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Abstract
Tensor regression is a powerful tool for analyzing
complex multi-dimensional data in fields such as
neuroimaging and spatiotemporal analysis, but
its effectiveness is often hindered by insufficient
sample sizes. To overcome this limitation, we
adopt a transfer learning strategy that leverages
knowledge from related source tasks to improve
performance in data-scarce target tasks. This ap-
proach, however, introduces additional challenges
including model shifts, covariate shifts, and de-
centralized data management. We propose the
Low-Rank Tensor Transitions (LoRT) framework,
which incorporates a novel fusion regularizer and
a two-step refinement to enable robust adaptation
while preserving low-tubal-rank structure. To sup-
port decentralized scenarios, we extend LoRT to
D-LoRT, a distributed variant that maintains sta-
tistical efficiency with minimal communication
overhead. Theoretical analysis and experiments
on tensor regression tasks, including compressed
sensing and completion, validate the robustness
and versatility of the proposed methods. These
findings indicate the potential of LoRT as a ro-
bust method for tensor regression in settings with
limited data and complex distributional structures.

1. Introduction
The increasing complexity of data in fields such as neu-
roimaging, chemometrics, and spatiotemporal analysis has
amplified the need for expressive modeling tools. Ten-
sors—multi-dimensional generalizations of matrices—have
become essential for representing structured data (Kolda &
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Bader, 2009). Building on this foundation, tensor regression
extends classical regression to directly model relationships
between tensor-valued inputs and outputs (Zhou et al., 2013;
Sun & Li, 2017; Liu et al., 2021; Papadogeorgou et al., 2021;
Taki et al., 2023; Wang et al., 2024a; Luo & Zhang, 2024;
Zhou et al., 2024; Billio et al., 2024), preserving multi-way
structure and unifying tasks like tensor completion and com-
pressed sensing under a common framework (Wang et al.,
2021; Lu et al., 2018). This modeling paradigm has en-
abled advances across neuroimaging (Zhou et al., 2013),
social networks (Romera-Paredes et al., 2013), computer
vision (Llosa-Vite & Maitra, 2022), phenotype prediction
(Dos Santos et al., 2023), and climate science (Yu & Liu,
2016).

Despite notable progress, tensor regression still faces a fun-
damental limitation: limited sample size (Challenge 1 in
Fig. 1), especially when applied to complex structured ten-
sor data (Liu et al., 2021; Zhou et al., 2013; Lock, 2018).
Here, the sample size refers to the number of available in-
put–output pairs, where each input is a high-dimensional
tensor and the output is a response variable. For instance,
in functional magnetic resonance imaging (fMRI) studies
(Song & Lu, 2017), tensor predictors encode spatiotemporal
brain activity, while responses reflect behavioral or clinical
measures. Due to high data acquisition costs, the number of
subjects—i.e., training samples—is often small. Similarly,
in tensor compressed sensing and completion, the sample
size is defined by the number of observed entries, which is
typically much smaller than the total number of tensor ele-
ments (Wang et al., 2021). These scenarios create a severe
underdetermined problem, as the number of model parame-
ters increases rapidly with tensor order and size. This leads
to a central challenge:

How can tensor regression models remain effective under
severe sample scarcity?

To address this challenge, transfer learning provides a
promising strategy by enabling models to leverage knowl-
edge from related tasks or datasets (Zhuang et al., 2020;
Sun et al., 2019; He et al., 2024a). Specifically, information
can be transferred from “source tasks” with abundant or
complementary data to the “target task” with insufficient
samples, offering the potential to mitigate data scarcity and
enhance model performance.
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Figure 1: Illustration of the transferable tensor regression
problem, featuring four key challenges: Limited sample
size (Challenge 1), model shifts between tasks (Challenge
2), covariate shifts (Challenge 3), and decentralized data
management (Challenge 4). The objective is to estimate
the target task parameter W(0)

⋆ by leveraging information
from K source tasks while addressing these challenges, as
detailed in Section 3.

However, in the context of tensor regression, transfer learn-
ing also introduces additional challenges due to the inherent
structure of tensor data and the presence of distribution
shifts between source and target samples (He et al., 2024a;b;
Duan & Wang, 2023). These shifts manifest as model shifts
(Challenge 2 in Fig. 1), where the relationship between
tensor predictors and responses changes across domains,
and covariate shifts (Challenge 3 in Fig. 1), which occur
when the distribution of tensor predictors differs. For in-
stance, in tensor regression tasks like fMRI analysis, model
shifts might reflect differing brain activity-response patterns
across populations, while covariate shifts could arise from
variations in imaging conditions or demographic factors.
Similarly, in tensor sensing and completion, covariate shifts
might represent differences in the sampling pattern of obser-
vations across the source and target tasks, and model shifts
could indicate changes in the underlying low-rank struc-
tures. These distribution shifts can significantly degrade the
performance of transfer learning models, complicating the
already challenging task of tensor regression.

Beyond distribution shifts, another critical challenge in ap-
plying transfer learning to tensor regression is decentralized
data management (Challenge 4 in Fig. 1) (He et al., 2024a).
Data often cannot be centralized due to privacy concerns,
logistical constraints, or its large scale. This necessitates
developing efficient strategies for implementing transfer
learning in distributed settings, with a focus on minimizing
communication overhead.

To address the above-mentioned challenges (summarized
in Fig. 1), this paper proposes the Low-Rank Tensor Tran-
sitions (LoRT) framework for transferable tensor learning
with the following contributions:

• A novel framework for transferable tensor learn-
ing: LoRT introduces a new framework that enhances
transfer learning in tensor regression by leveraging low-
tubal-rank structures with a novel fusion regularizer
designed to identify shared patterns across tasks. By
employing a two-step estimation strategy, LoRT first in-
tegrates information from both source and target tasks,
addressing the challenge of limited sample size (Chal-
lenge 1). The refinement step further ensures accurate
estimation of target tensor parameters, mitigating the
impact of model shifts (Challenge 2).

• Theoretical insights: This paper provides a compre-
hensive theoretical analysis of the LoRT framework,
deriving non-asymptotic error bounds that establish the
conditions under which LoRT can effectively leverage
information from source tasks. These results demon-
strate LoRT’s robustness to model and covariate shifts
(Challenges 2 & 3).

• Decentralized data management: To tackle the chal-
lenge of decentralized data management (Challenges
4), the LoRT framework is extended to a distributed set-
ting with the development of D-LoRT. This distributed
variant retains the statistical efficiency of the central-
ized LoRT while significantly reducing communica-
tion overhead, making it particularly suitable for large-
scale, privacy-sensitive, or distributed environments.

To the best of our knowledge, this work is the first to system-
atically address the four key challenges of transfer tensor
regression through the innovative LoRT framework. The
structure of the paper is as follows: we start with notations
and preliminaries in Section 2, followed by the problem
formulation in Section 3. The LoRT framework and its dis-
tributed extension, D-LoRT, are then introduced in Section
4, along with their implementation and theoretical analysis.
We proceed with empirical results in Section 5 to validate
the proposed methods and conclude with a discussion of lim-
itations in Section 6. Related work, proofs and experimental
details can be found in the Appendix.

2. Notations and Preliminaries
Notations. For any positive integer d, let [d] := {1, · · · , d}.
We use lowercase bold letters (e.g., a) for vectors, a upper-
case bold letters (e.g., A) for matrices, underlined uppercase
letters for 3-way tensor (e.g., A). We use c, and its vari-
ants like c1, C, etc., to denote positive constants whose
value may vary between lines. For 3-way tensors of size
d1×d2×d3, we assume d1 ≥ d2 without loss of generality.
In this paper, “with high probability (w.h.p.)” means with
probability at least 1 − c1e

−c2NT − c3e
−c4 log(d1d3+d2d3),

where {ci}4i=1 are constants and NT is the sample size of
the target task.
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For any matrix A, its spectral norm ∥A∥sp and nuclear norm
∥A∥∗ are defined as its maximum and sum of its singular
values, respectively. Given a tensor A, its ℓp-norm is de-
fined as ∥A∥p := ∥vec(A)∥p, and its F-norm is defined
as ∥A∥F := ∥vec(A)∥2, where vec(·) denotes the vector-
ization operation of a tensor (Kolda & Bader, 2009). The
inner product between two tensors A and B is defined as
⟨A,B⟩ := vec(A)⊤vec(B). For A ∈ Rd1×d2×d3 , we
use A:,:,i to denote its i-th frontal slice.

The t-SVD Framework. The tensor singular value de-
composition (t-SVD) framework is built upon the t-product
operation under an invertible linear transform M (Kernfeld
et al., 2015). This approach stems from the observation
that certain linear transformations can enhance the low-rank
characteristics of tensors, effectively exploiting intrinsic cor-
relations within the data (Zhang & Ng, 2021; Wang et al.,
2021). Recent research has focused on utilizing orthogonal
matrices to define the transform M , due to their advan-
tageous properties (Lu, 2021; Wang et al., 2023a). This
convention is also adopted in this paper. Formally, given an
orthogonal matrix M ∈ Rd3×d3 , we define the associated
linear transform M(·) and its inverse M−1(·) on any tensor
T ∈ Rd1×d2×d3 as follows:

M(T) := T ×3 M, and M−1(T) := T ×3 M−1 (1)

where ×3 denotes the mode-3 tensor-matrix product (Kern-
feld et al., 2015).

Building upon this framework, we can now introduce the
fundamental concepts of t-SVD:

Definition 2.1 (t-product (Kernfeld et al., 2015)). The t-
product of any A ∈ Rd1×d2×d3 and B ∈ Rd2×d4×d3 under
the transform M in Eq. (1) is denoted and defined as A ∗M
B = C ∈ Rd1×d4×d3 such that

M(C) = M(A)⊙M(B)

in the transformed domain, where ⊙ denotes the tensor
frontal-slice-wise product.

Following the definitions of t-transpose, t-identity tensor, t-
orthogonal tensor, and f-diagonal tensor given1 by (Kernfeld
et al., 2015), we can now introduce the t-SVD:

Definition 2.2 (t-SVD, tensor tubal rank (Kernfeld et al.,
2015)). The tensor Singular Value Decomposition (t-SVD)
of any T ∈ Rd1×d2×d3 under the invertible linear transform
M in Eq. (1) is given as follows:

T = U ∗M S ∗M V⊤ (2)

where U ∈ Rd1×d1×d3 and V ∈ Rd2×d2×d3 are t-
orthogonal, and S ∈ Rd1×d2×d3 is f-diagonal.

1Due to space constraints, please refer to the appendix for
detailed definitions.

The tubal rank of T is defined as the number of non-zero
tubes in tensor S in the t-SVD in Eq. (2), i.e.,

rt(T) := #{i | Si,i,: ̸= 0, i ≤ min{d1, d2}}.

To further quantify the low-rank structure of tensors in the
transformed domain, we introduce the concepts of tensor
tubal nuclear norm and tensor t-spectral norm:

Definition 2.3 (Tensor tubal nuclear norm, tensor t-spectral
norm (Lu et al., 2019b)). The tubal nuclear norm (TNN)
and tensor spectral norm of any tensor T ∈ Rd1×d2×d3

under any M in Eq. (1) are defined as the sum of the nuclear
norms and the maximum of the spectral norms of the frontal
slices of M(T), respectively, i.e.,

∥T∥⋆ :=

d3∑
i=1

∥M(T):,:,i∥∗, ∥T∥tsp := max
i∈[d3]

∥M(T):,:,i∥sp .

The significance of tubal rank and TNN lies in their ability
to capture and exploit the low-rank structure of tensors in
the transformed domain. Tubal rank quantifies the degree
of low-rankness by counting non-zero tubes in the t-SVD
representation, while the tubal nuclear norm serves as its
convex surrogate. These concepts have found wide-ranging
applications in tensor estimation tasks, enabling efficient
representation and processing of multi-dimensional data
(Lu, 2021; Zhang & Ng, 2021; Hou et al., 2021).

3. Problem Formulation
This section proposes a problem setting that aligns with and
addresses the four challenges illustrated in Fig. 1. We first
introduce the target task as follows:

Target Task. For the target task2, we observe NT input-
output pairs (X(0)

i , y
(0)
i ) generated from:

y
(0)
i = ⟨X(0)

i ,W(0)
⋆ ⟩+ ϵ

(0)
i , i ∈ [NT ] (3)

where W(0)
⋆ ∈ Rd1×d2×d3 is our primary parameter of in-

terest and ϵ
(0)
i is the observation noise. The primary goal

is to estimate the target parameter tensor W(0)
⋆ from noisy

observations, as commonly encountered in tasks like tensor
compressed sensing and completion (Wang et al., 2021).

A key difficulty in this setting is the limited sample size
(Challenge 1), where the total number of parameters D =
d1d2d3 far exceeds the available target samples NT , making
reliable estimation of W(0)

⋆ inherently challenging.

Motivated by the empirical and theoretical success of low-
rank models in tensor completion (Wang et al., 2021; Lu

2Following He et al. (2024a), we use the superscript 0 to denote
the target task, i.e., task 0.
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et al., 2019b; Liu et al., 2020), we assume that W(0)
⋆ has a

low tubal rank, i.e.,

r := rt(W
(0)
⋆ )≪ d2. (4)

This assumption helps reduce the effective number of pa-
rameters and enables statistically efficient estimation under
limited sample sizes. It is also supported by prior studies
showing the effectiveness of t-SVD-based low-rank struc-
tures in capturing intrinsic correlations in tensor data (Zhang
& Ng, 2021; Qiu et al., 2022a; Lu, 2021; Wang et al., 2023a;
2021).

To further address the limited sample size issue, we adopt
transfer learning, utilizing data from related source tasks to
enhance target task performance.

Source Tasks. Similarly, each of the K source tasks, po-
tentially in decentralized scenarios, has NS samples:

y
(k)
i = ⟨X(k)

i ,W(k)
⋆ ⟩+ ϵ

(k)
i , i ∈ [NS ], k ∈ [K] (5)

where W(k)
⋆ ∈ Rd1×d2×d3 is the k-th source task parameter.

While transfer learning offers a promising solution to miti-
gate the limited sample size issue, it also brings additional
challenges. Notably, differences between source and tar-
get tasks—characterized by model shift and covariate shift
(Challenges 2 and 3 in Fig. 1)—become significant hurdles.

First, model shift is quantified by the difference between
each source model and the target model, i.e., W(k)

⋆ −W(0)
⋆

for k ∈ [K]. To formalize the notion of informative source
tasks, we introduce the parameter space for all the tasks:

W(r, h) (6)

:=
{
(W(k))Kk=0 : rt(W

(0)) ≤ r, ∥W(k) −W(0)∥⋆ ≤ hk

}
with h := (h1, . . . , hK)⊤. Here, hk ≥ 0 quantifies the
informative level of the k-th source task. In W(r, h), we
posit that the model shift between source and target tasks
follows an approximately low-rank structure imposed by
TNN to capture shared patterns across tasks, facilitating
effective knowledge transfer.
Remark 3.1 (Rationale of approximately low-rank model
shift). The approximately low-rank shift in our parameter
space W(r, h) is motivated by empirical findings in Low-
Rank Adaptation (LoRA) (Hu et al., 2022) and its extensions
(Agiza et al., 2024; Wang et al., 2024b). In LoRA, it is as-
sumed that the target model parameters differ from those
of the pre-trained or source model by a low-rank increment.
This assumption aligns conceptually with our approximately
low-rank constraint in W(r,h), which captures shared pat-
terns while accommodating task-specific differences.

Then, to account for covariate shift, we make the following
assumption on the distribution of covariates X(k)

i :

Assumption 3.2 (Gaussian designs). For any 0 ≤ k ≤
K, the entries of the covariate X

(k)
i ∈ Rd1×d2×d3 for

the k-th task are i.i.d. drawn from N (0, σ2
k). Further-

more, there exists a universal constant cx such that c−1
x ≤

min0≤k≤K{σk} ≤ max0≤k≤K{σk} ≤ cx.

This assumption allows for different covariate distributions
across tasks while ensuring well-behaved tail properties.
While Gaussian design is assumed for simplicity, Assump-
tion 3.2 can be extended to sub-Gaussian designs under mild
conditions. Finally, for the observation noise, we assume:

Assumption 3.3 (Gaussian random noises). For all 0 ≤
k ≤ K, the noises ϵ(k)i are independent Gaussian with zero
mean and variance uniformly upper bounded by a universal
constant c2ϵ , and are independent of the covariates X(k)

i .

Problem Objective. Given the task models, we may ask:

• Q1: How can we estimate the target parameter W(0)
⋆

using both target and source samples while facing
Challenges 1-3 in Fig. 1?

• Q2: How can we further address the decentralized
data management challenge (Challenge 4 in Fig. 1)
given potentially decentralized source tasks?

Answering this question is the primary focus of our subse-
quent sections, where we introduce our proposed method,
LoRT, and its distributed variant, D-LoRT.

4. Low-Rank Tensor Transitions
We introduce LoRT (Low-Rank Tensor Transitions) and its
distributed variant, D-LoRT, to address Q1 and Q2. An
illustration of both methods is provided in Fig. 2.

4.1. LoRT for Centralized Tensor Transfer Learning

Our method is motivated by the recent TransFusion frame-
work (He et al., 2024a), which studies fusion-based transfer
learning for sparse vector regression under covariate shift. In
TransFusion, a shared low-complexity component is jointly
estimated across tasks using ℓ1-based fusion regularization,
enabling robustness to distributional changes. LoRT extends
this idea to the tensor regression setting, where both the pre-
dictors and parameters are tensors. This extension poses
new challenges, such as modeling low-rank structure along
multiple tensor modes, handling tensor-specific regulariza-
tion, and ensuring identifiability under limited samples.

To address these, LoRT introduces a novel fusion regularizer
(Eq. (8)) based on the TNN, which promotes low tubal-rank
structure in both the target parameter and its differences with
the source parameters to leverage the parameter structures
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Figure 2: Illustration of the proposed LoRT and D-LoRT frameworks: (a) LoRT: A centralized method that combines
joint low-rank learning and target-specific refinement to address challenges such as limited sample sizes, model shifts,
and covariate shifts in tensor regression. (b) D-LoRT: A distributed extension of LoRT that handles decentralized data by
aggregating locally estimated models from source tasks, ensuring statistical and communication overhead.

in W(r, h). More specifically, LoRT adopts a two-step
estimation framework:

• a joint learning step that integrates source and target
data under low-rank constraints to alleviate sample
scarcity, and

• a target-specific refinement step that adapts the solution
to the target domain and mitigates negative transfer
caused by heterogeneity.

This design enables LoRT to systematically address the
key challenges of transferable tensor regression, including
limited target data, model shift, and covariate shift.

Step 1: Joint Low-rank Learning. It consists of three
sub-steps:

S1 Data Aggregation: We collect NT input-output pairs
for the target task and NS pairs for each of the K
source tasks, resulting in a total sample size of N =
NT +KNS . This aggregation enables the integration
of information from both source and target domains.

S2 Joint Low-Rank Estimation: Given the structure of
the parameter space W(r, h) in Eq. (6), our goal
is to estimate the ground truth parameters W⃗⋆ =
(W(0)

⋆ ,W(1)
⋆ , . . . ,W(K)

⋆ ) by minimizing a regularized
empirical loss across all tasks. Specifically, we solve
the following optimization problem:

min
W⃗

1

2N

K∑
k=0

Nk∑
i=1

(
y
(k)
i − ⟨W(k),X

(k)
i ⟩
)2

+λ0R(W⃗),

(7)
where Nk = NT for the target task (k = 0) and
Nk = NS for each source task (k ∈ [K]). Here,

X
(k)
i ∈ Rd1×d2×d3 and y

(k)
i ∈ R denote the i-th input-

output pair from task k, and W(k) is the correspond-
ing task-specific parameter. The optimization vari-
able in Problem (7) is W⃗ = (W(0),W(1), . . . ,W(K)),

and ̂⃗W = (Ŵ
(0)

,Ŵ
(1)

, . . . ,Ŵ
(K)

) denotes the corre-
sponding solution.

The regularizer R(W⃗) enforces both low-rank struc-
ture in the target and structured similarity across tasks:

R(W⃗) := ∥W(0)∥⋆ +
K∑

k=1

ak ∥W(0) −W(k)∥⋆, (8)

where ∥·∥⋆ denotes the TNN. The hyperparameter λ0

controls overall regularization strength, while {ak}Kk=1

modulate the contribution of each source task in the
fusion.

Problem (7) integrates an average squared loss term to
ensure a good fit across all tasks, and a fusion regular-
ization termR(W⃗) with two primary functions. First,
∥W(0)∥⋆ encourages a low-rank structure in the target
task parameters, addressing the high-dimensionality
challenge. Second,

∑K
k=1 ak∥W

(0) −W(k)∥⋆ cap-
tures the contrast between the target and source tasks,
enabling effective knowledge transfer while account-
ing for potential model shifts. The use of the TNN is
crucial as it effectively captures low-rank structures in
tensor parameters and model shifts.

S3 Weighted Averaging: Define the first-step estimator:

Ŵ
a
:= N−1

(
NS

K∑
k=1

Ŵ
(k)

+NTŴ
(0)

)
. (9)
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This averaging step combines information from all
tasks, weighting each task’s contribution by its sample
size. It potentially reduces variance and improves over-
all accuracy by leveraging the collective knowledge
from both source and target domains. The resulting
Ŵ

a
serves as a robust initial estimate that balances the

influence of all tasks.

Step 2: Target-Specific Refinement. While joint low-
rank learning leverages information from all tasks, it may
introduce bias due to differences between source and target
tasks. To mitigate this, we introduce a refinement step
focused solely on the target task:

Ŵ
(0)

lort = Ŵ
a
+ Ĉ (10)

with correction Ĉ computed by

Ĉ ∈ argmin
C

{
1

2NT

NT∑
i=1

(y
(0)
i − ⟨X(0)

i , Ŵ
a
+ C⟩)2 + λ̃∥C∥⋆

}
.

This refinement step can be interpreted as a denoising pro-
cedure. It allows us to fine-tune our initial estimator using
only the target sample, potentially mitigating any negative
transfer effects from the source tasks. The use of the TNN
regularization in this step ensures that the refinement main-
tains the low-rank structure of the estimator.

Parameter Selection. The performance of LoRT depends
on the appropriate selection of tuning parameters. Our anal-
ysis suggests the following parameter selection strategy:

λ0 = c0ξ1, ak = c1ξ2, λ̃ = c2
√
d1/NT . (11)

Here, ξ1 and ξ2 are adaptive factors for regulariza-
tion and source task weighting, respectively, defined as:
ξ1 =

√
d1/NIA +

√
d1/NSIAc and ξ2 =

√
NS/NIA +

(NS/N)IAc , where IA and IAc are indicator functions for the
event A and its complement. The event A is defined as A :={
rd1d3/NS ≥ h̄

√
d1/NT

}
, with h̄ := N−1NS

∑K
k=1 hk

representing average task heterogeneity (i.e., the differences
between the model parameters of the source tasks and the
target task). This strategy balances source and target influ-
ences, enabling LoRT to leverage informative source tasks
or rely on target data when source tasks are less relevant.

4.2. Theoretical Analysis of LoRT

We provide theoretical guarantees for LoRT, demonstrat-
ing its effectiveness in addressing the challenges of high-
dimensional tensor regression in transfer learning settings.

We first introduce a key concept that quantifies the alignment
of source tasks with the target task:

Definition 4.1 (Source task alignment). Given the ground
truth parameter W⃗⋆ ∈W(r, h), we quantify the alignment

across source tasks with the metric

N−1∥NS

K∑
k=1

(W(k)
⋆ −W(0)

⋆ )∥⋆ ≤ δ⋆.

A small δ⋆ indicates that the source tasks {W(k)
⋆ }Kk=1 are

well-aligned with the target task W(0)
⋆ , facilitating effective

knowledge transfer. We now present our main theoretical
results, starting with the convergence rate for the one-step
estimator. Recall that we have assumed d1 ≤ d2 without
loss of generality.

Theorem 4.2 (One-step LoRT). Under Assumptions 3.2
and 3.3, if NS ≫ rd1d3, then by choosing λ0 = c0

√
d1/N

and ak = c1
√

NS/N for some constant c0 and c1, we have

∥Ŵ
a
−W(0)

⋆ ∥2F ≲
rd1d3
N

+ (1 + vn)h̄

√
d1
NS

+ δ2⋆ (12)

w.h.p., where vn := h̄K
√
d1/NS , quantifying the impact

of task heterogeneity on the estimation error.

This result reveals how the estimation error depends on the
sample sizes, task differences, and source task alignment.
The first term represents the standard error rate for estimat-
ing a low-rank tensor, while the latter terms capture the
impact of transfer learning.

For the refined estimator, we have the following guarantee:

Theorem 4.3 (Refined LoRT). Under the assumptions
of Theorem 4.2, if NT ≳ rd1d3, NS ≳ K2rd1d3 and
h̄
√

d1/NT + Krd1d3/NS = o(1), then by choosing pa-
rameters as specified in Eq. (11), the solution of the two-step
method satisfies w.h.p. that

∥Ŵ
(0)

lort −W(0)
⋆ ∥2F ≲

rd1d3
N

+ h̄

√
d1
NT

. (13)

This theorem demonstrates that the two-step method can
effectively mitigate the impact of non-diverse source tasks,
as the dependence on δ⋆ in Eq. (12) is removed.

These results underscore key strengths of LoRT, effectively
addressing Q1. When source tasks are both informative
(small h̄) and closely aligned with the target task (small
δ⋆), LoRT achieves significantly smaller errors compared
to the O(rd1d3N

−1
T ) bound of t-SVD-based tensor sensing

(Wang et al., 2021), which depends solely on the target task
data. The two-step refinement design further ensures robust-
ness by protecting against negative transfer, maintaining
reliable performance even when source tasks are uninfor-
mative or poorly aligned. Additionally, the dependence on
rd1d3 rather than the full dimension d1d2d3 demonstrates
efficiency in handling of high-dimensional data through low-
rank structure.
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4.3. D-LoRT: A Distributed Variant of LoRT

While LoRT effectively addresses Q1, it assumes central-
ized data access, thus fails to address the decentralization
challenge in Q2. To overcome this, we introduce D-LoRT,
a distributed variant of LoRT.

Algorithm Overview. D-LoRT adapts the joint learning
step of LoRT to operate on summary statistics from source
tasks, proceeding as follows:

S1 Distributed Estimation: Each source node k computes

a local estimator W̃
(k)

using its data (X
(k)
i , y

(k)
i )NS

i=1

in a distributed manner.

S2 Model Aggregation: Source nodes transmit their lo-
cal estimators to the target node and the target node

computes ̂⃗Wd via the following minimization problem:

̂⃗
Wd ∈ argmin

W⃗

NS

2N

K∑
k=1

∥(W̃
(k)
−W(k))∥2F (14)

+ λ0R(W⃗) +
1

2N

NT∑
i=1

(y
(0)
i − ⟨X

(0)
i ,W(0)⟩)2.

S3 Weighted Averaging: The target node computes the

averaging parameter Ŵ
a
d based on ̂⃗Wd using Eq. (9).

S4 Task-Specific Refinement: The target node refines Ŵ
a
d

locally via Eq. (10) to obtain the estimator Ŵ
(0)

dlort.

Theoretical Guarantees for D-LoRT. We establish the
following statistical guarantees for D-LoRT. Recall that we
have assumed d1 ≤ d2 without loss of generality.

Theorem 4.4 (One-step D-LoRT). Suppose Assump-
tions 3.2 and 3.3 hold. For each source task, the debi-
ased estimator is defined in Eq. (E.2) and satisfies stan-
dard approximation conditions. Assume NS ≫ Kr2d1d

2
3,

NS ≳ (h̄2 ∨ K2)rd1d3, and hk ≍ h̄ = O(1). Then, for
some chosen parameters3, w.h.p.

∥Ŵ
a
d −W(0)

⋆ ∥2F ≲
rd1d3
N

+ h̄

√
d1
NS

+ δ2⋆. (15)

This theorem demonstrates that D-LoRT achieves statistical
accuracy comparable to centralized LoRT, particularly when
source tasks are similarly informative and sample sizes are
sufficiently large. The error bound captures the influence
of task heterogeneity (h̄), sample sizes (N and NS), and
source task alignment (δ⋆).

For the two-step D-LoRT method, we obtain:

3See Appendix for detailed parameter settings.

Theorem 4.5 (Refined D-LoRT). Under the conditions of
Theorem 4.4, and assuming NT ≳ rd1d3, h̄

√
d1/NT =

o(1), then, for some chosen parameters4, w.h.p.

∥Ŵ
(0)

dlort −W(0)
⋆ ∥2F ≲

rd1d3
N

+ h̄

√
d1
NT

. (16)

This theorem shows that the two-step D-LoRT method
achieves a statistical rate comparable to the centralized
LoRT under specific conditions. It effectively balances sta-
tistical efficiency and communication cost, making it ideal
for high-dimensional tensor regression in decentralized en-
vironments, thereby addressing Q2.

5. Experiments
We evaluate the proposed methods, LoRT and D-LoRT,
on both synthetic and real-world datasets in the context of
transferable tensor regression5. The objective is to evaluate
whether transfer learning can significantly improve tensor
regression performance under limited sample conditions,
using tensor compressed sensing and tensor completion as
test scenarios.

5.1. Synthetic Data for Tensor Compressed Sensing

In the synthetic experiments, we investigate the impact of
transfer learning on tensor compressed sensing under Gaus-
sian design tensor regression models. Following the setup
in § 3, we generate low-tubal-rank target task parameters
W(0)

⋆ using NT = 200 target samples and NS = 2000
source samples per task. We vary the number of source tasks
(K), model shift magnitude (hk), and covariate shift level
(σS) to evaluate the robustness of the proposed methods.
Due to space constraints, we present only the key results
here; comprehensive experimental setups can be found in
the Appendix A.1.

Performance Across Source Tasks. Fig. 3(a) demonstrates
that as the number of source tasks6 K increases from 1 to 9,
LoRT exhibits consistent performance gains, particularly in
Step 2. This highlights the effectiveness of the refinement
step in leveraging diverse source data. D-LoRT also benefits
from additional source tasks but plateaus earlier, likely due
to the limitations of decentralized learning. In contrast,
baselines TNN (Lu et al., 2018) and k-Sup (Wang et al.,
2021) show no improvement as they rely solely on the target

4See Appendix for detailed parameter settings.
5A simulated implementation is available at: https://

github.com/pingzaiwang/LoRT, including an example
for simulating distributed computation.

6While we do not explicitly ablate individual terms in the fusion
regularizer, their effects are indirectly reflected through varying the
number of source tasks (see Fig. 3 for tensor compressed sensing
and Table 1(a) for tensor completion). These variations serve as
empirical ablations.
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task.

Robustness to Model Shifts. Fig. 3(b) shows the impact
of model shifts. While both steps of LoRT experience in-
creasing errors with larger shifts, Step 2 maintains superior
accuracy, underscoring the benefits of refinement in mitigat-
ing model discrepancies. D-LoRT follows a similar trend
but with slightly higher errors, while TNN and k-Sup re-
main stable yet suboptimal due to their inability to leverage
source task data.

Impact of Covariate Shifts. Fig. 3(c) highlights the robust-
ness of LoRT to covariate shifts. As σS varies from 0.3 to
1.8, LoRT remains stable, with Step 2 outperforming Step 1
in most cases. D-LoRT exhibits higher sensitivity to covari-
ate shifts but still outperforms the baselines, which show
consistently high errors.

5.2. Real-World Data for Tensor Completion

Tensor completion can be viewed as a special case of tensor
regression where the design tensor consists of standard ten-
sor bases (Qiu et al., 2022b). In real-world experiments, we
investigate the impact of transfer learning on tensor comple-
tion tasks. We evaluate LoRT and D-LoRT using YUV RGB
video datasets (akiyo, bridge, grandma, and hall), where
each video frame is represented as a 128× 128× 3 tensor.
Completion performance is measured using Peak Signal-to-
Noise Ratio (PSNR) 7 . The target task aims to reconstruct a
video frame from a very limited number of observed entries.
To enhance performance, preceding frames are treated as re-
lated source tasks, enabling the model to transfer and utilize
information from these tasks for improved reconstruction of
the target frame. TNN (Lu et al., 2019b) applied solely to
the target task is used as the baseline8 . Detailed setups and
additional results are provided in Appendix A.2.

Performance Across Source Tasks. Table 1(a) illustrates
the trend that LoRT benefits from an increasing number
of source tasks (K = 2 to 8). For instance, on the akiyo

7Other perceptual metrics such as SSIM (Wang et al., 2004)
and LPIPS (Snell et al., 2017) were also examined. Since
our focus is on transfer effectiveness rather than perceptual fi-
delity, we report PSNR and RE. Preliminary checks indicated
that SSIM trends largely mirrored PSNR across Table 7 and Ta-
ble 8, offering limited additional insight. Given this and the
nontrivial cost of full evaluation, we omit these metrics in the
current version. Additional results will be made available at
https://github.com/pingzaiwang/LoRT.

8To our knowledge, no existing transfer learning methods di-
rectly apply to our setting, which involves tensor completion under
extreme sparsity and distribution shifts. In this regime, target-
only baselines across tensor formats (e.g., t-SVD, Tucker, CP,
TT) generally perform poorly due to insufficient observations. As
these methods show no substantial difference or comparative value
under such conditions, we report TNN (Lu et al., 2019b) as a rep-
resentative baseline to illustrate the benefit of transfer. Additional
comparisons are provided in Table 6.

dataset, the PSNR gradually improves with more source
tasks, reflecting LoRT’s ability to aggregate complementary
information from diverse sources. LoRT-Step2 consistently
shows stronger trends compared to D-LoRT and TNN, indi-
cating the importance of refinement in utilizing source-task
knowledge.

Impact of Sampling Rates. Tables 1(b) and 1(c) reveal how
source and target sampling rates (SR) affect performance on
the akiyo dataset. Higher source SR leads to a more stable
improvement in PSNR, while higher target SR amplifies
the reconstruction accuracy. These trends suggest LoRT’s
robustness in handling varying data availability and its ca-
pacity to balance source and target contributions effectively.

Table 1: Performance comparison of LoRT, D-LoRT, and
TNN on the akiyo dataset. Results are reported in PSNR.

(a) Impact of the number of source tasks (K).

K LoRT Step1 LoRT Step2 D-LoRT TNN
2 28.60 28.67 26.64 14.49
4 35.44 35.59 27.12 14.50
6 37.58 37.61 27.18 14.30
8 40.29 40.32 27.37 14.24

(b) Effect of source sampling rates (SR).
SR LoRT Step1 LoRT Step2 D-LoRT TNN

50% 31.88 31.92 27.41 14.50
70% 34.43 34.51 27.56 14.20
90% 36.42 36.60 27.65 14.38

(c) Effect of target sampling rates (SR).

SR LoRT Step1 LoRT Step2 D-LoRT TNN
5% 35.10 35.31 27.50 14.50
10% 37.13 37.22 27.51 17.91
15% 37.35 37.71 27.51 19.70

Summary of Experimental Results. The experiments
demonstrate that the proposed transfer learning framework,
LoRT, effectively enhances tensor compressed sensing and
completion tasks under limited sample conditions. By utiliz-
ing multiple source tasks and a two-step refinement design,
LoRT achieves consistent improvements over baseline meth-
ods across various settings, showcasing its potential as a
practical tool for tensor compressed sensing and completion
in data-constrained scenarios.

6. Conclusion and Extensions
To address the challenge of limited sample sizes in tensor
regression, we propose LoRT, a framework that leverages
transfer learning to enhance target tasks by utilizing knowl-
edge from related source tasks. LoRT tackles key challenges
such as model and covariate shifts through a novel fusion
regularizer and a two-step refinement process that adapts to
distributional differences. Furthermore, we extend LoRT to
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Figure 3: Comparison of average relative error for LoRT, D-LoRT, TNN, and k-Sup under varying conditions. (a) Average
Relative Error vs. Number of Source Tasks (K) for LoRT, D-LoRT, TNN, and k-Sup (h = 150, σS = 0.9). (b) Average
Relative Error vs. Model Shift (h) for LoRT, D-LoRT, TNN, and k-Sup (K = 3, σS = 0.9). (c) Average Relative Error vs.
Covariate Shift (σS) for LoRT, D-LoRT, TNN, and k-Sup (K = 3, h = 150).

decentralized settings with D-LoRT, which reduces commu-
nication costs while retaining statistical efficiency. Through
rigorous theoretical analysis and empirical validation on
tasks like tensor compressed sensing and completion, LoRT
proves to be a robust and effective solution for advancing
tensor regression in data-scarce and complex scenarios.

Limitations and Extensions. This work offers a first theo-
retical framework for transfer tensor regression under low-
sample and distribution-shifted settings. Several directions
merit further exploration:

• Computational complexity. The LoRT framework in-
volves repeated applications of the TNN proximal
operator (Lu et al., 2019b). Each such call requires
O(d3 ·min{d1, d2} · d1d2) operations due to per-slice
SVDs, making large-scale deployment computation-
ally demanding. Further work may explore randomized
tensor decompositions to reduce runtime.

• Extension to broader tensor formulations. While LoRT
is instantiated with the t-SVD, its design is broadly
compatible with alternative tensor decompositions, in-
cluding Tucker, Tensor Train, and Tensor Ring (Liu
et al., 2013; Imaizumi et al., 2017; Qiu et al., 2022b).
Beyond the t-product family, formulations based on
HOSVD (De Lathauwer et al., 2000) or Tensor Re-
gression Networks (TRN) (Kossaifi et al., 2020) offer
complementary modeling paradigms that can be inte-
grated within the LoRT transfer pipeline.

• Beyond the i.i.d. setting. The current analysis assumes
i.i.d. sampling within tasks, which simplifies estima-
tion bounds. Real-world tensor data often involve de-
pendencies (e.g., spatiotemporal structure), motivating
future extensions to non-i.i.d. regimes. See preliminary
experiments in Table 7.

• Real-world TCS applications. Our synthetic TCS ex-
periments follow theoretical convention. Applying
LoRT to real sensing setups (e.g., MRI, hyperspectral
imaging) requires modeling domain-specific structures
and noise, which we leave for future work. We provide
preliminary results in Table 8.

• Real-world data without ground truth. A key gap in
our study is the lack of experiments on real-world ten-
sor data without ground truth. We follow common
practice in theory-driven work (Lu et al., 2018; Zhang
et al., 2020; Wang et al., 2021) by focusing on con-
trolled settings to directly validate theoretical predic-
tions. Nonetheless, evaluating LoRT on real datasets
without known parameters is a valuable direction for
future work.

• Adaptive control of negative transfer. Our theoret-
ical analysis ensures improvement under moderate
heterogeneity, consistent with the observation in He
et al. (2024a) that effective transfer generally re-
quires adaptation. The modular fusion mechanism in
LoRT enables task-specific weighting based on align-
ment metrics, thereby downweighting uninformative
or misaligned sources. This design naturally supports
heterogeneity-aware regularization strategies such as
He et al. (2024b); Duan & Wang (2023), which in-
terpolate between full-source fusion and target-only
estimation.
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Supplemental Material for
Low-Rank Tensor Transitions (LoRT) for Transferable Tensor Regression

This supplemental material provides a comprehensive set of theoretical derivations, proofs, and extended experimental
results to support the main findings of our paper on Low-Rank Tensor Transitions (LoRT) for transferable tensor regression.
The content is organized to offer a thorough understanding of the proposed methodology, its theoretical underpinnings, and
its empirical performance across diverse scenarios. Below, we outline the structure of the appendix.

Section A presents an extensive set of additional experimental results to validate the performance of LoRT and its distributed
variant, D-LoRT, on both synthetic and real-world datasets. These experiments evaluate the methods’ robustness to model
and covariate distribution shifts, the impact of varying source task numbers, and performance under different sampling rates
in tensor compressed sensing and completion tasks. Comprehensive comparisons against baselines, such as TNN-based
regression, highlight the advantages of LoRT and D-LoRT in addressing transfer learning challenges in tensor regression.
Additionally, this section includes detailed experimental settings, results on further datasets (e.g., UCF-101 video sequences),
and comparisons with other tensor completion methods.

Section B reviews related work, positioning our contributions within the broader context of tensor regression, transfer
learning, and multitask learning. This section discusses advancements in low-rank tensor methods and their applications,
emphasizing how LoRT integrates transfer learning principles to handle distribution shifts and limited sample sizes
effectively.

Section C introduces essential preliminaries, providing a detailed explanation of the t-SVD and key tensor operations that
underpin our theoretical framework. This section ensures clarity for readers by defining fundamental concepts and properties
critical to understanding the subsequent theoretical analysis.

Section D delves into the theoretical analysis of LoRT, presenting rigorous proofs of the main theorems and supporting
lemmas. This section establishes performance guarantees for LoRT, demonstrating its effectiveness in high-dimensional
tensor regression under model and covariate shifts, with a focus on the joint low-rank learning and target-specific refinement
steps.

Section E provides the theoretical analysis of D-LoRT, including proofs of convergence for the distributed framework. It
highlights the method’s ability to leverage local model aggregation while maintaining performance comparable to centralized
LoRT, particularly in privacy-sensitive or bandwidth-constrained settings.

Section F details the algorithmic design and comparison of LoRT and D-LoRT, focusing on the proximal gradient descent
(PGD) implementations for both methods. This section also compares their computational complexity and communication
overhead.

A comprehensive list of notations and symbols used throughout the paper and appendix is provided at the end, ensuring
consistency and accessibility for readers.

Ongoing Challenges and Future Directions. While this appendix consolidates the basic theoretical and empirical
analysis of LoRT and D-LoRT, we emphasize that this work marks only an initial step toward transferable tensor learning.
Developing a fully mature framework in this direction requires addressing several open challenges, such as the design of
tighter generalization bounds under more adversarial shifts, adaptive task selection mechanisms in large-scale heterogeneous
environments, and communication-efficient protocols for federated tensor optimization. We hope this work lays the
groundwork for further research at the intersection of tensor modeling, transferability, and decentralized learning.
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A. Additional Experimental Results
This section provides comprehensive experimental evidence supporting the effectiveness of LoRT and its distributed variant,
D-LoRT. We assess their robustness to model and covariate shifts, performance under varying source task numbers and
sampling rates, and their advantages over classical baselines in both tensor compressed sensing and completion tasks.
The results span synthetic and real-world datasets, including YUV and UCF-101 video sequences, and include detailed
implementation settings and extended comparisons with representative tensor completion methods.

A.1. Synthetic Data for Tensor Compressed Sensing

In this section, we evaluate the performance of our proposed methods, LoRT and D-LoRT, from the perspective of tensor
compressed sensing. The experiments aim to assess their ability to recover low-rank tensor structures and leverage transfer
learning to improve performance under limited sample size. We also compare them against two baselines: TNN-based
regression (Lu et al., 2018) and k-Support-norm-based (k = 2) regression (Wang et al., 2021), referred to as TNN (baseline)
and k-Sup (baseline).

The target parameter tensor W(0)
⋆ ∈ Rd1×d2×d3 with a tubal rank r is generated as W(0)

⋆ = P ∗M Q, where P ∈ Rd1×r×d3

and Q ∈ Rr×d2×d3 are i.i.d. samples from N (0, 1). We consider a high-dimensional tensor regression problem with
dimensions d1 = d2 = 20, d3 = 3, and a low-rank level r = 2. We generate NT = 200 independent target samples
(y

(0)
i ,X

(0)
i ) using y

(0)
i = ⟨X(0)

i ,W(0)
⋆ ⟩+ ϵ

(0)
i , where vec(X(0)

i ) ∼ N (0, I) and ϵ
(0)
i ∼ N (0, 0.1).

The source sample size is set to NS = 2000, with the number of source tasks K varying from 1 to 9. The parameter hk is
chosen from values ranging between 10 and 200. To simulate model and covariate shifts, the source tasks are configured as
follows:

• Model Shift: Model shifts are simulated by setting W(k)
⋆ = W(0)

⋆ + E(k) for k ∈ [K], where E(k) = Pk ∗M Qk,
with Pk ∈ Rd1×r×d3 and Qk ∈ Rr×d2×d3 sampled i.i.d. from N (0, 1). If ∥E(k)∥⋆ > hk, then E(k) is rescaled as
E(k) = hk · E(k)/∥E(k)∥⋆.

• Covariate Shift: To assess robustness to covariate shifts, a heterogeneous design is used where vec(X(k)
i ) ∼ N (0, σ2

SI)
for all k ∈ [K]. The value of σS is selected from the set {0.3, 0.6, 0.9, 1.2, 1.5, 1.8}. For each source task, NS

independent samples are generated.

Experimental Results. The experimental results are shown in Fig. 3. Fig. 3-(a) demonstrates the effect of the number
of source tasks on method performance. As the number of tasks increases from one to nine, LoRT exhibits significant
improvement, with Step 2 consistently outperforming Step 1. The widening gap between Step 1 and Step 2 indicates that the
refinement step becomes more effective with diverse source data. D-LoRT also shows improvement with increasing tasks
but plateaus faster than LoRT, possibly due to limitations in decentralized learning. TNN and k-Sup, which only utilize
target task data, are unable to leverage multiple source tasks, resulting in no improvement.

The impact of model shifts is illustrated in Fig. 3-(b). As the model shift increases, both steps of LoRT show increasing error,
with Step 2 maintaining superior performance. The growing gap between Step 1 and Step 2 at larger shifts underscores the
increased benefit of the refinement step under significant model discrepancies. D-LoRT follows a similar trend to LoRT
but with higher error rates, while maintaining relative stability across shifts. TNN and k-Sup exhibit stable yet suboptimal
performance due to their inability to harness information from multiple source tasks.

Fig. 3-(c) showcases the influence of covariate shifts. As the covariate shift parameter ranges from 0.3 to 1.8, LoRT
demonstrates stable performance, with Step 2 outperforming Step 1 most of the time. This stability highlights LoRT
robustness to changing data distributions. D-LoRT displays more sensitivity to covariate shifts, with increasing error as the
shift parameter grows, but still outperforms TNN and k-Sup for most shift values. TNN and k-Sup show the highest and
most stable error across all covariate shifts.

Summary of Findings. The experimental results demonstrate the performance characteristics of LoRT, D-LoRT, TNN and
k-Sup under various conditions:

• Performance across tasks: LoRT and D-LoRT demonstrate the advantages of transfer learning as the number of source
tasks increases, with LoRT showing more consistent gains. In contrast, TNN and k-Sup maintain stable but suboptimal
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performance due to their inability to utilize information from multiple source tasks.

• Robustness to distribution shifts: LoRT and D-LoRT effectively manage both model and covariate shifts, with LoRT
showing more consistent performance across different conditions. D-LoRT also demonstrates robustness, though it
may experience slight variability in stability under certain shifts.

• Centralized vs. Distributed learning: The centralized LoRT method generally outperforms its distributed counterpart,
D-LoRT. However, D-LoRT still shows improved performance over TNN and k-Sup, potentially offering a balance
between performance and data privacy.

A.2. Real-World Data for Tensor Completion

Tensor completion can be regarded as a significant special case of tensor regression, characterized by covariates that are
standard tensor basis elements (Qiu et al., 2024). In this setting, the relationship between tensor covariates and a response is
modeled as

yi = ⟨Xi,W⋆⟩+ εi, (A.1)

where Xi represents i.i.d. random tensor basis elements as covariates, W⋆ is the parameter tensor encoding the complete
data, and yi denotes the observed entries of the incomplete tensor. The objective is to recover W⋆ using only a limited
number of observed responses yi.

This formulation highlights the structural similarities between tensor completion and general tensor regression while focusing
on the unique challenges posed by missing data and sparse observations. By explicitly leveraging the low-rank structure
of W⋆, tensor completion provides an ideal platform for exploring the advantages of transfer learning. Specifically, when
the sample size is limited, incorporating information from related tasks (e.g., similar incomplete tensors) can substantially
improve the estimation accuracy of W⋆. This transfer learning approach not only addresses data sparsity but also enhances
robustness to distributional shifts, thereby demonstrating its potential in tensor regression scenarios.

Experiment Setup. In our real-world experiments, we investigate the effect of transfer learning on tensor completion
tasks, focusing on YUV RGB video datasets9 (akiyo, bridge, grandma, and hall). Each frame of the videos is represented
as a 128× 128× 3 tensor. The target task involves reconstructing the current video frame from a very sparsely observed
subset of its entries. To enhance this reconstruction process, transfer learning is leveraged by treating prior video frames as
related source tasks. These source frames share similar spatiotemporal structures with the target frame, providing valuable
contextual information. The LoRT and D-LoRT models utilize this information by transferring knowledge from the source
tasks to the target task. This enables the models to integrate patterns and relationships learned from earlier frames, resulting
in more accurate and robust completion of the target frame, even under conditions of sparse observations. A series of
experiments were designed to investigate the impact of different factors on the tensor completion task, including the number
of source tasks, sampling rates on source tasks and target tasks, and noise levels.

To evaluate the experimental results, we adopt the widely used relatively error (RE) and Peak Signal-to-Noise Ratio (PSNR)
metrics, where the RE is defined as

RE =
∥Ŵ−W⋆∥F

∥W⋆∥F
(A.2)

where Ŵ and W⋆ are the estimated tensor and ground truth tensor, respectively, and PSNR is given by

PSNR = 10 log10

(
MAX2

MSE

)
(A.3)

where MAX and MSE denote the maximum element and the mean squared error between the ground truth and reconstructed
tensors.

Low-Rank Inductive Bias of the Tubal Nuclear Norm. The tubal nuclear norm (TNN), defined as the convex surrogate
of the tubal rank under the t-SVD framework (Definition 2.3), effectively promotes low-rank structure in third-order tensors.
By minimizing the sum of nuclear norms across frontal slices in the Fourier (or DCT) domain, TNN induces spectral sparsity
and suppresses uninformative components. This behavior is analogous to the matrix nuclear norm in classical low-rank

9Available at http://trace.eas.asu.edu/yuv/
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recovery, but adapted to preserve the multi-dimensional correlations inherent in tensor data. Empirical results (e.g., Fig. 4)
demonstrate that TNN regularization leads to a sharp decay in singular values and energy concentration among a small
number of spectral components, validating its role as a powerful inductive bias for modeling low-tubal-rank structure. This
property underlies the effectiveness of our approach in compressive sensing and transfer learning settings, where sample
efficiency and structural fidelity are critical.

Figure 4: Empirical evidence of the low-tubal-rank structure induced by the tubal nuclear norm. The plots correspond to the
recovered tensor (ninth frame of the Akiyo video) and exhibit clear low-rank characteristics: (a) a sharp spectral decay of the
tensor singular values, and (b) a rapid saturation in the cumulative energy curve.

A.2.1. EXPERIMENTAL RESULTS ON THE VARYING NUMBER OF SOURCE TASKS

We conducted a series of controlled experiments to investigate the performance of our algorithms under various different
source tasks. The number of tasks is selected from the candidate set {1, 2, 3, 4, 5, 6, 7, 8}. For simplicity, we let the first K
frame be the source tasks tensor and the (K + 1)-th frame as the target tensor. The sampling rate source tensors and target
tensor are set to 80% and 5%, respectively.

The experimental results are reported in Table 2 and 3. The results demonstrate the efficacy of the proposed Low-rank
Tensor (LoRT) method in leveraging multiple source tasks for improved tensor completion. As the number of source tasks K
increases, LoRT exhibits a consistent performance improvement, with PSNR values showing substantial gains and RE values
decreasing significantly across all video datasets. This trend underscores the method’s ability to harness information from
multiple source tasks effectively. Notably, LoRT, particularly in its LoRT-Step2 implementation, consistently outperforms
other methods, including D-LoRT and the TNN baseline. The akiyo video demonstrates the most pronounced improvement
with LoRT, showcasing a remarkable PSNR increase from approximately 22dB at K=1 to over 40dB at K=8. While D-LoRT
generally surpasses the TNN baseline, it falls short of LoRT’s performance, suggesting potential for refinement in its fusion
strategy. The TNN baseline, as expected, maintains relatively constant performance across different K values due to its sole
reliance on target task data. These findings not only validate the proposed LoRT approach but also highlight its superiority
in transfer tensor completion scenarios.

Figure 5 illustrates the reconstruction quality achieved by various algorithms, including LoRT-Step1, LoRT-Step2, LoRT-D,
and TNN approaches, under K = 4 and K = 8 settings. The visual results demonstrate the efficacy of the proposed LoRT
approach in recovering missing data across diverse video sequences, highlighting the impact of different K values on the
completion accuracy.

A.2.2. EXPERIMENTAL RESULTS ON VARYING SOURCE TASKS SR

We designed a comprehensive set of experiments to evaluate the performance of our algorithms under varying source
sampling rates (SR). The SR values for source tasks were selected from the set {50%, 60%, 70%, 80%, 90%}, and the SR
for the target task is fixed to 5%. In our experimental framework, we designated the first 4 frames as the source task tensor
and the 5th frame as the target tensor.

The experimental results presented in Tables 4 and 5 demonstrate the effectiveness of the proposed LoRT method in
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Table 2: PSNR value comparison on akiyo, bridge, grandma, and hall videos under varying source tasks.

akiyo bridge
K LoRT Step1 LoRT Step2 D-LoRT TNN (baseline) LoRT Step1 LoRT Step2 D-LoRT TNN (baseline)
1 22.15 22.19 25.71 14.49 33.03 33.04 30.33 23.59
2 28.60 28.67 26.64 14.49 34.99 35.04 31.08 23.82
3 32.90 33.01 26.97 14.49 36.06 36.14 31.22 23.73
4 35.44 35.59 27.12 14.50 36.53 36.62 31.38 23.68
5 35.60 35.77 27.13 14.51 36.96 37.06 31.31 23.45
6 37.58 37.61 27.18 14.30 37.31 37.42 31.46 23.34
7 39.73 39.77 27.29 14.38 37.63 37.76 31.61 23.65
8 40.29 40.32 27.37 14.24 37.57 37.70 31.60 23.52

grandma hall
K LoRT Step1 LoRT Step2 D-LoRT TNN (baseline) LoRT Step1 LoRT Step2 D-LoRT TNN (baseline)
1 29.10 29.10 26.60 17.45 28.52 28.52 25.65 16.10
2 32.59 32.59 27.24 17.44 31.88 31.89 26.47 16.08
3 34.88 34.88 27.47 17.43 33.04 33.06 26.68 16.02
4 36.60 36.61 27.62 17.42 35.06 35.08 27.04 15.95
5 37.79 37.80 27.65 17.34 35.75 35.77 27.11 16.11
6 38.84 38.85 27.79 17.48 36.40 36.44 27.28 16.17
7 39.61 39.63 27.72 17.24 36.73 36.77 27.28 16.12
8 40.37 40.39 27.78 18.13 36.24 36.29 27.17 16.13

Ground Truth Observed LoRT-Step1 LoRT-Step2 LoRT-D TNN (baseline)

K = 4

Ground Truth Observed LoRT-Step1 LoRT-Step2 LoRT-D TNN (baseline)

K = 8

Figure 5: Comparison of completion performance across different methods for four video datasets under (a) K = 4 and (b)
K = 8 settings.
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Table 3: RE value comparison on akiyo, bridge, grandma, and hall videos under varying source tasks.

akiyo bridge
K LoRT Step1 LoRT Step2 D-LoRT TNN (baseline) LoRT Step1 LoRT Step2 D-LoRT TNN (baseline)
1 0.1593 0.1588 0.1058 0.3851 0.0292 0.0291 0.0398 0.0865
2 0.0759 0.0753 0.0951 0.3850 0.0233 0.0231 0.0365 0.0842
3 0.0462 0.0457 0.0915 0.3851 0.0206 0.0204 0.0360 0.0851
4 0.0345 0.0339 0.0899 0.3848 0.0195 0.0193 0.0353 0.0857
5 0.0339 0.0332 0.0899 0.3839 0.0186 0.0183 0.0356 0.0879
6 0.0270 0.0269 0.0893 0.3935 0.0178 0.0176 0.0350 0.0890
7 0.0211 0.0210 0.0882 0.3901 0.0172 0.0169 0.0344 0.0860
8 0.0197 0.0197 0.0875 0.3962 0.0173 0.0171 0.0344 0.0872

grandma hall
K LoRT Step1 LoRT Step2 D-LoRT TNN (baseline) LoRT Step1 LoRT Step2 D-LoRT TNN (baseline)
1 0.1259 0.1260 0.1679 0.4818 0.0659 0.0659 0.0918 0.2757
2 0.0845 0.0846 0.1566 0.4834 0.0448 0.0448 0.0836 0.2765
3 0.0647 0.0647 0.1518 0.4824 0.0392 0.0391 0.0815 0.2779
4 0.0532 0.0531 0.1494 0.4836 0.0311 0.0310 0.0782 0.2806
5 0.0464 0.0464 0.1492 0.4891 0.0287 0.0286 0.0775 0.2754
6 0.0412 0.0412 0.1472 0.4827 0.0266 0.0265 0.0761 0.2732
7 0.0376 0.0375 0.1477 0.4936 0.0256 0.0255 0.0760 0.2748
8 0.0345 0.0345 0.1471 0.4469 0.0271 0.0270 0.0771 0.2746

leveraging source tasks with varying SR for improved tensor completion. As the SR of the source task increases from
50% to 90%, LoRT exhibits a consistent performance improvement across all video datasets, with PSNR values showing
substantial gains and RE values decreasing significantly. Notably, LoRT, particularly in its LoRT-Step2 implementation,
consistently outperforms other methods, including D-LoRT and the TNN baseline, across all SR values. The TNN baseline,
as expected, shows relatively constant performance across different SR values due to its sole reliance on target task data.
This highlights the advantage of LoRT in leveraging source task information.

Table 4: PSNR value comparison on akiyo, bridge, grandma, and hall videos under different SR.

akiyo bridge
SR LoRT Step1 LoRT Step2 D-LoRT TNN (baseline) LoRT Step1 LoRT Step2 D-LoRT TNN (baseline)

50% 31.88 31.92 27.41 14.50 30.44 30.56 31.60 23.79
60% 33.27 33.33 27.47 14.23 31.71 31.89 31.69 23.14
70% 34.43 34.51 27.56 14.20 32.93 33.21 31.75 23.63
80% 35.41 35.54 27.58 14.56 33.94 34.31 31.80 24.01
90% 36.42 36.60 27.65 14.38 34.68 35.08 31.85 23.69

grandma hall
SR LoRT Step1 LoRT Step2 D-LoRT TNN (baseline) LoRT Step1 LoRT Step2 D-LoRT TNN (baseline)

50% 34.95 34.98 27.87 17.61 30.72 30.77 27.43 16.05
60% 35.76 35.81 27.89 17.40 31.62 31.71 27.42 16.17
70% 36.38 36.43 27.90 17.26 32.60 32.71 27.49 16.17
80% 37.26 37.32 27.96 17.62 33.50 33.63 27.56 16.11
90% 37.92 37.99 28.00 17.40 34.31 34.50 27.59 15.91

A.2.3. EXPERIMENTAL RESULTS ON VARYING TARGET TASK SR

We conducted a series of comprehensive experiments to evaluate the performance of our algorithms under varying target
SR. The SR values for the target task were selected from the set {5%, 8%, 10%, 12% 15%, 18%, 20%}, representing a
range from sparse to relatively dense sampling of the target task. In our experimental framework, we consistently used the
first 4 frames as the source task tensors and the 5th frame as the target tensor across all datasets. For the source tasks, we
maintained a fixed sampling rate of 80% for all tensors.

The experimental results presented in Figures 6 demonstrate the effectiveness of the proposed LoRT method in leveraging
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Table 5: RE value comparison on akiyo, bridge, grandma, and hall videos under different SR.

akiyo bridge
SR LoRT Step1 LoRT Step2 D-LoRT TNN (baseline) LoRT Step1 LoRT Step2 D-LoRT TNN (baseline)

50% 0.0520 0.0518 0.0870 0.3848 0.0393 0.0388 0.0344 0.0846
60% 0.0443 0.0440 0.0864 0.3968 0.0340 0.0333 0.0341 0.0912
70% 0.0388 0.0384 0.0855 0.3982 0.0295 0.0286 0.0338 0.0862
80% 0.0346 0.0341 0.0853 0.3819 0.0263 0.0252 0.0336 0.0825
90% 0.0309 0.0302 0.0846 0.3901 0.0241 0.0231 0.0335 0.0856

grandma hall
SR LoRT Step1 LoRT Step2 D-LoRT TNN LoRT Step1 LoRT Step2 D-LoRT TNN

50% 0.0643 0.0641 0.1452 0.4729 0.0512 0.0509 0.0748 0.2773
60% 0.0586 0.0582 0.1448 0.4849 0.0462 0.0457 0.0749 0.2735
70% 0.0545 0.0542 0.1447 0.4925 0.0412 0.0407 0.0743 0.2736
80% 0.0493 0.0489 0.1437 0.4724 0.0372 0.0366 0.0737 0.2753
90% 0.0456 0.0453 0.1431 0.4848 0.0339 0.0331 0.0734 0.2819
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Figure 6: Comparison of completion performance across different methods for four video datasets under (a) PSNR and (b)
RE settings.
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target tasks with varying SR for improved tensor completion across different video datasets. As the SR of the target task
increases from 5% to 20%, LoRT exhibits a consistent performance improvement across all video datasets, with PSNR
values showing substantial gains and RE values decreasing significantly. Notably, LoRT, particularly in its LoRT-Step2
implementation, consistently outperforms other methods, including LoRT-D and the TNN baseline, across all SR values.
For instance, in the akiyo dataset, LoRT-Step2 achieves the highest PSNR values, ranging from approximately 35 dB at 5%
SR to nearly 40 dB at 20% SR.

Figure 7 visually corroborates these quantitative findings, showcasing the superior reconstruction quality of LoRT-Step1,
LoRT-Step2, and LoRT-D compared to the baseline, especially at lower SR values (10%). The visual quality improvement is
particularly noticeable in complex scenes like hall and detailed facial features in akiyo and grandma datasets. In conclusion,
these results highlight the significant advantage of the LoRT method, especially its two-step implementation, in effectively
leveraging source task information for improved tensor completion across various sampling rates and video datasets.
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Figure 7: Comparison of completion performance across different methods for four video datasets under (a) SR = 10% and
(b) SR = 20% settings.

A.3. Additional Datasets, Baselines, and Experimental Settings

To better demonstrate the robustness and applicability of the proposed LoRT framework, we provide additional experimental
results and implementation details beyond the main paper. These additions aim to offer a more complete understanding of
the proposed method’s empirical behavior across diverse application contexts, especially in visual tensor recovery tasks.

In particular, we incorporate two additional video sequences—Apply Eye Make-up and Blowing Candles—from the UCF-101
benchmark, as used in Wang & Zhao (2024), to evaluate the generalization performance of LoRT in spatiotemporal tensor
completion settings. These datasets are widely used for benchmarking and exhibit diverse motion dynamics and textural
structures, making them suitable for testing the adaptability of transfer-based tensor learning algorithms.

A.3.1. ADDITIONAL BASELINES

To the best of our knowledge, no existing transfer learning methods directly apply to our setting, which involves tensor
completion under extreme sparsity and inter-task distribution shifts. In such regimes, target-only baselines across all tensor
formats—including t-SVD, Tucker, CP, and TT—consistently perform poorly due to insufficient observations. Due to the
lack of substantive differences among target-only baselines under extreme sparsity, we choose to report the t-SVD-based
TNN method (Lu et al., 2019b) as a representative baseline to highlight the benefit of transfer in the main experiments.

To further support this design choice, we also compare LoRT against several representative tensor completion methods
proposed. These include Tucker-based methods (Convex in Raskutti et al. (2019) and Tucker in Li et al. (2018)), CP-based
methods (Zhou et al., 2013), mixed t-SVD/TR-based approache (Balanced TNN in Qiu et al. (2024)), the orientation-invariant
TNN method (OITNN in Wang et al. (2023b)), and the tensor ℓ1 − ℓ2 regularized approach (Tan et al., 2023). However, their
target-only nature limits their effectiveness in highly sparse and heterogeneous transfer settings. In fact, their empirical
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performance closely resembles that of TNN under identical sampling conditions, offering limited distinction, comparative
value, or practical insight from the perspective of transfer learning. Due to this and the associated computational overhead,
we report only representative results rather than repeating comparisons across all datasets. Detailed results are provided in
Table 6.

Table 6: PSNR results on UCF-101 video clips (Apply Eye Make-up and Blowing Candles) with varying K.

Dataset K
LoRT
Step 1

LoRT
Step 2 D-LoRT TNN

Balanced
TNN OITNN ℓ1 − ℓ2 CP Tucker Convex

Eye Make-up
1 25.09 25.16 24.41 16.01 17.26 16.19 14.73 14.19 14.79 14.73
2 29.16 29.18 24.98 16.10 18.01 16.93 15.33 13.68 14.43 15.33
3 29.92 29.94 25.50 16.62 18.07 17.14 15.56 14.65 14.23 15.56

Blowing Candles
1 25.63 25.64 23.14 13.59 14.49 13.65 12.01 14.04 14.96 12.01
2 25.97 25.98 23.86 13.27 14.87 13.77 12.33 14.15 13.19 12.33
3 28.72 28.74 25.17 13.36 14.92 13.96 12.19 12.93 13.87 12.19

A.3.2. NON-I.I.D. SAMPLING SETTINGS

We further investigate LoRT’s robustness under non-i.i.d. tensor sampling patterns, including a mixture of tube-wise and
element-wise missingness. These experiments are designed to validate the performance of LoRT in less idealized settings,
where tensor observations may be sampled in a structured or nonuniform fashion. Results are summarized in Table 7 and
show that LoRT retains its advantage over conventional baseline TNN even under these more realistic sampling regimes. In
particular, we observe that LoRT Step 2 consistently yields the highest PSNR and SSIM values across all configurations. The
performance gap becomes especially pronounced as the number of source tasks increases, suggesting that LoRT effectively
leverages auxiliary information even when source observations are non-i.i.d. Notably, while D-LoRT offers improvements
over TNN, it trails behind centralized LoRT, underscoring the benefit of joint optimization when data can be aggregated.

Table 7: Preliminary results on tensor completion under non-i.i.d. source task measurements. Each source tensor is partially
observed with a 40% sampling rate combining tube-wise and element-wise missing patterns. The target tensor is observed at
a 5% sampling rate. PSNR and SSIM are reported for each method.

Dataset K LoRT Step 1 LoRT Step 2 D-LoRT TNN
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Eye Make-up
1 24.38 0.6468 24.47 0.6507 21.89 0.6138 16.01 0.2045
2 28.48 0.7591 28.49 0.7593 23.70 0.6472 16.47 0.2131
3 29.58 0.7854 29.60 0.7861 24.55 0.6545 16.26 0.1641

Blowing Candles
1 24.15 0.8984 24.15 0.8985 14.39 0.5854 13.22 0.2690
2 25.17 0.9213 25.18 0.9216 18.34 0.7689 13.43 0.3097
3 27.62 0.9517 27.63 0.9519 19.25 0.8073 13.46 0.2987

A.3.3. PRELIMINARY RESULTS ON TENSOR COMPRESSED SENSING

To further evaluate the effectiveness of LoRT beyond tensor completion, we conduct preliminary experiments on tensor
compressed sensing. In this setting, each video frame is modeled as a third-order tensor, and the entries are sensed via
random Gaussian measurements. Each source task contains 3000 measurements, and the target task is measured with only
1500 observations, reflecting a highly undersampled regime.

We adopt two video sequences (Apply Eye Make-up and Blowing Candles), with each frame rescaled to 40× 40× 3 due to
computational constraints. PSNR and SSIM metrics are used to evaluate reconstruction performance across different values
of K, the number of source tasks. The results in Table 8 show that LoRT Step 2 consistently outperforms both D-LoRT
and TNN across all settings of K and on both datasets. D-LoRT, despite its decentralized nature, achieves competitive
performance, validating the effectiveness of local model aggregation. In contrast, TNN—trained solely on the target
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Table 8: Preliminary results on tensor compressed sensing using UCF-101 video clips. Each source tensor is sensed with
3000 Gaussian projections, and the target tensor is sensed with 1500. PSNR and SSIM are reported.

Dataset K LoRT Step 1 LoRT Step 2 D-LoRT TNN
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Eye Make-up
1 18.29 0.5762 18.33 0.5774 14.48 0.3868 13.54 0.2832
2 29.87 0.8461 30.13 0.8472 16.12 0.4681 13.82 0.2942
3 33.97 0.9202 34.69 0.9126 16.96 0.5183 13.88 0.2942

Blowing Candles
1 15.86 0.6775 15.9 0.679 11.88 0.4397 9.53 0.2326
2 26.41 0.9531 26.72 0.9549 13.03 0.5225 9.32 0.1945
3 31.42 0.986 32.03 0.9861 13.99 0.5959 9.3 0.2008

task—suffers from substantially lower PSNR and SSIM, especially under limited measurement conditions, underscoring the
advantages of leveraging source task information through transfer.
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B. Related Work
We categorize related work into three key areas: tensor regression and recovery, transfer learning, and multitask learning.
Our approach intersects these domains by introducing a theoretically grounded, low-rank tensor regression framework
capable of addressing both limited samples and distributional heterogeneity.

Tensor Regression and Recovery. Tensor-based regression and recovery methods have been extensively developed to
model multi-dimensional structured data (Qiu et al., 2022b; Hou et al., 2021; Lu et al., 2019a; Zhang et al., 2020; Zhang &
Ng, 2021; Zhang, 2016). Early work established foundational tensor decompositions, including CANDECOMP/PARAFAC
(CP) (Carroll & Chang, 1970; Harshman et al., 1970) and Tucker decomposition (Tucker, 1966), which were later applied to
practical domains such as neuroimaging and chemometrics (Zhou et al., 2013; Sun & Li, 2017). Notably, the STORE model
(Sun & Li, 2017) introduced sparsity for efficient estimation, while Raskutti et al. (2019) proposed a convex regularization
framework to manage high-dimensional multi-response tensor regression.

In parallel, low-rank tensor recovery has seen both convex and non-convex developments. Convex approaches include tubal
nuclear norm (TNN) minimization based on the t-SVD framework (Lu et al., 2019a), as well as theoretical tools like tensor
restricted isometry property (T-RIP) (Zhang et al., 2020). Non-convex regularizers have also gained attention, including
Schatten-p norms (Kong et al., 2018) and weighted TNN strategies (Mu et al., 2020), aiming to balance accuracy with
computational scalability.

Our work builds upon these methods by extending low-tubal-rank modeling to a multi-task transfer setting, introducing a
principled fusion regularizer and leveraging source-target interactions for improved tensor regression performance under
distribution shift. In particular, we adapt the TNN framework to heterogeneous learning across tasks, while preserving
its low-rank structural benefits. This contributes a new perspective to the low-tubal-rank recovery literature by enabling
theoretically justified estimation in transfer settings, without relying on centralized access to all data.

Transfer Learning. Transfer learning for regression has developed along both theoretical and algorithmic lines, especially
in high-dimensional or low-sample regimes. Kuzborskij & Orabona (2013; 2017) established foundational generalization
bounds using algorithmic stability, while Wang et al. (2016) analyzed the excess risk of nonparametric transfer across
tasks. More recent work has extended to high-dimensional and structured models: Tian & Feng (2023); Tian et al. (2023)
developed theory for generalized linear models under covariate and model shift, and Du et al. (2020); Tripuraneni et al.
(2021) studied few-shot and meta-learning with provable representation transfer.

Refinements include surrogate-loss-based frameworks (Aghbalou & Staerman, 2023), smoothness-adaptive penalties (Lin &
Reimherr, 2024), and distributionally robust optimization under covariate shift (He et al., 2024a). These methods, however,
primarily operate on vectorized models or unstructured data. In contrast, our work incorporates transfer learning directly
within the tensor regression framework by designing a decomposition-aware regularizer and two-step refinement strategy,
enabling effective transfer under low-rank constraints and structured heterogeneity.

Multitask Learning. Multitask learning has been a rich area of study, particularly in understanding the conditions
under which joint training improves generalization. Hanneke & Kpotufe (2022) established a “no-free-lunch” theorem
that characterizes when negative transfer is unavoidable. Tensor-based extensions of multitask learning were proposed by
Wimalawarne et al. (2014), who used low-rank tensor factorization to encode task relationships through convex regularization.

In terms of information transfer, Wu et al. (2020) provided theoretical insights into when task information can be beneficially
shared, and Duan & Wang (2023) proposed adaptive frameworks that dynamically modulate transfer strength according to
task relevance. Multi-source and multi-target challenges have also been addressed theoretically: Konstantinov et al. (2020)
studied PAC-learning guarantees in adversarial multi-source settings, while Deng et al. (2023) focused on mixture weight
estimation in domain adaptation.

Our proposed LoRT and D-LoRT frameworks offer a preliminary step toward structured knowledge transfer in tensor
regression, where each task is represented as a low-rank tensor and source-target alignment is incorporated through a fusion
regularizer. While modest in scope, this design allows the method to leverage tensor structure under distribution shifts, and
provides a scalable implementation for decentralized or heterogeneous data environments, with theoretical insights that
complement existing multitask and transfer learning approaches.
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C. Additional Preliminaries
C.1. Preliminaries of t-Singular Value Decomposition

Due to space limitations, some concepts related to t-SVD were omitted in the main text. We provide additional notions here.
Definition C.1 (Frontal-slice-wise product (Lu et al., 2019a)). The frontal-slice-wise product of any two tensors A ∈
Rd1×d2×d3 and B ∈ Rd1×d2×d3 , denoted by A⊙B, is defined as a tensor T such that

T:,:,i = A:,:,i ·B:,:,i, i ∈ [K]

where · denotes the standard matrix multiplication. The frontal-slice-wise product performs matrix multiplication on each
frontal slice of the tensors, resulting in a new tensor.
Definition C.2 (M -block-diagonal matrix). The M -block-diagonal matrix of any tensor T ∈ Rd1×d2×d3 , denoted by T̄, is
the block diagonal matrix whose diagonal blocks are the frontal slices of M(T) := M(T):

T̄ := bdiag(M(T)) :=


M(T):,:,1

M(T):,:,2
. . .

M(T)(K))

 ∈ Rd1d3×d2d3 .

This concept arranges the slices of a tensor in the frequency domain into a block diagonal matrix, facilitating the theoretical
analysis of t-SVD.

We further provide some definitions and properties related to t-SVD:
Definition C.3 ((Kernfeld et al., 2015)). The t-transpose of a tensor T ∈ Rd1×d2×d3 under the M transform (as shown in
Eq. (1)), denoted by T⊤, satisfies

M(T⊤):,:,i = (M(T):,:,i)
⊤
, i ∈ [K].

In other words, the t-transpose performs a transpose on each slice in the frequency domain and then transforms back to the
time domain. This operation is one of the foundations of t-SVD theory.
Definition C.4 ((Kernfeld et al., 2015)). The t-identity tensor I ∈ Rd×d×d3 under the M transform satisfies that each
frontal slice of M(I) is an d3 × d3 identity matrix, i.e.,

M(I):,:,i = I, i ∈ [K].

It is easy to verify that T ∗M I = T and I ∗M T = T hold for appropriate dimensions. The t-identity tensor plays a role
similar to the identity matrix in t-SVD.
Definition C.5 ((Kernfeld et al., 2015)). A tensor Q ∈ Rd×d×d3 is called t-orthogonal under the M transform if it satisfies

Q⊤ ∗M Q = Q ∗M Q⊤ = I.

T-orthogonality is an important property of tensor transformations, ensuring that the inner product and norm of tensors
remain invariant before and after the transformation.

Decomposability of Tubal Nuclear Norm Consider the reduced t-SVD of W(0)
⋆ given by

W(0)
⋆ = U ∗M S ∗M V⊤

where U ∈ Rd1×r×d3 and V ∈ Rd2×r×d3 are orthogonal tensors, and S ∈ Rr×r×d3 is an f-diagonal tensor. We define the
projection operators P⋆(·) and P⋆⊥(·) as follows:

P⋆(T) = U ∗M U⊤ ∗M T + T ∗M V ∗M V⊤ −U ∗M U⊤ ∗M T ∗M V ∗M V⊤ (C.1)

P⋆⊥(T) = (I−U ∗M U⊤) ∗M T ∗M (I−V ∗M V⊤). (C.2)

These operators decompose the tensor T into components aligned with the sub-modules t-spanned by U and V, and their
orthogonal complements, respectively.

As shown in the appendix of Wang et al. (2020), the following properties hold:
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a). Any tensor T ∈ Rd1×d2×d3 can be uniquely decomposed as T = P⋆(T) + P⋆⊥(T).

b). The inner product between the projections P⋆(X) and P⋆⊥(Y) is zero, i.e., ⟨P⋆(X),P⋆⊥(Y)⟩ = 0, for all tensors
X,Y ∈ Rd1×d2×d3 .

c). The tubal rank of the projected tensor P⋆(T) is at most twice the rank of W(0)
⋆ , i.e., rt(P⋆(T)) ≤ 2 · rt(W

(0)
⋆ ), for

all T ∈ Rd1×d2×d3 .

Additionally, the following properties related to the tubal nuclear norm (TNN) can be established:

a). (Decomposability of TNN) For any tensors X,Y ∈ Rd1×d2×d3 satisfying X ∗M Y⊤ = 0 and X⊤ ∗M Y = 0, the
tubal nuclear norm decomposes additively:

∥X+ Y∥⋆ = ∥P⋆(X)∥⋆ + ∥P⋆⊥(Y)∥⋆.

b). (Norm compatibility inequality) For any tensor T ∈ Rd1×d2×d3 , the tubal nuclear norm can be related to the tensor
Frobenius norm and the tensor rank as follows:

∥T∥⋆ ≤
√

rt(T) · d3 · ∥T∥F.

C.2. Additional Notations

Throughout this appendix, we adopt the following notations: Total sample size: N = KNS + NT . Let Nk = NS for
k = 1, . . . ,K and NT for k = 0.

Following the conventions in Wainwright (2019), we adopt the following notations. For any task k = 0, 1, . . . ,K, define the
observation vector y(k), noise vector ϵ(k), design operator X(k)(·) and the adjoint operator of X(k)(·) as follows:

y(k) := (y
(k)
1 , · · · , y(k)Nk

)⊤ ∈ RNk

ϵ(k) := (ϵ
(k)
1 , · · · , ϵ(k)Nk

)⊤ ∈ RNk

X(k)(∆) := (⟨X(k)
1 ,∆⟩, · · · , ⟨X(k)

Nk
,∆⟩)⊤ ∈ RNk , ∀∆ ∈ Rd1×d2×d3

X∗(k)(z) :=
Nk∑
i=1

zi ·X(k)
i ∈ Rd1×d2×d3 , ∀z ∈ RNk .

(C.3)

We use several asymptotic notations to describe the relationships between functions. For the sake of clarity, we provide their
definitions here:

• The notation f(n) ≲ g(n) means that there exists a positive constant c and a positive integer n0 such that for all
n ≥ n0, we have f(n) ≤ c · g(n). This is equivalent to saying f(n) = O(g(n)).

• Similarly, f(n) ≳ g(n) means that there exists a positive constant c and a positive integer n0 such that for all n ≥ n0,
we have f(n) ≥ c · g(n). This is equivalent to saying g(n) = O(f(n)).

• We write f(n) ≍ g(n) if both f(n) ≲ g(n) and f(n) ≳ g(n) hold. This means that f(n) and g(n) are of the same
order.

• The notation f(n) = o(g(n)) means that for every positive constant ϵ, there exists a positive integer n0 such that for all
n ≥ n0, we have |f(n)| ≤ ϵ · |g(n)|.

These notations allow us to express the asymptotic behavior of functions concisely, which is particularly useful in our
analysis of algorithmic complexity and error bounds.
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C.3. Restricted Strong Convexity (RSC) and Restricted Smoothness (RSM)

Note that according to Assumption 3.2, the design tensors X
(k)
i in each task (k = 0, 1, . . . ,K) is a random Gaussian

design. We first establish a key property of the Gaussian design tensor, which serves as a fundamental building block for
our subsequent analysis. Lemma C.6 demonstrates that the least squares objective function possesses the restricted strong
convexity (RSC) and restricted smoothness (RSM) properties.

Lemma C.6 (RSC and RSM). Under Assumption 3.2, for any ∆ ∈ Rd1×d2×d3 , with probability at least 1−c1 exp(−c2Nk),

RSC:
1

Nk

∥∥∥X(k)(∆)
∥∥∥2
2
≥ αk∥∆∥22 − βk

d1
Nk
∥∆∥2⋆

RSM:
1

Nk

∥∥∥X(k)(∆)
∥∥∥2
2
≤ γk∥∆∥22 + τk

d1
Nk
∥∆∥2⋆

where αk ≥ c1c
−1
x ,γk ≤ c2cx and βk, τk ≤ c3cx, where c1, c2, c3 are universal postive constants.

Proof of Lemma C.6. The results can be simply obtained in a similar manner to the proof of Proposition 1 in Raskutti
et al. (2011). The only difference is to change the changing the ℓ1-norm to tubal nuclear norm, and the upper bound of
E[supv∈V (r) h

T (Σ1/2v)] by

E[ sup
∆∈V(ℓ)

⟨H, σk∆⟩] ≤ ℓσkE[∥H∥tsp] ≤ ℓσk(
√

d1 +
√
d2) (C.4)

where H ∈ Rd1×d2×d3 is a tensor whose entries are i.i.d. standard Gaussian, and

V(ℓ) := {∆ ∈ Rd1×d2×d3 : σk∥∆∥F = 1, ∥∆∥⋆ ≤ ℓ}. (C.5)

27



Low-Rank Tensor Transitions (LoRT)

D. Theoretical Analysis of LoRT
D.1. Analysis of the Joint Low-rank Learning Step of LoRT

We begin by introducing some key notations and transformations that will facilitate our analysis.

For each source task k ∈ [K], let Θ(k)
⋆ := W(k)

⋆ −W(0)
⋆ denote the difference between the ground truth parameters of the

k-th source task and the target task, representing the model shift. We define:

Θ⃗⋆ = (Θ(0)
⋆ ,Θ(1)

⋆ , · · · ,Θ(K)
⋆ ) = (W(0)

⋆ ,W(1)
⋆ −W(0)

⋆ , · · · ,W(K)
⋆ −W(0)

⋆ ) ∈ R(K+1)×d1×d2×d3 . (D.1)

Here, W(0)
⋆ ∈ Rd1×d2×d3 is the tensor parameter of the target task model, and W(k)

⋆ ∈ Rd1×d2×d3 is the parameter of the
k-th source task model for all k ∈ [K].

We rewrite the loss function as:

L(Θ⃗) :=
1

2N

(
∥y(0) − X(0)(Θ(0))∥22 +

K∑
k=1

∥y(k) − X(k)(Θ(k) +Θ(0))∥22

)
(D.2)

where we use the change of variable:

Θ⃗ = (Θ(0),Θ(1), · · · ,Θ(K)) = (W(0),W(1) −W(0), · · · ,W(K) −W(0)) ∈ R(K+1)×d1×d2×d3 (D.3)

With this change of variables, solving problem (7) is equivalent to solving:

̂⃗
Θ = argmin

Θ⃗

{L(Θ⃗) + λ0R(Θ⃗)} (D.4)

where λ0R(Θ⃗) :=
∑K

k=0 λk∥Θ(k)∥⋆, and we set λk = λ0ak for all k ∈ [K] for simplicity.

We define the estimation error as ∆⃗ :=
̂⃗
Θ − Θ⃗⋆ ∈ R(K+1)×d1×d2×d3 , with the corresponding k-th block ∆(k) :=

Θ̂
(k)
−Θ(k)

⋆ , for all k = 0, 1, . . . ,K.

To quantify the quality of the weighted averaging estimator Ŵ
a
, we further define:

∆a := ∆(0) +

K∑
k=1

NS

N
∆(k) = Ŵ

a
−Wa

⋆

as the estimation error of the parameter average Wa
⋆. Our goal is to establish an upper bound for ∥∆a∥2F.

Supporting Lemmas Theorem 4.2 provides an upper bound on the estimation error of the first step of LoRT. The proof of
Theorem 4.2 relies on three key technical lemmas:

Lemma D.1 (Concentration of Gradient). Under Assumptions 3.2 and 3.3, if NS ≳ d1, then by choosing

λ0 = c0

√
d1
N

, λk = akλ0 = c0

√
d1NS

N

for some appropriate constant c0, we have the following upper bound for any ∆⃗ = (∆(0),∆(1), . . . ,∆(K)) ∈
R(K+1)×d1×d2×d3 , with high probability:

∣∣∣⟨∇L(Θ⃗⋆

)
, ∆⃗⟩

∣∣∣ ≤ K∑
k=0

λk

2
∥∆(k)∥⋆.

This lemma bounds the inner product of the gradient of the loss function with the estimation error, which is crucial for
controlling the first-order term in our analysis.
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Lemma D.2 (Restricted Set of Directions). Under Assumptions 3.2 and 3.3, and the conditions of Lemma D.1, if we further
assume λk ≥ 8λ0

NS

N and NS > NT , then the averaging estimation error ∆a satisfies the following inequality with high
probability:

2λ0∥∆(0)∥⋆ +
K∑

k=0

λk∥∆(k)∥⋆ ≤ 8λ0∥P⋆(∆
a)∥⋆ + 8

K∑
k=1

λkhk

where P⋆(·) is the operator defined in Eq. (C.1).

This lemma establishes a restricted set of directions in which the averaging error ∆a lies, which is essential for our
subsequent analysis.

Lemma D.3 (Restricted Strong Convexity). Under Assumptions 3.2 and 3.3 and the conditions of Lemma D.2, the estimation
error ∆a satisfies with high probability:

L
(
Θ⃗⋆ + ∆⃗

)
− L

(
Θ⃗⋆

)
− ⟨∇L

(
Θ⃗⋆

)
, ∆⃗⟩ ≥ (1− un)αmin∥∆a∥2F − vn

K∑
k=1

λkhk (D.5)

where

un :=
512βmaxλ

2
0

αminλ2
k ∧ (λ2

0/(K + 1))

rd1d3
N

vn :=
256βmax

λ2
k ∧ (λ2

0/(K + 1))

d1
N

(
K∑

k=1

λkhk

)
αmin := min

0≤k≤K
αk, βmax := max

0≤k≤K
βk

with RSC constants (αk, βk) defined in Lemma C.6.

This lemma ensures a property analogous to restricted strong convexity for ∆a, which is crucial for establishing the
convergence of our estimator.

Now, we proceed with the proof of Theorem 4.2.

Proof of Theorem 4.2 We introduce the function F : R(K+1)×d1×d2×d3 → R, defined as:

F(∆⃗) = L
(
Θ⃗⋆ + ∆⃗

)
− L

(
Θ⃗⋆

)
+ λ0R

(
Θ⃗⋆ + ∆⃗

)
− λ0R

(
Θ⃗⋆

)
.

By applying Lemma D.1, we can establish the following inequality with high probability:

F( ̂⃗Θ) = L
(
Θ⃗⋆ + ∆⃗

)
− L

(
Θ⃗⋆

)
+ λ0R

(
Θ⃗⋆ + ∆⃗

)
− λ0R

(
Θ⃗⋆

)
(i)

≥ −
∣∣∣⟨∇L(Θ⃗⋆

)
, ∆⃗⟩

∣∣∣+ vec(∆⃗)⊤∇2L
(
Θ⃗⋆ + γ∆⃗

)
vec(∆⃗) (γ ∈ (0, 1))

+

K∑
k=1

λk

(
∥Θ(k)

⋆ +∆(k)∥⋆ − ∥Θ(k)
⋆ ∥⋆

)
+ λ0∥Θ(0)

⋆ +∆(0)∥⋆ − λ0∥Θ(0)
⋆ ∥⋆

(ii)

≥ −
K∑

k=1

λk

2

∥∥∥∆(k)
∥∥∥
⋆
− λ0

2

∥∥∥∆(0)
∥∥∥
⋆
+ vec(∆⃗)⊤Σ̂vec(∆⃗)

+

K∑
k=1

λk

(∥∥∥∆(k)
∥∥∥
⋆
− 2

∥∥∥Θ(k)
∥∥∥
⋆

)
+ λ0

(∥∥∥P⋆(W
(0)
⋆ )
∥∥∥
⋆
−
∥∥∥P⋆(∆

(0))
∥∥∥
⋆
+
∥∥∥P⋆⊥(∆(0))

∥∥∥
⋆
−
∥∥∥P⋆(W

(0)
⋆ )
∥∥∥
⋆

)
(iii)

≥ vec(∆⃗)⊤Σ̂vec(∆⃗) +
λ0

2

(∥∥∥P⋆⊥(∆(0))
∥∥∥
⋆
− 3

∥∥∥P⋆(∆
(0))
∥∥∥
⋆

)
+

K∑
k=1

λk

2

∥∥∥∆(k)
∥∥∥
⋆
− 2

K∑
k=1

λkhk
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where (i) follows by the mean value theorem with γ ∈ (0, 1); (ii) holds as a result of Lemma D.1 and we also use
Θ(0)

⋆ = W(0)
⋆ , ∥P⋆⊥(Θ(0)

⋆ )∥⋆ = 0, and ∥W(0)
⋆ +∆∥⋆ = ∥W(0)

⋆ + P⋆⊥(∆) + P⋆(∆)∥⋆ ≥ ∥W(0)
⋆ + P⋆⊥(∆)∥⋆ −

∥P⋆(∆)∥⋆ = ∥W(0)
⋆ ∥⋆ + ∥P⋆⊥(∆)∥⋆ − ∥P⋆(∆)∥⋆ due to the decomposibility of TNN; (iii) holds because ∥Θ(k)

⋆ ∥⋆ ≤ hk

for 1 ≤ k ≤ K. Here, Σ̂ represents the Hessian matrix of the loss function L(·) evaluated at the point (Θ⃗⋆ + γ∆⃗), whose
explicit form is given by:

Σ̂ :=
1

N


∑K

k=0

∑Nk

i=1 vec(X
(k)
i )vec(X

(k)
i )⊤

∑Nk

i=1 vec(X
(1)
i )vec(X

(1)
i )⊤ · · ·

∑Nk

i=1 vec(X
(K)
i )vec(X

(K)
i )⊤∑Nk

i=1 vec(X
(1)
i )vec(X

(1)
i )⊤

∑Nk

i=1 vec(X
(1)
i )vec(X

(1)
i )⊤ · · · 0

...
...

...
...∑Nk

i=1 vec(X
(K)
i )vec(X

(K)
i )⊤ 0 · · ·

∑Nk

i=1 vec(X
(K)
i )vec(X

(K)
i )⊤


∈ R(K+1)d1d2d3×(K+1)d1d2d3 . (D.6)

Leveraging the definition of ∆a, we have ∆(0) = ∆a −
∑K

k=1
NS

N ∆(k). Applying the triangle inequality yields:

F(∆) ≥vec(∆⃗)⊤Σ̂vec(∆⃗) +
1

2
λ0 ∥P⋆⊥(∆a)∥⋆ −

1

2
λ0

K∑
k=1

NS

N

∥∥∥P⋆⊥(∆(k))
∥∥∥
⋆

− 3

2
λ0 ∥P⋆(∆

a)∥⋆ −
3

2
λ0

K∑
k=1

NS

N

∥∥∥P⋆(∆
(k))
∥∥∥
⋆
+

K∑
k=1

λk

2

∥∥∥∆(k)
∥∥∥
⋆
− 2

K∑
k=1

λkhk.

We select λ0, . . . , λk such that λk

8 ≥
3
2
NS

N λ0. This choice leads to:

K∑
k=1

λk

2

∥∥∥∆(k)
∥∥∥
⋆
− 3

2
λ0

K∑
k=1

NS

N

∥∥∥P⋆(∆
(k))
∥∥∥
⋆
− 1

2
λ0

K∑
k=1

NS

N

∥∥∥P⋆⊥(∆(k))
∥∥∥
⋆

(i)

≥
K∑

k=1

3λk

8

∥∥∥∆(k)
∥∥∥
⋆
+

K∑
k=1

λk

8

(∥∥∥P⋆(∆
(k))
∥∥∥
⋆
−
∥∥∥P⋆⊥(∆(k))

∥∥∥
⋆

)
− 3

2
λ0

K∑
k=1

NS

N

∥∥∥P⋆(∆
(k))
∥∥∥
⋆
− 1

2
λ0

K∑
k=1

NS

N

∥∥∥P⋆⊥(∆(k))
∥∥∥
⋆

(ii)

≥
K∑

k=1

3λk

8

∥∥∥∆(k)
∥∥∥
⋆
−
(
λk

8
+

1

2
λ0

) K∑
k=1

NS

N

∥∥∥P⋆⊥(∆(k))
∥∥∥
⋆

≥ 0.

Here, (i) follows from the triangle inequality ∥∆(k)∥⋆ = ∥P⋆(∆
(k)) + P⋆⊥(∆(k))∥⋆ ≥ ∥P⋆(∆

(k))∥⋆ − ∥P⋆⊥(∆(k))∥⋆,
and (ii) holds due to our parameter setting λk

8 ≥
3
2
NS

N λ0 and the fact that ∥∆(k)∥⋆ ≥ ∥P⋆⊥(∆(k))∥⋆ since orthogonal
projection does not increase singular values.

Given that ̂⃗Θ is the solution to problem (D.4), it follows that 0 ≥ F(∆⃗). We can further deduce:

0 ≥ vec(∆⃗)⊤Σ̂vec(∆⃗)− 3

2
λ0 ∥P⋆(∆

a)∥⋆ +
1

2
λ0 ∥P⋆⊥(∆a)∥⋆ − 2

K∑
k=1

λkhk.

Now, we establish an upper bound for the error measured in Frobenius norm, ∥∆a∥F. Applying Lemma D.3, we obtain with
high probability:

0 ≥ (1− un)αmin ∥∆a∥22 −
3

2
λ0

√
rd3 ∥∆a∥F − (2 + vn)

K∑
k=1

λkhk
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where we use the fact that ∥P⋆⊥(∆a)∥⋆ ≥ 0. Rearranging terms, we derive:

∥∆a∥22 ≲
1

(1− un)αmin

(
λ2
0rd3 + (1 + vn)

K∑
k=1

λkhk

)
.

To complete the proof, we need to show the order of vn and prove that un = o(1) under the conditions of Theorem 4.2.
Given the assumptions in Theorem 1 and our choice of λ0, . . . , λK , we have:

un =
256βmaxλ

2
0

αminλ2
k ∧ (λ2

0/(K + 1))

rd1d3
N

≲
rd1d3
NS

= o(1),

vn =
256βmax

λ2
k ∧ (λ2

0/(K + 1))

d1
N

(
K∑

k=1

λkhk

)
≲

√
K2d1
NS

h̄.

Finally, leveraging the definition of ∆a, we have ∆(0) = ∆a −
∑K

k=1
NS

N ∆(k). This leads to:

∥∆(0)∥2F ≤ 2∥∆a∥2F + 2∥
K∑

k=1

NS

N
∆(k)∥2F

≲ ∥∆a∥2F + ∥
K∑

k=1

NS

N
∆(k)∥2⋆

≲
rd1d3
N

+ (1 + vn)h̄

√
d1
Ns

+ δ2⋆.

This completes the proof of Theorem 4.2.

D.2. Analysis of the Target-Specific Refinement Step of LoRT

Theorem 4.3 provides an upper bound of the estimation error of the target-specific refinement step of LoRT. We begin by
defining two key functions:

L̃(C) = 1

2NT

∥∥∥y(0) − X(0)(Ŵ
a
)− X(0)(C)

∥∥∥2
2

F̃(∆) = L̃ (C∗ +∆)− L̃ (C∗) + λ̃ ∥C∗ +∆∥⋆ − λ̃ ∥C∗∥⋆ .

where C∗ = W(0)
⋆ −Wa

⋆ represents the difference between the target parameter and the averaged parameter.

Let ∆C = Ĉ− C∗ and recall that ∆a = Ŵa
⋆ −Wa

⋆. We now turn to the proof of Theorem 4.3.

Proof of Theorem 4.3 Applying Hölder’s inequality and the triangle inequality, we obtain:〈
∇L̃ (C∗) ,∆C

〉
=

1

NT

〈
X∗(0)

[
y(0) − X(0)(W(0)

⋆ )− X(0)(Ŵa
⋆ + C∗ −W(0)

⋆ )
]
,∆C

〉
=

1

NT

〈
X∗(0)

[
ϵ(0) − X(0)(Ŵa

⋆ −Wa
⋆)
]
,∆C

〉
≤ 1

NT

∥∥∥X∗(0)(ϵ(0))
∥∥∥

tsp
∥∆C∥⋆ +

1

2
vec(∆C)⊤Σ̂

(0)
vec(∆C) +

1

2
vec(∆a)⊤Σ̂

(0)
vec(∆a)

where Σ̂
(0)

= 1
NT

∑NT

i=1 vec(X
(0)
i )vec(X

(0)
i )⊤.

By Lemma D.1, if NT ≳ d1, we can choose λ̃ = c
√

d1

NT
for some constant c such that 1

NT

∥∥X∗(0)(ϵ(0))
∥∥

tsp ≤
λ̃
2 with high
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probability. This leads to:

L̃
(
∆C + C∗

)
− L̃(C∗) =

〈
∇L̃ (C∗) ,∆C

〉
+ vec

(
∆C
)⊤

Σ̂
(0)
vec(∆C)

≥ − λ̃

2
∥∆C∥⋆ +

1

2
vec

(
∆C
)⊤

Σ̂
(0)
vec(∆C)− 1

2
vec(∆a)⊤Σ̂

(0)
vec(∆a).

By the optimality condition of Ĉ, we have:

0 ≥ F̃(∆C)

≥ L̃
(
∆C + C∗

)
− L̃(∆C) + λ̃

∥∥∥∆C + C∗
∥∥∥
⋆
− λ̃ ∥C∗∥⋆

≥ L̃
(
∆C + C∗

)
− L̃(∆C) + λ̃∥∆C∥⋆ − 2λ̃ ∥C∗∥⋆

≥ λ̃

2
∥∆C∥⋆ +

1

2
vec

(
∆C
)⊤

Σ̂
(0)
vec(∆C)− 1

2
vec(∆a)⊤Σ̂

(0)
vec(∆a)− 2λ̃ ∥C∗∥⋆ .

(D.7)

To proceed, we need the following auxiliary lemma:

Lemma D.4. Under Assumptions 3.2 and 3.3, if NS ≳ d1, NS > NT , and we choose λ0 ≳
√

d1

N , λk = akλ0 ≳
√

NS

N

√
d1

N

such that

λk ≥ 12λ0
NS

N
,

un =
512βmaxλ

2
0

αminλ2
k ∧ (λ2

0/(K + 1))

rd1d3
N

= o(1),

vn =
256βmax

λ2
k ∧ (λ2

0/(K + 1))

d1
N

(
K∑

k=1

λkhk

)
= O(1)

then with high probability:

∥∆a∥F ≲
√
rd3λ0 +

√√√√ K∑
k=1

λkhk

∥∆a∥⋆ ≲ rd3λ0 +
√
rd3

√√√√ K∑
k=1

λkhk +

∑K
k=1 λkhk

λ0
.

The choice of λ0 and λk depends on the event A defined as:

A :=

{
rd1d3
NS

≥ h̄

√
d1
NT

}
where h̄ := N−1NS

∑K
k=1 hk.

We now consider two cases:

Case 1: When event A holds, i.e., rd1d3/NS ≥ h̄
√
d1/NT .

In this case, we choose λ0 = c1

√
d1

N and ak = 12
√

NS

N .

Applying Lemma D.4, we obtain with high probability:

∥∆a∥F ≲

√
rd1d3
N

+

√√
d1
NS

h̄ (D.8)

∥∆a∥⋆ ≲ rd3

√
d1
N

+

√√
d1
NS

rd3h̄+

√
N

NS
h̄. (D.9)
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We further consider two sub-cases:

(i) If 1
2vec(∆

a)⊤Σ̂
(0)
vec(∆a) ≥ 2λ̃ ∥C∗∥⋆, then from Eq. (D.7):

0 ≥ λ̃

2
∥∆C∥⋆ +

1

2
vec

(
∆C
)⊤

Σ̂
(0)
vec(∆C)− vec(∆a)⊤Σ̂

(0)
vec(∆a). (D.10)

By Lemma C.6 and the condition NT ≳ d1, we have:

vec(∆a)⊤Σ̂
(0)
vec(∆a) ≤ γ0 ∥∆a∥2F + τ0

d1
NT
∥∆a∥2⋆

for some constants γ0 and τ0. Combining this with Eq. (D.10):

λ̃

2
∥∆C∥⋆ ≤ vec(∆a)⊤Σ̂

(0)
vec(∆a) ≤ γ0 ∥∆a∥2F + τ0

d1
NT
∥∆a∥2⋆

≲
rd1d3
N

+ (1 +
rd1d3
NT

)

√
d1
NS

h̄+
(rd1d3)

2

NTN
+

N

NS
h̄2 d1

NT
. (D.11)

Given the assumptions in Theorem 4.3 that rd1d3

NT
= O(1) and h̄

√
d1/NT = o(1), and noting that (N/NS)h̄

√
d1/NT ≤

(K + 1)rd1d3/NS = O(1), we conclude that λ̃
2 ∥∆

C∥⋆ = op(1).

Applying Lemma C.6 to Eq. (D.10) and choosing λ̃ = c
√

d1

NT
with c >

√
2β0, we get:

1

2
α0∥∆C∥2F ≤ γ0 ∥∆a∥2F + τ0

d1
NT
∥∆a∥2⋆ .

This leads to the bound:

∥∆C∥F ≲

√
rd1d3
N

+

√√
d1
NS

h̄+

√
N

NS

√
d1
NT

h̄.

(ii) If 1
2vec(∆

a)⊤Σ̂
(0)
vec(∆a) ≤ 2λ̃ ∥C∗∥⋆, we have:

0 ≥ λ̃

2
∥∆C∥⋆ +

1

2

(
∆C
)⊤

Σ̂
(0)

∆C − 4λ̃ ∥C∗∥⋆

implying ∥∆C∥⋆ ≤ 8∥C∗∥⋆ ≤ 8h̄.

Applying Lemma C.6 again yields:

0 ≥ λ̃

2
∥∆C∥⋆ +

1

2
α0∥∆C∥2F −

1

2
β0

d1
NT
∥∆C∥2⋆ − 4λ̃ ∥C∗∥⋆

≥ 1

2
α0∥∆C∥2F − 32β0

d1
NT
∥C∗∥2⋆ − 4λ̃ ∥C∗∥⋆ .

This leads to:

∥∆C∥F ≤

√
64β0

α0

d1
NT

h̄2 + 8
λ̃

α0
h̄ ≲

√
d1
NT

h̄+

√√
d1
NT

h̄

and
∥∆C∥F ≤ ∥∆C∥⋆ ≤ 8h̄.

Given the assumption that h̄
√

d1

NT
= o(1), we can conclude:

∥∆C∥F ≲

√√
d1
NT

h̄ ∧ h̄.
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Combining the results from both sub-cases, we have with high probability:∥∥∥Ŵa
⋆ + Ĉ−W(0)

⋆

∥∥∥
F
≤
∥∥∥∆C

∥∥∥
F
+ ∥∆a∥F

≲

√
rd1d3
N

+

√√
d1
NS

h̄+
√
K + 1

√
d1
NT

h̄+

√√
d1
NT

h̄ ∧ h̄.

Since A holds and given the condition K2rd1d3/NS = O(1), we have:

√
K + 1

√
d1
NT

h̄ ≤
√
K + 1

rd1d3
NS

≤

√
(K + 1)2rd1d3

NS

√
rd1d3
N

≲

√
rd1d3
N

.

This implies:

∥∥∥Ŵa
⋆ + Ĉ−W(0)

⋆

∥∥∥
F
≤
∥∥∥∆C

∥∥∥
F
+ ∥∆a∥F ≲

√
rd1d3
N

+

√√
d1
NS

h̄+

√√
d1
NT

h̄ ∧ h̄.

Case 2: When event Ac holds, i.e., rd1d3/NS ≤ h̄
√
d1/NT .

In this case, we choose:

λ0 = c0

√
d1
NS

, and ak =
12NS

N
.

Applying Lemma D.4 again, we have with high probability:

∥∆a∥F ≲

√
rd1d3
NS

+

√√
d1
NS

h̄ (D.12)

∥∆a∥⋆ ≲ rd3

√
d1
NS

+

√√
d1
NS

rd3h̄+ h̄. (D.13)

Plugging these new bounds into the arguments from Case 1 leads to:

∥∥∥Ŵa
⋆ + Ĉ−W(0)

⋆

∥∥∥
F
≲

√
rd1d3
NS

+

√√
d1
NS

h̄+

√
d1
NT

h̄+

√√
d1
NT

h̄ ∧ h̄.

Recall that in Theorem 4.3 we assume
√

d1/NT h̄ = o(1) and d1/NT = O(1). Therefore, in the above bound, the third
term has a smaller order compared to the fourth term. Hence, we have:

∥∥∥Ŵa
⋆ + Ĉ−W(0)

⋆

∥∥∥
F
≲

√
rd1d3
NS

+

√√
d1
NS

h̄+

√√
d1
NT

h̄ ∧ h̄.

As we assume Ac holds in this case, we have rd1d3/NS ≤ h̄
√
d1/NT , which further implies:

∥∥∥Ŵa
⋆ + Ĉ−W(0)

⋆

∥∥∥
F
≲

√√
d1
NT

h̄.

Combining the results from both cases, we have with high probability:

∥∥∥Ŵa
⋆ + Ĉ−W(0)

⋆

∥∥∥
F
≲

√
rd1d3
N

+

√√
d1
NT

h̄.

This completes the proof of Theorem 4.3.
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D.3. Proof of Supporting Lemmas in the Analysis of LoRT

Proof of Lemma D.1 By the definition of the loss function, we have:

−∇L
(
Θ⃗
)
=

1

N

(
K∑

k=0

X∗(k)(ϵ(k)),X∗(1)(ϵ(1)), . . . ,X∗(K)(ϵ(K))

)
∈ R(K+1)×d1×d2×d3 .

Applying Hölder’s inequality, we obtain:

|⟨∇L(Θ⃗), ∆⃗⟩| ≤ 1

N

K∑
k=1

|
〈
X∗(k)(ϵ(k)),∆(k)

〉
|+ 1

N

∣∣∣∣∣
〈

K∑
k=0

X∗(k)(ϵ(k)),∆(0)

〉∣∣∣∣∣
≤ 1

N

K∑
k=1

∥X∗(k)(ϵ(k))∥tsp∥∆(k)∥⋆ +
1

N
∥

K∑
k=0

X∗(k)(ϵ(k))∥tsp∥∆(0)∥⋆.

We frist focus on bounding ∥X∗(k)(ϵ(k))∥tsp. According to the definition of tensor spectral norm

∥X∗(k)(ϵ(k))∥tsp = ∥
NS∑
i=1

ϵ
(k)
i X

(k)
i ∥tsp

= max
ℓ∈[d3]

∥∥∥∥∥M(

NS∑
i=1

ϵ
(k)
i X

(k)
i ):,:,ℓ

∥∥∥∥∥
sp

= max
ℓ∈[d3]

∥∥∥∥∥
NS∑
i=1

ϵ
(k)
i ·M(X

(k)
i ):,:,ℓ

∥∥∥∥∥
sp

.

Let Z(i,ℓ) = M(X
(k)
i ):,:,ℓ for all ℓ ∈ [d3]. By the definition of M -transform:

(Z(i,ℓ))j1j2 =

d3∑
j3=1

(X
(k)
i )j1j2j3Mℓj3 , ∀(j1, j2) ∈ [d1]× [d2].

According to Assumption 3.2, (X(k)
i )j1j2j3 are i.i.d. drawn from N (0, σ2

k), so (Z(i,ℓ))j1j2 ∼ N (0, σ2
k).

Now, we need to bound: ∥∥∥∥∥
NS∑
i=1

ϵ
(k)
i · Z(i,ℓ)

∥∥∥∥∥
sp

.

Let ϵ(k) = (ϵ
(k)
1 , · · · , ϵ(k)NS

)⊤ ∈ RNS . Define event E as {∥ϵ(k)∥2 < 2c2ϵNS}. From Example 2.11 in Wainwright (2019):

P[∥ϵ(k)∥2 ≥ 2c2ϵNS ] ≤ 2 exp(−NS/8).

Let A =
∑Nk

i=1 ϵ
(k)
i · Z(i,ℓ). Let {p1, . . . ,pI} and {q1, . . . ,qJ} be 1/4-covers in Euclidean norm of Sd1−1 and Sd2−1

respectively, with I ≤ 9d1 and J ≤ 9d2 (Wainwright, 2019).

For any q ∈ Sd2−1, we can write qb + z for some vector z with ℓ2 distance at most 1/4 according to the definition of
1/4-cover:

∥A∥sp ≤ sup
q∈Sd2−1

∥Aq∥2 ≤ sup
q∈Sd2−1

∥A(qb + z)∥2

≤ sup
b∈[J]

∥Aqb∥2 + ∥A∥sp ∥z∥2 ≤ sup
b∈[J]

∥Aqb∥2 +
1

4
∥A∥sp .

35



Low-Rank Tensor Transitions (LoRT)

Similarly for Sd1−1:

∥Aqb∥2 ≤ max
a∈[I]

∥p⊤
a Aqb∥2 +

1

4
∥Aqb∥2.

Thus, we have

∥A∥sp ≤ 2max
b∈[J]

max
a∈[I]

ϱa,b

where ϱa,b = p⊤
a Aqb. Then, for fixed a, b, i:

Var(p⊤
a ϵ

(k)
i Z(i,l)qb) = E[(p⊤

a ϵ
(k)
i Z(i,l)qb)

2]− E[p⊤
a ϵ

(k)
i Z(i,l)qb]

2

= E[(p⊤
a Z(i,l)qb)

2]E[(ϵ(k)i )2] ≤ c2xE[(ϵ
(k)
i )2].

Conditioning on event E, we obtain:

Var(ϱab|E) =
Nk∑
i=1

Var(p⊤
a ϵ

(k)
i Z(i,l)qb|E)

≤
Nk∑
i=1

c2xE[(ϵ
(k)
i )2|E]

≤ c2xE

[
Nk∑
i=1

(ϵ
(k)
i )2|E

]
≤ 2c2xc

2
ϵNS .

So ϱa,b is zero-mean Gaussian with variance at most 2c2xc
2
ϵNS conditioning on E:

P
[
∥A∥sp ≥ t

∣∣∣E] ≤ ∑
b∈[J]

∑
a∈[I]

P
[
|ϱab| ≥

t

2

∣∣∣E]

≤ 2IJ exp(− t2

16c2xc
2
ϵNS

)

≤ 2 exp

(
− t2

16c2xc
2
ϵNS

− (d1 + d2) ln 9

)
.

Recall that we assume d1 ≥ d2. Setting t = ccxcϵ
√
Nkd1 with sufficiently large c, we have

∥∥∥∑Nk

i=1 ϵ
(k)
i · Z(i,ℓ)

∥∥∥
sp

=

∥A∥sp ≤ ccxcϵ
√
d1NS with probability at least 1− c1 exp(−c2d1). Taking a union bound with ℓ ∈ [d3]:

∥X∗(k)(ϵ(k))∥tsp = max
ℓ∈[d3]

∥∥∥∥∥
Nk∑
i=1

ϵ
(k)
i · Z(i,ℓ)

∥∥∥∥∥
sp

≤ c
√

d1Nk

with probability at least 1− c1 exp(−c2Nk)− c3 exp(−c4d1 + log d3), where c = c′cxcϵ is a universal constant.

Similarly, we can obtain the following bound, w.h.p.:

∥
K∑

k=0

X∗(k)(ϵ(k))∥tsp = ∥
K∑

k=0

Nk∑
i=1

ϵ
(k)
i X

(k)
i ∥tsp ≲

√
d1N.

Therefore, choosing akλ0 = c0

√
NS

N

√
d1

N and λ0 = c0

√
d1

N for sufficiently large c0 gives the desired result.
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Proof of Lemma D.3 This lemma establishes a key inequality that is crucial for our convergence analysis. We begin by
expanding the difference in the loss function:

L
(
Θ⃗⋆ + ∆⃗

)
− L

(
Θ⃗⋆

)
−
〈
∇L

(
Θ⃗⋆

)
, ∆⃗
〉
= vec(∆⃗)⊤∇2L

(
Θ⃗⋆ + γ∆⃗

)
vec(∆⃗) (γ ∈ (0, 1)).

This expansion uses the mean value theorem, with γ representing some point between 0 and 1.

Next, we decompose the Hessian term:

vec(∆⃗)⊤∇2L
(
Θ⃗⋆ + γ∆⃗

)
vec(∆⃗) =

K∑
k=1

NS

N
vec(∆(k))⊤Σ̂

(k)
vec(∆(k)) + 2

K∑
k=1

NS

N
vec(∆(k))⊤Σ̂

(k)
vec(∆(0))

+ vec
(
∆(0)

)⊤( K∑
k=1

NS

N
Σ̂

(k)
+

NT

N
Σ̂

(0)

)
vec(∆(0)).

This decomposition separates the contributions from source tasks and the target task. We can simplify the RHS as:

K∑
k=1

NS

N
vec

(
∆(k) +∆(0)

)⊤
Σ̂

(k)
vec

(
∆(k) +∆(0)

)
+

NT

N
vec

(
∆(0)

)⊤
Σ̂

(0)
vec(∆(0)).

Now, we apply the Restricted Strong Convexity (RSC) condition from Lemma C.6:

K∑
k=1

NS

N
vec

(
∆(k) +∆(0)

)⊤
Σ̂

(k)
vec

(
∆(k) +∆(0)

)
+

NT

N
vec

(
∆(0)

)⊤
Σ̂

(0)
vec(∆(0))

≥
K∑

k=1

NSαk

N

∥∥∥∆(k) +∆(0)
∥∥∥2
2
+

NTα0

N

∥∥∥∆(0)
∥∥∥2
2
−R′

(
∆⃗
)
.

Here, αk are the RSC constants, andR′ (∆) is a remainder term defined as:

R′
(
∆⃗
)
:=

K∑
k=1

NSβk

N

d1
NS

∥∥∥∆(k) +∆(0)
∥∥∥2
⋆
+

NTβ0

N

d1
NT

∥∥∥∆(0)
∥∥∥2
⋆
.

We can further lower bound this expression using αmin := min0≤k≤K αk, which leads to:

vec(∆⃗)⊤∇2L
(
Θ⃗⋆ + γ∆⃗

)
vec(∆⃗) ≥ αmin

∥∥∥∥∥
K∑

k=1

NS

N
∆(k) +∆(0)

∥∥∥∥∥
2

2

−R′ (∆)

= αmin ∥∆a∥22 −R
′ (∆) .

The key to completing the proof is to boundR′
(
∆⃗
)

. We start by applying the triangle inequality:

R′
(
∆⃗
)
≤

K∑
k=1

2βkd1
N

∥∥∥∆(k)
∥∥∥2
⋆
+

K∑
k=0

2βkd1
N

∥∥∥∆(0)
∥∥∥2
⋆
.

Next, we use the restricted set of directions from (D.5):
K∑

k=1

λk

∥∥∥∆(k)
∥∥∥
⋆
+ λ0

∥∥∥∆(0)
∥∥∥
⋆
≤ 8λ0 ∥P⋆(∆

a)∥⋆ + 8

K∑
k=1

λkhk.

This allows us to boundR′ (∆) in terms of ∥P⋆(∆
a)∥⋆ and

∑K
k=1 λkhk. After some algebraic manipulation, we arrive at

our final bound:

L
(
Θ⃗⋆ + ∆⃗

)
− L

(
Θ⃗⋆

)
−
〈
∇L

(
Θ⃗⋆

)
, ∆⃗
〉
≥ (1− un)αmin ∥∆a∥2F − vn

K∑
k=1

λkhk
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where

un =
512βmaxλ

2
0

αminλ2
k ∧ (λ2

0/(K + 1))

rd1d3
N

, and vn =
256βmax

λ2
k ∧ (λ2

0/(K + 1))

d1
N

(
K∑

k=1

λkhk

)
.

This inequality holds with high probability, completing our proof. The terms un and vn capture the impact of problem
parameters on our bound, with un related to the dimension and rank of our problem, and vn related to the heterogeneity
across tasks.

Proof of Lemma D.4 This lemma establishes an upper bound on the nuclear norm of the estimation error. First, note that
the bound in Frobenius norm follows directly from the proof of Theorem 4.2. We won’t repeat that proof here.

For the nuclear norm bound, we consider two cases based on the relationship between 1
4λ0 ∥∆a∥⋆ and 2

∑K
k=1 λkhk.

Case 1: 1
4λ0 ∥∆a∥⋆ > 2

∑K
k=1 λkhk.

In this case, we have:

0 ≥∆⊤Σ̂∆− 7

4
λ0 ∥∆a∥⋆ + 2λ0 ∥∆a

Sc∥⋆ ≥ −
7

4
λ0 ∥∆a∥⋆ + 2λ0 ∥∆a

Sc∥⋆ .

This implies:
1

4
∥P⋆⊥(∆a)∥⋆ ≤

7

4
∥P⋆(∆

a)∥⋆.

Using the relationship between tubal nuclear norm and Frobenius norm for tensors, we get:

∥∆a∥⋆ ≤ 8∥P⋆(∆
a)∥⋆ ≤ 8

√
2rd3∥P⋆(∆

a)∥F ≤ 16
√

rd3∥∆a∥F.

Therefore, in this case, we have w.h.p.:

∥∆a∥⋆ ≲ rd3λ0 +
√
rd3

√√√√ K∑
k=1

λkhk.

Case 2: 1
4λ0 ∥∆a∥⋆ ≤ 2

∑K
k=1 λkhk.

In this case, we directly obtain:

∥∆a∥⋆ ≤
8
∑K

k=1 λkhk

λ0
.

Combining both cases, we conclude that w.h.p.:

∥∆a∥⋆ ≲ rd3λ0 +
√
rd3

√√√√ K∑
k=1

λkhk +

∑K
k=1 λkhk

λ0
. (D.14)

This bound captures the impact of the regularization parameters λk, the task heterogeneity hk, and the problem dimensions
on the nuclear norm of the estimation error.
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E. Theoretical Analysis of D-LoRT
In this section, we delve into the theoretical analysis of our Distributed Low-Rank Tensor Transitions (D-LoRT) method.
We begin with a key theorem that establishes the convergence rate of the one-step D-LoRT estimator.
Theorem E.1 (One-step D-LoRT). Let Assumptions 3.2 and 3.3 hold. Further, assume:

• NS ≫ Kr2d1d
2
3 (sufficiently large source sample size).

• NS ≳ (h̄2 ∨K2)rd1d3 (sample size dominates task heterogeneity).

• hk ≍ h̄ = O(1) (bounded task differences).

Then, if we choose λ̃k = c1
√
d1/N and use the debiased estimator in Eq. (E.2), with high probability:

∥Ŵ
a
d −W(0)

⋆ ∥2F ≲
rd1d3
N

+ h̄

√
d1
NS

+ δ2⋆.

This theorem provides an upper bound on the estimation error of D-LoRT. The bound consists of three terms: (a) A standard
low-rank estimation error term, (b) A term reflecting the impact of task heterogeneity, and (c) A term capturing the alignment
of source tasks.

Now, let’s examine how we construct our distributed local parameters.

The Choice of Distributed Local Parameters W̃
(k)

A crucial step in D-LoRT is the construction of local estimators. We
begin with an intuitive approach:

Ŵ
(k)

TNN ∈ argmin
W

{
1

2NS

∥∥∥y(k) − X(k)(W)
∥∥∥2
2
+ λ̃k∥W∥⋆

}
. (E.1)

This estimator, based on the tubal nuclear norm (TNN), provides a good starting point. Its properties are characterized by
the following lemma:

Lemma E.2. Under Assumptions 3.2 and 3.3, and rd1d3

NS
= o(1), if we construct {Ŵ⋆

(k)

TNN}k=1,...,K through Eq. (E.2), with

parameters λ̃k = c0

√
d1

NS
for some universal constant c0, then we have that for k = 1, . . . ,K, w.h.p.∥∥∥Ŵ⋆

(k)

TNN −W(k)
⋆

∥∥∥
⋆
≤ rd3

√
d1
NS

+ hk.

However, the TNN estimator is biased. Simply aggregating these local estimators would reduce variance but not address the
bias. To overcome this limitation, we introduce a debiasing step inspired by He et al. (2024a):

W̃
(k)

= Ŵ
(k)

TNN +
1

NS
Θ̂

(k)
X∗(k)

(
y(k) − X(k)Ŵ⋆

(k)

TNN

)
. (E.2)

Here, Θ̂
(k)
∈ Rd1d2d3×d1d2d3 approximates

(
Σ(k)

)−1

, where Σ(k) :=
∑Nk

i=1 vec(X
(k)
i )vec(X

(k)
i )⊤. For this approxima-

tion to be effective, Θ̂
(k)

must satisfy two key conditions:

• Condition 1: ∥Θ̂
(k)
∥tsp→tsp ≤ C (Bounded operator norm).

• Condition 2: ∥Θ̂
(k)

Σ̂
(k)
− I∥⋆→tsp ≤

√
d1/NS (Close approximation of inverse).

To gain insight into this debiasing process, we can rewrite Eq. (E.2) as:

W̃
(k)
−W(k)

⋆ =
1

NS
Θ̂

(k)
X∗(k)(ϵ(k))︸ ︷︷ ︸

variance term

−
(
Θ̂

(k)
Σ̂

(k)
− I
)(

Ŵ⋆
(k)

TNN −W(k)
⋆

)
︸ ︷︷ ︸

bias term

. (E.3)

This decomposition allows us to analyze the variance and bias separately. Let’s examine each term:
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1. Variance term: Using Condition 1, we can bound this term as follows:

∥ 1

NS
Θ̂

(k)
X(k)(E(k))∥tsp ≤

1

NS
∥Θ̂

(k)
∥tsp→tsp∥X(k)(E(k))∥tsp ≲

√
d1
NS

.

2. Bias term: Applying Hölder’s inequality and Condition 2, we get:∥∥∥B̃(k)
∥∥∥

tsp
=
∥∥∥(Θ̂(k)

Σ̂
(k)
− I
)(

Ŵ⋆
(k)

TNN −W(k)
⋆

)∥∥∥
tsp

≤
∥∥∥Θ̂(k)

Σ̂
(k)
− I
∥∥∥
⋆→tsp

∥∥∥Ŵ⋆
(k)

TNN −W(k)
⋆

∥∥∥
⋆
≲

√
d1
NS

∥∥∥Ŵ⋆
(k)

TNN −W(k)
⋆

∥∥∥
⋆
.

Combining these results with Lemma E.2, we can conclude that with high probability:∥∥∥B̃(k)
∥∥∥

tsp
≲

rd1d3
NS

+ hk

√
d1
NS

.

This bound demonstrates that our debiasing procedure effectively reduces both the variance and the bias of the local
estimators, setting the stage for efficient knowledge transfer in the D-LoRT framework.

Proof of Theorem E.1 To prove Theorem E.1, we start by defining a modified loss function that incorporates both the
target and source task information:

L̃(Θ⃗) =
1

2N
∥y(0) − X(0)(Θ(0))∥22 +

1

2N

K∑
k=1

Nk∥W̃
(k)
−Θ(k) −Θ(0)∥2F + λ0R(Θ⃗).

Here, Θ(0) represents the target task parameter, Θ(k) are the source task parameters, andR(Θ⃗) is a regularization term.

Next, we need to bound
〈
∇L̃

(
Θ⃗
)
, ∆⃗
〉

. We introduce two auxiliary terms:

δk =
rd1d3
N

+
NS

N

√
d1
NS

hk

δ0 =
Krd1d3

N
+

√
d1
NS

h̄.

These terms help us capture the effects of task heterogeneity and sample sizes. We can now state a key lemma:

Lemma E.3 (Concentration of Gradient). Under Assumptions 3.2 and 3.3, if NS ≳ d1, and we choose

λk = ck

(√
NS

N

d1
N

+ δk

)

λ0 = c0

(√
d1
N

+ δ0

)

for some appropriate constants c0, . . . , cK , then for any ∆⃗,w.h.p.:

∣∣∣〈∇L̃(Θ⃗) , ∆⃗〉∣∣∣ ≤ K∑
k=1

λk

2

∥∥∥∆(k)
∥∥∥
⋆
+

λ0

2

∥∥∥∆(0)
∥∥∥
⋆
.

The key difference between Lemma E.3 and the earlier Lemma D.1 is in the choice of {λk}Kk=0. This new choice allows us
to leverage Lemma D.4 under the following additional conditions:

1. NS ≫ Krd1d3 (sample size dominates task complexity),
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2. NS ≳ K2d1 (sample size dominates number of tasks squared),

3. hk ≍ h̄ for any 1 ≤ k ≤ K (task heterogeneity is of the same order).

Applying Lemma D.4, we obtain with high probability:

∥Ŵa
⋆C −Wa

⋆∥F ≲
√
rd3λ0 +

√√√√ K∑
k=1

λkhk

≲
√
rd3

(√
d1
N

+ δ0

)
+

√√√√ K∑
k=1

(
NS

N

√
d1
NS

+ δk

)
hk.

Assuming hk ≍ h̄ = O(1), we can further simplify our bound:

rd3δ
2
0 =

K2(rd3)
3d21

N2
+

rd1d3
NS

h̄2 ≲
rd1d3
N

+

√
d1
NS

h̄ (E.4)

K∑
k=1

δkhk =
rd1d3
NS

h̄+

√
d1
NS

K∑
k=1

NS

N
h2
k ≲

√
d1
NS

h̄. (E.5)

These simplifications rely on the condition NS ≫ K(rd3)
2d1, which ensures that the sample size is sufficiently large

relative to the problem’s complexity.

Combining all these results, we arrive at the final bound stated in Theorem E.1, completing our proof.

E.1. Analysis of Step 2 of D-LoRT

In this section, we analyze the second step of our Distributed Low-Rank Tensor Transitions (D-LoRT) method. This step
refines the initial estimate to achieve better performance. We present a more detailed version of Theorem 4.5, which provides
tighter bounds on the estimation error.

Theorem E.4 (Refined D-LoRT). Under the conditions of Theorem 4.4, and assuming:

• NT ≳ rd1d3 (target sample size sufficiently large),

• h̄
√
d1/NT = o(1) (task heterogeneity not too large).

If we choose the parameters as follows:

λk = c0(12 ∨
h̄

hk
)

(√
NS

N

d1
N

+ δk

)
,

λ0 = c0

(√
d1
N

IA +

√
d1
NS

IAc + δ0

)
where

δk =
rd1d3
N

+
NS

N

√
d1
NS

hk,

δ0 =
Krd1d3

N
+

K∑
k=1

NS

N

√
d1
NS

hk

then with high probability:

∥Ŵ
(0)

dlort −W(0)
⋆ ∥2F ≲

rd1d3
N

+ h̄

√
d1
NT

.
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Proof Sketch: We follow a similar line of argument as in the proof of Theorem 4.3. The key steps are as follows:

1) Verify conditions: We first verify that if NS ≫ Krd1d3, NS ≳ K2d1, and hk ≍ h̄ for any 1 ≤ k ≤ K, our choice of
parameters satisfies the conditions in Lemma D.4.

2) Apply Lemma D.4: This allows us to bound the estimation error in both Frobenius and nuclear norms:

∥∆a
d∥F ≲

√
rd3λ0 +

√√√√ K∑
k=1

λkhk

≲

√
rd1d3
N

IA +

√
rd1d3
NS

IAc +

√√
d3
NS

h̄+
√
rd3δ0 +

√√√√ K∑
k=1

δkhk (E.6)

and

∥∆a
d∥⋆ ≲ rd3λ0 +

√
rd3

√√√√ K∑
k=1

λkhk +

∑K
k=1 λk

λ0
h̄

≲

√
r2d23d1
N

IA +

√
rd3

2d1
NS

IAc +

√√
d1
NS

rd3h̄+ rd3δ0 +

√√√√ K∑
k=1

rd3δkhk +
√
Kh̄IA + h̄IAc . (E.7)

Here, IA is the indicator function for event A, which represents the case where source task information is beneficial.

3) Simplify bounds: To complete the proof, we need to show that the terms involving δ0 and δk in bounds (E.6) and (E.7)
align with other terms. We use the results from (E.4) and (E.5) to show:

√
rd3δ0 +

√√√√ K∑
k=1

δkhk ≲

√
rd1d3
N

+

√√
d1
NS

h̄.

4) Conclude: With these simplified bounds, we can follow the same steps as in the proof of Theorem 4.3 to arrive at our
final result.

Interpretation: The theorem shows that our two-step D-LoRT method achieves an estimation error that scales with two

main terms: 1) rd1d3

N : This represents the standard error for low-rank tensor estimation. 2) h̄
√

d1

NT
: This term captures the

impact of task heterogeneity and the target sample size.

The bound demonstrates that D-LoRT effectively leverages information from source tasks while being robust to task
heterogeneity, achieving performance comparable to centralized methods under certain conditions.

E.2. Proof of Lemmas in the Analysis of D-LoRT

Proof of Lemma E.3 We aim to bound the inner product
∣∣∣〈∇L̃(Θ⃗) ,∆〉∣∣∣. This bound is crucial for establishing the

convergence properties of our D-LoRT algorithm.

First, we need to understand the structure of the noise in our model. For each source task k = 1, . . . ,K, the noise term is
given by:

ϵ̃(k) =
√
NS

(
Θ̂

(k)
X(k)(E(k))

NS
+ B̃

(k)

)
.

For the target task (k = 0), the noise is simply ϵ(0), which is the observation noise for the target model.
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Now, we can bound the inner product using Hölder’s inequality:∣∣∣〈∇L(Θ⃗) , ∆⃗〉∣∣∣ = ∣∣∣∣∣
K∑

k=1

〈√
NS

N
ϵ̃(k),∆(k)

〉
+

〈
K∑

k=1

√
NS

N
ϵ̃(k) +

1

N
X(0)(ϵ(0)),∆(0)

〉∣∣∣∣∣
≤

K∑
k=1

∥∥∥∥√NS

N
ϵ̃(k)

∥∥∥∥
tsp

∥∥∥∆(k)
∥∥∥
⋆
+

∥∥∥∥∥
K∑

k=1

√
NS

N
ϵ̃(k) +

1

N
X(0)(ϵ(0))

∥∥∥∥∥
tsp

∥∥∥∆(0)
∥∥∥
⋆
.

Substituting the expression for ϵ̃(k), we get:∣∣∣〈∇L(Θ⃗) , ∆⃗〉∣∣∣ ≤ K∑
k=1

∥∥∥∥ 1

N
Θ̂

(k)
X(k)(E(k)) +

NS

N
B̃

(k)
∥∥∥∥

tsp

∥∥∥∆(k)
∥∥∥
⋆

+

∥∥∥∥∥ 1

N

(
K∑

k=1

Θ̂
(k)

X(k)(E(k)) + X(0)(ϵ(0))

)
+

K∑
k=1

NS

N
B̃

(k)

∥∥∥∥∥
tsp

∥∥∥∆(0)
∥∥∥
⋆
.

Now we proceed by choosing λk for source tasks. From our previous analysis, we know that with high probability:

1

NS

∥∥∥Θ̂(k)
X(k)(E(k))

∥∥∥
tsp

≲

√
d1
NS

and
∥∥∥B̃(k)

∥∥∥
tsp

≲
rd1d3
NS

+ hk

√
d1
NS

.

To ensure that λk is large enough to bound the source task terms, we need:

λk ≥
∥∥∥∥ 1

N
Θ̂

(k)
X(k)(E(k)) +

NS

N
B̃

(k)
∥∥∥∥

tsp
.

A sufficient choice is:

λk = ck

(√
NS

N

d1
N

+
rd1d3
N

+
NS

N

√
d1
NS

hk

)
for some sufficiently large constant ck.

Then we choose λ0 for the target task. For the target task, we need to bound the combined term. Using the triangle inequality:∥∥∥∥∥ 1

N

(
K∑

k=1

Θ̂
(k)

X(k)(E(k)) + X(0)(ϵ(0))

)
+

K∑
k=1

NS

N
B̃

(k)

∥∥∥∥∥
tsp

≲
1

N

∥∥∥∥∥
K∑

k=1

Θ̂
(k)

X(k)(E(k))

∥∥∥∥∥
tsp

+
1

N

∥∥∥X(0)(ϵ(0))
∥∥∥

tsp
+

K∑
k=1

NS

N

∥∥∥B̃(k)
∥∥∥

tsp

≲

√
d1
N

+
Krd1d3

N
+

K∑
k=1

NS

N

√
d1
NS

hk.

Therefore, a sufficient choice for λ0 is:

λ0 = c0

(√
d1
N

+
Krd1d3

N
+

K∑
k=1

NS

N

√
d1
NS

hk

)
for some constant c0.

With these choices of λk and λ0, we have established that w.h.p.:∣∣∣〈∇L(Θ⃗) , ∆⃗〉∣∣∣ ≤ K∑
k=1

λk

2

∥∥∥∆(k)
∥∥∥
⋆
+

λ0

2

∥∥∥∆(0)
∥∥∥
⋆
.

This bound is crucial for the convergence analysis of our D-LoRT algorithm, as it allows us to control the behavior of the
gradient of our loss function.
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F. Algorithm Design and Comparison for LoRT and D-LoRT
This section presents the algorithmic formulation and implementation details of both LoRT and D-LoRT, with a focus on their
respective proximal gradient descent (PGD) procedures. We further provide a comparative analysis of their computational
complexity and communication costs, highlighting the trade-offs between centralized and decentralized design under the
low-tubal-rank tensor regression framework.

F.1. Optimization Formulation and PGD Implementation

To solve the proposed low-rank transferable tensor regression model, we adopt a two-step optimization strategy grounded in
PGD. This subsection introduces the formal optimization objective and details the corresponding algorithmic procedures.
Specifically, we first formulate the joint low-rank estimation problem across multiple tasks with TNN regularization, and
then present the PGD implementation used in Step 1 of LoRT. For Step 2 and task-only variants, we similarly derive
problem-specific PGD routines adapted to the single-task setting. These implementations enable efficient and scalable
optimization while preserving the low-rank structure essential to the transfer learning mechanism.

Optimization Formulation and PGD Implementation for LoRT Step 1 We consider the joint low-rank estimation step
in LoRT under the following optimization problem:

min
{Θ(k)}K

k=0

1

2N

K∑
k=0

∥∥∥y(k) − X(k)(Θ(0) +Θ(k))
∥∥∥2
2
+ λ0

K∑
k=0

ak∥Θ(k)∥⋆, (F.1)

where:

• Θ(0) := W(0) is the target model parameter,

• Θ(k) := W(k) −W(0) for k = 1, . . . ,K represents the model discrepancy between source task k and the target,

• y(k) denotes the observations for task k (see Eq. (C.3)),

• X(k)(·) is the design operator for task k (see Eq. (C.3)),

• ∥ · ∥⋆ denotes the TNN (Definition 2.3),

• ak ∈ R+ is the regularization weight assigned to task k (with a0 = 1 for the target),

• N = NT +KNS is the total number of training samples.

Proximal Gradient Descent Strategy. Let Θ(k)
t denote the current iterate for task k. We define the proximal update rule

based on the gradient of the loss function and apply soft-thresholding with respect to the tubal nuclear norm:

1. Compute the gradient of the loss function with respect to each Θ(k):

∇Θ(k)L =


1
N

∑K
j=0 X

∗(j)
(
X(j)(Θ(0) +Θ(j))− y(j)

)
, k = 0

1
NX∗(k)

(
X(k)(Θ(0) +Θ(k))− y(k)

)
, k = 1, . . . ,K

(F.2)

2. Take a gradient descent step for each Θ(k) by Z(k) = Θ
(k)
t − 1

γ∇Θ(k)L.

3. Apply proximal operator
Θ

(k)
t+1 = proxλ0ak

γ ∥·∥⋆
(Z(k)), (F.3)

where proxτ∥·∥⋆
(·) denotes the proximity operator of the tubal nuclear norm (TNN) with threshold τ = λ0ak

γ . Following
the T-SVT scheme in Lu et al. (2019b), this operator can be efficiently computed as follows:

(a) Apply a linear invertible transform M (e.g., DCT) along the third mode of Z(k) to obtain Z̄
(k)

= M(Z(k));
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(b) For each frontal slice Z̄
(k)
i of Z̄(k), compute the SVD: Z̄(k)

i = UiSiV
⊤
i ;

(c) Apply soft-thresholding to singular values: Sτ
i = diag((σi − τ)+), where (·)+ = max(·, 0);

(d) Reconstruct each slice Θ̄
(k)
i = UiS

τ
i V

⊤
i and form the tensor Θ̄(k);

(e) Apply the inverse transform: Θ(k)
t+1 = M−1(Θ̄

(k)
).

This procedure corresponds to the Tensor Singular Value Thresholding (T-SVT) operator, which is the proximal
operator associated with the TNN. It promotes low-tubal-rank structure by shrinking singular values in the transformed
domain slice-wise.

Algorithm 1 summarizes the above three steps.

Algorithm 1 PGD for Joint Low-Rank Estimation (LoRT Step 1)

Input: Responses {y(k)}Kk=0, design tensors {X(k)
i }, regularization weights {ak}, step size γ, max iterations T

Output: Estimated tensors {Θ(k)
T }Kk=0

1: Initialize Θ
(k)
0 ← 0 for all k = 0, . . . ,K

2: for t = 0 to T − 1 do
3: for k = 0 to K do
4: Compute gradient∇Θ(k)L with current {Θ(k)

t }
5: Z(k) ← Θ

(k)
t − 1

γ∇Θ(k)L
6: Θ

(k)
t+1 ← proxλ0ak

γ ∥·∥⋆
(Z(k))

7: end for
8: end for

Target-Specific Refinement (LoRT Step 2). Given an initial estimate Ŵa
⋆ from LoRT Step 1, we refine the target

parameter using target-only data via the following optimization:

Ĉ ∈ argmin
C∈Rd1×d2×d3

1

2NT

NT∑
i=1

(
y
(0)
i − ⟨X

(0)
i ,Ŵa

⋆ + C⟩
)2

+ λ̃∥C∥⋆. (F.4)

The final refined parameter is given by Ŵa
⋆+ Ĉ. This optimization is solved using PGD with TNN regularization (Algorithm

2).

Algorithm 2 PGD for Target-Specific Refinement (LoRT Step 2)

Input: Target responses y(0), design tensors {X(0)
i }

NT
i=1, initial estimate Ŵa

⋆, step size γ, regularization λ̃, max iterations T
Output: Refined target tensor ŴStep2

1: Initialize: C0 ← 0
2: for t = 0 to T − 1 do
3: Compute gradient: ∇CL = − 1

NT

∑NT

i=1

(
y
(0)
i − ⟨X

(0)
i ,Ŵa

⋆ + Ct⟩
)
X

(0)
i

4: Gradient descent step: Z← Ct − 1
γ∇CL

5: Proximal update: Ct+1 ← prox λ̃
γ ∥·∥⋆

(Z)

6: end for
7: Return: ŴStep2 ← Ŵa

⋆ + CT

Task-Only Tensor Regression. We consider solving the following convex optimization problem using only single-task
data, either for the target-only refinement step or for each local source task update in D-LoRT. While our theoretical analysis
employs a debiased estimator (cf. Eq. (E.2)) to facilitate convergence guarantees, the actual optimization implemented in
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practice uses the standard TNN regularization:

Ŵ ∈ argmin
W∈Rd1×d2×d3

1

2Nk

Nk∑
i=1

(
y
(k)
i − ⟨X(k)

i ,W⟩
)2

+ λ∥W∥⋆. (F.5)

The algorithmic steps are provided in Algorithm 3.

Algorithm 3 PGD for Task-Only Tensor Regression

Input: Task-specific responses y(k), tensors {X(k)
i }

Nk
i=1, step size γ, regularization λ, max iterations T

Output: Estimated target tensor Ŵ
1: Initialize: W0 ← 0
2: for t = 0 to T − 1 do
3: Compute gradient: ∇WL = − 1

Nk

∑NT

i=1

(
y
(k)
i − ⟨X(k)

i ,Wt⟩
)
X

(k)
i

4: Gradient descent step: Z←Wt − 1
γ∇WL

5: Proximal update: Wt+1 ← proxλ
γ ∥·∥⋆

(Z)

6: end for
7: Return: Ŵ←WT

F.2. Algorithmic and Communication Comparison between LoRT and D-LoRT

In this subsection, we revisit the distinction between the proposed LoRT and its distributed variant D-LoRT, emphasizing
that both frameworks can operate in distributed environments where multiple source nodes (or clients) contribute data or
models. The key difference lies in what is communicated across nodes: LoRT requires the transfer of raw training data to a
central optimizer, while D-LoRT limits communication to model-level summaries. This leads to important implications for
scalability, privacy, and deployment feasibility.

Algorithmic Design. We begin by comparing how LoRT and D-LoRT structure their learning pipelines under the
assumption that source nodes are distributed and cannot share gradients or samples interactively during training.

LoRT aggregates full training data from all nodes—either by uploading raw tensor samples to a central server or via a
shared memory system—and performs a joint low-rank optimization over all source and target tasks. In contrast, D-LoRT
keeps raw data strictly local: each node performs local regression with tubal nuclear norm regularization, and transmits only
the resulting model (optionally debiased) to a coordinating node. This decoupled strategy simplifies communication and
protects sensitive data. Table 9 summarizes this design contrast:

Table 9: Algorithm Structure Comparison

Module LoRT (Data-sharing) D-LoRT (Model-sharing)

Local Training No—data sent to a central optimizer Yes—local regression with TNN regu-
larization

What Is Shared Raw tensors
{
(X

(k)
i , y

(k)
i )
}

Local models Ŵ
(k)

only

Fusion Strategy Global joint optimization Model aggregation with optional debi-
asing

Target Refinement Centralized update with full gradient ac-
cess

Same refinement, but initialized from
aggregated models

Algorithmic Complexity. We now analyze the algorithmic complexity of LoRT and D-LoRT. First, the TNN proximal
operator in Eq. (F.3) plays a central role in both LoRT and D-LoRT via iterative proximal gradient descent (PGD). Its
computational complexity arises from two main operations:
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• Transform Domain Conversion: The tensor is first transformed along the third mode using either DFT or the DCT,
typically applied via a fast transform with complexity O(d1d2 log d3).

• Frontal Slice-wise SVDs: After transformation, the tensor is decomposed into d3 frontal slices, each requiring a matrix
SVD. The cost of computing the SVD of a single slice is O(min{d1, d2}d1d2), and thus the total slice-wise SVD cost
is O(min{d1, d2}d1d2d3).

Putting these together, the total cost of one TNN proximal operator call is:

O (d1d2 log d3 + d3 ·min{d1, d2} · d1d2) ,

which is typically dominated by the frontal-slice SVD term for large d3 or high spatial resolution.

We now use the above cost to analyze and compare the computational complexity of LoRT and D-LoRT in both Step 1
(low-rank estimation) and Step 2 (target refinement).

Step 1: Joint Low-Rank Estimation. In LoRT, Step 1 performs joint optimization over all K + 1 tasks. Each PGD iteration
involves one TNN proximal step and one gradient computation per task, leading to a per-iteration cost of:

O ((K + 1) (d1d2 log d3 + d3 ·min{d1, d2} · d1d2)) .

Since all updates are handled centrally, this complexity must be sustained by the server.

In contrast, D-LoRT distributes this cost across K source nodes. Each node performs local PGD to estimate its model, and
the target node runs a similar routine. Hence, the per-node cost is:

O (d1d2 log d3 + d3 ·min{d1, d2} · d1d2) ,

and the system-wide complexity is O(K) times this cost, but fully parallelized.

Step 2: Target-Specific Refinement. Both methods use the same proximal TNN update on the target node. Thus, the
per-iteration cost is:

O (d1d2 log d3 + d3 ·min{d1, d2} · d1d2) ,

with no difference between LoRT and D-LoRT.

Summary. LoRT concentrates the total cost of all (K + 1) TNN updates at a central server, while D-LoRT spreads the
burden across distributed devices. Although both require the same per-task proximal operation, D-LoRT benefits from
parallelism and reduced server load, making it more suitable for federated or bandwidth-constrained environments.

Communication Overhead. Both LoRT and D-LoRT involve transmitting information from K distributed source nodes
to a coordinating unit. The fundamental distinction lies in the granularity of what is transferred. LoRT requires high-volume
transmission of raw training data—potentially multiple high-dimensional tensors per node—while D-LoRT reduces this
burden by communicating only a single third-order tensor per node (e.g., d1 × d2 × d3 parameters). The comparison in
Table 10 quantifies this difference:

Table 10: Communication Cost Comparison

Aspect LoRT (Data-sharing) D-LoRT (Model-sharing)

Transferred Item Raw data tensors One model tensor per node
Transfer Volume per Node O(NSD) O(D)

Total Uplink Volume O(KNSD) O(KD)

Communication Rounds One (upload before joint training) One (after local training)
Privacy Level Raw data exposed No raw data shared

47



Low-Rank Tensor Transitions (LoRT)

Deployment Trade-offs. Finally, we contrast the broader implications of LoRT and D-LoRT in real-world distributed
systems. While both frameworks target tensor-based transfer learning, their suitability varies based on infrastructure
constraints. LoRT is advantageous when raw data transmission is permissible and joint modeling is desired. D-LoRT,
in contrast, offers a practical and privacy-preserving alternative for federated or multi-institutional settings. Table 11
synthesizes these trade-offs:

Table 11: Practical Deployment Comparison

Criterion LoRT (Data-sharing) D-LoRT (Model-sharing)

Data Visibility Full access to raw data from all nodes Only parameter summaries shared
Scalability Limited by bandwidth and data central-

ization
High—nodes train independently

Task Coupling Tight—joint gradients across tasks Loose—models combined post-training
Communication Cost High—proportional to sample size Nk Low—only model tensors shared
Privacy Sensitivity Unsuitable for privacy-restricted data Compliant with federated protocols

Recommended Scenario Controlled academic or cloud-hosted
data settings

Federated learning, healthcare, or multi-
site collaboration
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G. List of Symbols and Notations

Symbol/Notation Description

Rd1×d2×d3 Space of third-order tensors with dimensions d1 × d2 × d3
d1, d2, d3 Dimensions of the tensor with d1 ≥ d2
D = d1d2d3 Total dimension of the tensor
K Number of source tasks
NT , NS Sample sizes for target and source tasks
Nk sample size of the k-th task: if k = 0, then Nk = NT , otherwise Nk = NS

N = NT +KNS Total sample size
W(0)

⋆ True parameter tensor for the target task
W(k)

⋆ True parameter tensor for the k-th source task
Θ(k)

⋆ Difference between k-th source and target parameters
Θ⃗⋆ Collection of all task parameters
Ŵ

a
Weighted average estimator

∆a Estimation error of the average parameter

Ŵ
(0)

Estimator for target task

Ŵ
(k)

Estimator for k-th source task̂⃗
Θ Collection of all estimated parameters
∆⃗ Estimation error for all parameters
X

(0)
i ,X

(k)
i Covariate tensors for target and source tasks

y
(0)
i , y

(k)
i Response variables for target and source tasks

ϵ
(0)
i , ϵ

(k)
i Noise terms for target and source tasks

Σ̂
(k)

Empirical covariance matrix for the k-th task
X(k)(·) Design operator for the k-th task
X∗(k)(·) Adjoint of the design operator for the k-th task
P⋆(·),P⋆⊥(·) Projection operators in Eq. (C.1)
hk Model shift parameter for the k-th source task
h̄ Average model shift
δ⋆ Source task alignment parameter
h := (h1, . . . , hK)⊤ Vector of model shift parameters
σk Standard deviation of covariates for the k-th task
cx Universal constant bounding σk

cϵ Upper bound on the variance of noise terms
M(·),M−1(·) Linear transform and its inverse in Eq. (1)
M Orthogonal matrix defining M(·)
vec(·) Vectorization operator
⟨·, ·⟩ Inner product
∗M t-product operation
◦ Outer product
⊙ Tensor frontal-slice-wise product
r Tubal rank of W(0)

⋆
rt(·) Tubal rank
∥ · ∥F Frobenius norm
∥ · ∥tsp Tensor (t)-spectral norm
∥ · ∥⋆ Tubal nuclear norm
λ0, λk, λ̃ Regularization parameters
R(·) Regularization function
L(·) Loss function
L̃(·) Modified loss function
αk, βk Constants related to restricted strong convexity
γk, τk Constants related to restricted smoothness

Continued on next page
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Table 12 – Continued from previous page
Symbol/Notation Description
un, vn Terms related to the convergence rate
A Event defined for parameter selection
W(r, h) Parameter space
O(·), o(·) Big O and little o notations
≲,≳,≍ Asymptotic comparisons
P(·) Probability measure
E[·] Expectation
w.h.p. With high probability
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