm_num
1642
                                               <;> linarith [Real.pi_pos]
1643
```

Listing 17: Original Proof (Length 1097) and Simplified Proof (Length 76)

1646 1647

1648

1649

1650

1651

1652 1653

1655

1656

1657

1658

1659

1660

1661

1662 1663

1664

1665

1670

1671

1672

1674

1675 1676

1677

1678

1679

1680

1681

1682

1687

1689

1691

I EXAMPLES OF PROOF SPEEDUP AND SLOWDOWN AFTER SIMPLIFICATION

We analyze two examples of proof speedup and slowdown. In Listing 18, we observe that the original proof uses an extraneous amount of tactics within nlinarith in order to prove the main conjecture. By removing a majority of these, the simplified proof achieves a 4.7x speedup. In Listing 19, we observe a more extreme case, where the original proof is significantly overcomplicated and can be reduced to one omega invocation. Goedel-Prover-V2-32B never found this single-tactic proof (with 64 samples) and instead produces proofs with many unnecessary subgoals, leading to a proof with slow execution time.

In several occurrences, we observe that simplified proofs can be significantly slower than the original proof. This is usually because the simplified proof is notationally shorter, but uses a slower approach to complete the proof. For example, in Listing 20, ProofOptimizer finds a shorter proof, but the proof is reliant on simp_all, Finset.sum_range_succ, and linarith, which expand the goal into large proof terms that are time-consuming, causing the new proof to be over $10 \times$ slower. Another example is shown in Listing 21. Here, the original proof first iterates over all $m \le 71$ with interval_cases m, tries to simplify using omega, and then iterates over all $n \le 71$ with interval_cases n. ProofOptimizer, however, removes the try omega, directly doing an exhaustive search over (m,n). The try omega statement in the original proof made it much faster, removing 69 of the 71 goals, whereas the simplified proof had to iterate through n for these goals.

```
theorem imo_1983_p6 -- Original Proof, Time: 5.57s
          (abc: \mathbb{R})
          (h_0 : 0 < a \land 0 < b \land 0 < c)
          (h_1 : c < a + b)
          (h_2 : b < a + c)
          (h_3 : a < b + c) :
         0 \le a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by
        have h_main : 0 \le a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),
                          \verb|mul_nonneg| h_0.1.le| h_0.2.1.le|, \verb|mul_nonneg| h_0.2.1.le| h_0.2.2.le|, \verb|mul_nonneg| h_0.2.2.le|, mul_nonneg| h_0.2.le|, 
                          mul_nonneg (sq_nonneg (a - b)) h_0.2.2.le, mul_nonneg (sq_nonneg (b - c)) h_0.1.le,
                          \verb|mul_nonneg (sq_nonneg (c - a)) | h_0.2.1.le, \verb|mul_pos h_0.1 h_0.2.1, \verb|mul_pos h_0.2.1 h_0.2.2, \\ | h_0.2., \\ | h_0.2.2, \\ | h_0.2.2, \\ | h_0.2.2, \\ | h_0.2.2, \\ | h_0.2
                           \verb|mul_pos h_0.2.2 h_0.1|, \verb|mul_pos (sub_pos.mpr h_1) (sub_pos.mpr h_2)|,
                          mul_pos (sub_pos.mpr h_2) (sub_pos.mpr h_3), mul_pos (sub_pos.mpr h_3) (sub_pos.mpr h_1),
                          sq_nonneg (a + b - 2 * c), sq_nonneg (b + c - 2 * a), sq_nonneg (c + a - 2 * b)]
         exact h_main
theorem imo_1983_p6 -- Simplified Proof, Time: 1.20s
          (a b c : \mathbb{R})
          (h_0 : 0 < a \land 0 < b \land 0 < c)
          (h_1 : c < a + b)
          (h_2 : b < a + c)
          (h_3 : a < b + c) :
                          a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by
         \verb|nlinarith[mul_pos (sub_pos.mpr h_1) (sub_pos.mpr h_2), \verb|mul_pos (sub_pos.mpr h_2)| (sub_pos.mpr h_2)| \\
                      \hookrightarrow 3), mul_pos (sub_pos.mpr h_3) (sub_pos.mpr h_1), sq_nonneg (a - b), sq_nonneg (b - c),
```

Listing 18: Example of Speedup after Simplification (orig: 5.6s, new: 1.2s)

```
1692
1693
             theorem mathd_numbertheory_765 -- Original Proof, Time: 2.50s
1694
                (h_0 : x < 0)
1695
               (h_1 : (24 * x) % 1199 = 15) : x \le -449 := by
1696
               have h_main : x \le -449 := by
1697
                  by_contra! h
                  have h_2: -448 \le x := by linarith
1698
                  have h_3 : x < 0 := h_0
1699
                  have h_4: (24 * x) % 1199 = 15 := h_1
                  have h_5: x \ge -448 := by linarith have h_6: x \le -1 := by
1700
1701
                   omega
1702
                  -- We will check all possible values of x from -448 to -1 and show that none satisfy (24 \star
                  \hookrightarrow x) % 1199 = 15
1703
                  have h_7: False := by
1704
                     -- Use the fact that x is between -448 and -1 to check each possible value
                   have h_8: x \ge -448:= by linarith have h_9: x \le -1:= by omega
1705
                       Use interval_cases to check each possible value of x
1706
                    interval_cases x <; > norm_num [Int.mul_emod, Int.add_emod] at h4 + <; > omega
1707
                  exact h<sub>7</sub>
1708
               exact h_main
1709
             theorem mathd_numbertheory_765 -- Simplified Proof, Time: 0.50s
1710
               (x : ℤ)
               (h_0: x < 0)

(h_1: (24 * x) % 1199 = 15) : x \le -449 := by
1711
1712
               omega
1713
1714
```

Listing 19: Example of Speedup after Simplification (orig: 2.5s, new: 0.5s)

```
1739
1740
              theorem aime_1984_p1 -- Original Proof, Time: 0.91s
1741
                 (u : \mathbb{N} \to \mathbb{Q})
                (h_0 : \forall n, u (n + 1) = u n + 1)
1742
                 (h<sub>1</sub> : \Sigma k \in Finset.range 98, u k.succ = 137) :
1743
                \Sigma k \in Finset.range 49, u (2 * k.succ) = 93 := by
                have h_2 : \forall (n : \mathbb{N}), u n = u 0 + n := by
1744
                  (... 14 lines omitted)
1745
                have h_3: 98 * u 0 + 4851 = 137 := by
1746
                  have h_4: \Sigma k in Finset.range 98, u (k.succ) = 137 := h_1
                  have h_5: \Sigma k in Finset.range 98, u (k.succ) = \Sigma k in Finset.range 98, (u 0 + (k.succ : \mathbb{Q})
1747
1748
                    apply Finset.sum_congr rfl
1749
                     intro k
                    rw [h<sub>2</sub> (k.succ)]
1750
                     <;> simp [Nat.cast_add, Nat.cast_one]
1751
                     <;> ring_nf
                     <;> norm_num
1752
                  rw [h<sub>5</sub>] at h<sub>4</sub>
                  have h_6: \Sigma k in Finset.range 98, (u 0 + (k.succ : \mathbb{Q})) = 98 * u 0 + 4851 := by
1753
                    have h_7: \Sigma k in Finset.range 98, (u 0 + (k.succ: \mathbb{Q})) = \Sigma k in Finset.range 98, (u 0:
1754
                   \hookrightarrow \mathbb{Q}) + \Sigma k in Finset.range 98, (k.succ : \mathbb{Q}) := by
1755
                      rw [Finset.sum_add_distrib]
                     rw [h<sub>7</sub>]
1756
                    have h_8 : \Sigma k in Finset.range 98, (u 0 : \mathbb{Q}) = 98 * u 0 := by
                      simp [Finset.sum_const, Finset.card_range]
1757
                       <;> ring_nf
1758
                     rw [hel
                     have h_9: \Sigma k in Finset.range 98, (k.succ : \mathbb{Q}) = 4851 := by
1759
                       norm_num [Finset.sum_range_succ, Finset.sum_range_succ, Finset.sum_range_succ]
1760
                       <;>
1761
                      rfl
                    rw [h9]
1762
                    <;> ring_nf
                  \texttt{rw [h}_{6}\,\texttt{] at h}_{4}
1763
                  \texttt{norm\_num at } \texttt{h}_4 \ \vdash
1764
                  <;> linarith
1765
                have h_4 : \Sigma k \in Finset.range 49, u (2 * k.succ) = 49 * u 0 + 2450 := by
1766
                   -- (... 25 lines omitted)
                have h_5: 49 * u 0 = -2357 := by
1767
                  -- (... 6 lines omitted)
1768
                have h_6: \Sigma k \in Finset.range 49, u (2 * k.succ) = 93 := by
1769
                   -- (... 4 lines omitted)
                  linarith
1770
                exact h6
1771
              theorem aime_1984_p1 -- Simplified Proof, Time: 10.84s
1772
                (u : \mathbb{N} \to \mathbb{Q})
                (h_0 : \forall n, u (n + 1) = u n + 1)
1773
                 (h<sub>1</sub> : \Sigma k \in Finset.range 98, u k.succ = 137) :
1774
                \Sigma k \in Finset.range 49, u (2 * k.succ) = 93 := by
1775
                simp_all [Finset.sum_range_succ]
                linarith
1776
```

Listing 20: Example of Slowdown after Simplification (orig: 0.9s, new: 10.8s)

```
1786
1787
             theorem mathd_numbertheory_711 -- Original Proof, 4.87s
1788
                (m n : ℕ)
                (h_0 : 0 < m \land 0 < n)
1789
                (h_1 : Nat.gcd m n = 8)
1790
               (h_2 : Nat.lcm m n = 112) :
               72 \le m + n := by
1791
               have h_product : m * n = 896 := by
1792
                     (... 5 lines omitted)
               have h_{main}: 72 \leq m + n := by
1793
                 have h_3 : 0 < m := h_0.1
1794
                 have h_4 : 0 < n := h_0.2
                 have h_5: m * n = 896 := h_product
1795
                 have h_6: Nat.gcd m n = 8 := h_1
1796
                 have h_7: Nat.1cm m n = 112 := h_2
                 have h_8: m + n \ge 72 := by
1797
                   by_contra! h
1798
                    -- (... 4 lines omitted)
                   have h_{11}: m \le 71 := by nlinarith have h_{12}: n \le 71 := by nlinarith
1799
1800
                   interval_cases m <;> norm_num at h<sub>5</sub> ⊢ <;>
                      (try omega) <;>
1801
                      (trv {
1802
                       interval_cases n <;> norm_num at h_5 h_6 h_7 \vdash <;>
                         -- (... 5 lines omitted)
1803
                      }) <;>
1804
                       -- (... 5 lines omitted)
                 exact h<sub>8</sub>
1805
               exact h main
1806
             theorem mathd_numbertheory_711 -- Simplified Proof, 74.63s
1807
               (m n : N)
               (h_0 : 0 < m \land 0 < n)
1808
               (h_1 : Nat.gcd m n = 8)
1809
               (h_2 : Nat.lcm m n = 112) :
               72 \le m + n := by
1810
               have : m * n = 896 := by
1811
                rw [← Nat.gcd_mul_lcm m n]
1812
                 simp_all
               by_contra!
1813
               have : m \le 71 := by nlinarith
have : n \le 71 := by nlinarith
1814
               interval_cases m <;> interval_cases n <;> simp_all
1815
1816
```

Listing 21: Example of Slowdown after Simplification (orig: 4.9s, new: 74.6s)

J DERIVATION OF CLOSED FORM FOR MIN@K AND MAX@K

In this section, we derive the closed form expression we use for estimating $\max@k$ from n samples based off the classic pass@k metric:

$$\max@k = \frac{1}{\binom{n}{k}} \sum_{i \le n} \binom{i-1}{k-1} x_i.$$

Let X be a real random variable, X_1, \ldots, X_k independent realizations of X and $X_{(k)} = \max_{i \le k} X_i$ their maximum. We would like to give an estimator for $\mathbb{E}[X_{(k)}]$ given $n \ge k$ independent samples $x_1 \le \ldots \le x_n$ of X sorted by size.

Consider the estimator $M = \frac{1}{\binom{n}{k}} \sum_{i \leq n} \binom{i-1}{k-1} x_i$, with the idea being that there exist $\binom{n}{k}$ ways to choose k out of the n samples overall, out of which $\binom{i-1}{k-1}$ select the i-th and then k-1 with a smaller index.

We compute

$$\mathbb{E}_{x_i} \left[\frac{1}{\binom{n}{k}} \sum_{i \leq n} \binom{i-1}{k-1} x_i \right] = \mathbb{E}_{x_i} \left[\frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I| = k} x_{\max I} \right]$$

$$= \frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I| = k} \mathbb{E}_{x_i} \left[x_{\max I} \right]$$

$$= \frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I| = k} \mathbb{E}_{x_i} \left[\max_{j \in I} x_j \right]$$

$$= \frac{1}{\binom{n}{k}} \sum_{I \subseteq \{1, \dots, n\}, |I| = k} \mathbb{E} \left[X_{(k)} \right]$$

$$= \mathbb{E} \left[X_{(k)} \right]$$

by the counting argument explained above, linearity of expectation, ordering of the x_i and independence.

Note that this is a generalization of the pass@k metric, which covers the case of Bernoulli distributed X (Chen et al., 2021).

We recommend using a numerically stable implementation that computes the ratio $\frac{\binom{i-1}{k-1}}{\binom{n}{k}}$ by canceling a (k-1)! factor and pairing up numerator and denominator factors.

Moreover, the min@k estimator can be obtained as min@ $k(x_1, \ldots, x_n) = -\max@k(-x_1, \ldots, -x_n)$.

K HYPERPARAMETERS

In this section, we detail the hyperparameters we use throughout our various training and inference experiments. Prompts can be found in the next section, Appendix L.

Iterative Training (Sec. 3.1.1): For each round of SFT, we use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient accumulation steps) and learning rate 1e-5. We use a cosine scheduler with minimum learning rate 1e-8 and 100 steps of warm-up starting from 1e-30. For inference, we use $\tau=1.0$ and top-p 0.95.

Reinforcement learning (Sec 3.1.2): Our setup is asynchronous online reinforcement learning with 16 trainer and 16 worker GPUs, and 16 environment copies per worker GPU. We use a global training batch size of 32 (local batch size 2 per trainer), a constant learning rate of 6e-8 following a linear warmup over 200 steps, a GRPO group size of 8, mean normalization but no variance normalization, no KL penalty and model updates sent to workers every 100 steps. Workers use For inference, we use $\tau=1.0$ and top-p 1.0, and evaluations use $\tau=1.0$ and top-p 0.95.

For test-time reinforcement learning we use the same settings but halve the number of trainers and workers.

Execution Feedback and Goedel-Prover for Repair (Sec. 4.2): We use temperature $\tau = 0.2$ and top-p 0.95 with a maximum prompt length of 8192 and a maximum generation length of 32768.

Iterative Shortening (Sec. 4.3): For iterations 1 through 6, we use temperature $\tau = 1.0$ and top-p 0.95. We increase the temperature to $\tau = 1.2$ for iteration 7, and to $\tau = 1.5$ for iteration 8. We find that the higher temperatures in later iterations are helpful for increasing diversity with 1024 samples.

Lean Base Model (Sec. B.1): We use an effective batch size of 512 (2 nodes, 8 H100/node, 32 gradient accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a maximum sequence length of 8192 for 2000 steps.

Proof Sketching (Sec. B.2): We use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train with a maximum sequence length of 8192 for 50 steps. Evaluation is done with temperature $\tau = 0.8$ and top-p 0.95.

Comparison with Leading Models (Sec. E): For our model and Qwen2.5-32B, we use $\tau = 1.0$ and top-p 0.95. For GPT-40 and Gemini-2.5-Pro, we use the default settings with $\tau = 1.0$.

L PROMPTS

L.1 PROOF SIMPLIFICATION PROMPT

```
You are given a correct Lean 4 proof of a mathematical theorem.

Your goal is to simplify and clean up the proof, making it shorter and more readable while ensuring it

⇒ is still correct.

Here is the original proof:

'''lean4

{statement}

'''

Now, provide your simplified proof. Do NOT modify the theorem or header, and surround your proof in

⇒ '''lean4 and ''' tags.
```

Listing 22: Zero-shot Proof Sketching Prompt

1941

1939

1940

1942

1959

1927

1928 1929

1930

L.2 PROOF SKETCHING PROMPTS

```
1943
        Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the

ightarrow structure of the natural language solution. Follow these guidelines:
1944
        1. Analyze the natural language solution and identify the key steps.
1945
        2. Translate each key step into Lean 4 syntax, structuring your proof using 'have' statements for
             \hookrightarrow clarity. Include all core steps from the natural language solution.
1946
                        to replace individual proofs of lower-level steps, ensuring that your proof skeleton
1947
             \hookrightarrow would compile successfully in Lean 4.
        4. Surround your Lean 4 proof sketch in '''lean4 and ''' tags.
1948
1949
        Problem:
1950
        {problem}
1951
        Solution:
1952
        {solution}
1953
        Lean 4 Statement:
1954
         ```lean4
1955
 {statement}
1956
1957
 Now, provide your Lean 4 proof sketch. Do NOT modify the theorem or header, and surround your proof
 → sketch in ```lean4 and ``` tags.
1958
```

#### Listing 23: Zero-shot Proof Sketching Prompt

```
1960
 Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the
1961
 \hookrightarrow structure of the natural language solution. Follow these guidelines:
 1. Analyze the natural language solution and identify the key steps.
1962
 2. Translate each key step into Lean 4 syntax, structuring your proof using 'have' statements for
1963
 \hookrightarrow clarity. Include all core steps from the natural language solution.
 3. Use 'sorry' to replace individual proofs of lower-level steps, ensuring that your proof skeleton
1964
 \hookrightarrow would compile successfully in Lean 4.
1965
 4. Surround your Lean 4 proof sketch in '''lean4 and ''' tags.
1966
 Here is an example:
1967
1968
 Prove that if p, q are primes such that q is divisible by p, then p must be equal to q.
1969
 Solution:
1970
 Since q is prime, it only has 2 divisors: 1 and itself. Therefore, since p divides q, either $p=1$ or
1971
 \hookrightarrow $p=q$. Because p is a prime, $p \ne 1$, so $p=q$.
1972
 Lean 4 Statement:
1973
 '''lean4
```

```
1974
 import Mathlib
1975
1976
 theorem prime_divides_prime_equal (p q : \mathbb{N}) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by

→ sorry

1977
1978
 Lean 4 Proof Sketch:
1979
          ```lean4
          import Mathlib
1980
1981
          theorem prime_divides_prime_equal (p q : \mathbb{N}) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by
            -- Lemma 1: Since q is prime, it only has 2 divisors: 1 and itself. have lemma1 : p = 1 \lor p = q := by
1982
1983
1984
            -- Lemma 2: Since p is prime, p \neq 1. have lemma2 : p \neq 1 := by
1985
1986
              sorry
1987
            -- Now, do case analysis on lemmal to conclude p = q.
1988
            cases lemmal with
            | inl h_left =>
1989
               contradiction
            | inr h_right =>
1990
               exact h_right
1991
1992
          Now, it is your turn to provide your Lean 4 proof sketch for a new problem. Do NOT modify the theorem \hookrightarrow or header, and surround your proof sketch in ```lean4 and ``` tags.
1993
1994
          Problem:
1995
          {problem}
1996
          Solution:
1997
          {solution}
1998
          Lean 4 Statement:
1999
           ```lean4
 {statement}
2000
2001
2002
 Lean 4 Proof Sketch
```

Listing 24: One-shot Proof Sketching Prompt

#### L.3 GOEDEL-PROVER REPAIR PROMPT

2003

2004 2005

20062007

2008

In Listing 25, use a modified version of Goedel-Prover's repair prompt found in their codebase. The main difference is that because we do not have proofs annotated with CoT's, our lean\_proof only contains a proof.

```
2009
2010
 Complete the following Lean 4 code:
2011
 '''lean4
2012
 {formal_statement} '''
2013
 Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan
2014
 \hookrightarrow outlining the main proof steps and strategies.
 The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the
2015
 \hookrightarrow construction of the final formal proof.
2016
 Here is the proof:
2017
 '''lean4
2018
 {lean_proof}'''
2019
 The proof (Round 1) is not correct. Following is the compilation error message, where we use <error></
2020

→ error> to signal the position of the error.
```

Listing 25: Goedel-Prover Repair Prompt