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ABSTRACT

Quality pretraining data is often seen as the key to high-performance language
models. However, progress in understanding pretraining data has been slow due
to the costly pretraining runs required for data selection experiments. We present
a framework that avoids these costs and selects high-quality pretraining data with-
out any LLM training of our own. Our work is based on a simple observation:
LLM losses on many pretraining texts are correlated with downstream benchmark
performance, and selecting high-correlation documents is an effective pretraining
data selection method. We build a new statistical framework for data selection
centered around estimates of perplexity-benchmark correlations and perform data
selection using a sample of 90 LLMs taken from the Open LLM Leaderboard
on texts from tens of thousands of web domains. In controlled pretraining ex-
periments at the 160M parameter scale on 8 benchmarks, our approach outper-
forms DSIR on every benchmark, while matching the best data selector found in
DataComp-LM, a hand-engineered bigram classifier.

1 INTRODUCTION

Dataset curation is increasingly crucial for training high-quality large language models (LLMs). As
pretraining datasets have grown, from under 200B tokens in 2020 (Raffel et al., 2020; Gao et al.,
2020) to 240T tokens today (Li et al., 2024), it has become critical to identify subsets of the available
data that will lead to the best LLMs, and a wide range of methods have arisen to meet these needs
(Ilyas et al., 2022; Xie et al., 2023a;b; Engstrom et al., 2024; Everaert & Potts, 2024; Liu et al.,
2024; Llama Team, 2024). However, data-driven approaches to data selection typically involve
expensive model retraining steps that limit their effectiveness, and no algorithm has been reported
to consistently beat or match hand-crafted classifiers for data selection (Li et al., 2024).

Is training new LLMs necessary for data selection? Instead of training our own models, can we use
the growing collection of publicly available, high-performance LLMs (Wolf et al., 2019; Beeching
et al., 2023) to perform data valuation and selection? This would have significant benefits: we
could leverage the millions of dollars collectively spent on building these LLMs, and we would
have coverage over a large, heterogeneous collection of high-performance models varying in size,
architectures, and pretraining data distribution.

Despite these advantages, using existing models for pretraining data selection is challenging, as the
training data for these models are often unknown and heterogeneous. Our key observation is that
data selection can be done using two observable features of all public models today: 1) all open-
weight models produce a causal language modeling loss for a given text, and 2) all of them can be
evaluated on benchmarks. Prior work has found systematic relationships between web corpus loss
and benchmark performance (Wei et al., 2022; Huang et al., 2024), which suggests the possibility of
using correlations between perplexity and benchmark scores as the basis for a data selection policy.

In the present paper, we pursue this possibility and find a radically simple approach that is also
effective: we select data via perplexity correlations (Figure 1), where we select data domains (e.g.
wikipedia.org, stackoverflow.com, etc.) for which LLM log-probabilities are highly correlated with
downstream benchmark performance. To enable our approach, we complement our algorithm with
a statistical framework for correlation-based data selection and derive correlation estimators that
perform well over our heterogeneous collection of LLMs.
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Figure 1: We pretrain on domains where lower loss is generally correlated with higher downstream
performance. Our approach does this by taking public, pretrained LLMs and measuring correlations
across their log-likelihoods (left, red matrix) and performance on a target benchmark (center, blue
vector). We then perform data selection by training a fastText classifier that distinguishes high cor-
relation domains from others. This approach is on par with the best-known data selection methods
in our experiments, despite requiring no human selection of high-quality domains.

We validate our approach using a collection of pretrained causal LLMs on the Hugging Face Open
LLM Leaderboard (Beeching et al., 2023) and find that perplexity correlations are predictive of an
LLM’s benchmark performance. Importantly, we find that these relationships are robust enough to
enable reliable data selection that targets downstream benchmarks. In controlled pretraining experi-
ments at the 160M parameter scale on eight benchmarks, our approach strongly outperforms DSIR
(Xie et al., 2023b) (a popular training-free data selection approach based on n-gram statistics) while
generally matching the performance of the best method validated at scale by Li et al. (the OH-2.5
+ELI5 fastText classifier (Joulin et al., 2016)) without any parameter tuning or human curation.

2 RELATED WORK

To go beyond the status quo of deduplication, perplexity filtering, and hand-curation (Laurençon
et al., 2022; BigScience, 2023; Abbas et al., 2023; Groeneveld et al., 2024; Soldaini et al., 2024;
Penedo et al., 2024; Llama Team, 2024), targeted methods have been proposed to filter pretrain-
ing data so that the resulting LLM will achieve higher scores on given benchmarks. There are
lightweight approaches that use n-gram overlap (Xie et al., 2023b) or embedding similarity (Ever-
aert & Potts, 2024) to select training data that is similar to data from a given benchmark. There are
also less-scalable methods that require training proxy LLMs on different data mixtures (Ilyas et al.,
2022; Xie et al., 2023a; Engstrom et al., 2024; Liu et al., 2024; Llama Team, 2024).

Given the high costs of proxy-based data selection methods, they have primarily been used to select
among human-curated pretraining data mixtures (Llama Team, 2024; Li et al., 2024) rather than
a high dimensional space of mixtures. Our work takes an orthogonal approach and builds upon
recent observational studies that have found scaling relationships that hold across collections of
uncontrolled and diverse LLMs (Owen, 2024; Ruan et al., 2024). While these studies do not examine
loss-to-performance relationships or derive useful data selection methods from them, we know that
losses and performance are generally highly correlated. Validation losses on samples of text corpora
are commonly used as a proxy for downstream performance when comparing LLMs pretrained on
the same data distribution (Kaplan et al., 2020; Hoffmann et al., 2022; Wei et al., 2022), even if they
have different architectures (Poli et al., 2023; Peng et al., 2023; Gu & Dao, 2024).

According to a recent survey of data selection approaches by Li et al. (2024), the heavier-weight
pretraining data selection methods have not shown large gains, and the current state-of-the-art across
many tasks is primitive: a fixed fastText classifier (Joulin et al., 2016) combined with an English filter
as a final layer after extensive deduplication and filtering. Are we missing important information that
we can efficiently extract from a diverse collection of already trained models, larger and more diverse
than any single organization is likely to produce? We show evidence supporting this hypothesis –
simple loss-performance correlation coefficients are effective when used for data selection.
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3 PROBLEM SETTING

Our goal is to build predictive models of how pretraining data distributions affect downstream bench-
mark performance and use them to build better language models. Unfortunately, this task is challeng-
ing and computationally expensive. A standard approach adopted in paradigms such as datamodel-
ing (Ilyas et al., 2022) is to obtain N different pretraining distributions {pi : i ∈ [N ],pi ∈ R+

0

D}
over D ≫ N domains (e.g. arxiv.org, stackoverflow.com, etc.), pretrain and measure model errors
on a target benchmark yi ∈ [0, 1], and fit a model p → y. This approach requires N LLM training
runs, performed at a scale sufficient to obtain non-random performance on y. This can cost tens to
hundreds of millions of dollars for hard benchmarks such as MMLU, where even the performance
of 1B parameter LLMs often do not exceed random chance (Beeching et al., 2023).

Instead, our work considers the following observational setting that requires no training. We obtain
N pretrained, high-performance LLMs that vary in pretraining data, tokenizer, architecture, and
scale (e.g. models on Huggingface’s OpenLLM leaderboard). Now, if we could train a predictor p→
y on these N models, we could avoid large scale model training. Unfortunately, this is impossible
as the training data for these models is often proprietary, and so we have no knowledge of p.

The key observation of our work is that we can replace pi,j (the unobserved sampling probability of
model i’s data selection policy on document j) with an observable surrogate xi,j , which is the nega-
tive log-likelihood of document j under model i.1 We can then build a regression model that relates
negative log-likelihood xi and benchmark error yi. Using this model, we can select pretraining data
from domains j for which decreasing the loss xi,j is predicted to rapidly decrease error yi.

The perplexity-performance hypothesis. We formulate the task of predicting errors yi from nega-
tive log-probabilities xi as a single-index model (SIM),

yi = f(⟨θ∗,xi⟩+ ϵi) (1)

where f : R 7→ R is some unknown monotonically increasing univariate function, ϵi is zero-mean
noise which is independent of x, and θ∗ ∈ RD are unknown weights over D domains.

A single index model is highly flexible (due to the arbitrary, monotone f ) and has the advantage that
we do not need to estimate the nonlinear function f if our goal is to optimize model performance.
We can see this directly from the monotonicity of f as

⟨θ∗,xi⟩+ ϵi < ⟨θ∗,xj⟩+ ϵj ⇐⇒ f(⟨θ∗,xi⟩+ ϵi) < f(⟨θ∗,xj⟩+ ϵj). (2)

Data selection from perplexity correlations. The weights θ∗ tell us which domain perplexities
are correlated with downstream performance. However, this isn’t sufficient for data selection. Even
if we know how model likelihoods relate to model performance, we do not know how data selec-
tion affects likelihoods. Even worse, this data mixture to likelihood relationship cannot be learned
observationally, as we do not know the data mixture of any of our models.

Despite this, we show that there is a clean approach for optimizing the data mixture. Our core
observation is the following: if we find a nonnegative θ∗, sampling proportional to θ∗ is always a
good choice. More formally, we see that this sampling distribution defines the pretraining loss such
that optimizing the training loss directly optimizes the downstream task via the single index model.

Proposition 1 Suppose that θ∗ weights are non-negative. Then, for models with associated like-
lihoods x ∈ X ⊂ RD, the minimizer of the pretraining loss over the θ∗ sampling distribution
Ej∼θ∗ [xj ] also has the lowest expected downstream error according to the single index model:

argmin
x∈X

Ej∼θ∗ [xj ] = argmin
x∈X

E[f(⟨θ∗,x⟩+ ϵ)].

This observation follows directly from the fact that we can normalize any non-negative θ∗ into a
distribution (and shift the normalization constant into f ) which allows us to write the inner product
in the single-index model as a monotone function of the expected pretraining loss:

y = f(⟨θ∗,x⟩+ ϵ) = f(Ej∼θ∗ [xj ] + ϵ). (3)

1To be precise, we use bits-per-byte, which normalizes the sequence negative log-likelihood with the number
of UTF-8 bytes. This is defined in terms of the length of the string in tokens LT , the length of the string in
UTF-8 bytes LB , and the cross entropy loss ℓ as BPB = LT ℓ

LB ln(2)
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Proposition 1 allows us to entirely avoid the task of finding the optimal data mixture for a target
likelihood. Instead, we pick sampling distributions that make the pretraining loss a monotone func-
tion of the predicted downstream error. Afterward, we can rely on our ability to optimize the loss to
optimize downstream performance.

This view gives us a straightforward roadmap for data selection in the remainder of the paper:
estimate a set of domains where loss and downstream benchmark performance is highly correlated,
and then constrain our θ∗ estimates to be a pretraining data sampling distribution.

4 METHODS

We now describe the details of our approach, starting by presenting the algorithm itself and the
intuitions behind it, followed by a more precise and mathematical justification for the various steps.

4.1 ALGORITHM

Estimating θ∗. The parameter θ∗j measures the relationship between log-likelihoods in domain
j and downstream performance. Because of this, we might naturally expect θ∗j to be related to
nonlinear correlation coefficients between x and y. Our work uses a simple correlation measure,

γj =
∑

1≤k,l≤n
k ̸=l

sign(yk − yl)(rankj(xk,j)− rankj(xl,j))

where rankj(x) is the rank of x among {x1,j . . . xN,j}. This formula is intuitive: when model k
does better than model l, what percentile is model k’s log-likelihood compared to model l’s? While
this is not the only correlation coefficient that performs well (see Appendix G), this functional form
has the additional benefit of being a principled estimate of θ∗. In particular, we show in sections
below that in expectation, the ranking of domains in γ exactly matches those of θ∗ (under standard
high-dimensional regression assumptions; see Section 4.2 for a complete discussion).

Selecting pretraining data. Suppose that we have an accurate estimate γj which is nonnegative. In
this case, we could use γj directly as a data selection procedure and Proposition 1 would ensure that
minimizing the population pretraining loss minimizes downstream errors. Unfortunately, γj can be
negative and the finite number of tokens per domain can make it difficult to minimize the population
pretraining loss. Thus, we must project γj onto the set of reasonable pretraining data distributions
that are nonnegative and account for the per-domain token counts.

What is a good way to project a set of domain rankings estimated via γ into a pretraining sampling
distribution? Intuitively, if wikipedia.org has a γj = 0.5 and arxiv.org is γk = 0.9, it would be nat-
ural to select tokens in order of γ, preferring tokens from arxiv.org over tokens from wikipedia.org.

Having established the ordering of domains, the remaining question is how many tokens we take for
each domain. We follow recent observations that repeating data degrades performance (Abbas et al.,
2023) to arrive at a simple selection algorithm: select domains in greatest to least γ, taking all the
tokens in each domain once, until we exhaust our total pretraining token budget.

Full algorithm. Together, these steps result in a simple, parameter-free algorithm that calculates
our rank correlation coefficient, and selects domains in order from largest to smallest coefficient.
We show this process explicitly with pseudocode in Algorithm 1 (see Appendix A), and additionally
show an extra step where we train a fastText (Joulin et al., 2016) classifier (using standard settings
and bigram features from Li et al. (2024)) which distinguishes our selected documents and domains
from the rest of the pool. The fastText classifier allows us to perform data selection at a single-
page level, and scale the selection process to larger datasets. We also found the classifier to slightly
improve downstream performance over directly selecting the documents. More information on the
specifics of the data selection approaches that we tested is given in Appendix F.

4.2 THEORY

We now study the approach closely and show that our choices for the correlation coefficient and
projection step are extensions of the classic, high-dimensional single index model estimator of Plan
et al. (2016). We describe the basic single-index model estimators first, describe our extensions,

4
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and then conclude with a discussion on how our estimator and results deviate from the theory. A
discussion of other potential estimation paradigms is provided in Appendix D.

4.2.1 HIGH-DIMENSIONAL ESTIMATION OF SINGLE INDEX MODELS

For our theory, we consider the standard high-dimensional regression setting of Plan et al. (2016)
and Chen & Banerjee (2017). Here, our goal is to estimate the unknown weights θ∗ in a single-index
model yi = f(⟨θ∗,xi⟩+ ϵi), with xi ∼ N (0, I) for ∥θ∗∥2 = 1 (assumed without loss of generality,
as ∥θ∗∥2 can be absorbed by f ).

Our starting point is the classic result of Plan et al. (2016), who showed
E [ykxk] = cθ∗, (4)

for some positive constant c and 1 ≤ k ≤ N . Closely related is the result of Chen & Banerjee
(2017) who showed a robust estimator quite similar to ours,

E [sign(yk − yl)(xk − xl)] = βθ∗ (5)
for any 1 ≤ k, l ≤ N (where k ̸= l) and some positive constant β. Both of these results clearly iden-
tify that for the high-dimensional single-index model in the Gaussian setting, generalized correlation
coefficients provide consistent estimates of the true regression coefficient θ∗.

4.2.2 DERIVING OUR ESTIMATOR

Both Plan et al. and Chen & Banerjee provide moment-matching style estimators that consistently
recover θ∗ in high-dimensional, sparse settings. However, we found that both estimators directly
use the values of x, and this resulted in brittle estimates due to outliers in language model log-
likelihoods. While outlier removal is one possibility, we found that a simpler approach was to
robustify the estimator of Chen & Banerjee (2017) to outliers in x.

Recall that our estimate γ is a U-statistic, defined as pairwise sums of
sign(yi − yj)(Φ(xi)− Φ(xj)), (6)

for any 1 ≤ i, j ≤ N (where i ̸= j), where Φ is the empirical CDF of the x values. This estimate is
significantly less sensitive to outliers than that of Chen & Banerjee (2017), as the empirical CDF is
bounded between zero and one, and no single model can make the estimator degenerate.

We study this estimate theoretically in the Gaussian setting, where we consider the asymptotically
equivalent estimator with Φ as the CDF of the standard Gaussian. In this case, we can show that this
modified estimator is also consistent in recovering θ∗.

Theorem 1 When ϵ ∼ N (0, σ2), we have:

E[sign(yi − yj)(Φ(xi)− Φ(xj))] =
2

π
sin−1

(
θ∗

2
√
1 + σ2

)
. (7)

We provide the proof in Appendix B. Because we assume ||θ∗||2 = 1 and the expected value in
Equation 7 must be between −1 and 1, we are always within the domain of sin−1 and able to invert
it. After inverting, we get:

θ̂ ∝ sin
(π
2
E [sign(yi − yj)(Φ(xi)− Φ(xj))]

)
(8)

as an estimate for θ∗, where the constant 2
√
1 + σ2 term due to noise has been dropped.

Beyond the fact that our estimator is consistent, we can show an even tighter connection to the Chen
& Banerjee estimator: our estimates agree when running the original estimator on rank-transformed
data. More specifically, for two models xi and xj with the estimated model rankings ⟨θ̂,xi⟩ >
⟨θ̂,xj⟩, the expected ranking under rank-transformation (i.e. Φ(x)) match this ranking.

Corollary 1 Suppose that θ̂ is any vector of fixed weights and x ∼ N (0, I). Then, conditioning on
the event ⟨θ̂,xi⟩ < ⟨θ̂,xj⟩, we have with probability 1 that:

⟨θ̂,E[Φ(xi) | ⟨θ̂,xi⟩ < ⟨θ̂,xj⟩]⟩ < ⟨θ̂,E[Φ(xj) | ⟨θ̂,xi⟩ < ⟨θ̂,xj⟩]⟩. (9)

This proof follows from the same calculations as Theorem 1 and is given in Appendix B.
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4.2.3 SELECTING DATA FOR PRETRAINING

Recall that our algorithm for data selection is to constrain γ to be a valid sampling distribution
(nonnegative, at the very least) and then sample directly from this estimate. For now, we focus
on constraining θ̂, and we will see at the end of this section that we can apply the same con-
straint to γ directly to get the same result. The theory of constrained estimation for θ̂ is simple
and well-understood, with both Plan et al. (2016) and Chen & Banerjee (2017) extensively study-
ing the problem of estimating θ̂ under a known convex constraint set C. In particular, Plan et al.
(2016) show that performing a L2 projection via θ̂proj = argminθ∈C ∥θ − θ̂∥2 provides improved
convergence rates that depend on the Gaussian mean width of C rather than the ambient dimen-
sion, and Chen & Banerjee (2017) show similar results when maximizing the linear correlation
θ̂proj = argminθ∈C⊆BD

−⟨θ, θ̂⟩.

We take a similar approach here. We define a convex constraint set C that forces θ̂ to be a reasonable
sampling distribution and find the best sampling distribution via the linear correlation approach.

We define C as the combination of two sets of constraints. First, we must have a valid sampling
distribution, so we constrain θ̂ to lie in the simplex. As we noted above, it is well-known that dupli-
cating data harms performance (Abbas et al., 2023), and so we constrain θ̂ to avoid data duplication
by limiting the maximum weight on domains. Concretely, if want to pretrain on m tokens overall,
we enforce θ∗i ≤ τi,∀i ∈ [1, D], where τi is set so τim is the number of tokens from the i-th domain
that we can access for training.

The resulting linear program has a simple solution and takes the form of initializing θ̂proj to 0 and
then iterating through the values in θ̂ from largest to smallest, setting the value at the corresponding
index of θ̂proj to the maximum allowable value, until θ̂proj sums to 1 (see Appendix C for a proof).

Theorem 2 Suppose we want to solve:

θ̂proj = argmin
θ∈RD

−⟨θ, θ̂⟩,

subject to:
D∑
i=1

θi = 1

0 ≤ θi ≤ τi,∀i ∈ [1, D],

where τi > 0 are fixed values. Then, the solution is:

θ̂proj
k =


τk if

∑
j: rj(θ̂j)≥rk(θ̂k)

τj ≤ 1

1−
∑

j: rj(θ̂j)>rk(θ̂k)
τj if

∑
j: rj(θ̂j)≥rk(θ̂k)

τj ≥ 1 ∧
∑

j: rj(θ̂j)>rk(θ̂k)
τj ≤ 1

0 otherwise
, (10)

where r is some function that breaks all ties between θ̂j and θ̂k for k ̸= j, and otherwise leaves the
ordinal relationships the same.

We note that while the use of this linear program is in line with the constrained estimators proposed
in Chen & Banerjee (2017), the L2 projection is arguably more natural, and does not require assum-
ing that ∥θ̂∥2 = 1 for asymptotic recovery conditions. We derive similar closed-form expressions
for this quadratic case in Appendix C, but do not use this approach for two separate reasons.

First, the L2 projection depends on the L2 norm of θ̂, unlike the linear program which only depends
on the ranks of the values in θ̂. The challenge with determining the norm is that the exact recovery
result in Equation (7) requires knowledge of the noise level, and the trigonometric functions rely
strongly on the Gaussian structure of x. Because of this, we are unlikely to be able to estimate
the norm of θ̂ with any accuracy, and the only way to avoid this would be to treat the norm as
a hyperparameter, which adds unnecessary complexity. The second reason is empirical (although
possibly a consequence of the first) – we found that the linear projection performed better across a
wide range of benchmarks and conditions (see Appendix G).
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We conclude by relating our theory to the full algorithm in Section 4.1. The estimation step for γ
is the finite sample, U-estimate of the expectation in Equation (8), dropping the nonlinear transform
sin and π/2 as these two terms do not change the rankings of the domains. The data selection step
directly applies our projection in Equation (10), and we make use of the fact that this projection only
relies on rankings among the domains to use γ rather than an exact estimate for θ∗.

5 RESULTS

We empirically validate our approach to predicting downstream performance and data selection.
Our validation consists of three sets of experiments: we first pretrain 160M-parameter LLMs from
scratch to study our primary goal of selecting pretraining data to improve downstream performance,
followed by analyzing the ability of losses to predict downstream performance. Throughout our
experiments, we use the same single-index model that we train using Algorithm 1. As shown in the
algorithm, we train the fastText classifier on selected vs unselected domains and use the classifier to
filter the pretraining data at the page-level.

Input data matrix X. To build the input data matrix, X, we collected byte normalized loss values
from a sample of 90 Open LLM Leaderboard (Beeching et al., 2023) LLMs that we could run
without errors. Concretely, these values are defined as bits-per-byte LT ℓ

LB ln(2) where LT is the token
count, LB is the number of UTF-8 bytes, and ℓ is the per-token cross-entropy (Gao et al., 2020).
We collected these values on “sample” subset2 of the RedPajama V2 (RPJv2) dataset (Together
Computer, 2023) for all domains with ≥ 25 pages in the sample. There are 9,841 domains/features.
Specifics are in Appendix E. A detailed principal components analysis of X, which reveals a variety
of salient embedded information in the losses, is in Appendix J.

Target benchmark performance y. We constructed a target vector, y, for LAMBADA (Paperno
et al., 2016), ARC Easy (Clark et al., 2018), PIQA (Bisk et al., 2020), and SciQ (Welbl et al.,
2017). These are all of the tasks reported in the Pythia scaling experiments for which a model in
the 160M parameter range could meaningfully perform above chance. We also constructed target
vectors for LAMBADAIT, LAMBADAFR, LAMBADADE, and LAMBADAES, which are subsets of
LAMBADA translated into Italian, French, German, and Spanish by Black (2023). These languages
match those in RPJv2 where each page is conveniently tagged as one of five languages: English,
Spanish, French, German, and Italian. The correspondence between our target benchmark languages
and the RPJv2 metadata is convenient, as it allows us to easily include language filtering baselines.

5.1 PRETRAINING

We begin by validating our algorithm in the end-to-end task of pretraining data selection with con-
trolled experiments at the 160M parameter, 3.2B token scale. The low compute requirements of
this setting allow us to more extensively study replicates and ablations in Appendix G within the
timeframe of a few days. While 160M models are small, this is far from an easy setting for our data
selection algorithm. Most of the Open LLM Leaderboard models are 10 to 100× larger than the
160M scale, and our single index model must extrapolate substantially from ≈7B scale models to
our small-scale validation setting (see Appendix I for a histogram of model sizes).

Pretraining data and setting. For pretraining, we used the “sample-100B” subset of RPJv2. This is
larger than the sample that we used to compute our estimate. We filtered this data so it contains only
the domains used for our estimate, and then tokenized the data with the Pythia tokenizer. The vast
majority of the domains from our BPB matrix were present in this larger sample of text. However, 42
(out of 9,841) were not, and so we removed them from our estimate. For every data selection method
that we tested, the task was to further select 3.2B tokens for pretraining, which is Chinchilla-optimal
(Hoffmann et al., 2022) for the 160M-parameter LLM used in our tests.

Baselines. We compare against several baseline data-selection methods. First, we present the results
of uniformly sampling from the available pretraining data. Then we use the language tags present
in RPJv2 to filter only for the language matching the target task. In addition to these commonsense
baselines, we also run DSIR (Xie et al., 2023b): a lightweight training data selection technique based
on n-gram overlaps that Li et al. (2024) found to be competitive with proxy LLM-based techniques

2https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2
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Table 1: Average rankings of each data selection method (lower is better) across 8 benchmarks
shows that correlation-based filtering beats baselines by a wide margin, and matches the current best
open data filter from Li et al. (2024). Our approach significantly beats the default filter in Li et al.
(2024) with the EN filter and loses slightly after additional manual language filtering that depends
on the target task (+ manual Lang Filter).

Method None Lang
Filt

DSIR
(Xie et al., 2023b)

Handcrafted fastText
+ EN Lang Filter
(Li et al., 2024)

Handcrafted fastText
w/o Lang Filter

Handcrafted fastText
+ manual Lang Filter

Perplexity
Correlations

Avg. Rank 3.750 4.000 4.500 3.750 3.250 1.375 1.750

Figure 2: Pretraining results with different data selection methods. Each row is an LLM, and each
column is a task. The number in the upper left indicates the ranking of the method when targeting
that benchmark compared to other methods (lower is better). Numbers within the heatmap denote
accuracy for all benchmarks except the LAMBADA tasks for which the values are log perplexities
(where lower scores are better). We find that our approach appropriately optimizes data mixes for
the target language and benchmark, and matches the fastText baseline across most benchmarks.

and was also validated at scale (Parmar et al., 2024). Finally, we run the state-of-the-art method
for pretraining data quality filtering found by Li et al., which is a fastText classifier that beats all of
the heavier-weight proxy-LLM methods tested. The classifier was trained on a benchmark-agnostic
and handcrafted objective, which is to classify data as Common Crawl3 (low quality) or OH2.5
(Teknium, 2023) and Reddit ELI5 (Fan et al., 2019) (high quality). It is combined with an English
filter in Li et al.; we present results for this fastText filter with and without the English filter.

Model and hyperparameters. We use the Pythia 160M LLM configuration from Biderman et al.
(2023) and optimize the hyperparameters including learning rate, weight decay, and warmup to
minimize loss on the uniform sampling (no selection algorithm) baseline. Training hyperparameters
were fixed across all methods. We provide additional training and evaluation details in Appendix F.

3https://commoncrawl.org
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Figure 3: Language distributions of pretraining data selected by perplexity correlations. The default
RPJv2 distribution is given in the left column for reference. The English benchmark targets often
exclusively select English but the reverse is not the case. In every case, our approach selects more
data than the default from the benchmark-matched language (shown as a green box in each column).

Results. We report average rankings over all benchmarks in Table 1, and we find that our approach
significantly outperforms the basic baselines of random sampling, language filtering, and DSIR.
Compared to the existing state of the art from Li et al. (2024), our approach beats the performance
of the default, English-filtered fastText classifier, but loses slightly once we add in a manual language
filtering step to enable better performance on the multilingual LAMBADA datasets. For the maintext
comparisons, we use the optional fastText classifier from our algorithm to select pretraining data at
the page levels, but we show ablations without the classifier in Appendix G.

Figure 2 shows how each data selection method affects benchmark performance in more detail. Each
block of rows represents a data selection method, while an individual row represents an LLM within
a method that targets a particular benchmark or set of benchmarks. Columns represent benchmarks.
We see that language filtering and perplexity correlations both clearly optimize for the target bench-
mark: within each block, the benchmark column matching each row typically performs best. The
pattern is much less obvious for DSIR – the heatmap looks more uniform across LLMs with different
task targets. We also see that while language filtering has significant impacts on model performance,
our performance significantly exceeds the impact of language filtering across all tested benchmarks.

Figure 3 shows the distribution of languages in pretraining data selected by our method, targeting
each benchmark. Our algorithm provides significant enrichment of the corresponding languages for
the multilingual benchmarks (LAMBADA_*), but we also find that it does not exclusively select do-
mains in one language. In contrast, for English benchmarks our approach selects nearly exclusively
English data, likely due to the large quantity of high-quality English data in our pretraining data
pool. There are significantly fewer tokens in non-English languages in the pretraining data pool and
our τ constraint to prevent duplication has a large impact on the weights when the benchmarks are
non-English. We provide the same figure when the τ values are made 5× as large in Appendix H.

Finally, we note that our results are somewhat insensitive to the specifics of the perplexity-correlation
procedure we present in Algorithm 1. We show in Appendix G that varying the projection method
(linear, L2) and even using Spearman rank correlations (Spearman, 1904) often work better than the
baselines. This suggests that the performance of our approach is not dependent on the precise form
of the estimator that is coupled to our theory results, but holds broadly across perplexity-correlation
relationships. Additionally, our approach performs better with the optional fastText classifier that
our algorithm trains, possibly because it operates at the page-level instead of the domain-level

5.2 PERFORMANCE RANK PREDICTIONS

We have shown that our approach succeeds at selecting useful pretraining data, but how good are the
single index model’s predictions? A good map of loss to benchmarks would be helpful in selecting
among candidate pretraining data mixtures generally, even without using our specific algorithm.

Comparing model performance rankings predicted by our regression to the ground truth, we find
generally accurate predictions. Figure 4 shows 5-fold leave-out plots for PIQA, and LAMBADAFR

with the rank predictions given by ⟨θ̂proj,Φ(x)⟩. Every point in the plot is a held-out point: we
estimated θ∗ five times, holding out a different 20% of the data each time, and plotted the prediction
for every point when it was held out.

We find that our estimator achieves high ordinal prediction performance across all target tasks. We
include 5-fold leave-out R2 scores for all tasks in Figure 5. However, we complement these strong
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Figure 4: Rank predictions given by ⟨θ̂proj,Φ(x)⟩ for PIQA and LAMBADA FR. A standard devia-
tion (σ) from the ideal fit is shown in red. 2σ is shown in orange. Many models outside 2σ (shown
in blue) are trained on atypical data such as multilingual data, code, or GPT-4 (Brown et al., 2020)
outputs. Models with atypical architectures (i.e. Mamba (Gu & Dao, 2024)) are shown in black.
Generally, our estimate tightly predicts ordinal benchmark performance from web corpus losses.

Figure 5: Held-out R2 score of our raw correlation estimate θ̂, our projected estimate θ̂proj, and
the average loss baseline. The 95% bootstrapped confidence intervals are wide enough that no
individual comparison is significant. Across benchmarks, θ̂proj has statistically significant gains
over the baseline (p=0.035) as it is unlikely that θ̂proj beats mean loss 7 times out of 8 by chance.

results with the additional observation that simply taking the mean loss across all domains is a
strong predictor of model performance (bottom row). The surprising effectiveness of average loss
over uniformly sampled documents has been discussed extensively (Owen, 2024; Wei et al., 2022;
Kaplan et al., 2020) and our results further suggest that regressions with correlations only slightly
above the mean loss baseline still can result in effective data selection methods.

Finally, we discuss outliers in our prediction of model performance. Our predictions are accurate
for LLMs with usual architectures (e.g. Mamba (Gu & Dao, 2024)), the smallest/largest vocabulary
sizes, context sizes, and parameter sizes. However, we also see that LLMs that were trained on
unusual data are not as well predicted by our approach (e.g. Phi (Gunasekar et al., 2023)). We may
simply require a bigger or more diverse pretraining data pool and set of models to find estimates that
work well for models that expect different styles of text.

6 CONCLUSION

Does high-performance data selection require careful hand-crafted heuristics or prohibitively ex-
pensive model training runs? Our work demonstrates an alternative, viable approach – leveraging
existing, public models as a source of information for data selection. Pretraining experiments sug-
gest that a simple, correlation-based approach to selecting data can be effective, but more broadly,
we show how to 1) use single-index models as a surrogate for downstream performance and 2) build
models that relate losses to downstream performance and use these surrogates effectively in data
selection.
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A MAIN ALGORITHM

Algorithm 1 Perplexity Correlation Based Data Selection

Input: Benchmark error vector y ∈ [0, 1]N , log-loss matrix normalized as bits-per-byte X ∈
R+

0

N×D
, available tokens per domain a ∈ ND, and pretraining token target b ∈ N.

Output: Target token counts per domain t ∈ ND
0 , a fastText classifier to filter pretraining data.

Initialize: γ ← 0 ∈ RD, t← [0 . . .] ∈ ND
0 , counter← 0.

r0, r1, . . . , rN ← rank(x0,x1, . . . ,xN ) ▷ 1. Compute the γ correlation coefficient
for i, j ∈ 0 to N do

γ ← γ + sign(yi − yj) · (ri − rj)

for i ∈ArgSort(γ, descending=True) do ▷ 2. Select most to least correlated domains
ti ← min(ai, b− counter)
counter← counter + ai
if counter ≥ b then

Break
classifier = trainFastText(positive = 1t>0, negative = 1t=0)
Return t, classifier

B ESTIMATOR SOLUTION

B.1 LEMMA 1

Statement of Lemma 1 Define the PDF of HalfNormal as f(x;σ) =
√
2

σ
√
π
e−

x2

2σ2 for x > 0 and 0
otherwise. Now, suppose:

• β is a vector with ||β||2 = 1

• Z1,Z2 are vectors ∼ N (0, I)

• ϵ ∼ N (0, σ2)

• Z ′ ∼ N (0, 1)

• Z+ ∼ HalfNormal(1).

Then we have:

Z1j |⟨Z1 − Z2,β⟩+ ϵ > 0
d
= Z ′

√
1−

β2
j

2 + σ2
+

βj√
2 + σ2

Z+,

where Z1j is the j-th entry of Z1.

Proof: First, note:

Z1j |⟨Z1−Z2,β⟩+ϵ > 0
d
= Z1j |

〈
Z1

Z2

ϵ/σ

 ,


β

−β
σ


〉

> 0
d
= Z1j |

〈
Z1

Z2

ϵ/σ

 ,


β

−β
σ

 /
√

2 + σ2

〉
> 0,

where


·
·
·

 denotes the vector-valued result of concatenating vectors and scalars. For readability, we

set Zc =


Z1

Z2

ϵ/σ

 and βc =


β

−β
σ

 /
√
2 + σ2.
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Given that βc is unit-norm (by supposition, β is unit-norm), and every element of Zc is ∼ N (0, 1)
(even ϵ/σ), we can easily split a conditional random vector containing Z1j into a conditionally
dependent component and independent component:

Zc|⟨Zc,βc⟩ > 0
d
= (I− βcβ

⊤
c )Z

′′ + βcZ+.

The first term is orthogonal to βc and so it is the part of Zc that is not subject to the condition. In the
unconditional case, Zc ∼ N (0, I) and so Z′′ ∼ N (0, I). The second term is the part of Zc that is
in the direction of βc. Z+ ∼ HalfNormal(I) because our dot product condition is satisfied for half
of the possible non-orthogonal Zc values. Now, we focus on finding Zc|⟨Zc,βc⟩ > 0 for a single
index j. We have (for C defined to be the dimensionality of βc):

((I− βcβ
⊤
c )Z

′′)j + (βcZ+)j = Z ′′
j (1− βc

2
j )−

∑
1≤i≤C
i ̸=j

Z ′′
i βcjβci + βjZ+j

= Z ′′
j −

C∑
i=1

Z ′′
i βcjβci + βjZ+j .

Now, note that Z ′′
j −
∑C

i=1 Z
′′
i βcjβci is the sum of independent zero-mean Gaussians with variances

given by 1 and βc
2
jβc

2
i , so it itself is a zero-mean Gaussian Y ∼ N (0, 1 −

∑C
i=1 βc

2
jβc

2
i ). We can

also use the fact that
∑C

i=1 βc
2
i = 1 (recall that βc is unit norm) to get: Y ∼ N (0, 1− βc

2
j ). So we

have that the conditional Z1j is given by:

Z ′
√
1− βc

2
j + βcjZ+ = Z ′

√
1−

β2
j

2 + σ2
+

βj√
2 + σ2

Z+,

for Z ′ ∼ N (0, 1). As a corollary, we can see that Z2j under the same condition is given by:

Z ′

√
1−

β2
j

2 + σ2
+

−βj√
2 + σ2

Z+.

B.2 LEMMA 2

Statement of Lemma 2 Suppose that Φ is the CDF of a standard Gaussian, a and c are constants,
and Z ∼ N (0, 1). Then we have:

E[Φ(aZ + c)] = Φ

(
c√

1 + a2

)
.

Proof: By the definition of the CDF of a standard Gaussian, we have:

E[Φ(aZ + c)] = E[P (X ≤ aZ + c)],

where X ∼ N (0, 1). Continuing, we have:

= E[P (X − aZ − c ≤ 0)].

Now, note that X − aZ − c is the sum of independent Gaussian random variables with given mean
and variance; it itself is a Gaussian random variable∼ N (−c, a2+1). To find P (X−aZ− c ≤ 0),
we can evaluate its CDF at 0:

= E
[
Φ

(
c√

a2 + 1

)]
= Φ

(
c√

a2 + 1

)
.

B.3 LEMMA 3

Statement of Lemma 3 Suppose Φ is the standard Gaussian CDF, Z+ ∼ HalfNormal(1), and b
and a are constants. Then we have:

E
[
Φ

(
Z+b√
a2 + 1

)]
=

1

2
+

1

π
tan−1

(
b√

a2 + 1

)
.
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Proof: By the definition of expected value, we can take the following integral where fZ+
is the PDF

of Z+. We integrate from 0 instead of −∞ because the PDF of the Standard Half Normal is 0 in the
domain below 0:

E
[
Φ

(
Z+b√
a2 + 1

)]
=

∫ ∞

0

Φ

(
zb√
a2 + 1

)
fZ+

(z)dz

=

∫ ∞

0

Φ

(
zb√
a2 + 1

) √
2√
π
e

−z2

2 dz

=
1√
2π

(∫ ∞

0

e
−z2

2 dz +

∫ ∞

0

erf
(

zb√
2
√
a2 + 1

)
e

−z2

2 dz

)
(*).

The second integral is generally non-trivial to solve, but luckily we can solve it by using Equation 2
in Section 4.3 of the integral table from Ng & Geller (1968), which states:∫ ∞

0

erf(cx)e−d2x2

dx =

√
π

2d
− 1

d
√
π
tan−1

(
d

c

)
Where c and d are real and positive. We split the solution by cases: b > 0, b = 0, and b < 0. We find
that in every case, we can manipulate our integral so that the solution is trivial or the constant inside
the erf(·) is positive (and so we can use the integral table). In every case, we find that the solution is
1
2 + 1

π tan−1
(

b√
a2+1

)
.

Case 1: b > 0. We can use the integral table directly:

(*) =
1√
2π

(√
π√
2
+

√
π√
2
−
√
2√
π
tan−1

(√
a2 + 1

b

))

=
1

2
+

1

2
− 1

π
tan−1

(√
a2 + 1

b

)
.

Then, using the identity:

tan−1 x+ tan−1 1

x
=

π

2
if x > 0,

we find the following:

=
1

2
+

1

π
tan−1

(
b√

a2 + 1

)
.

Case 2: b = 0. Note that erf(0) = 0; we do not have to use the integral table:

(*) =
1√
2π

(√
π√
2
+ 0

)
=

1

2
.

Because tan−1(0) = 0, we have:

=
1

2
+

1

π
tan−1

(
b√

a2 + 1

)
.

Case 3: b < 0. Because erf(·) is an odd function, we can pull the negative out:

(*) =
1√
2π

(∫ ∞

0

e
−z2

2 dz −
∫ ∞

0

erf
(

z|b|√
2
√
a2 + 1

)
e

−z2

2 dz

)
.

Now we can use the integral table as in the b > 0 case:

=
1√
2π

(√
π√
2
−
√
π√
2
+

√
2√
π
tan−1

(√
a2 + 1

|b|

))

=
1

2
+

1

2
− 1

π
tan−1

(√
a2 + 1

|b|

)
.
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We can then use the same identity again:

tan−1 x+ tan−1 1

x
=

π

2
if x > 0

to get:

=
1

2
− 1

π
tan−1

(
|b|√
a2 + 1

)
.

Because tan−1 is an odd function, we can put the negative inside of it:

=
1

2
+

1

π
tan−1

(
b√

a2 + 1

)
.

B.4 FULL PROOF

Here, we prove:

E[sign(y1 − y2)(Φ(x1)− Φ(x2))] =
2

π
sin−1

(
θ∗√

4 + 2σ2
1 + 2σ2

2

)
with y1, y2,Φ(x1),Φ(x2), and θ∗ defined in the main text, for the case where ϵ1 and ϵ2 are zero-
mean Gaussian noise ∼ N (0, σ2

1) and ∼ N (0, σ2
2), respectively.

It is easy to see that this is a more general version of the following theorem.

Theorem 1 When ϵ ∼ N (0, σ2), we have:

E[sign(yi − yj)(Φ(xi)− Φ(xj))] =
2

π
sin−1

(
θ∗

2
√
1 + σ2

)
. (7)

Proof: By symmetry, we have:

E[sign(y1 − y2)(Φ(x1)− Φ(x2))]

=
1

2
E[Φ(x1)− Φ(x2)| sign(y1 − y2) > 0] +

1

2
E[−(Φ(x1)− Φ(x2))| sign(y1 − y2) < 0].

By increasing monotonicity of f , we have sign(y1 − y2) > 0 ⇐⇒ ⟨x1 − x2,θ
∗⟩ + ϵ∆ > 0, for

ϵ∆ = ϵ1 − ϵ2 ∼ N (0, σ2
1 + σ2

2). So:

=
1

2
E[Φ(x1)− Φ(x2)|⟨x1 − x2,θ

∗⟩+ ϵ∆ > 0]

+
1

2
E[−(Φ(x1)− Φ(x2))|⟨x1 − x2,θ

∗⟩+ ϵ∆ < 0].

Because x1
d
= x2 and ϵ∆

d
= −ϵ∆, the two expected values above are the same:

= E[Φ(x1)− Φ(x2)|⟨x1 − x2,θ
∗⟩+ ϵ∆ > 0].

By linearity of expectation:

= E[Φ(x1)|⟨x1 − x2,θ
∗⟩+ ϵ∆ > 0]− E[Φ(x2)|⟨x1 − x2,θ

∗⟩+ ϵ∆ > 0].

Now, we focus on finding the overall estimate for a single index j. By Lemma 1, we have, for
Z ∼ N (0, 1) and Z+ ∼ HalfNormal(1):

Φ(x1j)|⟨x1 − x2,θ
∗⟩+ ϵ∆ > 0

d
= Φ(Za+ Z+b1).

Here, a =

√
1− (θ∗

j )
2

2+σ2
1+σ2

2
and b1 =

θ∗
j√

2+σ2
1+σ2

2

. As a corollary of Lemma 1, we can see:

Φ(x2j)|⟨x1 − x2,θ
∗⟩+ ϵ∆ > 0

d
= Φ(Za+ Z+b2).
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Where b2 = − θ∗
j√

2+σ2
1+σ2

2

. So for the index j, our estimate is:

E[Φ(Za+ Z+b1)]− E[Φ(Za+ Z+b2)]

= E[E[Φ(Za+ c)|c = Z+b1]]− E[E[Φ(Za+ c)|c = Z+b2]].

Using Lemma 2, we have:

= E
[
Φ

(
Z+b1√
a2 + 1

)]
− E

[
Φ

(
Z+b2√
a2 + 1

)]
.

Then, using Lemma 3, we have:

=
1

2
+

1

π
tan−1

(
b1√
a2 + 1

)
− 1

2
− 1

π
tan−1

(
b2√
a2 + 1

)
=

1

π
tan−1

(
b1√
a2 + 1

)
− 1

π
tan−1

(
b2√
a2 + 1

)
.

Using the fact that tan−1 is an odd function and b2 = −b1, we get:

=
2

π
tan−1

(
b1√
a2 + 1

)
.

Now, we write a and b1 in terms of θ∗j :

=
2

π
tan−1


θ∗
j√

2+σ2
1+σ2

2√
2− (θ∗

j )
2

2+σ2
1+σ2

2



=
2

π
tan−1


θ∗
j√

4+2σ2
1+2σ2

2√
1−

(
θ∗
j√

4+2σ2
1+2σ2

2

)2

 .

Using the identity sin−1 x = tan−1
(

x√
1−x2

)
, we have:

=
2

π
sin−1

(
θ∗j√

4 + 2σ2
1 + 2σ2

2

)
.

B.5 COROLLARY 1

Corollary 1 Suppose that θ̂ is any vector of fixed weights and x ∼ N (0, I). Then, conditioning on
the event ⟨θ̂,xi⟩ < ⟨θ̂,xj⟩, we have with probability 1 that:

⟨θ̂,E[Φ(xi) | ⟨θ̂,xi⟩ < ⟨θ̂,xj⟩]⟩ < ⟨θ̂,E[Φ(xj) | ⟨θ̂,xi⟩ < ⟨θ̂,xj⟩]⟩. (9)

To see this, we can find:

E[Φ(x1)− Φ(x2)|⟨θ̂,x1⟩+ ϵ1 > ⟨θ̂,x2⟩+ ϵ2] = E[Φ(x1)− Φ(x2)|⟨θ̂,x1 − x2⟩+ ϵ∆ > 0]

Note that we have already computed this expected value in the proof above; for an index j, it is:

2

π
sin−1

(
θ̂j√

4 + 2σ2
1 + 2σ2

2

)
.

Because sin−1 is an odd function, the above expression has the same sign as θ̂j . Because the
values at every index of E[Φ(x1) − Φ(x2)] under our condition and θ̂ are the same sign, we have
⟨E[Φ(x1)− Φ(x2)], θ̂⟩ > 0, so ⟨θ̂,E[Φ(x1)]⟩ > ⟨θ̂,E[Φ(x2)]⟩.
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C OPTIMAL PROJECTED WEIGHTS SOLUTIONS

C.1 LINEAR PROJECTION

Theorem 2 Suppose we want to solve:

θ̂proj = argmin
θ∈RD

−⟨θ, θ̂⟩,

subject to:

D∑
i=1

θi = 1

0 ≤ θi ≤ τi,∀i ∈ [1, D],

where τi > 0 are fixed values. Then, the solution is:

θ̂proj
k =


τk if

∑
j: rj(θ̂j)≥rk(θ̂k)

τj ≤ 1

1−
∑

j: rj(θ̂j)>rk(θ̂k)
τj if

∑
j: rj(θ̂j)≥rk(θ̂k)

τj ≥ 1 ∧
∑

j: rj(θ̂j)>rk(θ̂k)
τj ≤ 1

0 otherwise
, (10)

where r is some function that breaks all ties between θ̂j and θ̂k for k ̸= j, and otherwise leaves the
ordinal relationships the same.

Proof: We proceed by considering each of the three cases from Equation 10.

Case 1. Suppose for the sake of contradiction that the optimal solution is θ̂proj and yet θ̂proj
k < τk

for some θ̂proj
k falling under the first case of Equation 10. Now suppose that we construct a θ′ also

satisfying the projection constraints that is the same as θ̂proj except in these places:

θ′k = θ̂proj
k +∆ = τk

θ′p = θ̂proj
p − δ1 ≥ 0

...

θ′q = θ̂proj
q − δn ≥ 0

for some ∆ =
∑n

i=1 δi > 0 where θ̂p ≥ · · · ≥ θ̂q are all of the θ̂ values which do not fall under the
first condition and where the corresponding θ̂proj values are nonzero. We know that there must be
some θ̂proj

p , · · · , θ̂proj
q from which we can subtract δ1, · · · , δn (and so from which we can take the ∆)

because
∑

j: rj(θ̂j)≥rk(θ̂k)
τj ≤ 1. Now, we have:

⟨θ̂, θ̂proj⟩ − ⟨θ̂,θ′⟩
= θ̂kθ̂

proj
k + θ̂pθ̂

proj
p + · · ·+ θ̂q θ̂

proj
q − θ̂kθ̂

proj
k − θ̂k∆− θ̂pθ̂

proj
p − · · · − θ̂q θ̂

proj
q + θ̂pδ1 + · · ·+ θ̂qδn

= −θ̂k∆+ θ̂pδ1 + · · ·+ θ̂qδn

≤ θ̂p(δ1 + · · ·+ δn)− θ̂k∆

= θ̂p∆− θ̂k∆

≤ 0.

At this point, the only way to avoid the contradiction result would be if θ̂k = θ̂p = · · · = θ̂q .
Otherwise, the above non-strict inequality would be a strict inequality. If θ̂k = θ̂p = · · · = θ̂q , then
we know that θ̂k is the smallest θ̂ value satisfying condition 1 and all of the other greater θ̂ values
satisfying condition 1 must be projected to their τ threshold value (otherwise we would get the
contradiction result). In this edge case can see above that rearranging the remaining weight among
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equal θ̂ values does not change the dot product, so all of the solutions that we can get without the
contradiction result are equivalently optimal (including the solution from Equation 10).

Case 3. This is analogous to case 1. Suppose for the sake of contradiction that the optimal solution
is θ̂proj and yet θ̂proj

k > 0 for some θ̂proj
k falling under the third case of Equation 10. Now suppose that

we construct a θ′ also satisfying the projection constraints that is the same as θ̂proj except in these
places:

θ′k = θ̂proj
k −∆ = 0

θ′p = θ̂proj
p + δ1 ≤ τp

...

θ′q = θ̂proj
q + δn ≤ τq

for some ∆ =
∑n

i=1 δi > 0 where θ̂p ≥ · · · ≥ θ̂q are all of the θ̂ values which do not fall under the
third condition and where the corresponding θ̂proj values are not at their thresholds. By construction
we know that there must be some θ̂proj

p , · · · , θ̂proj
q to which we can add δ1, · · · , δn. Now, we have:

⟨θ̂, θ̂proj⟩ − ⟨θ̂,θ′⟩
= θ̂kθ̂

proj
k + θ̂pθ̂

proj
p + · · ·+ θ̂q θ̂

proj
q − θ̂kθ̂

proj
k + θ̂k∆− θ̂pθ̂

proj
p − · · · − θ̂q θ̂

proj
q − θ̂pδ1 − · · · − θ̂qδn

= θ̂k∆− θ̂pδ1 − · · · − θ̂qδn

≤ −θ̂q(δ1 + · · ·+ δn) + θ̂k∆

= −θ̂q∆+ θ̂k∆

≤ 0.

At this point, the only way to avoid the contradiction result would be if θ̂k = θ̂p = · · · = θ̂q .
Otherwise, the above non-strict inequality would be a strict inequality. If θ̂k = θ̂p = · · · = θ̂q , then
we know that θ̂k is the largest θ̂ value satisfying condition 3 and all of the other smaller θ̂ values
satisfying condition 3 must be projected to 0 (otherwise we would get the contradiction result). In
this edge case, we can see above that rearranging the remaining weight among equal θ̂ values does
not change the dot product, so all of the solutions that we can get without the contradiction result
are equivalently optimal (including the solution from Equation 10).

Case 2. Above, we show that both Case 1 and Case 3 are true. So, the remaining weight must be
given to the single value of θ̂proj not covered by either case.

C.2 QUADRATIC PROJECTION

C.2.1 LEMMA 4

Statement of Lemma 4 Suppose that θ̂proj is the optimal solution to:

θ̂proj = argmin
θ∈RD

||θ̂ − θ||22,

subject to:
D∑
i=1

θi = 1

0 ≤ θi ≤ τi,∀i ∈ [1, D],

where τi > 0 are fixed values. Then, θ̂proj
s = 0 implies that any j with θ̂s > θ̂j must have θ̂proj

j = 0.

Proof: This is similar to Lemma 2 from Shalev-Shwartz & Singer (2006). Assume for the sake of
contradiction θ̂proj

s = 0 and θ̂s > θ̂j , yet we have θ̂proj
j > 0.
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Now we can construct another vector θ′ that is the same as θ̂proj, except in two places:
θ′s = θ̂proj

s +∆

θ′j = θ̂proj
j −∆,

for some ∆ satisfying 0 < ∆ < min(θ̂proj
j , τs − θ̂proj

s ). This bound on ∆ ensures that θ′ is still
within the thresholds. We know that ∆ can exist because min(θ̂proj

j , τs − θ̂proj
s ) > 0 (by supposition,

τs − θ̂proj
s = τs − 0 > 0 and θ̂proj

j > 0).

Now we can compute:

||θ̂ − θ̂proj||22 − ||θ̂ − θ′||22 = (θ̂s − θ̂proj
s )2 + (θ̂j − θ̂proj

j )2 − (θ̂s − (θ̂proj
s +∆))2 − (θ̂j − (θ̂proj

j −∆))2

= 2∆((θ̂s − θ̂proj
s )− (θ̂j − θ̂proj

j )−∆)

> 2∆((θ̂s − θ̂proj
s )− (θ̂j − θ̂proj

j )−min(θ̂proj
j , τs − θ̂proj

s ))

≥ 2∆((θ̂s − θ̂proj
s )− (θ̂j − θ̂proj

j )− θ̂proj
j )

= 2∆(θ̂s − θ̂j)

> 0.

So θ̂proj cannot be the optimal solution.

C.2.2 LEMMA 5

Statement of Lemma 5 Suppose that θ̂proj is the optimal solution to:

θ̂proj = argmin
θ∈RD

||θ̂ − θ||22,

subject to:
D∑
i=1

θi = 1

0 ≤ θi ≤ τi,∀i ∈ [1, D],

where τi > 0 are fixed values. Then, θ̂proj
s = τs implies θ̂proj

j = τj for any θ̂j − τj > θ̂s − τs.

Proof: Again, this is similar to Lemma 2 from Shalev-Shwartz & Singer (2006). Assume for the
sake of contradiction θ̂proj

s = τs and θ̂j − τj > θ̂s − τs, yet we have θ̂proj
j < τj .

Now we can construct another vector θ′ that is the same as θ̂proj, except in two places:
θ′s = θ̂proj

s −∆

θ′j = θ̂proj
j +∆,

for some ∆ satisfying 0 < ∆ < min(θ̂proj
s , τj − θ̂proj

j ). This bound on ∆ ensures that θ′ is still
within the thresholds. We know that ∆ can exist because min(θ̂proj

s , τj − θ̂proj
j ) > 0 (by supposition,

τj − θ̂proj
j > 0 and θ̂proj

s = τs > 0).

Now we can compute:

||θ̂ − θ̂proj||22 − ||θ̂ − θ′||22 = (θ̂s − θ̂proj
s )2 + (θ̂j − θ̂proj

j )2 − (θ̂s − (θ̂proj
s −∆))2 − (θ̂j − (θ̂proj

j +∆))2

= 2∆((θ̂j − θ̂proj
j )− (θ̂s − θ̂proj

s )−∆)

> 2∆((θ̂j − θ̂proj
j )− (θ̂s − θ̂proj

s )−min(θ̂proj
s , τj − θ̂proj

j ))

≥ 2∆((θ̂j − θ̂proj
j )− (θ̂s − θ̂proj

s )− (τj − θ̂proj
j ))

= 2∆((θ̂j − τj)− (θ̂s − θ̂proj
s ))

= 2∆((θ̂j − τj)− (θ̂s − τs))

> 0.

So θ̂proj cannot be the optimal solution.
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C.2.3 FULL PROOF

Theorem 3 Suppose we want to solve:

θ̂proj = argmin
θ∈RD

||θ̂ − θ||22,

subject to:
D∑
i=1

θi = 1

0 ≤ θi ≤ τi,∀i ∈ [1, D],

where τi > 0 are fixed values. Then the solution is:

θ̂proj
k = min(max(θ̂k − λ, 0), τk),

where λ is found (through e.g. bisection search) to satisfy:
D∑
i=1

min(max(θ̂i − λ, 0), τi) = 1.

Proof: Note that this problem is the same as the simplex projection problem from Shalev-Shwartz
& Singer (2006) and Duchi et al. (2008), except here we have additional θi ≤ τi constraints. The
Lagrangian for this problem is4:

L(θ, µ, ζ, λ) = 1

2
||θ̂ − θ||22 + λ

(
−1 +

N∑
i=1

θi

)
− ⟨µ,θ⟩+ ⟨ζ,θ − τ⟩.

To find the optimality condition with respect to a single index of θ, we set the derivative to zero:
dL
dθi

= θi − θ̂i + λ− µi + ζi = 0.

The complimentary slackness KKT condition gives us that ζi = µi = 0 when 0 < θi < τi, so for θi
not at the boundary of our constraints, we get:

θi = θ̂i − λ.

So, we have that for all θi ∈ (0, τi), there is a shared value λ which we subtract from θ̂i to get the
value of θi. How do we know which θi are 0 and which θi are τi, though?

Assume that we know λ. By Lemma 4, we can characterize the optimal solution as:

θ̂proj
k = max(θ̂k − λ, 0),

for θ̂proj
k ̸= τk. By Lemma 5, we can characterize the optimal solution as:

θ̂proj
k = min(θ̂k − λ, τk),

for θ̂proj
k ̸= 0. So, we can combine these two forms to get:

θ̂proj
k = min(max(θ̂k − λ, 0), τk).

Now recall that we have the following constraint:
D∑
i=1

min(max(θ̂i − λ, 0), τi) = 1.

Given this constraint, we can find λ through search (moving the value up or down). We can see this
by noticing that

∑D
i=1 min(max(θ̂i − λ, 0), τi) is a strictly decreasing function of λ between the

setting of λ that makes θ̂i − λ > 0 for at least one i, and the setting of λ that makes θ̂i − λ < τi for
at least one i. So in this range, there is only one setting of λ that satisfies this equation. We can only
choose a λ outside of this range when

∑D
i=1 τi = 1, and in this case the solution is trivial: θ̂proj

i = τi
for all i.

4Note that multiplying ||θ̂proj − θ||22 by 1
2

does not change the minimization problem and enables us to get
rid of a factor of 2 after taking the derivative of the Lagrangian.
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D ALTERNATIVE METHODS

Our estimator is far from the only reasonable high-dimensional, single-index model estimator. We
briefly discuss some alternatives and the tradeoffs involved before moving to experimental results.

We could use classic low-dimensional methods regularized for the high-dimensional setting. This
includes ordinal regression (Wooldridge, 2010) and the isotron algorithm (Kalai & Sastry, 2009).
We found these methods to underperform correlation-based estimators, and tuning hyperparameters
added additional complexity that was not needed in the correlation-based approaches.

Another class of methods involve scaling laws (Kaplan et al., 2020; Llama Team, 2024; Ruan
et al., 2024). We could transform the y values via an inverse sigmoid or power law, and fit high-
dimensional linear regression methods (e.g. ridge, partial least squares, or Lasso). We initially found
this approach promising, but the inverse transforms were unstable, and the combination of fitting the
nonlinear transform and regularization required significant amounts of tuning.

Rank-correlation methods, including our robustified version of the estimator from Chen & Banerjee
(2017), and even the standard Spearman correlation (Spearman, 1904) (see Appendix G) performed
well. We believe that in general, robust per-feature correlations are likely to perform well as D ≫ N ,
and extreme levels of regularization are needed to obtain reasonable models. Sparse methods such
as the Lasso (Tibshirani, 1996) are one classic answer, but we cannot necessarily assume that the
underlying correlations θ∗ are sparse, and we did not find these techniques to perform well.

E LOSS MATRIX COMPUTATION SPECIFICS

For all of our experiments, we computed the loss matrix as follows. For efficiency purposes, we
sampled only 25 pages for a domain’s bits-per-byte (BPB) computation even if a domain had more
than 25 pages. To get an LLM’s BPB on a page, we split the page into chunks of text that were 512
tokens according to a reference tokenizer (we used the Llama 2 7B tokenizer; Touvron et al. 2023).
These text chunks turned out to be small enough to fit in the context of every LLM we tested. We
then averaged BPB across chunks for each page and then across pages for each domain.

F ADDITIONAL DETAILS FOR PRETRAINING EXPERIMENTS

In this section, we specify hyperparameters and methods used for LLM pretraining and evaluation
for our LLM pretraining experiments. We also specify settings used for the data-selection methods.

F.1 LLM PRETRAINING

We trained each LLM on 4 NVIDIA A100 GPUs. At 3.2B tokens, each training run took under 3
hours with the Hugging Face Trainer (Wolf et al., 2019) and appropriate PyTorch (Ansel et al., 2024)
compile flags. We provide pretraining hyperparameters in Table 2. Given our per-device batch size,
we found the learning rate by increasing it by a factor of 2 until we saw instability and then using
the highest learning rate where no instability was observed. Refer to the Pythia paper (Biderman
et al., 2023) for more information; we initialized the model from scratch using their 160M model
configuration at https://huggingface.co/EleutherAI/pythia-160m. Other hyperparameters
can be assumed to be Hugging Face Trainer defaults at the time of this writing.

F.2 LLM EVALUATION

At the end of the pretraining script, we used the Eleuther AI Eval Harness (Gao et al., 2023). For
efficiency, we set the sample limit to 5000 examples per benchmark. Elsewhere, we used the default
settings. On 4 NVIDIA A100s, it took only a few minutes per LLM to compute evaluation results
for SciQ, ARC Easy, PIQA, LAMBADA, and all of the translations of LAMBADA.

F.3 DSIR

DSIR (Xie et al., 2023b), despite its simplicity, requires some tuning. A decision must be made
about how to format the bemchmark data into a single piece of text per example so that it can be
compared with potential pretraining data in terms of n-gram overlap. The LAMBADA tasks only
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Table 2: LLM Pretraining Hyperparameters

Parameter Value

Per-device Batch Size 128

Learning Rate 5× 10−3

Warmup Ratio 0.1

Adam β1 0.9

Adam β2 0.95

Adam ϵ 1× 10−8

Weight Decay 0.1

LR Scheduler cosine

Max Grad Norm 1.0

BF 16 True

Distributed Backend nccl

Gradient Accumulation Steps 1

Table 3: Unique pretraining tokens selected per benchmark, from DSIR.

Benchmark Tokens

ARC Easy 2,905,206,499

PIQA 2,910,486,295

SCIQ 2,920,734,042

LAMBADA 3,022,219,424

LAMBADADE 3,210,986,137

LAMBADAES 3,396,528,704

LAMBADAFR 3,413,930,081

LAMBADAIT 3,384,854,845

have one text column per example, so the decision here is trivial. Examples from the other tasks
each have a question, possibly a context, and a set of multiple choice answers to choose from. We
chose to concatenate all of these columns together with spaces to form one piece of text per example,
duplicating the same question as a prefix for each different answer.

DSIR does not allow the user to specify the exact number of unique tokens desired for pretraining.
It only allows the specification of the number of unique pages, which can have wildly varying token
counts. For every DSIR job, we set the desired number of pages to 3325589, which we found
through binary search to produce slightly more than 3.2B unique tokens for LAMBADAFR. It was
expensive to find this number for even one bechmark, because for each iteration of the binary search,
we had to run DSIR and then the Pythia tokenizer to know how many tokens resulted from the input
page number parameter. We provide the number of unique tokens from DSIR for each task in Table
3. We pretrained on 3.2B tokens for every LLM regardless of whether all of them were unique.

F.4 FASTTEXT

The “SOTA” fastText model from Li et al. (2024) is available here: https://huggingface.co/
mlfoundations/fasttext-oh-eli5. We used this model to filter data by sorting pages by the
model’s “high quality” score, including the top pages in order until we had either reached or gone
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(a) Estimate with linear projection. This is our algo-
rithm from the main text without training the addi-
tional fastText filter.

(b) Estimate with quadratic projection. Same as (a) ex-
cept the linear projection is replaced with the quadratic
projection.

(c) Spearman rank correlation with linear projection.
Same as (a) except we replaced our estimator with the
Spearman rank correlation.

(d) fastText filter trained on data selected in (c). This
is the same as our algorithm in the main text, replacing
our estimator with the Spearman rank correlation.

Figure 6: Pretraining results for different methods within our paradigm. Overall, we see that many
rank-correlation pretraining data selection approaches perform well.

slightly over 3.2B unique tokens. This aligns with the data-selection procedure in the original paper,
and is also essentially the same as running the linear projection (Equation 10) at the page-level. We
also applied this method when selecting data using our own fastText filter trained by our algorithm.

G ADDITIONAL PRETRAINING RESULTS

In Figure 6, we present additional pretraining results for methods in our loss-performance correlation
data selection paradigm. We find that using Spearman rank correlation (Spearman, 1904) in place
of our estimator achieves comparable performance. On some tests, it performs even better than our
estimator. We also find that using the quadratic projection, while perhaps more intuitive, leads to
worse performance than the linear projection.
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Figure 7: This figure is analogous to Figure 3, except the τ thresholds have been multiplied by 5.
We see that our approach selects even more relevant data when the selection pool is larger.

Figure 8: The parameter-count histogram of the 90 models from the Open LLM Leaderboard
(Beeching et al., 2023) that we used to compute our estimate for pretraining data selection. Bar
widths are 160M. The smallest model in the sample has ≈33M parameters and the largest has ≈9B.
The spike around 6.7B parameters is due to a large number of partially trained Pythia (Biderman
et al., 2023) checkpoints from the same training run at that scale. Our algorithm has the hard task
of selecting pretraining data for 160M parameter models, which is abnormally small in the set of
models used to compute the estimate.

H PRETRAINING TOKEN DISTRIBUTION WITH 5× τ

Figure 7 shows what the projected estimate in our pretraining experiments would be if we had a
pretraining data pool 5× as large. We see here that the estimate does an even better job at selecting
pretraining data with the language that matches the target task.

I PARAMETER COUNT DISTRIBUTION FOR ESTIMATOR LLMS

In Figure 8, we present the parameter-count histogram of the 90 models from the Open LLM Leader-
board (Beeching et al., 2023) that we used to compute our estimate for pretraining data selection.
Only 8 models here are less than 160M parameters. Despite this, our estimate can be used to effec-
tively pretrain 160M parameter LLMs.

J ANALYSIS OF THE MODEL-LOSS MATRIX X

What information is contained in the matrix of model losses X? Clearly, it must contain semantically
meaningful information about the data, such as the language that a piece of text is in. We performed
PCA (Pearson, 1901) and t-SNE (van der Maaten & Hinton, 2008) on X and plotted the first two
components for each of our 9,841 domains. As shown in the first row of Figure 9, we found two
components with relatively high singular values. The first component clearly corresponds with the
language of a domain. The second component corresponds with the average bits-per-byte or entropy
of a domain. The t-SNE components show the same general pattern as well as showing that the
language clusters are very well separated. As shown in our plots, there are several salient clusters
within the language clusters. Within the English cluster, we found a subcluster for luxury goods,
another for legal services and information, another for academic research, and even a cluster for
funeral homes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Analysis of the loss matrix. The first row treats domains as examples to be projected via
PCA, while the second row treats models as examples. Panels (a): eigenvalue decay for the eigende-
composition of the D×D covariance matrix resulting from the loss matrix; a few dominant PCs are
seen. (b) and (c): domains plotted by the first two PCA components showing separation of language
in b and entropy in c. (d,e) show analogous plots in t-SNE with a clearer separation of language. (f):
eigenvalue decay analogous to (a). (g,h): models plotted by the first two PCA components showing
clustering by model family (clusters show Pythia (Biderman et al., 2023), Qwen (Bai et al., 2023),
and OpenLlama (Geng & Liu, 2023) derivatives – the three largest clusters in our data), and average
model loss. (i,j) show analogous results under t-SNE where (i) is normalized to remove per-model
entropy differences.

The second row of Figure 9 shows plots for the loss matrix when we take the principal components
of the other dimension, where points correspond to the 90 LLMs. For PCA, PC1 corresponds to
entropy. For both cases, it is less clear what the other PCs are, but when we color the three largest
families of models in our data (Pythia (Biderman et al., 2023), Qwen (Bai et al., 2023), and OpenL-
lama (Geng & Liu, 2023)), we see that model families are clustered together in the PC graphs.
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