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ABSTRACT

Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-
medalist capabilities and producing formal proofs that span thousands of lines.
Although such proofs are mechanically verified by formal systems like Lean, their
excessive length renders them difficult for humans to comprehend and limits their
usefulness for mathematical insight. Proof simplification is therefore a critical
bottleneck. Yet, training data for this task is scarce, and existing methods—mainly
agentic scaffolding with off-the-shelf LLMs—struggle with the extremely long
proofs generated by RL-trained provers. We introduce ProofOptimizer, the first
language model trained to simplify Lean proofs without requiring additional human
supervision. ProofOptimizer is trained via expert iteration and reinforcement learn-
ing, using Lean to verify simplifications and provide training signal. At inference
time, it operates within an iterative proof-shortening workflow, progressively reduc-
ing proof length. Experiments show that ProofOptimizer substantially compresses
proofs generated by state-of-the-art RL-trained provers on standard benchmarks,
reducing proof length by 87% on miniF2F, 57% on PutnamBench, and 50% on
Seed-Prover’s IMO 2025 proofs. Beyond conciseness, the simplified proofs check
faster in Lean and further improve downstream prover performance when reused
as training data for supervised finetuning.

1 INTRODUCTION

Theorem proving in formal environments such as Lean (de Moura et al., 2015) provides an excellent
testbed for training large language models (LLMs) in mathematical reasoning via reinforcement
learning (RL). Since Lean can mechanically verify proofs, it filters hallucinations and provides reliable
reward signals, and enables enables unlimited high-quality synthetic reasoning data. Leveraging these
benefits, LLMs finetuned with RL have achieved near gold-medal performance on the International
Mathematical Olympiad (IMO) (Chen et al., 2025) and shown strong results on difficult college-level
benchmarks like PutnamBench (Lin et al., 2025b).

However, RL-trained provers often generate proofs that are correct but excessively long and in-
scrutable. Since their only reward signal is the correctness of generated proofs, the resulting models
produce proofs that are correct yet suboptimal: convoluted, bloated with redundant steps, or reliant on
unnecessarily strong automation where a simple step would suffice. For example, Seed-Prover (Chen
et al., 2025)’s Lean proof of IMO 2025 P1 consists of 4,357 lines of code, 16x longer (by character
count) than its informal counterpart. Such proofs pose several practical drawbacks: they are (1)
difficult for humans to comprehend, limiting their value as a source of mathematical insight; (2) less
suitable as synthetic training data, since models may struggle to learn from convoluted proofs; and
(3) computationally inefficient to compile in Lean, which is especially problematic when integrated
into existing formal libraries like mathlib (mathlib Community, 2019).

These challenges highlight the need for proof simplification: transforming existing formal proofs into
simpler forms while preserving correctness. In this work, we adopt a natural notion of simplicity:
proof length, measured by the number of Lean tokens. However, our approach is agnostic to the
choice of simplicity metric: it is not restricted to proof length, but applies to any automatically
computable measure (Kinyon, 2018).
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Prior work on proof simplification (Ahuja et al., 2024) focuses on agentic scaffolding around API-
only LLMs such as GPT-4o. While these methods can shorten human-written Lean proofs, they
are ineffective at simplifying the long proofs generated by SoTA RL-trained LLM provers such as
Seed-Prover and Goedel-Prover-V2 (Lin et al., 2025b), precisely the setting where simplification is
most valuable. A natural alternative is to finetune LLMs directly for proof simplification, but progress
in this direction is limited by the lack of suitable training data, namely aligned pairs of proofs before
and after simplification.

We introduce ProofOptimizer, an LLM-based system for simplifying long and convoluted proofs
in Lean. ProofOptimizer integrates three components: (i) a symbolic Lean linter that identifies
and removes redundant steps, (ii) a 7B parameter language model finetuned specifically for proof
simplification, and (iii) an iterative inference-time algorithm for progressively shortening proofs.
Given an input proof, the Lean linter first eliminates the most obvious redundancies. The language
model then generates multiple candidate simplifications, and the iterative algorithm repeatedly applies
the model to the currently shortest proof, further reducing its length. Training follows two paradigms.
In expert iteration, the model proposes simplifications that are verified by Lean and incorporated into
the training data for supervised finetuning. In reinforcement learning, proof length and correctness
serve as the reward signal. Both approaches enable continual improvement without requiring any
human-annotated simplification data.

First, we evaluate ProofOptimizer on long proofs generated by state-of-the-art neural theorem provers.
Specifically, we consider proofs produced by Goedel-Prover-V2 on two standard benchmarks—
MiniF2F (Zheng et al., 2021) and PutnamBench—as well as four proofs released by Seed-Prover
for IMO 2025. Our final models achieve significant results (Fig. 1), shortening MiniF2F proofs by
an average of 63% in a single shot and PutnamBench proofs by 26% with 32 attempts, substantially
outperforming Gemini-2.5-Pro (Sec. 4.1). At inference time, test-time RL improves single-shot
miniF2F performance to 72%. With with iterative shortening, we achieve further per-proof average
reductions of 87% (MiniF2F) and 57% (PutnamBench) and reduce the length of three out of four
Seed-Prover IMO 2025 proofs by more than half.

Second, we conduct ablation studies to evaluate the effect of key design choices. During training, RL
achieves the best single-sample performance but reduces multi-sample diversity. At inference time,
using the same RL recipe further improves single-shot performance (Sec. 4.1). Repairing incorrect
simplifications from execution feedback with Goedel-Prover-V2 effectively corrects errors, but leads
to repaired proofs even longer than the originals (Sec. 4.2). Overall, iterative proof shortening offers
the best balance between performance and diversity, achieving the strongest results (Sec. 4.3).

Third, we conduct preliminary experiments suggesting two downstream benefits of proof shortening.
Training our base model on shortened proofs leads to 2% better performance on miniF2F relative to
training on unshortened proofs (Sec. 5.1). Also, shortening proofs often decreases their execution
time, with 28% of proofs showing at least a 1.5x speedup after shortening (Sec. 5.2).
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: 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=  

   h_main : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi := 
     h₁ : (∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2)) := 
       h₁₁ : ∀ (x : ℝ), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2) := 
         x

         h₁₂ : (1 + x^2 : ℝ) ≠ 0 :=  
         h₁₃ : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4 := 
          
          <;>

          sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)
         h₁₄ : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4) / (1 + x^2) := 
          h₁₃]

        rw [h₁₄]

        h₁₂  <;>  <;> h₁₂] <;> 
      
       x

      h₁₁ x
    h₁
    

   h_final : 22/7 - Real.pi = ∫ x  (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 
    h_main
    <;>

    Real.pi_pos
  

   h_final

putnam_1968_a1


-- (...70 lines omitted) 



theorem 
: 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := 

 ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^2) = 

           (x ^6 - 4 * x ^5 + 5 * x ^4 - 

            4 * x ^2 + 4 - 4 / (1 + x ^2)) 
     x

    
    

  <;>  Real.pi_pos

putnam_1968_a1
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ring]


  ring_nf

  norm_num


linarith [ ]

Before ProofOptimizer After ProofOptimizer

Figure 1: ProofOptimizer reduces the shortest generated proof of a Putnam problem from 1097 to 76
tokens.

2 PROOF SIMPLIFICATION: TASK AND METRICS

Task Definition We formalize the proof simplification task as minimizing the complexity of a given
proof. Specifically, for a valid formal statement s with proof p, the goal is to produce an alternative
proof p∗ of s that minimizes a complexity measure L:
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p∗ = argmin
x proves s

L(x)

Our method is agnostic to the choice of complexity measure L, provided that it is deterministic and
can be automatically computed from the proof. This flexibility encompasses the metrics used in
prior work (Ahuja et al., 2024). In the rest of this paper, we adopt proof length as the measure of
complexity, defined as the number of tokens produced by a Lean-specific tokenizer. Our proof length
measure correlates with character count but does not penalize long identifier names, and it ignores
comments and line breaks. We denote the length of a proof x by |x|, i.e., L(x) = |x|.
Evaluation Metrics Given an original proof p and k candidate simplifications generated by the
model, p′1, p

′
2, . . . , p

′
k, we define li = min(|p|, |p′i|) if p′i is a valid proof and li = |p| otherwise.

(Intuitively, an invalid attempt reverts to the original proof length). We evaluate proof simplification
using two metrics:

• min@k ≜ mini {li} denotes the minimum shortened proof length (lower is better).

• red@k ≜ maxi

{
|p|−li
|p|

}
= 1 − min@k

|p| denotes the maximum relative proof length reduction
from the original proof (higher is better).

Note that these metrics may not always be correlated: a method that only excels at shortening long
proofs has a lower min@k and red@k than one that only excels at shortening short proofs. As with
the pass@k metric (Chen et al., 2021), we report our metrics via an unbiased estimator using n > k
samples (see Appendix J). We average min@k and red@k across samples in a dataset to get overall
length and reduction metrics.

3 PROOFOPTIMIZER: LLMS FOR PROOF SIMPLIFICATION

3.1 TRAINING

Lean Base Model First, we train a general-purpose Lean model by fine-tuning
Qwen-2.5-7B-Instruct on a combination of five tasks: natural language problem
solving, Lean 4 code completion, auto-formalization (problems and solutions), formal theorem
proving, and tactic/proof state prediction.

Dataset for Proof Simplification We employ a four-stage pipeline to generate high-quality proof
simplification training data.

1. Problem Collection: We first compile a dataset of theorem proving problems from
Goedel-Pset, filtering out simple computational problems. Each problem consists of a
natural language problem, solution, and Lean problem statement.

2. Proof Sketching: We train a model that formalizes a problem’s natural language solution into
a Lean proof sketch consisting of a few high-level proof steps (usually 2-10) with lower level
details omitted and filled in with Lean’s sorry tactic.

3. Theorem Extraction and Filtering: For each proof sketch, we extract each proof step into its
own separate theorem. At the core, we are taking longer proofs and breaking them down into
separate sub-theorems. We collect a total of 518K theorems this way. As we found some of
these theorems to be trivial, we design an automation tactic to filter these out, leaving 307K
theorems remaining.

4. Proof Generation: We use Goedel-Prover-V2-32B to generate proofs of these theorems.
The model successfully produces Lean proofs of 145K theorems, which we use as our dataset
for training.

For more details about our base model and dataset collection, see Appendix B. Next, we describe our
two training recipes: expert iteration and online reinforcement learning.

3.1.1 PROOFOPTIMIZER-EXPIT: EXPERT ITERATION

We leverage a STaR-like (Zelikman et al., 2022) iterative training algorithm to improve our model. At
a high level, we start with our base model π0 and the collection of 145K proofs P0. At each iteration,
we attempt to simplify each proof, train our model on successful proof simplifications, and use the

3
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collection of simplified proofs as seed proofs for the next iteration. More precisely, at each iteration i,
we do the following:

1. Sample: For each proof x ∈ Pi, use πi to sample 4 simplifications Yp ≜ {y1x, y2x, y3x, y4x} ∼
πi(x).

2. Filter: Use the Lean compiler to find the shortest correct simplification yx ∈ {x} ∪ Yx. Create
a training dataset of proof simplifications Di = {(x, yx) | len(yx) ≤ 0.8 · len(x), x ∈ Pi}. The
length constraint is designed to encourage the model to learn more substantial simplifications
rather than trivial ones. For iterations after the first, as x may have been simplified from a
more complex proof x′ ∈ P0, we also add (x′, yx) pairs to Di, which are valid and larger proof
simplifications. Also, collect simplified proofs πi+1 = {sx | x ∈ Pi} for the next iteration.

3. Train: Fine-tune πi on Di to get πi+1.

3.1.2 PROOFOPTIMIZER-RL: ONLINE REINFORCEMENT LEARNING

In addition to expert iteration as described in the previous section, we train a proof optimizer model
with online reinforcement learning. Using the same dataset as in expert iteration, the reinforcement
learning task consists in producing a valid but shorter proof y for a statement given an initial proof
x. The reward is defined as the relative shortening R(x, y) = |x|−|y|

|x| if y is valid and |y| ≤ |x|, and
R(x, y) = 0 otherwise. We employ an asynchronous variant of the GRPO algorithm (Shao et al.,
2024) with advantage Ai = Ri − 1

k

∑
j≤k Rj baselined with the average reward of k = 8 samples,

no advantage normalization by standard deviation (Liu et al., 2025b), no KL regularization, and
omitting sequences with zero advantage.

3.2 INFERENCE-TIME TECHNIQUES

First, we implement a symbolic linter that removes extraneous tactics via Lean’s
linter.unusedTactic linter, which detects tactics that do not change the proof state and
provides messages like ’norm num’ tactic does nothing. We then compare the following
techniques on the linted proofs:

• Test-Time RL: We use the setup described in Section 3.1.2 and perform reinforcement learning
on our two evaluation sets (jointly). Our test-time RL keeps the input proof fixed, meaning
improvements occur solely in the model’s parameters.

• Repair with Execution Feedback: In this scheme, if ProofOptimizer fails to simplify a proof,
we collect the execution feedback and ask Goedel-Prover-V2-32B to repair the proof with
the error messages. Then, we apply the symbolic linter on the new proofs to further shorten
successful repairs.

• Iterative Proof Shortening: For a given proof, we sample k candidate shortenings and take the
shortest correct one. Then, we sample k shortenings of the new proof, take the shortest correct
one – and so on.

4 EXPERIMENTS

For all evaluations, we use proofs generated by Goedel-Prover-V2 (Lin et al., 2025a) on two popular
datasets in formal math, miniF2F (Zheng et al., 2021) and PutnamBench (Tsoukalas et al., 2024). For
miniF2F, we use n = 194 proofs (average length 334), and for PutnamBench, we use n = 75 proofs
(average length 1468). More details and examples of proofs in our evaluation set can be found in
Appendix G.

4.1 EXPERT ITERATION VS. RL VS. TEST-TIME RL

First, we compare our two training schemes: expert iteration and RL. Starting from our Lean base
model, we train ProofOptimizer-ExpIt by performing three rounds of expert iteration (Sec. 3.1.1) and
ProofOptimizer-RL by performing online RL (Sec. 3.1.2) after two rounds of expert iteration. Table 1
shows min@k and red@k scores with respect to linted proofs. We observe steady improvements
during each round of expert iteration for both @1 and @32 metrics. Our final model outperforms

4
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Gemini-2.5-Pro, a strong reasoning model, even when given proof state annotations similar to
Chain-of-States in ImProver (Ahuja et al., 2024).

Next, we see that ProofOptimizer-RL significantly improves single sample (@1) metrics at the
expense of diversity collapse, an issue commonly identified during RL training (Gehring et al., 2024;
Walder & Karkhanis, 2025; Yue et al., 2025). In Fig. 2 (a, b), we show the evolution of red@1 during
training, observing that miniF2F reduction steadily rises while PutnamBench reduction experiences
oscillations. This tension is likely because the distribution of training data is more similar in length to
miniF2F than PutnamBench, which has a mean proof length of 4x that of the training set.

Finally, we find that test-time RL leads to even further improvements on min@1 and red@1. This is
expected, as the model is able to directly tune its weights to learn from successful simplifications
at test-time. However, like ProofOptimizer-RL, we observe an even smaller gap between @1 and
@32 metrics. In Fig. 2 (c, d), we observe a much more stable evaluation red@1 curve because the
distribution gap between the training and evaluation sets is eliminated.

Table 1: Min@k and Red@k throughout expert iteration and online RL. Our RL model has
strong @1 results, while our ExpIt model has strong @32 results. RL metrics are Gaussian-smoothed.

Dataset Category Model Min@1 ↓ Min@32 ↓ Red@1 ↑ Red@32 ↑

miniF2F

Linted 302 0.0%
Gemini-2.5-Pro 280 207 24.3% 57.2%

Gemini-2.5-Pro + States 283 207 26.4% 58.7%
Base (7B) 283 202 17.6% 56.2%

ExpIt
Base + It 1 266 178 33.4% 67.0%
Base + It 2 251 166 45.1% 70.6%

ProofOptimizer-ExpIt 241 153 49.0% 72.3%

RL ProofOptimizer-RL 190 152 63.6% 70.9%
It 2 + Test-Time RL 160 154 72.5% 73.4%

Putnam
Bench

Linted 1359 0.0%
Gemini-2.5-Pro 1348 1303 5.5% 18.0%

Gemini-2.5-Pro + States 1371 1319 6.1% 19.2%
Base (7B) 1341 1222 3.9% 20.5%

ExpIt
Base + It 1 1341 1215 5.2% 22.5%
Base + It 2 1335 1186 6.9% 24.7%

ProofOptimizer-ExpIt 1328 1161 8.2% 26.3%

RL ProofOptimizer-RL 1303 1258 14.9% 21.1%
It 2 + Test-Time RL 1260 1255 23.8% 24.2%
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Figure 2: Evolution of proof reduction (red@1) during RL training (a, b) and test-time RL (c,
d). We use Gaussian smoothing (σ = 5 evaluation intervals for RL training and σ = 3 for test-time
RL). See Fig. 9 for the corresponding red@32 metrics.

4.2 ANALYSIS OF REPAIR WITH EXECUTION FEEDBACK

As described in Sec. 3.2, we (1) sample 64 simplifications for each proof with ProofOptimizer-ExpIt,
(2) repair incorrect proofs with Goedel-Prover-V2-32B, and (3) shorten successful repairs with
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Table 2: Step-by-step success rates, revealing the main bottleneck of long repaired proofs.

Dataset Simplification Repair Shorter than best (before/after linter)

miniF2F 7852
12416 (63.2%) 2840

4564 (62.2%) 76
2840 → 137

2840 (2.7% → 4.8%)

PutnamBench 1288
4800 (26.8%) 613

3512 (17.4%) 5
613 → 11

613 (0.8% → 1.8%)

our linter. Overall, we find while repair with execution feedback leads to improvements, it
underperforms resampling because repaired proofs are often even longer than the original
proofs. Fig. 3 (left) shows the average proof length and reduction % after sampling, repair, and
linting. We our linter to be effective on repaired proofs, decreasing the average repaired proof length
from 644 → 576 (miniF2F) and 877 → 788 (PutnamBench). In Fig. 3 (right), we plot the proof
length of the original proofs (before Step 1) against simplified proofs (Step 1) and repaired proofs
(Step 2). A majority of the repaired proofs (green dots) are above the y = x line, meaning they are
longer than the original proofs, let alone the simplified proofs (blue dots).
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Figure 3: Analysis of execution-based repair with Goedel-Prover-V2 on PutnamBench.

In Table 2, we analyze the success rate of each step of our pipeline. However, the key issue remains
to be the high length of the repaired proofs. Even after linting, only 4.8% (miniF2F) / 1.8% (Putnam)
of post-linted proofs are shorter than the best proof found by ProofOptimizer during simplification.
We refer the reader to Appendix F for further analysis and examples.

4.3 ITERATIVE PROOF SHORTENING

In Fig. 4 (left), we show the results of iterative proof shortening on miniF2F and PutnamBench proofs
using ProofOptimizer-ExpIt. First, we do 64 samples per iteration for 6 iterations, observing steady
improvement at each iteration. To demonstrate the potential of further scaling, we do 1024 samples
at iterations 7 and 8 and see significant improvement (see Appendix D.2 for analysis on sample size).
Overall, ProofOptimizer combined with iterative proof shortening is very effective on miniF2F
and PutnamBench, as average proof length is reduced from 334 → 75 and 1468 → 811, for an
average per-proof reduction of 87.9%/57.2%. In Fig. 4 (right), we plot the overall shortening
against the length of the original proof, observing that longer proofs remain challenging to simplify.
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Figure 4: Iterative Shortening: per-iteration improvement (left) and effect of proof length (right)

Finally, in Table 3, we demonstrate the effectiveness of ProofOptimizer on an out-of-distribution
dataset, Seed-Prover’s four IMO 2025 proofs. With an order of magnitude higher sampling budget,
we achieve a significant reduction in the proof length for all four problems, showcasing the potential
of our model and technique. Details about our full setup are in Appendix D.3.

Table 3: Iterative shortening achieves significant reduction for Seed-Prover’s IMO 2025 proofs.

P1 P3 P4 P5
Original Proof Length 36478 16377 29147 8658

Simplified Proof Length 20506 7907 14531 4002
Length Reduction 43.8% 51.7% 50.1% 53.8%

5 ADDITIONAL BENEFITS OF PROOF SIMPLIFICATION

5.1 TRAINING ON SIMPLIFIED PROOFS IMPROVES GENERATION

Next, we investigate whether fine-tuning on simplified proofs can be advantageous compared to
fine-tuning on longer, raw proofs. To do so, we prepare two datasets of identical problems, the first
containing a set of proofs generated by Goedel-Prover-V2 and the second containing the same
proofs simplified by ProofOptimizer-ExpIt. The average proof length of the original and simplified
proofs is 147 and 85, respectively. We do continued supervised fine-tuning (SFT) starting from our
base model (Sec. B.1) with a standard negative log-likelihood (NLL) loss.

In Fig. 5 (left), we compare the training loss between the two datasets. As expected, the initial
loss when using original proofs is higher, as models have not seen such long proofs during initial
fine-tuning. However, the losses quickly converge. We observe that training on original proofs causes
occasional loss spikes, which we suspect are due to several data batches that are hard to learn (e.g.
extremely long proofs). Decreasing the learning rate mitigated these training loss spikes but did not
improve validation accuracy. In Fig. 5 (right), we compare the miniF2F scores of the two models
during SFT, showing that training on simplified proofs results in slightly higher evaluation accuracy
despite the two settings having identical training losses.
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Figure 5: Training loss (left) and miniF2F score (right) after SFT on simplified vs. original proofs.

5.2 SIMPLIFIED PROOFS HAVE A SHORTER EXECUTION TIME

We also observe that proofs simplified by ProofOptimizer often exhibit a faster execution time. We
measure proof execution time with lake env lean --profile, excluded library import time
(imports are always the same but actual time may vary due to caching effects). We compare the
execution times of each proof before and after iterative shortening in Fig. 6 (scatter). For both
datasets, we visibly observe that a majority of points lie below the y = x line, signifying speedup.
Fig. 6 (histograms) also show the distribution of speedup ratios timeorig

timenew
. Of the 75 PutnamBench

proofs, 50/75 have a speedup of over 10%, and 22/75 of those have a speedup of over 50%. We
also observe that proofs with a higher original execution time tend to show more speedup. The same
trends hold for miniF2F, where 114/194 and 56/194 proofs have a speedup over 10% and 50%,
respectively. Finally, we observe 25% and 81% speedups on Seed-Prover’s proofs for P3 and P4 of
the IMO 2025 (Sec. D.3).

Upon qualitatively analyzing the proofs, we observe that the original proofs often have extraneous
tactics that are eliminated by the simplified proofs. However, we also find several cases where the
simplified proofs are much slower than the original proof, which usually occurs when a faster proof
algorithm is replaced by a shorter but slower method (e.g. brute force with interval cases).
We provide two examples of each in Appendix I.2. Finally, we remark that all of our training and
inference pipelines can also be applied to proof speedup as well by adjusting the reward function
from proof length to proof execution time.
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Figure 6: Simplified proofs are frequently faster than original proofs on miniF2F and PutnamBench.

5.2.1 OPTIMIZING FOR HEARTBEATS INSTEAD OF PROOF LENGTH

As we stated in Sec. 2, our complexity measure L generalizes beyond proof length. Next, we set L to
be the number of Lean heartbeats1, a proxy of execution time that can run efficiently in parallel. With
this metric, we run eight iterations of the same inference-time algorithm using ProofOptimizer-ExpIt.
In Fig. 7 (a, b), we show analogous plots as earlier for miniF2F. Observe that this time, all the points
are now on or below the y = x line, eliminating the short but slow proofs we saw in Fig. 6. Overall,
we observe faster proofs, with 138/194 and 81/194 miniF2F proofs showing a speedup over 10% and
50%, respectively (compared to 114/194 and 56/194 before using the length metric). In Fig. 7 (c), we
see that while the lengths of the proofs found with this metric are slightly longer than before, there
is still considerable shortening. Finally, Fig. 7 (d) explains this by showing that proof length and
number of heartbeats are generally correlated. In the future, optimizing for a combination of proof

1We use #count heartbeats with set option Elab.async false

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

length and heartbeat count could lead to improvements in both readability and execution time. Full
results can be found in Sec. I.1.
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Figure 7: Using heartbeats instead of proof length as complexity measure

6 RELATED WORKS

LLMs for Theorem Proving in Lean Formal theorem proving is a rapidly growing frontier in AI
for mathematics and software verification (Yang et al., 2024b; Li et al., 2024). Progress is typically
measured with benchmarks of mathematical theorems in Lean such as miniF2F (Zheng et al., 2021),
PutnamBench (Tsoukalas et al., 2024), and ProofNet (Azerbayev et al., 2023). Recently, there have
been many LLMs developed for Lean such as Seed-Prover (Chen et al., 2025), Goedel-Prover (Lin
et al., 2025a), DeepSeek-Prover (Ren et al., 2025), and Kimina-Prover (Wang et al., 2025). There
have also been post-training techniques built on top of these models, such as with expert iteration
(Lin et al., 2024), proof sketching (Cao et al., 2025), tree search (Lample et al., 2022; Zimmer et al.,
2025), self-play (Dong & Ma, 2025), proof repair (Ospanov et al., 2025), and RL (Gloeckle et al.,
2024).

AI for Program Simplification A related line of work makes programs shorter or more efficient
(Schkufza et al., 2013; Mankowitz et al., 2023; Shypula et al., 2023; Gautam et al., 2024). In parallel,
library learning aims to discover reusable abstractions, often eliminated repeated code and shortening
programs (Ellis et al., 2023; Grand et al., 2023; Kaliszyk & Urban, 2015; Wang et al., 2023; Zhou
et al., 2024; Berlot-Attwell et al., 2024). Finally, symbolic reasoning techniques like program slicing
(Weiser, 2009), super-optimization (Sasnauskas et al., 2017), or partial evaluation (Jones, 1996) can
also shorten and optimize low-level code.

Automated Proof Shortening Frieder et al. (2024) study factors that make Lean proofs easier to
understand, motivating shorter proofs for maintainability. Classically, there have also been many
symbolic methods targeting shortening proofs in SAT and first-order logic languages (Rahul &
Necula, 2001; Vyskočil et al., 2010; Wernhard & Bibel, 2024; Gladshtein et al., 2024; Kinyon,
2018). On the neural side, GPT-f (Polu & Sutskever, 2020) generated 23 verified proofs shorter
than those in the Metamath library. Most related to our work, ImProver (Ahuja et al., 2024), is an
inference-time method for proof shortening using GPT-4o with proof states and retrieval. In contrast,
we use training-time approaches (expert iteration and RL), analyze complementary inference-time
techniques, and focus on shortening longer proofs generated by SoTA LLMs.

7 CONCLUSION

We present ProofOptimizer, the first language model trained to simplify Lean proofs. Unlike prior
work that wraps existing LLMs around agentic scaffolding, we train a model using expert iteration
and RL, coupled with a symbolic linter and iterative proof shortening at inference time. Although
simple, our approach already yields nontrivial results, reducing proof length by an average of 87%
on MiniF2F, 57% on PutnamBench, and over 50% on Seed-Prover’s IMO 2025 proofs. In addition,
our methodology, framework, and insights generalize beyond Lean proof shortening and apply to
other domains and metrics as well. As AI becomes more tightly integrated with mathematics, we
envision a future where AI-generated proofs are not only correct but also concise and readable,
with simplification serving as a critical bridge between rigorous formal proofs and human intuitive
understanding.
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A DISCLOSURE OF USE OF LLMS (ICLR 2026 REQUIREMENT)

In line with the LLM usage disclosure policy for ICLR 2026 submissions, we report our usage of
LLMs as the following:

• Design and polish matplotlib and seaborn figures in the paper (ChatGPT)
• Write LaTeX code for tables, figures, and listings, including aesthetically enhancing the

styles (ChatGPT)
• Polish and edit text in the paper (ChatGPT)
• Find relevant citations for related work (ChatGPT)
• Assist in producing code for experiments (GitHub Copilot in VSCode, ChatGPT)
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B LEAN BASE MODEL AND PROOF SIMPLIFICATION DATA DETAILS

B.1 GENERAL BASE MODEL FOR LEAN

First, we train a general-purpose base model in Lean by fine-tuning
Qwen-2.5-7B-Instruct (Yang et al., 2024a) on around 1B Lean tokens. The model is
fine-tuned on a combination of diverse math and Lean-related tasks, as follows:

• Natural Language Problem Solving: The model is trained on natural language mathe-
matics problems with associated solutions so that it has general math capabilities. We use
NuminaMath-1.5 (LI et al., 2024), a high-quality set of such pairs.

• Lean Code Completion: We use a subset of Lean code from GitHub, using GPT-4o with
heuristics to classify whether code is Lean 3 or Lean 4. We include only the Lean 4 subset
of the code.

• Auto-formalization: In order to teach the model to associate natural language with Lean,
we train the model to perform auto-formalization of both problems and solutions from
natural language to Lean 4 in our data mix. For problems, we use natural language problems
with Lean problem statement formalizations from high-quality datasets: CombiBench (Liu
et al., 2025a), Compfiles, FormalMATH (Yu et al., 2025), Goedel-Pset (Lin et al., 2025a),
Lean Workbook (Ying et al., 2024), miniF2F (Zheng et al., 2021), ProofNet (Azerbayev
et al., 2023), and PutnamBench (Tsoukalas et al., 2024). We include solution autoformaliza-
tion data from the Goedel-Pset-v1-Solved dataset by mapping Lean solutions with
natural language solutions.

• Formal Theorem Proving: We use a set of conjectures and proofs from STP (Dong & Ma,
2025), which is a diverse collection of theorems and proofs in Lean 4 generated via expert
iteration while training their model.

• Tactic and Proof State Prediction: Finally, to teach the model about proof states, we
use pre-extracted data from LeanUniverse (Aram H. Markosyan, 2024) and extract
additional data using the Pantograph (Aniva et al., 2025) tool. For each proof in STP, we
extract each tactic, as well as the proof states before and after the tactic. The model is
given the proof state before the tactic and asked to predict both the tactic and the proof state
following the tactic.

B.2 GENERATING A DATASET OF THEOREMS AND PROOFS FOR SHORTENING

After creating a Lean base model, we next describe how we generate a training dataset of proofs to
be shortened. To do so, we first present a recipe for generating interesting theorems.

Formalizing Proofs with Sketches to Derive Subtheorems While there are many datasets such as
Goedel-Pset and Lean Workbook, we find that they have a high density of simple computa-
tional problems posed as proofs rather than high-quality proving problems. In Goedel-Pset, we
estimate that only 5% of the problems are proof problems2, leading to a lack of high-quality theorem
proving data. To combat this, we develop a technique to generate diverse and interesting theorems
based on the idea of proof sketching (Jiang et al., 2022).

The key idea is that we can leverage existing natural language solutions to identify core steps in a
proof. We first train our Lean base model to take a natural language solution and auto-formalizing
into a high-level proof, which we call a proof sketch, an example shown in Listing 1. In the proof
sketch, core steps are represented via have statements, and lower-level details are omitted and left
as sorry statements. We then filter sketches are then filtered by the Lean compiler to remove
non-compiling sketches.

Once we have a set of compiling sketches, we extract each sorry goal into a new theorem via the
extract goal tactic, which turns it into a theorem that is equivalent to what needs to be proved at
that particular sorry. For example, extracting the second sorry in Listing 1 results in the theorem
shown in Listing 2. By extracting these sorry statements, we are able to generate 518K theorems.

2We estimate whether a problem is a computational problem via a heuristic filter of whether the problem has
any of the keywords: prove, show, establish, demonstrate, verify
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theorem lean_workbook_plus_22532 (a b : N → R)
(h0 : 0 < a ∧ 0 < b)
(h1 : ∀ n, a (n + 1) = a n + 2)
(h2 : ∀ n, b (n + 1) = b n * 2)
(h3 : a 1 = 1)
(h4 : b 1 = 1)
(h5 : Σ k in Finset.range 3, b k = 7) :
Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2ˆn + 3 := by
-- Lemma 1: Prove that the sequence {a_n} is an arithmetic sequence.
have lemma1 : ∀ n, a (n + 1) = a n + 2 := by
sorry

-- Lemma 2: Express a_n in terms of n.
have lemma2 : ∀ n, a n = 2 * n - 1 := by
sorry

-- Lemma 3: Express b_n in terms of n.
have lemma3 : ∀ n, b n = 2ˆ(n - 1) := by
sorry

-- Lemma 4: Calculate the sum of the first n terms of the sequence {a_n b_n}.
have lemma4 : ∀ n, Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2ˆn + 3 := by
sorry

-- Apply lemma4 to conclude the theorem.
exact lemma4 n

Listing 1: Example of a proof sketch

theorem lean_workbook_plus_22532.extracted_1_1 (a b : N → R) (h0 : 0 < a ∧ 0 < b) (h1

↪→ : ∀ (n : N), a (n + 1) = a n + 2)
(h2 : ∀ (n : N), b (n + 1) = b n * 2) (h3 : a 1 = 1) (h4 : b 1 = 1) (h5 : Σ k ∈

↪→ Finset.range 3, b k = 7)
(lemma1 : ∀ (n : N), a (n + 1) = a n + 2) (n : N) : a n = 2 * ↑n - 1 := sorry

Listing 2: Example of an extracted theorem

Fine-Tuning our Model for Proof Sketching In order to fine-tune our model for proof sketching,
we first curate a dataset of natural language problems (with corresponding Lean problem formaliza-
tions) and solutions by combining Goedel-Pset-v1 (Lin et al., 2025a) with NuminaMath-1.5 (LI
et al., 2024). Then, we use Qwen-2.5-32B-Instruct to produce proof-sketches based on these
natural language solutions similar to that in Listing 1. We filter out compiling sketches and train our
Lean base model on them. In Table 4, we show the results of fine-tuning. Since it can be tricky to
measure the objective correctness of a sketch, we use the proxy of compile rate, finding our model
performs better than Qwen2.5-32B and is smaller and can do inference faster.

Table 4: Proof sketching ability of models

Model compile@1 compile@16
Qwen2.5 7B (zero-shot) 3.6 7.0
Qwen2.5 7B (one-shot) 4.9 19.0

Qwen2.5 32B (zero-shot) 21.1 62.0
Qwen2.5 32B (one-shot) 35.1 75.0

Ours (7B) 54.8 89.1

Generating Proofs for Simplification Because proof sketching can generate steps or sub-theorems
that are too incremental, we first filter out trivial theorems that can be easily solved by automation
tactics in Lean. For example, the first sorry in Listing 1 is just a restatement of hypothesis h1 and
can be solved via rfl. While this theorem is correct, it is not challenging for the model. Therefore,
we design an AUTO tactic (Listing 3) that tries a series of Lean automation tactics such as linarith
and aesop to filter out these simple theorems, leaving 307K of the original 518K theorems (filtering
out 41%).
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For the remaining theorems, we attempt to generate proofs of these theorems with
Goedel-Prover-V2-32B, a strong open-source proving model. With 4 attempts per theorem,
the model is able to prove 145K theorems, which we use as targets for proof simplification. Statistics
and zerexamples of these proofs can be found in the next section, Appendix B.3.

macro "AUTO" : tactic =>
‘(tactic|
repeat’

(try rfl
try tauto
try assumption
try norm_num
try ring
try ring_nf at *
try ring_nf! at *
try native_decide
try omega
try simp [*] at *
try field_simp at *
try positivity
try linarith
try nlinarith
try exact?
try aesop))

Listing 3: AUTO tactic for filtering trivial theorems

B.3 STATISTICS OF PROOF SIMPLIFICATION TRAINING DATASET

The minimum, Q1, median, Q3, and maximum proof lengths of our training dataset are 1, 103, 204,
411, and 10958. The mean is 334. In Fig. 8, we show the distribution of lengths, observing its
right-skewed nature. Examples of proofs are shown in Listings 4 and 5. Compared to the proofs
in our evaluation sets, we observe that training proofs often have more unused hypotheses, as they
are derived from extracting the proof state, which may contain hypotheses that are not used for that
particular sub-goal.
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Figure 8: Histogram of proof lengths.
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theorem extracted_1 (a b : R) (ha : 0 ≤ a) (ha1 : a ≤ 1) (hb : b = a ˆ 3 + 1 / (1 + a)
↪→ )

(lemma1 : 1 - a + a ˆ 2 - a ˆ 3 ≤ 1 / (1 + a)) (lemma2 : b ≥ 1 - a + a ˆ 2) (lemma3 :
↪→ 1 - a + a ˆ 2 ≥ 3 / 4)

(lemma4 : b ≤ 3 / 2) : 3 / 4 < b := by
have h_main : 3 / 4 < b := by
by_contra h
-- Assume for contradiction that b ≤ 3/4
have h1 : b ≤ 3 / 4 := by linarith
-- From lemma2, b ≥ 1 - a + ²a, and from lemma3, 1 - a + ²a ≥ 3/4
have h2 : 1 - a + a ˆ 2 ≤ 3 / 4 := by

linarith
-- But from lemma3, 1 - a + ²a ≥ 3/4, so 1 - a + ²a = 3/4
have h3 : 1 - a + a ˆ 2 = 3 / 4 := by

linarith
-- Solve 1 - a + ²a = 3/4 to get a = 1/2
have h4 : a = 1 / 2 := by

have h41 : a ˆ 2 - a + 1 / 4 = 0 := by
nlinarith

have h42 : (a - 1 / 2) ˆ 2 = 0 := by
nlinarith

have h43 : a - 1 / 2 = 0 := by
nlinarith

linarith
-- Substitute a = 1/2 into b = ³a + 1/(1 + a)
have h5 : b = 19 / 24 := by

rw [hb]
rw [h4]
norm_num

-- But 19/24 > 3/4, so b > 3/4, contradiction
have h6 : b > 3 / 4 := by

rw [h5]
norm_num

linarith
exact h_main

Listing 4: Example of Proof Simplification Training Task (Length 158)
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theorem extracted_1 (n : N) (hn : 3 ≤ n) (lemma1 : Nat.card ↑{k | k ≤ n ∧ k ̸= 0} = n)
↪→ :

Nat.card ↑{k | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by
have h_main : Nat.card ↑{k : N | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by
have h1 : {k : N | k ≤ n - 1 ∧ k ̸= 0} = Set.Icc 1 (n - 1) := by

apply Set.ext
intro k
simp only [Set.mem_setOf_eq, Set.mem_Icc]
constructor
· intro h
have h2 : k ≤ n - 1 := h.1
have h3 : k ̸= 0 := h.2
have h4 : 1 ≤ k := by
by_contra h4

-- If k < 1, then k = 0 since k is a natural number
have h5 : k = 0 := by
omega

contradiction
exact ⟨h4, h2⟩

· intro h
have h2 : 1 ≤ k := h.1
have h3 : k ≤ n - 1 := h.2
have h4 : k ≤ n - 1 := h3

have h5 : k ̸= 0 := by
by_contra h5

-- If k = 0, then 1 ≤ k would be false
have h6 : k = 0 := by simpa using h5

omega
exact ⟨h4, h5⟩

rw [h1]
-- Calculate the cardinality of the set {1, . . ., n - 1}
have h2 : Nat.card (Set.Icc 1 (n - 1) : Set N) = n - 1 := by

-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
have h3 : n - 1 ≥ 1 := by
have h4 : n ≥ 3 := hn
omega

-- Use the formula for the cardinality of the interval [a, b]
rw [Nat.card_eq_fintype_card]
-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1
rw [Fintype.card_ofFinset]
-- Convert the set to a finset and calculate its cardinality
<;> simp [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> cases n with
| zero => contradiction
| succ n =>
cases n with
| zero => contradiction
| succ n =>
cases n with
| zero => contradiction
| succ n =>
simp_all [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]
<;> ring_nf at *
<;> omega

rw [h2]
exact h_main

Listing 5: Example of Proof Simplification Training Task (Length 295)
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C TRAINING METRICS THROUGHOUT RL

In Section 4.1, we observed that expert iteration leads to higher diversity as witnessed by better @32
metrics, while reinforcement learning with standard reinforcement learning algorithms maximizing
expected rewards leads to higher @1 metrics. In Figure 9, we show the evolution of proof shortening
red@1 alongside red@32. Initial @32 metrics are slowly distilled into @1, but the improvement on
@32 metrics is limited.
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Figure 9: Reduction metrics @1 and @32 over the course of RL. GRPO maximizes red@1 at the
cost of diversity, as red@32 only marginally increases in comparison.
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D FULL RESULTS AND ADDITIONAL ANALYSIS OF ITERATIVE PROOF
SHORTENING

D.1 TABLE OF ITERATIVE PROOF SHORTENING RESULTS

Table 5 is a tabular form of Fig. 4, showing the proof length after each iteration of proof shortening.

Table 5: Min@64 (rounded to nearest integer) and reduction (%) of miniF2F and PutnamBench
proofs across inference-time iterations. Iterations 1− 6 are done with 64 samples, and 7− 8 with
1024 samples.

Dataset Model Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F Min@64 334 302 144 126 121 117 106 104 88 75
Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Putnam Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811
Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

D.2 EFFECT OF K ON MIN@K AND RED@K THROUGHOUT SIMPLIFICATION

In this section, we analyze the effect of increasing k on min@k and red@k. First, we analyze this
trend when attempting to simplify the initial, linted proof, shown in Table 6 and Fig. 10. We observe
a relatively log-linear gain in both metrics.

For comparison, we analyze the same trend but for simplifying proofs that have already gone many
iterations of simplification. In Fig. 11, we analyze proofs that have gone 7 iterations of proof
simplification. We see a different pattern, where min@k falls slower for lower k and then log-linearly
afterwards. Intuitively, as proofs become more simplified, they become harder to simplify in a
low-shot setting, and exploring more diverse simplifications becomes crucial.

Table 6: Min@k and Red@k for increasing values of k

Dataset Metric Original Linter @1 @2 @4 @8 @16

miniF2F Min@k 334 302 142 141 139 137 134
Red@k (%) 0.0% 9.2% 77.1% 77.3% 77.7% 78.1% 78.6%

PutnamBench Min@k 1468 1359 1120 1117 1112 1105 1094
Red@k (%) 0.0% 7.4% 35.2% 35.5% 35.9% 36.5% 37.3%

Dataset Metric @32 @64 @128 @256 @512 @1024

miniF2F Min@k 130 126 122 118 114 110
Red@k (%) 79.2% 79.9% 80.6% 81.2% 81.8% 82.4%

PutnamBench Min@k 1080 1063 1043 1023 1004 987
Red@k (%) 38.4% 39.7% 41.3% 42.9% 44.3% 45.7%
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Figure 10: Effect of scaling k (sample count) on Min@k and Red@k (initial iteration)
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Figure 11: Effect of scaling k (sample count) on Min@k and Red@k (later iteration)

D.3 DETAILS ON SEED-PROVER IMO PROOF SHORTENING

Earlier in 2025, Seed-Prover released Lean proofs of four problems that the model successfully
solved from the 2025 International Mathematical Olympiad (IMO) (Chen et al., 2025). They solved
problems 3, 4, and 5 were solved during the contest window, and problem 1 later after the competition.
However, the proofs of these problems are extremely verbose, especially compared to their informal
counterparts. Using iterative proof shortening, our ProofOptimizer is able to successfully reduce
the proof length of their proofs for P3, P4, and P5 by over half, as well as the longer P1 by 43.8%.
In addition, we find that our shortened proofs for P4 and P5 show a 25% and 81% (respectively)
speedup over the original proofs (Table 7).

Table 7: Results for ProofOptimizer + Iterative Shortening on IMO 2025 Proof Simplification

Problem Length Runtime
Original Simplified Reduction Original Simplified Speedup

P1 36478 20506 43.79% 399.7 392.3 1.02×
P3 16377 7907 51.72% 39.7 39.1 1.02×
P4 29147 14531 50.15% 453.8 362.5 1.25×
P5 8658 4002 53.78% 61.0 33.7 1.81×

We use proofs from the official GitHub repository using Mathlib 4.14.0 (our model was trained on
Mathlib 4.19.0). Before shortening, we replace invocations of exact? and apply? with the actual
proof that is found. Each of the proofs is divided into a collection of smaller lemmas and theorems
(problems 1, 3, 4, and 5 have 80, 52, 88, and 14 theorems, respectively). Since running iterative
shortening on the entire proof will suffer from long context issues, we treat each sub-lemma/sub-
theorem as an individual target for shortening. At the end, we combine the shortened theorems to
produce the complete shortened proof. When feeding a sub-theorem into ProofOptimizer, we include
as context the theorem definition (but not proof) of all other theorems that occur in its proof. Finally,
to ensure the correctness of our simplified proofs, we use SafeVerify to confirm that all four simplified
proofs match the specification of the original proof without any environmental manipulation. We
remark that our setup does not consider the space of structure-level simplifications, as we retain all
sub-theorem statements from the original proof and only simplify their proofs. In addition, as our
proof length metric only measures the length of proofs, it does not take into account unnecessarily
long or redundant sub-theorem statements.

As this experiment aims to provide a simple demonstration of the potential of our approach rather than
perform a controlled scientific study, we do not fix the number of iterations or samples per iteration
across problems. Approximately, we use 15-20 iterations of shortening with 64-4096 samples per
iteration. Taking inspiration from the analysis in Sec. D.2, we generally use less samples for the
first few iterations and increase the number of samples for later iterations to maximize reduction per
sample. We also allocate more samples to sub-theorems that show more simplification potential in
early iterations. In total, we used approximately 3000 H100 GPU hours per problem.
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E COMPARISON WITH QWEN2.5, GPT-4O, AND GEMINI-2.5-PRO

In Table 8, we compare ProofOptimizer models with several off the shelf models, namely Qwen
2.5 (Team, 2024), GPT-4o (Achiam et al., 2023), and Gemini-2.5-Pro (Comanici et al., 2025). For all
models, we feed the output of the symbolic linter as input, and report overall reduction with respect
to the original (unlinted) proof.

Table 8: Proof length of miniF2F and PutnamBench proofs for various models. Specially trained
proof minimization models outperform prompted off-the-shelf models. Reinforcement learning
achieves best @1 metrics but at the cost of reducing diversity, as witnessed by improved @32 metrics
with expert iteration.

Dataset Model Min@1 Min@32 Red@1 Red@32

miniF2F

Original 334 0.0%
Linter 302 9.2%

Qwen2.5-7B 294 267 25.7% 41.8%
Qwen2.5-32B 288 252 30.0% 47.3%

GPT-4o 283 258 35.2% 47.9%
GPT-4o + States 266 290 32.9% 46.5%
Gemini-2.5-Pro 280 207 31.6% 62.0%

Gemini-2.5-Pro + States 283 208 31.6% 62.0%
ProofOptimizer-ExpIt 241 153 53.9% 74.9%
ProofOptimizer-RL 190 152 67.1% 73.4%

Putnam
Bench

Original 1468 0.0%
Linter 1359 7.4%

Qwen2.5-7B 1358 1339 9.0% 14.8%
Qwen2.5-32B 1353 1304 10.9% 20.7%

GPT-4o 1355 1336 10.9% 18.2%
GPT-4o + States 1379 1358 9.3% 15.9%
Gemini-2.5-Pro 1348 1303 12.7% 24.5%

Gemini-2.5-Pro + States 1371 1319 11.5% 24.1%
ProofOptimizer-ExpIt 1328 1161 15.2% 31.9%
ProofOptimizer-RL 1303 1258 21.6% 27.1%

In Fig. 12, we compare the specific optimized proofs between Gemini and ProofOptimizer. For both
data sets it can be seen that the longer the proof, the more challenging it is to shorten it. This is
because although long proofs have more potential for shortening, the models struggle to maintain
correctness of them. Still, ProofOptimizer is able to bring some improvements for the long proofs
(see the top right part of the PutnamBench plot). In miniF2F, there is a significant number of proofs
that can be minimized to just one step, which typically boils down to invoking one proof automation
tactic (like linarith instead of applying a sequence of more explicit proof steps.
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Figure 12: Comparison of optimized proofs between ProofOptimizer (green) and Gemini 2.5 Pro
(yellow)
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F FULL RESULTS AND EXTENDED ANALYSIS OF REPAIR WITH EXECUTION
FEEDBACK

This section contains the full results of the experiments in Sec. 4.2. All simplification attempts are
done on the set of linted proofs. Table 9, Figure 13, and Figure 14 are extended versions of Fig. 3 for
both PutnamBench and miniF2F. The settings are as follows:

• ProofOptimizer: ProofOptimizer-ExpIt, with 64 simplification attempts per proof.
• + Repair: The previous setting, with 1 attempted repair by Goedel-Prover-V2-32B.
• + Repair + Linter: The previous setting, with our linter applied to all proofs.
• ProofOptimizer (@128): ProofOptimizer-ExpIt, with 128 simplification attempts per proof
• ProofOptimizer (@64x2): ProofOptimizer-ExpIt with 64 simplification attempts per proof,

and the best simplified proof for each problem is then fed back for an additional 64 attempts.

We remark that these baselines are normalizing for sample count rather than running time. Sampling
a repair from Goedel-Prover-V2-32B takes considerably longer than sampling a simplification
from our model. This is both because it is a larger model (32B vs. 7B) and because their model relies
on CoT, causing their average response length to be significantly longer than ours.

Table 9: Results of execution-based repair strategies

Dataset Model Min@64 Min@64 × 2 Red@64 Red@64 × 2

miniF2F

Linter 302 9.2%
ProofOptimizer 144 - 75.5% -

+ Repair - 136 - 77.3%
+ Repair + Linter - 132 - 77.9%

ProofOptimizer (@128) - 130 - 78.9%
ProofOptimizer (It 2) - 125 - 80.2%

Putnam
Bench

Linter 1359 7.4%
ProofOptimizer 1123 - 32.9% -

+ Repair - 1113 - 35.3%
+ Repair + Linter - 1107.2 - 35.7%

ProofOptimizer (@128) - 1099 - 36.5%
ProofOptimizer (@64x2) - 1095 - 37.0%
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Figure 13: Results of Execution-Based Repair with Goedel-Prover
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Figure 14: Comparison of Proof Lengths with Execution-Based Repair

Finally, in Listings 6 and 7, we show an example of a proof that was successfully repaired. Note that
the repaired proof has many components in common with the original proof.

theorem mathd_numbertheory_314
(r n : N) (h0 : r = 1342 % 13) (h1 : 0 <

↪→ n)
(h2 : 1342|n) (h3 : n % 13 < r)
: 6710 ≤ n := by
have h_r : r = 3 := by rw [h0]
have h_main : 6710 ≤ n := by
have h4 : n % 13 < 3 := by

rw [h_r] at h3

exact h3

obtain ⟨k, rfl⟩ := h2

have h5 : 0 < k := by
by_contra h
push_neg at h
have h6 : k = 0 := by omega
simp [h6] at h1

by_contra! h6

have h7 : k ≤ 4 := by
by_contra h8

have h9 : k ≥ 5 := by omega
have h10 : 1342 * k ≥ 1342 * 5 :=

↪→ by nlinarith
omega

interval_cases k <;> norm_num [Nat.
↪→ mul_mod, Nat.add_mod, Nat.mod_mod]
↪→ at h4 ⊢

exact h_main

Listing 6: Original Lean Proof (Length 126)

theorem mathd_numbertheory_314 -- Wrong
(. . . statement omitted) := by
rw [h0] at h3

have : n % 13 < 3 := by omega
obtain ⟨k, rfl⟩ := h2

omega

theorem mathd_numbertheory_314 -- Correct
(. . . statement omitted) := by
have h_r : r = 3 := by

rw [h0]
<;> norm_num
<;> rfl

have h_main : 6710 ≤ n := by
have h4 : n % 13 < 3 := by
rw [h_r] at h3

exact h3

obtain ⟨k, rfl⟩ := h2

by_contra! h
have h5 : k ≤ 4 := by
omega

interval_cases k <;> norm_num [Nat.
↪→ mul_mod, Nat.add_mod, Nat.mod_mod]
↪→ at h4 ⊢ <;>
(try omega) <;> (try contradiction)

exact h_main

Listing 7: Wrong Simplification and Correct
Repair (Length 93)
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G EVALUATION DATASET DETAILS

For our evaluation datasets, we use miniF2F and PutnamBench proofs sampled from
Goedel-LM/Goedel-Prover-V2-32B. For miniF2F, we sample with temperature 1 and top-p
0.95. For PutnamBench, we use proofs provided by the team. In both cases, we take the shortest
passing proof for each problem in Mathlib 4.19.0, resulting in 194 proofs for miniF2F and 75 proofs
for PutnamBench. Table 10 and Figure 15 show summary statistics of our dataset. One sample from
each dataset is shown in Listings 8 and 9.

As a sidenote, we observe a discrepency in Goedel-Prover-V2-32B’s results with Lean versions. Upon
testing their model, we measured 90% (pass@64) and 86 (pass@184) on miniF2F and PutnamBench
with Mathlib 4.9, but only 80% (pass@64) and 75 (pass@184) with Mathlib 4.19. In this paper, we
use Mathlib 4.19 rather than 4.9, as it is more recent and likely more useful to the Lean community.

Table 10: Summary statistics of proof lengths in evaluation dataset

Dataset n Min Q1 Median Q3 Max Mean
MiniF2F 194 13 64 167 499 2980 334

PutnamBench 75 2 608 1179 2110 5420 1468
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Figure 15: Histograms of proof lengths for our miniF2F and PutnamBench evaluation sets.

theorem mathd_numbertheory_185
(n : N)
(h0 : n % 5 = 3) :
(2 * n) % 5 = 1 := by
have h1 : (2 * n) % 5 = 1 := by
have h2 : (2 * n) % 5 = (2 * (n % 5)) % 5 := by

simp [Nat.mul_mod, Nat.mod_mod]
<;> ring_nf at *
<;> omega

rw [h2]
rw [h0]
<;> norm_num
<;> rfl

exact h1

Listing 8: Example of miniF2F Eval Task (Length 65)
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theorem putnam_1993_a2
(x : N → R)
(xnonzero : ∀ n : N, x n ̸= 0)
(hx : ∀ n ≥ 1, (x n) ˆ 2 - x (n - 1) * x (n + 1) = 1)
: ∃ a : R, ∀ n ≥ 1, x (n + 1) = a * x n - x (n - 1) := by

have h_main : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1
↪→ := by
intro n hn
have h1 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x (n + 2) + x n) / x
↪→ (n + 1) := by
intro n hn
have h2 : (x (n + 1)) ˆ 2 - x n * x (n + 2) = 1 := by
have h3 := hx (n + 1) (by linarith)
simpa [Nat.add_assoc] using h3

have h3 : (x n) ˆ 2 - x (n - 1) * x (n + 1) = 1 := hx n hn
have h4 : x (n + 2) * x n + (x n) ˆ 2 - (x (n + 1)) ˆ 2 - x (n - 1) * x (n + 1) =

↪→ 0 := by
linarith

have h5 : (x (n + 2) + x n) * x n - (x (n + 1) + x (n - 1)) * x (n + 1) = 0 := by
ring_nf at h4 ⊢
linarith

have h6 : x n ̸= 0 := xnonzero n
have h7 : x (n + 1) ̸= 0 := xnonzero (n + 1)
have h8 : (x (n + 2) + x n) / x (n + 1) - (x (n + 1) + x (n - 1)) / x n = 0 := by
field_simp [h6, h7] at h5 ⊢
nlinarith

linarith

have h2 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 :=
↪→ by
intro n hn
induction’ hn with n hn IH
·
norm_num

·
have h3 := h1 n hn
have h4 := h1 (n + 1) (by linarith)
simp [Nat.add_assoc] at h3 h4 ⊢
<;>
(try norm_num at * <;>
try linarith) <;>
(try simp_all [Nat.add_assoc]) <;>
(try ring_nf at * <;>
try linarith) <;>
(try field_simp [xnonzero] at * <;>
try nlinarith)
<;>
linarith

exact h2 n hn

have h_exists_a : ∃ (a : R), ∀ (n : N), n ≥ 1 → x (n + 1) = a * x n - x (n - 1) :=
↪→ by
use (x 2 + x 0) / x 1
intro n hn
have h1 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := h_main n hn
have h2 : x n ̸= 0 := xnonzero n
have h3 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by rw [h1]
have h4 : x (n + 1) + x (n - 1) = ((x 2 + x 0) / x 1) * x n := by

field_simp [h2] at h3 ⊢
<;> nlinarith

have h5 : x (n + 1) = ((x 2 + x 0) / x 1) * x n - x (n - 1) := by linarith
exact h5

exact h_exists_a

Listing 9: Example of PutnamBench Eval Task (Length 715)
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H EXAMPLES OF PROOFS SIMPLIFIED BY PROOFOPTIMIZER

In Listings 10 to 17, we show proofs successfully optimized with ProofOptimizer and iterative
shortening. Some proofs were syntactically modified to fit on the page (new lines removed, multiple
lines compressed into one).

theorem mathd_algebra_338 -- Original
↪→ Proof

(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have h3 : b = a + 6 := by
have h31 : -a + b = 6 := by

have h32 : (a + 3 * b + c) - (3 * a
↪→ + b + c) = 9 - (-3) := by

linarith
linarith

linarith

have h4 : c = a + 11 := by
have h41 : -a + c = 11 := by

have h42 : (a + b + 3 * c) - (3 * a
↪→ + b + c) = 19 - (-3) := by

linarith
linarith

linarith

have h5 : a = -4 := by
have h51 : 3 * a + b + c = -3 := h0

rw [h3, h4] at h51

ring_nf at h51 ⊢
linarith

have h6 : b = 2 := by
rw [h3]
rw [h5]
<;> norm_num

have h7 : c = 7 := by
rw [h4]
rw [h5]
<;> norm_num

have h8 : a * b * c = -56 := by
rw [h5, h6, h7]
<;> norm_num

exact h8

Listing 10: Original Proof (Length 214)

theorem mathd_algebra_338
(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
have : a = -4 := by linarith
subst_vars
nlinarith

Listing 11: Simplified Proof (Length 11)
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theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
have h1 : ∀ n : N, (a (n + 10) : Z) ≡ - (a n : Z) [ZMOD 181] := by
intro n
induction’ n using Nat.strong_induction_on with n ih
rcases n with (_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | n) <;>

simp_all [Int.ModEq, abase, arec] <;> omega
have h2 : (a 5 : Z) ≡ 0 [ZMOD 181] := by norm_num [Int.ModEq, abase, arec]
have h3 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by
have h4 : ∀ k : N, (a (10 * k + 5) : Z) ≡ 0 [ZMOD 181] := by

intro k
induction’ k with k ih
· norm_num [Int.ModEq] at h2 ⊢
<;> simpa [abase, arec] using h2

· have h5 := h1 (10 * k + 5)
have h6 := h1 (10 * k + 6)
have h7 := h1 (10 * k + 7)
have h8 := h1 (10 * k + 8)
have h9 := h1 (10 * k + 9)
have h10 := h1 (10 * k + 10)
norm_num [Int.ModEq] at h5 h6 h7 h8 h9 h10 ih ⊢
<;> ring_nf at * <;> omega

have h5 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by
have h6 : (a (10 * 201 + 5) : Z) ≡ 0 [ZMOD 181] := h4 201
norm_num at h6 ⊢
<;> simpa [add_assoc] using h6

exact h5

exact Int.dvd_of_emod_eq_zero h3

Listing 12: Original Proof (Length 324)

theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor
· decide
constructor
· norm_num [Nat.Prime]
rw [show 2015 = 10 * 202 - 5 by norm_num]
have h1 : ∀ n : N, a (10 * n + 5) ≡ 0 [ZMOD 181] := by
intro n
induction’ n with k ih
· norm_num [abase, arec, Int.ModEq]
· rw [Nat.mul_succ]

simp_all [Int.ModEq, arec]
omega

have h2 := h1 201
exact Int.dvd_of_emod_eq_zero h2

Listing 13: Simplified Proof (Length 82)
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theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))ˆ2 ̸= 0)
(h2 : (4 * xˆ2) / (1 - Real.sqrt (1 + 2*x))ˆ2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· set s := Real.sqrt (1 + 2 * x) with hs
have h51 : 0 ≤ 1 + 2 * x := h0

have h52 : s ≥ 0 := Real.sqrt_nonneg _
have h53 : s ˆ 2 = 1 + 2 * x := by

rw [hs]
rw [Real.sq_sqrt] <;> linarith

have h54 : (1 - s) ˆ 2 ̸= 0 := by simpa [hs] using h1

have h55 : s ̸= 1 := by
intro h
have h551 : (1 - s) ˆ 2 = 0 := by
rw [h]
norm_num

contradiction
have h56 : (s + 1) ˆ 2 * (s - 1) ˆ 2 = (s ˆ 2 - 1) ˆ 2 := by

ring
have h57 : (s ˆ 2 - 1 : R) ˆ 2 = 4 * x ˆ 2 := by

rw [h53]
ring

have h58 : (4 : R) * x ˆ 2 / (s - 1) ˆ 2 = (s + 1) ˆ 2 := by
have h581 : (s - 1 : R) ˆ 2 ̸= 0 := by
intro h
have h582 : (1 - s : R) ˆ 2 = 0 := by
calc
(1 - s : R) ˆ 2 = (s - 1 : R) ˆ 2 := by ring
_ = 0 := by rw [h]

contradiction
field_simp [h581] at h57 ⊢
nlinarith

have h59 : (4 : R) * x ˆ 2 / (1 - s) ˆ 2 = (s + 1) ˆ 2 := by
rw [← h58]
ring

nlinarith [sq_nonneg (s - 1)]

Listing 14: Original Proof (Length 330)

theorem imo_1960_p2
(x : R)
(h0 : 0 ≤ 1 + 2 * x)
(h1 : (1 - Real.sqrt (1 + 2 * x))ˆ2 ̸= 0)
(h2 : (4 * xˆ2) / (1 - Real.sqrt (1 + 2*x))ˆ2 < 2*x + 9)
(h3 : x ̸= 0) :
-(1 / 2) ≤ x ∧ x < 45 / 8 := by
constructor
· nlinarith [sq_nonneg (x + 1 / 2)]
· have h57 : (4 : R) * x ˆ 2 / (1 - Real.sqrt (1 + 2 * x)) ˆ 2 = (1 + Real.sqrt (1 +

↪→ 2 * x)) ˆ 2 := by
have h58 : (1 - Real.sqrt (1 + 2 * x)) ˆ 2 ̸= 0 := by assumption
field_simp [h58]
nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption)]

nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption),
Real.sqrt_nonneg (1 + 2 * x)]

Listing 15: Simplified Proof (Length 125)
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theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).1 + ((fun n : N => (n)!, fun
↪→ n : N => 2 ˆ n) : (N → Z) × (N → Z) ).2 :=

by
have h_main : ∀ (n : N), T n = (n ! : Z) + 2 ˆ n := by
intro n
have h1 : T n = (n ! : Z) + 2 ˆ n := by

have h2 : ∀ n : N, T n = (n ! : Z) + 2 ˆ n := by
intro n
induction n using Nat.strong_induction_on with
| h n ih =>
match n with
| 0 =>

norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 1 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| 2 =>
norm_num [hT012]
<;>
simp_all [Nat.factorial]
<;>
norm_num

| n + 3 =>
have h3 := hTn n
have h4 := ih n (by omega)
have h5 := ih (n + 1) (by omega)
have h6 := ih (n + 2) (by omega)
simp [h4, h5, h6, pow_add, pow_one, Nat.factorial_succ, Nat.mul_add, Nat.add_mul] at h3 ⊢
<;>
ring_nf at h3 ⊢ <;>
norm_cast at h3 ⊢ <;>
simp_all [Nat.factorial_succ, pow_add, pow_one, mul_assoc]
<;>
ring_nf at * <;>
norm_num at * <;>
nlinarith

exact h2 n
exact h1

have h_final : T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).1 + ((fun n : N
↪→ => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z) ).2 := by

funext n
have h1 : T n = (n ! : Z) + 2 ˆ n := h_main n
simp [h1, Pi.add_apply]
<;> norm_cast <;> simp [Nat.cast_add] <;> ring_nf

apply h_final

theorem putnam_1990_a1
(T : N → Z)
(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)
(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :
T = ((fun n : N => (n)!, fun n : N => 2 ˆ n) : (N → Z) × (N → Z)).1 + ((fun n : N => (n)!, fun
↪→ n : N => 2 ˆ n) : (N → Z) × (N → Z)).2 := by

ext n
induction’ n using Nat.strong_induction_on with n ih
match n with
| 0 => simp_all
| 1 => simp_all
| 2 => simp_all
| n + 3 =>
simp_all [Nat.factorial_succ]
ring_nf

Listing 16: Original Proof (Length 320) and Simplified Proof (Length 34)
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theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by

have h_main : (
∫

x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2)) = 22/7 - Real.pi := by
have h1 : (

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2)) = (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*

↪→ xˆ2 + 4 : R) - 4 / (1 + xˆ2)) := by
have h11 : ∀ (x : R), xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) = (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) - 4 /
↪→ (1 + xˆ2) := by

intro x
have h12 : (1 + xˆ2 : R) ̸= 0 := by nlinarith
have h13 : xˆ4 * (1 - x)ˆ4 = (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) * (1 + xˆ2) - 4 := by
ring_nf <;> nlinarith [sq_nonneg (x ˆ 2), sq_nonneg (x ˆ 3), sq_nonneg (x - 1), sq_nonneg (x

↪→ + 1)]
have h14 : xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) = ((xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) * (1 + xˆ2) -

↪→ 4) / (1 + xˆ2) := by
rw [h13]

rw [h14]
field_simp [h12] <;> ring_nf <;> field_simp [h12] <;> ring_nf

congr
ext x
rw [h11 x]

rw [h1]
have h2 : (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R) - 4 / (1 + xˆ2)) = (

∫
x in (0)..1,

↪→ (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R)) - (
∫

x in (0)..1, (4 : R) / (1 + xˆ2)) := by
apply intervalIntegral.integral_sub
· apply Continuous.intervalIntegrable

continuity
· apply Continuous.intervalIntegrable

have h3 : Continuous (fun x : R => (4 : R) / (1 + x ˆ 2)) := by
apply Continuous.div
· exact continuous_const
· exact Continuous.add continuous_const (continuous_pow 2)
· intro x

have h4 : (1 + x ˆ 2 : R) ̸= 0 := by nlinarith
exact h4

exact h3
rw [h2]
have h3 : (

∫
x in (0)..1, (xˆ6 - 4*xˆ5 + 5*xˆ4 - 4*xˆ2 + 4 : R)) = (22 / 7 : R) := by

norm_num [integral_id, mul_comm] <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]
have h4 : (

∫
x in (0)..1, (4 : R) / (1 + xˆ2)) = Real.pi := by

have h41 : (
∫

x in (0)..1, (4 : R) / (1 + x ˆ 2)) = 4 * (
∫

x in (0)..1, (1 : R) / (1 + x ˆ 2))
↪→ := by

have h42 : (
∫

x in (0)..1, (4 : R) / (1 + x ˆ 2)) = (
∫

x in (0)..1, 4 * (1 : R) / (1 + x ˆ 2))
↪→ := by

congr
ext x <;> ring_nf

rw [h42]
have h43 : (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ˆ 2)) = 4 * (

∫
x in (0)..1, (1 : R) / (1 + x

↪→ ˆ 2)) := by
simp [intervalIntegral.integral_comp_mul_left (fun x => (1 : R) / (1 + x ˆ 2))] <;>
norm_num <;> field_simp <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]

rw [h43]
rw [h41]
have h44 : (

∫
x in (0)..1, (1 : R) / (1 + x ˆ 2)) = Real.pi / 4 := by

have h45 : (
∫

x in (0)..1, (1 : R) / (1 + x ˆ 2)) = Real.arctan 1 - Real.arctan 0 := by
rw [integral_one_div_one_add_sq] <;> norm_num

rw [h45]
have h46 : Real.arctan 1 = Real.pi / 4 := by
norm_num [Real.arctan_one]

have h47 : Real.arctan 0 = 0 := by
norm_num [Real.arctan_zero]

rw [h46, h47] <;> ring_nf <;> norm_num
rw [h44] <;> ring_nf <;> norm_num

rw [h3, h4] <;> ring_nf <;> norm_num
have h_final : 22/7 - Real.pi =

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by

rw [h_main] <;> linarith [Real.pi_pos]
exact h_final

theorem putnam_1968_a1
: 22/7 - Real.pi =

∫
x in (0)..1, xˆ4 * (1 - x)ˆ4 / (1 + xˆ2) := by

simp_rw [show ∀ x : R, x ˆ 4 * (1 - x) ˆ 4 / (1 + x ˆ2) = (x ˆ6 - 4 * x ˆ5 + 5 * x ˆ4 - 4 * x ˆ2 + 4
↪→ - 4 / (1 + x ˆ2)) by

intro x
field_simp
ring]

ring_nf
norm_num
<;> linarith [Real.pi_pos]

Listing 17: Original Proof (Length 1097) and Simplified Proof (Length 76)
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I PROOF SPEEDUP AND SLOWDOWN ANALYSIS AND EXAMPLES

I.1 ITERATIVE PROOF SHORTENING RESULTS WITH HEARTBEAT METRIC

Table 12 and Fig. 17 show the results of iterative proof shortening using proof length vs. heartbeats
as optimization metrics. Observe that while optimizing for heartbeats isn’t nearly as effective for
proof length, it still leads to considerable simplification.

Table 11: Comparison of Min@64 (rounded to nearest integer), reduction (%), Heartbeats@64
(in thousands), and reduction (%) across inference-time iterations for miniF2F and PutnamBench
proofs. Iterations 1–6 use 64 samples, and 7–8 use 1024 samples. The first group shows the standard
(length-optimized) setting; the second group shows the new (heartbeat-optimized) experiment.

Dataset Metric Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F

Optimizing for Length
Min@64 334 302 144 126 121 117 106 104 88 75

Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Optimizing for Heartbeats
Min@64 334 302 163 145 139 135 129 125 112 96

Red@64 (%) 0.0 9.2 71.3 74.8 75.8 76.3 76.9 77.4 79.0 81.3
HB@64 (K) 36.3 36.2 14.5 13.6 13.3 13.2 13.0 12.8 11.9 10.4
HB Red@64 0.0 0.2 43.3 46.7 48.2 48.5 48.8 49.6 51.5 57.0

Putnam

Optimizing for Length
Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811

Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

Optimizing for Heartbeats
Min@64 1468 1359 1142 1092 1060 1043 1034 1031 974 904

Red@64 (%) 0.0 7.4 32.2 36.2 38.7 39.7 40.5 40.8 44.0 49.2
HB@64 (K) 221 219 199 157 155 140 136 136 122 111
HB Red@64 0.0 0.7 18.5 23.9 26.9 28.4 29.5 29.6 34.0 39.5
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Figure 16: Optimizing for length vs. heartbeats

I.2 EXAMPLES OF PROOF SPEEDUP AND SLOWDOWN AFTER SIMPLIFICATION

Table 12 and Fig. 17 show the results of iterative proof shortening using proof length vs. heartbeats
as optimization metrics. Observe that while optimizing for heartbeats isn’t nearly as effective for
proof length, it still leads to considerable simplification.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 12: Comparison of Min@64 (rounded to nearest integer), reduction (%), Heartbeats@64
(in thousands), and reduction (%) across inference-time iterations for miniF2F and PutnamBench
proofs. Iterations 1–6 use 64 samples, and 7–8 use 1024 samples. The first group shows the standard
(length-optimized) setting; the second group shows the new (heartbeat-optimized) experiment.

Dataset Metric Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F

Optimizing for Length
Min@64 334 302 144 126 121 117 106 104 88 75

Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Optimizing for Heartbeats
Min@64 334 302 163 145 139 135 129 125 112 96

Red@64 (%) 0.0 9.2 71.3 74.8 75.8 76.3 76.9 77.4 79.0 81.3
HB@64 (K) 36.3 36.2 14.5 13.6 13.3 13.2 13.0 12.8 11.9 10.4
HB Red@64 0.0 0.2 43.3 46.7 48.2 48.5 48.8 49.6 51.5 57.0

Putnam

Optimizing for Length
Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811

Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

Optimizing for Heartbeats
Min@64 1468 1359 1142 1092 1060 1043 1034 1031 974 904

Red@64 (%) 0.0 7.4 32.2 36.2 38.7 39.7 40.5 40.8 44.0 49.2
HB@64 (K) 221 219 199 157 155 140 136 136 122 111
HB Red@64 0.0 0.7 18.5 23.9 26.9 28.4 29.5 29.6 34.0 39.5
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Figure 17: Optimizing for length vs. heartbeats

We analyze two examples of proof speedup and slowdown. In Listing 18, we observe that the original
proof uses an extraneous amount of tactics within nlinarith in order to prove the main conjecture.
By removing a majority of these, the simplified proof achieves a 4.7x speedup. In Listing 19, we
observe a more extreme case, where the original proof is significantly overcomplicated and can be
reduced to one omega invocation. Goedel-Prover-V2-32B never found this single-tactic proof
(with 64 samples) and instead produces proofs with many unnecessary subgoals, leading to a proof
with slow execution time.

In several occurrences, we observe that simplified proofs can be significantly slower than the original
proof. This is usually because the simplified proof is notationally shorter, but uses a slower approach
to complete the proof. For example, in Listing 20, ProofOptimizer finds a shorter proof, but the
proof is reliant on simp all, Finset.sum range succ, and linarith, which expand the
goal into large proof terms that are time-consuming, causing the new proof to be over 10× slower.
Another example is shown in Listing 21. Here, the original proof first iterates over all m ≤ 71
with interval cases m, tries to simplify using omega, and then iterates over all n ≤ 71 with
interval cases n. ProofOptimizer, however, removes the try omega, directly doing an
exhaustive search over (m,n). The try omega statement in the original proof made it much faster,
removing 69 of the 71 goals, whereas the simplified proof had to iterate through n for these goals.
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theorem imo_1983_p6 -- Original Proof, Time: 5.57s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
have h_main : 0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),

mul_nonneg h0.1.le h0.2.1.le, mul_nonneg h0.2.1.le h0.2.2.le, mul_nonneg h0.2.2.le
↪→ h0.1.le,
mul_nonneg (sq_nonneg (a - b)) h0.2.2.le, mul_nonneg (sq_nonneg (b - c)) h0.1.le,
mul_nonneg (sq_nonneg (c - a)) h0.2.1.le, mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0

↪→ .2.2,
mul_pos h0.2.2 h0.1, mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2),
mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h

↪→ 1),
sq_nonneg (a + b - 2 * c), sq_nonneg (b + c - 2 * a), sq_nonneg (c + a - 2 * b)]

exact h_main

theorem imo_1983_p6 -- Simplified Proof, Time: 1.20s
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
0 ≤ aˆ2 * b * (a - b) + bˆ2 * c * (b - c) + cˆ2 * a * (c - a) := by
nlinarith [mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2), mul_pos (sub_pos.mpr h2) (

↪→ sub_pos.mpr h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1), sq_nonneg (a - b),
↪→ sq_nonneg (b - c), sq_nonneg (c - a)]

Listing 18: Example of Speedup after Simplification (orig: 5.6s, new: 1.2s)

theorem mathd_numbertheory_765 -- Original Proof, Time: 2.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
have h_main : x ≤ -449 := by
by_contra! h
have h2 : -448 ≤ x := by linarith
have h3 : x < 0 := h0

have h4 : (24 * x) % 1199 = 15 := h1

have h5 : x ≥ -448 := by linarith
have h6 : x ≤ -1 := by

omega
-- We will check all possible values of x from -448 to -1 and show that none
↪→ satisfy (24 * x) % 1199 = 15
have h7 : False := by

-- Use the fact that x is between -448 and -1 to check each possible value
have h8 : x ≥ -448 := by linarith
have h9 : x ≤ -1 := by omega
-- Use interval_cases to check each possible value of x
interval_cases x <;> norm_num [Int.mul_emod, Int.add_emod] at h4 ⊢ <;> omega

exact h7

exact h_main

theorem mathd_numbertheory_765 -- Simplified Proof, Time: 0.50s
(x : Z)
(h0 : x < 0)
(h1 : (24 * x) % 1199 = 15) :
x ≤ -449 := by
omega

Listing 19: Example of Speedup after Simplification (orig: 2.5s, new: 0.5s)
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theorem aime_1984_p1 -- Original Proof, Time: 0.91s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
have h2 : ∀ (n : N), u n = u 0 + n := by
(. . . 14 lines omitted)

have h3 : 98 * u 0 + 4851 = 137 := by
have h4 : Σ k in Finset.range 98, u (k.succ) = 137 := h1

have h5 : Σ k in Finset.range 98, u (k.succ) = Σ k in Finset.range 98, (u 0 + (k.
↪→ succ : Q)) := by
apply Finset.sum_congr rfl
intro k _
rw [h2 (k.succ)]
<;> simp [Nat.cast_add, Nat.cast_one]
<;> ring_nf
<;> norm_num

rw [h5] at h4

have h6 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = 98 * u 0 + 4851 := by
have h7 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = Σ k in Finset.range 98,

↪→ (u 0 : Q) + Σ k in Finset.range 98, (k.succ : Q) := by
rw [Finset.sum_add_distrib]

rw [h7]
have h8 : Σ k in Finset.range 98, (u 0 : Q) = 98 * u 0 := by
simp [Finset.sum_const, Finset.card_range]
<;> ring_nf

rw [h8]
have h9 : Σ k in Finset.range 98, (k.succ : Q) = 4851 := by
norm_num [Finset.sum_range_succ, Finset.sum_range_succ, Finset.sum_range_succ]
<;>
rfl

rw [h9]
<;> ring_nf

rw [h6] at h4

norm_num at h4 ⊢
<;> linarith

have h4 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 49 * u 0 + 2450 := by
-- (. . . 25 lines omitted)

have h5 : 49 * u 0 = -2357 := by
-- (. . . 6 lines omitted)

have h6 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
-- (. . . 4 lines omitted)
linarith

exact h6

theorem aime_1984_p1 -- Simplified Proof, Time: 10.84s
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :
Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by
simp_all [Finset.sum_range_succ]
linarith

Listing 20: Example of Slowdown after Simplification (orig: 0.9s, new: 10.8s)
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theorem mathd_numbertheory_711 -- Original Proof, 4.87s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have h_product : m * n = 896 := by
-- (. . . 5 lines omitted)

have h_main : 72 ≤ m + n := by
have h3 : 0 < m := h0.1
have h4 : 0 < n := h0.2
have h5 : m * n = 896 := h_product
have h6 : Nat.gcd m n = 8 := h1

have h7 : Nat.lcm m n = 112 := h2

have h8 : m + n ≥ 72 := by
by_contra! h
-- (. . . 4 lines omitted)
have h11 : m ≤ 71 := by nlinarith
have h12 : n ≤ 71 := by nlinarith
interval_cases m <;> norm_num at h5 ⊢ <;>
(try omega) <;>
(try {
interval_cases n <;> norm_num at h5 h6 h7 ⊢ <;>
-- (. . . 5 lines omitted)

}) <;>
-- (. . . 5 lines omitted)

exact h8

exact h_main

theorem mathd_numbertheory_711 -- Simplified Proof, 74.63s
(m n : N)
(h0 : 0 < m ∧ 0 < n)
(h1 : Nat.gcd m n = 8)
(h2 : Nat.lcm m n = 112) :
72 ≤ m + n := by
have : m * n = 896 := by
rw [← Nat.gcd_mul_lcm m n]
simp_all

by_contra!
have : m ≤ 71 := by nlinarith
have : n ≤ 71 := by nlinarith
interval_cases m <;> interval_cases n <;> simp_all

Listing 21: Example of Slowdown after Simplification (orig: 4.9s, new: 74.6s)
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J DERIVATION OF CLOSED FORM FOR MIN@K AND MAX@K

In this section, we derive the closed form expression we use for estimating max@k from n samples
based off the classic pass@k metric:

max@k =
1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi.

Let X be a real random variable, X1, . . . , Xk independent realizations of X and X(k) = maxi≤k Xi

their maximum. We would like to give an estimator for E[X(k)] given n ≥ k independent samples
x1 ≤ . . . ≤ xn of X sorted by size.

Consider the estimator M = 1

(nk)

∑
i≤n

(
i−1
k−1

)
xi, with the idea being that there exist

(
n
k

)
ways to

choose k out of the n samples overall, out of which
(
i−1
k−1

)
select the i-th and then k−1 with a smaller

index.

We compute

Exi

 1(
n
k

) ∑
i≤n

(
i− 1

k − 1

)
xi

 = Exi

 1(
n
k

) ∑
I⊆{1,...,n},|I|=k

xmax I


=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi [xmax I ]

=
1(
n
k

) ∑
I⊆{1,...,n},|I|=k

Exi

[
max
j∈I

xj

]
=

1(
n
k

) ∑
I⊆{1,...,n},|I|=k

E
[
X(k)

]
= E

[
X(k)

]
by the counting argument explained above, linearity of expectation, ordering of the xi and indepen-
dence.

Note that this is a generalization of the pass@k metric, which covers the case of Bernoulli distributed
X (Chen et al., 2021).

We recommend using a numerically stable implementation that computes the ratio (i−1
k−1)
(nk)

by canceling

a (k − 1)! factor and pairing up numerator and denominator factors.

Moreover, the min@k estimator can be obtained as min@k(x1, . . . , xn) =
−max@k(−x1, . . . ,−xn).
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K HYPERPARAMETERS

In this section, we detail the hyperparameters we use throughout our various training and inference
experiments. Prompts can be found in the next section, Appendix L.

Iterative Training (Sec. 3.1.1): For each round of SFT, we use an effective batch size of 64 (2 nodes,
8 H100/node, 4 gradient accumulation steps) and learning rate 1e-5. We use a cosine scheduler with
minimum learning rate 1e-8 and 100 steps of warm-up starting from 1e-30. For inference, we use
τ = 1.0 and top-p 0.95.

Reinforcement learning (Sec 3.1.2): Our setup is asynchronous online reinforcement learning with
16 trainer and 16 worker GPUs, and 16 environment copies per worker GPU. We use a global training
batch size of 32 (local batch size 2 per trainer), a constant learning rate of 6e-8 following a linear
warmup over 200 steps, a GRPO group size of 8, mean normalization but no variance normalziation,
no KL penalty and model updates sent to workers every 100 steps. Workers use For inference, we use
τ = 1.0 and top-p 1.0, and evaluations use τ = 1.0 and top-p 0.95.

For test-time reinforcement learning we use the same settings but halve the number of trainers and
workers.

Execution Feedback and Goedel-Prover for Repair (Sec. 4.2): We use temperature τ = 0.2 and
top-p 0.95 with a maximum prompt length of 8192 and a maximum generation length of 32768.

Iterative Shortening (Sec. 4.3): For iterations 1 through 6, we use temperature τ = 1.0 and top-p
0.95. We increase the temperature to τ = 1.2 for iteration 7, and to τ = 1.5 for iteration 8. We find
that the higher temperatures in later iterations are helpful for increasing diversity with 1024 samples.

Lean Base Model (Sec. B.1): We use an effective batch size of 512 (2 nodes, 8 H100/node, 32
gradient accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30.
We train with a maximum sequence length of 8192 for 2000 steps.

Proof Sketching (Sec. B.2): We use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient
accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We train
with a maximum sequence length of 8192 for 50 steps. Evaluation is done with temperature τ = 0.8
and top-p 0.95.

Comparison with Leading Models (Sec. E): For our model and Qwen2.5-32B, we use τ = 1.0 and
top-p 0.95. For GPT-4o and Gemini-2.5-Pro, we use the default settings with τ = 1.0.
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L PROMPTS

L.1 PROOF SIMPLIFICATION PROMPT

You are given a correct Lean 4 proof of a mathematical theorem.
Your goal is to simplify and clean up the proof, making it shorter and more readable while

↪→ ensuring it is still correct.

Here is the original proof:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your simplified proof. Do NOT modify the theorem or header, and surround your
↪→ proof in ‘‘‘lean4 and ‘‘‘ tags.

Listing 22: Zero-shot Proof Sketching Prompt

L.2 PROOF SKETCHING PROMPTS

Your task is to translate a natural language math solution into a Lean 4 proof sketch that
↪→ follows the structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements

↪→ for clarity. Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof

↪→ skeleton would compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Now, provide your Lean 4 proof sketch. Do NOT modify the theorem or header, and surround your
↪→ proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Listing 23: Zero-shot Proof Sketching Prompt

Your task is to translate a natural language math solution into a Lean 4 proof sketch that
↪→ follows the structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.
2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements

↪→ for clarity. Include all core steps from the natural language solution.
3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof

↪→ skeleton would compile successfully in Lean 4.
4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Here is an example:

Problem:
Prove that if p, q are primes such that q is divisible by p, then p must be equal to q.

Solution:
Since q is prime, it only has 2 divisors: 1 and itself. Therefore, since p divides q, either

↪→ $p=1$ or $p=q$. Because $p$ is a prime, $p \ne 1$, so $p=q$.

Lean 4 Statement:
‘‘‘lean4
import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q
↪→ := by sorry

‘‘‘

Lean 4 Proof Sketch:
‘‘‘lean4
import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q
↪→ := by

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

-- Lemma 1: Since q is prime, it only has 2 divisors: 1 and itself.
have lemma1 : p = 1 ∨ p = q := by
sorry

-- Lemma 2: Since p is prime, p ̸= 1.
have lemma2 : p ̸= 1 := by
sorry

-- Now, do case analysis on lemma1 to conclude p = q.
cases lemma1 with
| inl h_left =>
contradiction

| inr h_right =>
exact h_right

‘‘‘

Now, it is your turn to provide your Lean 4 proof sketch for a new problem. Do NOT modify the
↪→ theorem or header, and surround your proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:
{problem}

Solution:
{solution}

Lean 4 Statement:
‘‘‘lean4
{statement}
‘‘‘

Lean 4 Proof Sketch

Listing 24: One-shot Proof Sketching Prompt

L.3 GOEDEL-PROVER REPAIR PROMPT

In Listing 25, use a modified version of Goedel-Prover’s repair prompt found in their codebase. The
main difference is that because we do not have proofs annotated with CoT’s, our lean proof only
contains a proof.

Complete the following Lean 4 code:

‘‘‘lean4
{formal_statement}‘‘‘

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof
↪→ plan outlining the main proof steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide
↪→ the construction of the final formal proof.

Here is the proof:
‘‘‘lean4
{lean_proof}‘‘‘

The proof (Round 1) is not correct. Following is the compilation error message, where we use <
↪→ error></error> to signal the position of the error.

{error_message_for_prev_round}

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed
↪→ analysis of the error message.

Listing 25: Goedel-Prover Repair Prompt
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M PYTHON CODE FOR PROOF LENGTH

import re
from collections import Counter

def proof_length(statement_and_proof):
lean_operators = [’:=’, ’!=’, ’&&’, ’-.’, ’->’, ’←’, ’..’, ’. . .’,
↪→ ’::’, ’:>’,

’<;>’, ’;;’, ’==’, ’||’, ’=>’, ’<=’, ’>=’, ’−1’,
↪→ ’?_’]
lean_operators_spaced = [’ ’.join(conn) for conn in lean_operators]
lean_operators_dict = dict(zip(lean_operators_spaced,
↪→ lean_operators))
def lexer(lean_snippet):

tokenized_lines = []
for line in lean_snippet.splitlines():

tokens = []
token = ’’
for ch in line:

if ch == ’ ’:
if token:

tokens.append(token)
token = ’’

elif str.isalnum(ch) or (ch in "_.’"):
token += ch

else:
if token:

tokens.append(token)
token = ’’

tokens.append(ch)
if token:

tokens.append(token)
tokenized_line = ’ ’.join(tokens)
for conn in lean_operators_spaced:

if conn in tokenized_line:
tokenized_line = tokenized_line.replace(conn,

↪→ lean_operators_dict[conn])
tokenized_lines.append(tokenized_line)

return ’\n’.join(tokenized_lines)

def remove_statement(statement_and_proof):
if ":= by" in statement_and_proof:

return statement_and_proof.split(":= by",
↪→ maxsplit=1)[1].strip()

return statement_and_proof.split(":=", maxsplit=1)[1].strip()

def remove_comments(lean_snippet):
# multi-line comments
lean_snippet = re.sub(r" */-.*-/", "", lean_snippet,

↪→ flags=re.DOTALL)
# single-line comments
lean_snippet = re.sub(r" *--.*", "", lean_snippet)
return lean_snippet

try:
proof = remove_statement(statement_and_proof)
proof = remove_comments(proof)
proof_tokenized = lexer(proof)
return sum([len(l.split(’ ’)) for l in

↪→ proof_tokenized.splitlines()])
except:

return 10**9
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