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ABSTRACT

While there have been considerable advancements in machine learning driven by
extensive datasets, a significant disparity still persists in the availability of data
across various sources and populations. This inequality across domains poses
challenges in modeling for those with limited data, which can lead to profound
practical and ethical concerns. In this paper, we address a representative case of
data inequality problem across domains termed Semi-Supervised Domain Gener-
alization (SSDG), in which only one domain is labeled while the rest are unla-
beled. We propose a novel algorithm, ProUD, designed for progressive general-
ization across domains by leveraging domain-aware prototypes and uncertainty-
adaptive mixing strategies. Our experiments on three different benchmark datasets
demonstrate the effectiveness of ProUD, outperforming existing baseline models
in domain generalization and semi-supervised learning.

1 INTRODUCTION

In the realm of machine learning, the availability of extensive datasets has played a pivotal role in
driving advancements (Sun et al.,[2017; Kaplan et al.,|2020). However, acquiring sufficient training
data remains a challenge due to data accessibility disparities across different sources and popula-
tions, an issue commonly termed as data inequality. The World Development Report by the World
Bank (Bank, [2021)) underlines this problem, noting that developing economies frequently grapple
with data scarcity stemming from an absence of requisite infrastructure for data connectivity, stor-
age, and processing. The deficiency also extends to the limited availability of human expertise and
skilled labor in these areas.

Such data inequality not only presents practical challenges but also raises ethical concerns in the de-
sign and deployment of machine learning models. This issue is prevalent across various fields, with
a clear example in the biomedical sector. Data inequality across ethnic groups can lead to uneven
model performance, thereby exacerbating global healthcare inequalities, as evidenced by |Gao &
Cui (2020); |Gao et al.| (2023). In particular, recent statistics (Guerrero et al., [2018]) reveal a severe
imbalance: data from 416 cancer-related genome-wide association studies were collected from Cau-
casians (91.1%), followed distantly by Asians (5.6%), African Americans (1.7%), Hispanics (0.5%),
and other populations (0.5%). It is noteworthy that non-Caucasians, constituting approximately 84%
of the world’s population, find themselves at a considerable data disadvantage. This inequality can
lead machine learning models to exhibit compromised predictive accuracy and a lack of robustness
for these underrepresented groups, potentially harming their healthcare outcomes (Martin et al.,
2019; Rajkomar et al., [2018)).

In light of these concerns, we address a representative case of the data inequality problem across
domains, termed Semi-Supervised Domain Generalization (SSDG). More specifically, the core ob-
jective of SSDG is to learn domain-invariant features from multiple source domains, wherein only
one domain is labeled while the rest domains remain unlabeled. Such a setting mirrors real-world
situations, especially when obtaining labeled data from certain domains is considerably more diffi-
cult than from others. Table[I]| provides some examples of this scenario across various fields.

To mitigate the issue of data inequality across domains with SSDG, we propose a Prototype-based
Uncertainty-adaptive Domain Generalization algorithm, denoted as ProUD. The main challenge in
addressing data inequality across domains stems from the need to efficiently leverage the potential
of samples from unlabeled source domains. Consequently, within our ProUD method, we integrate



Under review as a conference paper at ICLR 2024

Table 1: Examples of machine learning applications in various fields susceptible to data inequality
problem across domains, where Semi-Supervised Domain Generalization(SSDG) can be applied.

Task / Application H Labeled Domain \ Unlabeled Domain
. . . Caucasians Other ethnicities
Biomedical Imaging . - .
Central hospitals Peripheral hospitals
Natural Language Processing English Mmo.rlty lan.guages
Standard language Regional dialects
Urban area Rural area

Autonomous Driving

Typical weather conditions | Rare weather conditions

Agricultural Crop Monitoring Developed countries Developing countries
(Using Satellite Images) Commercial satellites Non-commercial satellites

prototype-based mechanisms designed to assign reliable pseudo-labels to such unlabeled data and
learn feature representations invariant across different domains. These include (1) prototype-based
pseudo-labeling (ProtoPL), (2) uncertainty-adaptive integration of unlabeled domains (DomainMix),
and (3) contrastive learning for domain-invariant representations (Prototype Merging Loss).

We compare our method with extensive baselines including domain generalization (DG) and semi-
supervised learning (SSL) methods. However, both DG and SSL approaches exhibit suboptimal
performance when applied to the data inequality problem with SSDG. The limitation stems from DG
methods not being designed to utilize unlabeled data and SSL methods assuming that all training
data are sampled from a single distribution. Thus, we include stronger baselines by incorporating
domain adaptation (DA) and domain generalization (DG), employing a direct approach to SSDG
consisting of two training phases: pseudo-labeling and domain generalization. Furthermore, we
also compare our method with EID (Lin et al.l 2023), a straightforward approach to address SSDG
by generating pseudo-labels for unlabeled data and filtering out noisy labels. Extensive experiments
have been conducted to compare our approach with these baselines, illustrating superior overall
performance and robustness on three different datasets.

Overall, our contributions can be summarized as follows:

* We introduce a novel algorithm, ProUD, to address SSDG, a representative case of data inequality,
where only one source domain is labeled while the others are unlabeled.

* We propose a prototype-based pseudo-labeling method (ProtoPL) that utilizes domain-aware pro-
totypes to assign reliable pseudo-labels to the samples from a set of multiple unlabeled domains.

* We present a progressive generalization method (DomainMix) that enables gradual integration of
unlabeled domains by utilizing entropy-based uncertainty.

* We develop a contrastive loss (Prototype Merging Loss) for learning domain-invariant features by
merging domain-aware prototypes.

* Our method consistently outperforms extensive baseline models, demonstrating superior average
performance and robustness across various domain combinations on three different datasets.

2 RELATED WORK

Domain Generalization Domain Generalization (DG) aims to train a model using data from one
or multiple source domains, enabling it to achieve effective generalization across unseen target do-
mains. Early research on DG primarily focused on acquiring domain-invariant representations by
aligning features across distinct sources (Gan et al., [2016; |Ghifary et al) [2016; [2015 [Li et al.
2018b). Meta-Learning has also been explored for DG (Balaji et al., 2018 [Dou et al., |2019; |L1
et al., 2018aj 2019)), involving training a model with pseudo-train and pseudo-test domains drawn
from source domains to simulate domain shifts. Another approach to DG incorporates data aug-
mentation, which seeks to increase style diversity at the image-level (Shankar et al., 2018; Zhou
et al. 2020a; [Xu et al., 2021; |Gong et al.l 2019} |Zhou et al., |2020b)), or the feature-level (Zhou
et al.,2021a;|Li et al., [2022; |[Zhong et al.| 2022; [Li et al.,|2021)). However, these DG approaches are
limited by their heavy reliance on accessing labeled data from multiple source domains. To address
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practical scenarios, single-source DG methods (Romera et al., [2018; [Volpi et al., 2018}; Zhao et al.|
2020) have emerged, which utilize labeled data from a single domain. Single-source DG methods
are largely built upon adversarial domain augmentation (Huang et al.|[2020; |Q1ao0 et al.| |2020; |Wang
et al.| 2021)). Our problem setting, SSDG, is similar to single-source DG, as it utilizes only a single
labeled source domain during the training process. However, it differs in that it also has access to
unlabeled data from multiple domains. Our work focuses on effectively leveraging the unlabeled
source data by progressively mixing it with labeled source data through DomainMix.

Semi-Supervised Learning In semi-supervised learning (SSL), a small amount of labeled data
is accessible alongside a larger volume of unlabeled data to train a model. Various methods have
been developed to effectively utilize this mix of labeled and unlabeled data. An established ap-
proach in SSL is consistency regularization, which forces a model’s predictions to remain consistent
when alterations are made to the model (Laine & Ailal |2016; [Tarvainen & Valpolal |2017; [Miyato
et al., 2018). Another popular approach is to employ pseudo-labeling (Lee et al., 2013), which
generates pseudo-labels for unlabeled data using a pretrained model (Xie et al.| [2020). Further-
more, MixMatch (Berthelot et al., 2019), FeatMatch (Kuo et al., |2020), and FixMatch (Sohn et al.,
2020) incorporate a combination of pseudo-labeling and consistency regularization. However, typ-
ical SSL methods heavily rely on the assumption that labeled and unlabeled data share an identical
distribution, which can be quite challenging to fulfill in real-world scenarios. SSDG can be viewed
as a particular variation of SSL, specifically relevant in practical situations where the labeled and
unlabeled data hold different distributions. The difference in distribution between the labeled and
unlabeled data can result in significant bias in the pseudo-labels, leading to degradation in perfor-
mance. To address this issue, EID (Lin et al.| |2023)) filters out noisy labels using a specified cleaning
rate to generate a set of pseudo-labeled data with enhanced quality, employing a dual network archi-
tecture. However, this approach can be inefficient in terms of harnessing the potential of unlabeled
data, as it only utilizes a fraction of the available data during the training process. Rather than ap-
plying a threshold to filter out noisy labels, our approach involves a measurement of the uncertainty
associated with each pseudo-label, to effectively utilize them during the training process.

Mixup Mixup (Zhang et al., 2017) is a simple yet effective method to extend the training data
distribution, founded on the intuition that performing linear interpolations among input images will
result in corresponding linear interpolations of the labels. As an intuitive strategy for data augmen-
tation, Mixup has also been studied in the context of DG (Zhou et al., [2021aj; [Wang et al., 2020; Xu
et al., 2021} |Lu et al.| 2022). FIXED (Lu et al.l [2022) states two limitations of applying Mixup to
DG: first, in discerning domain and class information, which leads to performance degradation due
to entangled domain-class knowledge. Second, Mixup may generate noisy data, especially when
data points from distinct classes are close to each other. Inspired by this research, we exclusively
apply DomainMix to images with the same classes before Mixup, preventing the entanglement of
domain-class knowledge. Additionally, we utilize Prototype Merging Loss to ensure that data points
from different classes remain well-separated. We employ DomainMix at the feature-level for effec-
tive generalization, as demonstrated by Zou et al.|(2023); [Li et al.| (2021)); 'Verma et al.| (2019)) as a
more promising direction for DG.

3 METHODOLOGY

In this section, we introduce the problem setting for Semi-Supervised Domain Generalization
(SSDG) and present our proposed method, termed the Prototype-based Uncertainty-adaptive Do-
main Generalization (ProUD) algorithm.

3.1 SEMI-SUPERVISED DOMAIN GENERALIZATION

In this work, we tackle the /-way image classification problem for Semi-Supervised Domain Gener-
alization (SSDG). The image space X’ and label space ) are assumed to be shared across all domains.
For notational simplicity, the notation D; denotes both the ¢-th domain and the dataset sampled from
it interchangeably. To formulate the SSDG problem, consider a training dataset D" = D! U DY,
consisting of a single labeled source domain D' and a set of unlabeled source domains D*. Specif-

ically, we have a labeled source domain D? =Dy = {(xy’, ys” )} Yo, where Ny denotes the total

number of samples in Dy, and :céi) and y(()’) indicate input data and its corresponding label of the



Under review as a conference paper at ICLR 2024

Algorithm 1 Prototype-based Uncertainty-adaptive Domain Generalization (ProUD)

Input: Pretrained model f = h o g, labeled source domain dataset D' = Dy, unlabeled source

domain datasets D" = {Dy, ..., Dr}, and balancing parameter .
for epoch = 1 to E do > for each epoch
fort =1to 7 do > for each unlabeled source domain

Apply ProtoPL on D, to generate domain-aware prototypes {C', k}le.
Based on them, build a pseudo-labeled dataset D, with uncertainty estimates.

end for _

Sample a sequence of mini-batches {B%}5_; from U;le Dy

for s =1to S do > for each mini-batch
B. = SampleMatch(B%, Dy)
B™ = DomainMix (B, BY)
Update the parameters of f with £(h o g) = Lcg(h o g; B™) + aLpwi(g; BL U BY)

end for

end for

i-th sample. On the other hand, a set of unlabeled source domains D% = {D,}1_; does not contain
any label information (i.e., D; = {wg”}f’;l). In this setting, we have a model f(x) = (h o g)(x),
where g : X — RZ? and h : R? — R represent the feature extractor and the classifier, respectively.
d denotes the feature dimension. The goal of SSDG is to train the model f with D™ to generalize

well on a test dataset from unseen domain D', where D" N Diest = (j,

3.2 THE PROUD ALGORITHM

To address the challenge of SSDG, we present the Prototype-based Uncertainty-adaptive Domain
Generalization (ProUD) algorithm, which is detailed in Algorithm At a high level, ProUD is
characterized by its utilization of (1) prototype-based pseudo labeling (ProtoPL), (2) uncertainty-
adaptive integration of unlabeled domains (DomainMix), and (3) contrastive learning for domain-
invariant representations (Prototype Merging Loss). Given labeled source domain D! = D and
unlabeled source domains D% = {D;, ..., Dr}, we first pretrain the model f using D!. Following
this, for the main training, we use ProtoPL to generate domain-aware prototypes and pseudo-labels
with uncertainty estimates for D in the beginning of every epoch. For each mini-batch, we employ
DomainMix to progressively achieve generalization through the gradual integration of D" based on
uncertainty. Finally, the model is optimized using cross entropy and Prototype Merging Loss, aiming
to achieve discrimination between classes and generalization across domains simultaneously.

Pretraining We first pretrain f with cross-entropy loss, only using labeled data from D' = D,
as an initializer for joint training with the unlabeled domains D*. To prevent overfitting to D', we
introduce a noise mixing augmentation technique named NoiseMix. The core idea of this technique
is to mix a given sample @ with a randomly initialized convolutional layer ®, such that < \®(x)+
(1 — M), where A is a mixing ratio. The advantage of employing a convolutional layer is that it
allows the generation of a noised image without significantly distorting the semantic information of
the original image, due to its translational invariance. We apply NoiseMix repeatedly for P steps
using a sequence of different random convolutional layers ®4, ..., ®p. Additional implementation
details associated with NoiseMix are provided in Appendix A.

Prototype-Based Pseudo-Labeling We present ProtoPL, an extended version of the prototype-
based pseudo-labeling method, initially introduced by [Liang et al.|(2020)), to assign pseudo labels to
samples from a set of multiple unlabeled domains D". In the beginning of every training epoch, we
produce a domain-aware class prototype C , which indicates the centroid of features for samples
in class k, for every domain D;

2w,ep, Ok ([ (@1))g (1)
Yzen, Ok(f(@))

where 6 (+) denotes the k-th element of a softmax output, and g(-) = g(-)/|lg(-)||. Prototypes are
generated by calculating a weighted sum of the features as described in Eq. [I} with the weights

Cop = (1)
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representing the probability of belonging to class k. Then, each unlabeled sample x; is pseudo-
labeled as

g(xy) = arg;nin dist(g(z), Ci k) 2

where dist is the cosine distance between the feature of sample x; and the prototypes of its domain
D;. The prototypes are reconstructed based on the new pseudo-labels assigned in Eq. [2]as

C, . — > zaep, L(x) = k)g(w:)
T e L) = k)

Based on the new prototypes, Cy 1,--- ,Cy i for Dy (t > 0), we use Eq. E] to construct a pseudo-

3)

labeled dataset D; = {(m,@, j&t(i), egi))}fv:tl, including the entropy-based uncertainty estimates de-
fined as

e(xy) = — Z O (—dist(g(x¢), Cri)/Te) log 0r (— dist(g(x¢), Cri)/Te), )
k

where ¢(x;) is the uncertainty estimate of sample x; and 7, is a temperature parameter. The use of
this measure will be further explained in a subsequent section, specifically under DomainMix.

In addition to the aforementioned process of ProtoPL, we introduce an ensembling method with ran-
dom augmentation techniques to reinforce the reliability and robustness of pseudo-labels. Specif-
ically, given a dataset D;, we generate R randomly augmented datasets {A,.}2 ; and all N; x r
samples are aggregated to calculate prototypes. Then, pseudo labels are calculated with an ensem-
ble of predictions from different augmentations by

g(xy) = arg;naxz(sk(— dist(g(A,(z¢)), Cr.1)).- (5)

Uncertainty-Adaptive Integration of Unlabeled Domains Since the pretraining process solely
depends on samples from a labeled domain, it can be quite challenging to expect the model to
generate reliable pseudo-labels for unlabeled domains right from the initial training phase. This
necessitates the gradual integration of unlabeled data as the training progresses. To achieve this
goal, we introduce a progressive generalization method called DomainMix, where a pseudo-labeled
sample is mixed with a labeled sample of the same class based on uncertainty estimates (Eq. [).
By assigning a low mixing ratio for the samples with high uncertainty, we can prevent unreliable
samples from being overly involved with training, thereby allowing for a progressive integration of
the unlabeled domains. Specifically, given a sample (x;, g, ¢;) from pseudo-labeled dataset D;,
we randomly samjple xo with yg = ¢; from the labeled domain Dy. For a batch of pseudo-labeled
samples B* C |J,_, Dy, we can apply the same sampling process for each sample to find a batch
of the corresponding labeled samples ' = SampleMatch(B%, Dy). Finally, we mix each pair of
the samples (x*, x!) from B* and B' to get a batch of samples B™ = DomainMix (3, B") by the
following equation:

™ = \x® + (1 — Nz, (6)

where ™ is a domain-mixed sample, and X is the mixing ratio. ) is primarily determined by the un-
certainty estimate € of the pseudo-labeled sample x* through A, = exp(—e€/7x)/(1+exp(—€/T»)),
where 7 is a temperature parameter. Note that this equation implies that the uncertainty of labeled
samples is assumed to be zero. To address the case where a larger portion of * is included in =™
than 2!, we assign a random mixing ratio to a sample with \. above threshold \*, formulated as
\— {/\uNU(O, 1), if A >.)\*7 7

Aes otherwise,

where ), represents a random value sampled from U (0, 1), a uniform random distribution between
0 and 1.

Loss Function We first use the conventional cross entropy loss for domain-mixed samples,
Lcg(h o g; B™), where B™ represents a batch of domain-mixed samples. Lcg is coupled with
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MixUp in the feature level to enhance sample diversity for classification (Zhang et al., 2017). Fur-
thermore, we introduce a contrastive loss for learning domain-invariant representations, called Pro-
totype Merging Loss (PML), defined as

exp (— dist(g(z),Cy))
Lpmr(g; B'U BY) = — log gl W)
(m,y>ez:zslu3u > exp (— dist(g(x), Cr))

(®)

where B! and B" represent a batch of labeled samples and a batch of unlabeled samples, respectively,
and C'y, = (Cy k). The notation ( - ), denotes an average over all values of ¢. C', plays a pivotal
role as an anchor point, attracting the features of all samples that belong to class k, regardless of
the domains they originate from. Consequently, PML facilitates the merging of prototypes from
different domains into a single point, and the feature extractor g is guided to learn domain-invariant
representations, which enhances effective generalization over various domains, encompassing those
that are unlabeled.

4 EXPERIMENTS

We evaluate the effectiveness of our proposed method, ProUD, by comparing against strong base-
lines on three datasets: PACS (Li et al.| 2017), Digits-DG (LeCun et al.| 1998} |Ganin et al., 2016
Netzer et al., [2011}; Roy et al., 2018), and Office-Home (Venkateswara et al., 2017). Following the
experimental setup from |Lin et al.[(2023), we design our experiments to address SSDG, a repre-
sentative case of data inequality problem across domains in which only a sinlge domain is labeled
while the rest are unlabeled.

Datasets All three datasets consist of four distinct domains, simulating different sources from
which samples are collected. PACS includes Photo (P), Art Painting (A), Cartoon (C), and Sketch
(S) with 7 object categories. Digits-DG contains images from MNIST (Mn), MNIST-m (Mm),
SVHN (Sv), and SYN-D (Sy) with 10 digits from 0 to 9. Office-Home consists of 65 object cate-
gories from Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw). We split each source domain
dataset (D) into training and validation sets with ratio 9:1 for PACS, 8:2 for Digits-DG, and
approximately 9:1 for Office-Home.

Experimental Settings For each dataset, we conduct experiments for all 12 possible domain com-
binations across four distinct domains, simulating data inequality problem across domains by includ-
ing one labeled and two unlabeled source domains (D), as well as one unseen test domain (D'),
All experiments are repeated three times with different random seeds (2022/2023/2024), and we re-
port average accuracy obtained from these repetitions. In each experiment, we calculate the average
accuracy over the last five epochs. We train the model using the SGD optimizer with mini-batches
of 128 samples for all datasets. Further implementation details are provided in Appendix B.

4.1 EFFECTIVENESS OF PROUD

Comparison Baselines To evaluate the effectiveness of our proposed ProUD method, we bench-
mark it against a comprehensive set of baselines, using the experiment results reported in [Lin et al.
(2023). The baselines encompass various methods from the literature on Domain Generalization
(DG), Semi-Supervised Learning (SSL), and the integration of Domain Adaptation and Domain
Generalization (DA+DG) that are relevant to our SSDG framework. Notably, the state-of-the-art
SSDG method, EID, presented by [Lin et al.| (2023) also serves as one of our baselines. The imple-
mentations of these baselines are detailed as follows:

* Domain Generalization (DG): The model employs single-source domain generalization methods
such as RSC (Huang et al., 2020), L2D (Wang et al., 2021), and DGvGS (Mansilla et al., 2021)),
and is trained soley on the labeled source dataset.

* Semi-Superivsed Learning (SSL): The model is trained on both labeled and unlabeled data,
disregarding domain distinctions. It employs semi-supervised learning methods, including Mean-
Teacher (Tarvainen & Valpolal [2017), MixMatch (Berthelot et al.| 2019), and FixMatch (Sohn
et al., [2020).
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* Domain Adaptation and Domain Generalization (DA+DG): This method offers a direct ap-
proach to SSDG and consists of two training phases: pseudo-labeling and domain generalization.
Initially, a pseudo-labeling model is trained individually for each unlabeled source domain utiliz-
ing unsupervised domain adaptation methods like MCD (Saito et al.,|2018) and CDAN+E (Long
et al.,[2018)). Subsequently, the generalization model is trained both on the pseudo-labeled source
domains and the true-labeled source domain, leveraging multi-source domain generalization meth-
ods such as DDAIG (Zhou et al.} 2020a)), Mixstyle (Zhou et al.,[2021a), and DAELDG (Zhou et al.,
2021b).

Table 2: Comparison of the performance between ours and various state-of-the-art methods on the
PACS dataset. The bullet ® and asterisk * indicate labeled source domain and unseen test domain,
respectively. All other domains are treated as the unlabeled source domains. Avg. and Std. respec-
tively stand for average and standard deviation across 12 domain combinations. The best results are
highlighted in bold. This representation format is maintained in subsequent tables.

Type Method L A c s* Avg. | Std.
A* Cc* S* P* Cc* S* P* A* S* pP* A* Cc*

RSC 66.6 27.6 38.6 | 937 68.0 657|835 692 766|475 430 652 | 62.1 | 185

DG L2D 65.2 307 354 |96.1 657 580|873 735 679|482 459 618 | 61.3 | 18.6

DGvGS 542 166 285|938 547 397|803 595 567|143 162 172 | 443 | 255

MeanTeacher 547 363 33.1|919 656 38.1|803 606 586|381 334 547 | 538 | 183

SSL MixMatch 357 162 245|873 627 47.6 | 43.1 479 50.7 | 26.1 469 522 | 45.1 | 18.0

FixMatch 66.8 349 259 96.6 729 67.1 |91.7 765 69.5 | 363 352 56.0 | 60.8 | 22.3

DA MCD+DDAIG 71.0 53.0 550|936 647 652|903 745 69.7|47.0 459 452 | 64.6 | 15.6

+ MCD+Mixstyle 758 612 50.8 | 951 679 64.0 | 89.8 784 683 | 484 446 532 | 665 | 154

DG "CDAN+E”+DAELDG | 623 623 319 | 956 63.5 46.6 | 860 73.6 70.0 | 39.0 382 55.1 | 603 | 18.6

SSDG EID 755 71.0 640 | 949 718 672|846 774 722|672 669 728 | 73.8 | 83

ProUD (Ours) 738 63.6 741 | 91.1 754 76.6 | 869 789 78.1 | 63.0 689 704 | 751 | 8.0

Table 3: Comparison of the performance between ours and various state-of-the-art methods on the
Digits-DG dataset.

Type Method Mn* Mm* Sv* Sy* Avg. | Std.
Mm* Sv*  Sy* | Mn* Sv* Sy* | Mn* Mm* Sy* | Mn* Mm* Sv*

RSC 428 193 450|936 11.7 120 | 705 46.1 955 | 814 424 788 | 533 | 29.0

DG L2D 572 282 531|971 125 251 | 724 528 942|802 457 80.0 | 582 | 26.2

DGvGS 133 122 195|889 112 165|577 242 885 | 684 259 67.1 | 41.1 | 293

MeanTeacher 239 138 264 | 8.1 193 324|436 175 592|563 222 384|363 | 198

SSL MixMatch 330 181 303|936 267 454|593 279 767|677 369 515|473 | 221

FixMatch 299 106 239 | 90.8 325 482|575 400 709 | 740 519 613|493 | 222

DA MCD+DDAIG 342 168 33.8 | 951 299 536 | 645 397 835|734 461 59.1 | 525|225

+ MCD+Mixstyle 454 247 483 | 969 367 56.6 | 665 429 84.1| 750 493 673 | 578 | 199

DG | "CDAN+E"+DAELDG | 41.2 172 40.6 | 938 346 524 | 527 423 842|746 479 467 | 524 | 208

SSDG EID 51.6 373 533|971 586 69.1|877 609 875|924 642 709 | 69.2 | 17.8

ProUD (Ours) 70.3 578 658 | 97.6 634 705 | 807 615 834|922 655 744 | 73.6 | 12.0

Table 4: Comparison of the performance between ours and various state-of-the-art methods on the
Office-Home dataset.

Type Method Ar® cr L Rw* Ave. | st
" Pr Rw' | A Pr Rw | Ar CF Rw' | AP CI'  Pr

RSC 391 498 611|369 530 537 | 359 388 612 | 533 456 722|501 | 108

DG L2D 306 448 575|422 526 557 | 385 430 623|550 483 693 | 507 | 9.2

DGVGS 334 420 554|326 450 470 | 298 332 550 | 508 379 680 | 443 | 1L

MeanTeacher 351 505 608 | 30.0 514 540 | 358 345 620 | 544 434 722 | 494 | 116

SSL MixMatch 400 518 624 | 432 576 589 | 420 385 636|555 437 724 | 525 | 105

FixMatch 414 553 644 | 444 ST8 575 | 440 422 658 | 572 450 737 | 541 | 102

DA MCD+DDAIG 425 543 636 | 424 538 560 | 40.1 376 597 | 483 432 692 | 509 | 97

+ MCD+Mixstyle | 449 552 653 | 458 568 590 | 429 420 633 | 522 460 698 | 536 | 9.0

DG | "CDAN+E"+DAELDG | 40.6 520 589 | 463 553 56.1 | 464 398 614 | 549 476 667 | 522 | 7.9

DG EID 483 591 665 | 475 604 613 | 461 473 660 | 533 488 690 | 56.1 | 82

ProUD (Ours) 485 574 650 | 460 577 5990 | 470 494 653 | 55.1 525 719 | 563 | 7.8
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Comparing with State-of-the-Art Our proposed ProUD method is benchmarked against the
baseline methods using the PACS, Digits-DG, and Office-Home datasets. The results for each
dataset are detailed in Table [2] [3] and [4] respectively. By averaging performance metrics across
12 distinct domain combinations, as illustrated in these tables, it is evident that ProUD consis-
tently outperforms all baseline models across the datasets. Not only does our approach surpasses
the prevailing DG and SSL strategies, but it also exceeds the performance of both DA+DG and EID,
which are specifically crafted for the SSDG framework. Importantly, ProUD achieves this improved
performance with a single trained model, in contrast to both DA+DG and EID, which necessitate
training distinct models for each unlabeled domain to produce pseudo-labels.

Furthermore, it is also crucial to maintain robustness across domain combinations, which represents
different scenarios under data inequality problem. This becomes particularly critical when discrep-
ancies between domains impact performance. For instance, as shown in Table [3] RSC exhibits the
poorest performance among all baselines for the Mm®/Sy* combination, while it shows the best
performance for the Sv®/Sy* combination. The robustness of ProUD is further underscored across
Table[2] [3] and[4] where it consistently exhibits the lowest standard deviation over 12 distinct domain
combinations across all datasets.

Training Curve In Fig. [Tl we display 100 —os
the training curve of our model when NS R
trained on the PACS dataset, using the la-

beled source domain as C and the unseen %0 1
test domain as S. This curve includes the
model’s accuracy on the unseen domain S,
as well as the pseudo-label accuracy and
the mixing coefficient A for the unlabeled
source domains A and P. Here, A repre-

r 04

80

Accuracy (%)

—— Model accuracy on test domain (S)

sents the averaged value across all samples PTG — PLaccuracy of unlabeled domain () |
LRI . . —— PL accuracy of unlabeled domain (P)
within each unlabeled source domain. Eor _____ Lambda of unlabeled domain (A)
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Figure 1: Training curve of ProUD on the PACS
dataset, with labeled source domain C, unlabeled
source domain A, P, and test domain S. Solid lines and
dotted lines represent the accuracy and the value of A,
respectively.

certainties inherent in pseudo-labels at the
beginning of the training. By assigning a
low mixing ratio to samples with high un-
certainty, we can limit their influence on
training, preventing the potential perfor-
mance degradation caused by the noisy la-
bels. As training progresses, the model’s
generalization capabilities strengthen, yielding increasingly precise pseudo-labels with diminishing
uncertainties, thereby progressively increasing A. In contrast to domain A, unlabeled source domain
P starts with a notably higher A value (above 0.4) reflecting more accurate initial pseudo-labels.
This enables effective generalization in DomainMix by actively mixing unlabeled data with reliable
pseudo-labels at a high ratio.

4.2 FURTHER ANALYSIS

Ablation Study of Uncertainty-Adaptive DomainMix To validate the effectiveness of
Uncertainty-Adaptive DomainMix, we perform an ablation study using the PACS dataset, remov-
ing the strategy that determines the mixing coefficient A based on the uncertainty of pseudo-labels.
Instead, A is sampled from a uniform distribution ranging from 0 to 1 throughout the training. As
shown in Table[5] excluding Uncertainty-Adaptive DomainMix results in decreased performance in
the majority of scenarios and amplifies the standard deviation. This underscores its crucial contri-
bution to the model’s performance and robustness in ProUD.

Ablation Study of Prototype Merging Loss We conduct an ablation study to assess the impact
of the Prototype Merging Loss within ProUD, by comparing the performance of models trained
both with and without this loss term. The results are shown in Table 5l The exclusion of the loss
term results in a decreased average accuracy and an increased standard deviation, underscoring the
significance of the Prototype Merging Loss.
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Table 5: Ablation study of Uncertainty-Adaptive DomainMix (UAD) and Prototype Merging Loss
(PML) on the PACS dataset. Diff. denotes the difference in comparison to our model, ProUD,

incorporating both UAD and PML.

Method Pt A* c s* Avg. | Std.
A* Cc* S* P* C* S* P* A* S* P* A* C*

ProUD (Ours) | 73.8 636 74.1 | 91.1 754 76.6 | 869 789 78.1 | 63.0 689 704 | 75.1 | 8.0
w/o UAD 689 533 633 909 723 728 | 82.0 79.1 767 | 514 60.2 70.0 | 70.1 | 11.1
Diff. -49 -102 -114 | -04 -32 33| -50 00 -1.1 |-11.3 -93 +0.1 | -5.0 | +3.1
w/o PML 70.5 596 625 | 915 733 740 | 87.1 789 79.0 | 624 68.6 70.2 | 73.1 | 9.3
Diff. 33 -39 -122 | +02 -22 -2 |+401 -02 +12| -03 -09 +03 | -2.0 | +1.3
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Figure 2: t-SNE visualizations of the learned representations of both samples and domain-aware
prototypes using the PACS dataset, in the case where P is the labeled source domain, and C and
S are the unlabeled source domains. Different colors and shapes represent distinct classes and do-
mains, respectively. (a), (b), and (c) are produced right after the ProtoPL at epochs 1, 40, and 80,
respectively.

Visualization of Learned Representations In Fig.|2| we use t-SNE (van der Maaten & Hinton,
2008)) to visualize the learned representations of both samples and domain-aware prototypes, further
elucidating the effectiveness of our method. As depicted in Fig. [2] (a), at the beginning of train-
ing, class prototypes of the unlabeled source domains (C and S) are closely clustered, while the
class prototypes of labeled source domain (P) are relatively well-separated, as a consequence of the
model’s pretraining on this domain. This behavior points to a fundamental challenge: the model
struggles to disentangle domain from class information, resulting into a feature distribution oriented
more towards domains than classes. However, by employing the Prototype Merging Loss to merge
domain-aware prototypes of the same class, we observe that, as training continues, prototypes of the
same class cluster together while distancing from others, illustrated in Fig. 2] (b) and (c). Such ob-
servations underscore the effectiveness of the Prototype Merging Loss, affirming its role in inducing
domain-invariant features and enhancing the model’s classification ability.

5 CONCLUSION

In this paper, we address a representative case of the data inequality problem across domains, termed
Semi-Supervised Domain Generalization (SSDG), where only one domain is labeled, leaving the
others unlabeled. Such a setting mirrors real-world situations, especially when obtaining labeled
data from certain domains is considerably more difficult than from others. Moreover, such data
inequality not only presents practical challenges but also raises ethical concerns in the design and
deployment of machine learning models. To overcome this issue of data inequality, we propose a
novel algorithm ProUD to efficiently leverage the potential of samples from unlabeled source do-
mains. The method incorporates prototype-based pseudo labeling (ProtoPL), uncertainty-adaptive
integration of unlabeled domains (DomainMix), and contrastive learning for domain-invariant rep-
resentations (Prototype Merging Loss). Extensive experiments demonstrate that ProUD excels in
terms of model performance and robustness across various domain combinations, outperforming
state-of-the-art methods in DG, SSL, the integration of DA and DG, and SSDG.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide experimental settings in the Experiments
section and include additional implementation details in Appendix B. Our source code is available
as supplementary materials.
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APPENDIX

A CONVOLUTION-BASED NOISE MIXING AUGMENTATION

In this section, we explain the details of our convolution-based noise mixing augmentation named
NoiseMix. We first generate a sequence of convolution layers (®,,) ]1;:1, where ®,, consists of a ran-
domly initialized convolutional layer and an activation function. The random initialization includes
Kaiming Uniform parameter initialization He et al.| (2015)), as well as the random choice of kernel
size k and dilation d from uniform distributions. The zero-padding method is used to preserve the
size of the image. The hyperbolic tangent function is used as an activation function, followed by
normalization.

In Algorithm 2] the pseudocode of NoiseMix is presented. Given a batch of samples B, we obtain
a batch of noise augmented samples B,,. Then, we pretrain the model f by concatenating B, and

Baug. Besides, we employ NoiseMix in the process of DomainMix. For given B, and BY,, we

org org?
first generate batches of noise-mixed samples Bfmg and B;,. We then apply DomainMix to either

{(Birg: Bit), (Biug: Bitig) } or {(Biyg, Bit) s (Biug: Barg) } with probability of 0.5.

Throughout this work, we used the same setting of NoiseMix for all the experiments on the three
datasets: sequence length P = 3, min kernel size ki, = 1, max kernel size kp,x = 15, min dilation
dmin = 1, max dilation dp,x = 2, min mixing ratio Ap;; = 0.1, max mixing ratio Ap,x = 0.3,
inversion probability p = 0.2, and noise strength o = 0.01.

Algorithm 2 NoiseMix
Input: Sample &, a sequence of randomly initialized convolution layers ®y,...,®p, and a
sequence of randomly sampled mixing ratio Ay, ..., Ap.

« = RandomInvert(z )
forp=1to P do
Sample a Gaussian noise n ~ A (0,51)

T=x+n
z=22,(2)+ (1 - X))z
end for

Zaue = RandomInvert(Normalize(Sigmoid(x)))
return @,

B IMPLEMENTATION DETAILS

Experimental Settings We conduct experiments on three datasets: PACS, Digits-DG, and Office-
Home, training the model for 80, 800, and 60 epochs each. For optimization, we use the SGD
optimizer, with a momentum of 0.9 and weight decays of 0.01, 0.005, and 0.0001 corresponding to
each dataset. The learning rate is set to 0.001 for PACS and Office-Home, and 0.01 for Digits-DG.

For PACS and Office-Home, we use simple augmentation techniques including random translation,
horizontal flipping, color jittering, and grayscaling. The same augmentations are applied to the
Digits-DG dataset, except for horizontal flipping. In ProtoPL, each dataset utilizes three different
augmentations for ensemble learning (), while the temperature parameter (7.) is 0.03, 0.1, and 0.02
for PACS, Digits-DG, and Office-Home, respectively. For DomainMix, the threshold of A (\*) is
set at 0.35, and the temperature parameter (7 ) is 0.5, consistent across all datasets. The balancing
parameter in the loss function («) is set to 0.5. We set the Mixup hyperparameter to 2.0 for PACS
and Office-Home, and to 0.4 for Digits-DG.

Network Architectures The network of our model is composed of a feature extractor and a classi-
fier. We utilize ResNet-18 (He et al., 2016) as the feature extractor for both PACS and Office-Home.
For Digits-DG, we use a different backbone consisting of four convolutional layers. ResNet-18 is
initialized with the weights pretrained on ImageNet (Deng et al.l 2009). The classifier consists of a
single fully connected layer with weight normalization for all three datasets.
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C FURTHER ANALYSIS ON THE IMPACT OF PROTOTYPE MERGING LOSS

In this section, we assess the impact of Prototype Merging Loss (PML) through t-SNE visualization.
In Fig.[3] we observe that the performance of our algorithm without the implementation of PML. In
contrast to the distinct clustering observed in Fig. 2] the samples are only loosely clustered around
their respective prototypes here, resulting in more ambiguous cluster boundaries than those seen
with PML. Even after 80 epochs, several prototypes still remain intermingled, demonstrating a lack
of distinct discrimination. These observations underscore the vital role of PML, as formulated in
Eq.[8] PML enhances the algorithm’s ability to learn domain-invariant representations by effectively
merging prototypes of the same class from diverse domains, while simultaneously ensuring their
separation from prototypes of different classes.
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Figure 3: t-SNE visualizations of the learned representations of both samples and domain-aware
prototypes when the Prototype Merge Loss is removed. P is the labeled source domain, and C and
S are the unlabeled source domains from the PACS dataset. Different colors and shapes represent
distinct classes and domains, respectively. (a), (b), and (c) are produced right after the ProtoPL at
epochs 1, 40, and 80, respectively.
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