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ABSTRACT

Mixture of Experts (MoE) pretraining is more scalable than dense Transformer
pretraining, because MoEs learn to route inputs to a sparse set of their feedfor-
ward parameters. However, this means that MoEs only receive a sparse backward
update, leading to problems such as router load imbalance where some experts
receive more tokens than others. We present a lightweight approximation method
that gives the MoE a dense gradient while only sparsely activating its parameters.
A key insight into the design of our method is that at scale, many tokens not routed
to a given expert may nonetheless lie in the span of tokens that were routed to that
expert, allowing us to create an approximation for the expert output of that token
from existing expert outputs. Our dense backpropagation outperforms standard
TopK routing across multiple settings without significantly increasing runtime.
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Figure 1: Our dense backpropagation method (green) improves over the baseline (blue) that uses
Top-K routing across a range of standard benchmarks. See Section 4 for the experimental setup.

1 INTRODUCTION

Large-scale pretraining hinges on scaling up the number of parameters in a model, because models
with more parameters are more sample-efficient and require less training to reach the same perfor-
mance as smaller models (Kaplan et al., 2020; Hoffmann et al., 2022). The most common model ar-
chitecture is a dense Transformer architecture (Vaswani et al., 2023) because its performance scales
well with parameters and data. However, a sparsely activated Mixture-of-Experts (MoE) Trans-
former architecture (Shazeer et al., 2017) has been used by many industry deployments (Team et al.,
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2024; xAI, 2024; Databricks, 2024; Jiang et al., 2024; Snowflake, 2024; DeepSeek-AI et al., 2024)
because MoEs have been shown to scale even better than dense Transformers (Clark et al., 2022; Du
et al., 2022; Lepikhin et al., 2020; Fedus et al., 2022). MoEs learn a routing function that selectively
activates the TopK subset of their modules, or experts, most relevant to a given input. This condi-
tionally sparse activation (Jacobs et al., 1991; Jordan & Jacobs, 1994) allows us to multiplicatively
increase the model parameter count without significantly increasing the cost of training or inference.

The sparse router enables MoEs to scale, but it also presents a challenge, because the router does not
receive a gradient update from experts that it does not activate, and may not learn to route a token
to its appropriate expert. This may cause load imbalance— where a few experts are over-utilized —
leading to inefficient training and resource usage (Zoph et al., 2022; Zhou et al., 2022).

In this work we propose a new router that can receive a dense gradient update from a sparse for-
ward pass to address the instability issues arising from sparse routing. Our method adds minimal
overhead, but improves on the common Top-K routing in both performance and load balance.

2 BACKGROUND & RELATED WORK

MoEs. The MoE layer replaces the feedforward networks (FFN) of transformers and consists of
two components : 1) N FFNs (experts), E0(x), E1(x), . . . EN (x) and 2) a router that assigns tokens
to experts. Each input to the MoE layer is processed by K experts where K < N , and this is the
source of sparsity in MoEs. The K experts are chosen by the router, which is a learnable component
that maps each token to a set of weights over the experts. The router performs a linear transformation
Rdtoken → RN which produces logits; these are normalized using softmax, resulting in a probability
distribution over the experts. With the router’s linear transformation parameterized by a matrix W ,
we can represent the expert weights π in the following way:

π ∈ RN = Softmax(Wx) (1)

Once we have these expert weights, we apply a routing function to decide which of K experts to
route and process this token through. We consider TopK because it is the most popular.

Top-K routing. A standard method to select K out of N experts given the expert weights is to
select the experts corresponding to the K highest weights. Top-K routing (Fedus et al., 2022) passes
the token to the K selected experts and averages the expert outputs using these weights to produce
the final output. Experts not selected by the Top-K routing function do not process the token, and
this introduces sparsity in MoEs. By representing the K chosen experts as the set A, we can express
the output of the MoE layer as an average of expert outputs weighted by the router scores:

y = Σi∈AπiEi(x) (2)

The expert weights serve two roles. They are used by the routing function to decide which of the
K experts to process a token through, and also provide the weights for combining the outputs of
the expert. The Top-K routing scheme makes the MoE layer desirable for training large, compute-
efficient neural networks. It allows models to be scaled up, by way of increasing the total number of
experts, while keeping the compute per token constant (as it is a function of K and not N ).

The Router Gradient. Consider the gradient of the MoE layer’s output y with respect to the router
parameters W . We express y as a function of W by combining Eq. (1) and Eq. (2). With the chain
rule, we can backpropagate through this function by considering the gradient at each respective step:

∂y

∂W
=

∂y

∂π

∂π

∂W
(3)

The first term in Eq. (3), ∂y
∂π , is straightforward to compute because the steps in Eq. (1) are easily

differentiable, as they consist of linear operations and activations. But Eq. (2) is not differentiable
because Top-K expert selection transforms the continuous router weights π ∈ RN into a discrete set
of selected experts A with

(
N
K

)
possible values. One way to get around backpropagation of nondif-

ferentiable operations is to use the straight-through estimator (Bengio et al., 2013), which treats the
operator as the identity function. With straight-through we bypass the Top-K routing function and
Eq. (2) becomes the dot product between π and the vector of all Ei(x) with the following gradient:
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(a) Original Router (b) Dense Approximation Router (ours)

Figure 2: Overview of Routing with Dense Approximations. The original mixture of experts
router only receives gradients corresponding to experts the token is routed to, because there is no
output from other experts. Our approach provides the router with a complete (dense) gradient, by
approximating the activations of experts that a token is not routed to. As indicated by the dashed
green arrows, the approximated gradients are not actually connected to the token in the computation
graph; instead, they are artificially applied in the backward pass.

∂y

∂π
= [E1(x), E2(x) · · · EN (x)] (4)

This gradient requires the output of all of the experts for that token. Passing a token through all
the experts will destroy the sparsity of the MoE layer, ruining the scalability of this architecture. In
this work, we develop methods for applying the straight-through estimator while maintaining the
sparsity of the MoE layer by approximating the output of the experts not selected by Top-K routing.

Related Works. Previous work has tried to address the issue of routing in MoEs. Separate from
Top-K is the Sinkhorn routing method (Clark et al., 2022). Fedus et al. (2022) propose an auxil-
iary loss that encourages load balancing. Dai et al. (2024) propose multiple additional auxiliary
loss terms. Recently, Wang et al. (2024b) propose learning biases rather than an auxiliary load bal-
ancing loss. Even more recently, Phi-3.5-MoE (Abdin et al., 2024) uses SparseMixer (Liu et al.,
2024; 2023), another estimator for ∂y/∂π not involving straight-through. We provide a comparison
between our approach and SparseMixer later in Section 4.3. Our approach is to still use straight-
through, but approximate these additional expert outputs. We now present our method.

3 DESIGNING DENSE BACKPROPAGATION

In this section we design a new backpropagation method that can send a dense gradient to the
sparsely activated router and expert parameters without doing additional forward passes. In a stan-
dard MoE, both the embedding corresponding to expert i in the routing layer (i.e. the ith row of
the routing weight matrix) and the weights of expert i receive no gradient update from a token x
if x is not routed to expert i. This is because Ei(x) is never computed, so it provides no upstream
gradient. This corresponds to experts that are not in the top K being omitted in Eq. (2). We ap-
ply an approximation Êi(x) as a substitute for the upstream gradient so that the router and expert
weights can receive some non-zero signal corresponding to this expert. Then, the router can factor
in outputs from all experts when learning to route each token, and the expert can be updated based
on all tokens. Ultimately, instead of K/N expert parameters being updated per token, every token
will update more parameters in both the router and the experts. Updating the router should improve
load balance and the routing distribution.
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Figure 3: Motivation for approximating expert outputs. Consider an expert Ei. In every training
batch, some fraction of tokens Y will be routed to Ei. With a large training batch size, we expect
more tokens yj to be routed to Ei. It is likely, then, that the outputs Ei(yj) will span the output
space of this expert. Thus we expect that at the pretraining scale, a linear combination of expert
outputs

∑
j αjEi(yj) can approximate Ei(x), for a token x which was not routed to Ei.

3.1 APPROXIMATING EXPERT ACTIVATIONS WITH DENSE BACKPROPAGATION

To approximate the dense gradient in Eq. (4), we must approximate Ei(x) for every expert i that a
token x was not passed to. Although we have no information about what the function Ei looks like
for x, when training with large token batch sizes it is very likely that we have outputs of Ei for many
other tokens. We hypothesize that although Ei(x) is not computed for a given x, the output lies in
the span of other tokens’ activations for Ei. In other words, Êi(x) =

∑
j cjEi(xj) for some other

tokens xj . Our approximation method relies on finding these relevant xj and the corresponding
weights cj to develop an approximation for a token. We visualize this general approach in Fig. 3.

Dense Backpropagation via Expert Group Approximation. Our dense backpropagation method
that we dub expert group approximation produces an estimator Êi(x) from the expert outputs of
other relevant tokens. We apply a single approximation to a large group of tokens that were not
routed to expert i. This is efficient, but it may not be a good approximation for any specific x.
Instead, this is an estimator for the expert output across the entire batch - this is sufficient as we
will only need an approximation for the batch gradient to update the router during training. In dense
backprop, we select relevant xj and cj purely based on the router output.

This expert approximation is used solely to estimate the dense gradient in equation 4. We do not use
this dense approximation in the forward pass, as that is inconsistent with the sparse forward pass we
expect at inference. Additionally, applying this approximation at inference is infeasible because of
the much smaller batch size. However, we do use this approximation to update the experts along
with the router. As we will show, updating all the experts is a crucial component of our method, and
something prior work has not done. In particular, Liu et al. (2023) focuses on the router gradient.

3.2 NOTATION ON EXPERT ROUTING

Let R(x) be the set of indices corresponding to the K experts that a token x is routed to. This can
be thought of as the routing decision for x, based on the selected experts A in Eq. (2). For example,
in a top-k sparse mixture of experts layer with N = 8 experts and K = 2, x routed to the first and
last experts will have R(x) = {1, 8}. Note that R(x) can have

(
N
K

)
possible discrete outputs. With

this notation, we can partition all tokens X based on their routing decisions and denote XR as the
subset of tokens routed to experts indexed by R. In the preceding example, the token routed to the
first and last experts would belong to the set X{1,8}. Some of our methods involve denoting whether
a token was routed to a set of experts instead of its exact routing decision. We denote tokens routed
to expert i along with any other experts as X{i,·}. For example, X{1,8} = X{1,·}

⋂
X{8,·}
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Figure 4: Architecture of the Expert Group Approximation method. In this example, we have
4 experts with K = 2. Consider all inputs routed to experts 1 and 3, characterized by the routing
decision R = {1, 3}. As described in Figure 2b, we need to approximate these inputs’ activations
for all other experts. In approximating expert 2, for example, we collect all inputs x′ with a routing
decision similar to R specifically including expert 2: R′ = {1, 2} and R′ = {2, 3}. In general there
will be K such adjacent groups. The aggregation of these inputs’ activations for expert 2 is used to
approximate expert 2 for all inputs routed to experts 1 and 3.

3.3 EXPERT GROUP APPROXIMATION

Our method is based on approximating the expert output Ei(x) for a group of multiple tokens at
once. For a token x, we want to approximate outputs of experts that x was not routed to, i.e. Ei(x)
where i /∈ R(x). We hypothesize that tokens being routed to the same expert is a strong indicator of
similarity between the tokens. This is because tokens routed to the same expert Ei both yield high
dot products with the embedding Wi corresponding to that expert in the routing layer (see Eq. (1)).
We develop an approximation for Ei(x) by aggregating outputs of Ei for tokens that were routed
to both expert i, and other experts that x was routed to. Formally, we consider an alternate routing
decision R′ = {i, j, ·}, j ∈ R(x) that consists of one expert j that x is routed to, the expert i we
wish to approximate, and any other experts (if K > 2). Then, the adjacent token space XR′ will
consist of tokens that are very similar to x by virtue of having similar routing decisions. Moreover,
they will have an output for expert i, and we hypothesize that their outputs

∑
x′∈XR′ Ei(x

′) will
approximately represent Ei(x). We can aggregate such outputs over all possible routing decisions:

∀x ∈ XR : Êi(x) =
1

K

∑
j∈R

1

|X{i,j,·}|
∑

x′∈X{i,j,·}

Ei(x
′) (5)

We apply a single aggregate approximation for each routing decision to all tokens with that routing
decision. In other words, each token belongs to K “groups” corresponding to the K experts it was
routed to. Each expert has N groups, and each group j receives an approximation for expert i based
on tokens routed to experts i, j. This gives us N2 total approximations. When we approximate
expert i, a token receives one approximation from each group, scaled by 1

K to take the average.
In Fig. 4 we visualize this method for K = 2. We can pick different constants for the number of
activated experts and the number of groups, so our method is applicable to K = 1, but we keep
these constants at K = 2 throughout the paper because it is a common choice across prior work.

As mentioned above, we use this approximation to update both the router and the experts. This
is necessary to maintain consistency, as updating the router densely but the experts sparsely can
cause them to diverge. We also omit the approximation from the forward pass to only apply it
in the backward pass. Consider an expert approximation based on other token outputs Êi(x) =∑

j cjEi(xj) assuming
∑

j cj = 1. We produce such approximations for all experts in R(x)C that

5
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(a) Train Loss (b) Validation Perplexity

Figure 5: Training and Validation Results. We train a 2B total parameter MoE with 32 fine-
grained experts, using the standard Top-K=2 router (470M active params) and our expert group
approximation method, each on 200B tokens of the Fineweb dataset. Without incurring significant
overhead, we improve over the baseline.

x was not routed to: y′ =
∑

i∈R(x)C Êi(x). We update the original MoE output y from Eq. (2):

y := y + y′ − sg(y′) (6)

where sg is the stop-gradient operator. As a result, our forward pass output is unchanged. During
backpropagation, the expert approximations Êi(x) fill in the missing entries of the dense router
gradient in equation 4. Moreover, the gradient to an expert i from the token xj used to approximate
Êi(x) is increased by the upstream gradient ∂Êi(x) times the weight cj . In expectation, roughly
K/N tokens are routed to an expert i so (N −K)/N tokens will add gradients ∂Êi based on their
approximations. Overall, this will lead to a dense gradient approximation for each expert since it
will receive gradients as if it processed K/N + (N −K)/N = N/N of all tokens instead of K/N .
We all-reduce the approximation gradients across data parallel workers. This gives us a large sample
size to estimate the dense gradient, regardless of the micro batch size on each worker.

4 EVALUATION

We train a fine-grained (DeepSeek-AI et al., 2024) MoE with 32 experts. The model has a hidden
dim of 1024, with 2B total parameters. Each expert is a bottleneck MLP that has intermediate size
704. 470M parameters are activated when doing the standard K = 2 top-K routing (Zoph et al.,
2022). We ablate the model architecture, hidden dim, number of total experts, and number of active
experts through the course of the evaluation in Table 2 and Table 3. We train on 200B tokens from
FineWeb (Penedo et al., 2024) with the Llama3 tokenizer (Dubey et al., 2024). We split it into
train, validation, and test splits and report the validation perplexity. We defer other implementation
details (learning rate schedule, initializations) to Appendix B.

4.1 MAIN RESULTS

Main Result. Our main result compares the Expert Group Approximation, which performs a
dense update of the router weights by approximating the dense gradient, to baseline Top-K rout-
ing. In Fig. 5 we plot both training loss and validation set perplexity over the course of training.
Our Expert Group Approximation method yields improvements over the baseline Top-K routing
method throughout training, and this improvement is still present after training on 200B tokens.
We further evaluate the performance of our Expert Group Approximation on standard benchmark
tasks (that Penedo et al. (2024) notes are “high signal” for models trained on Fineweb) in Table 1
and find that our method provides a modest improvement over Top-K across multiple benchmarks.
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Table 1: Benchmarks. Our method improves over the baseline across a set of benchmarks.

mathqa logiqa2 mmlu openbookqa logiqa arc challenge arc easy hellaswag copa piqa Average

Baseline 20.70.01 25.20.01 24.50.04 27.00.02 25.30.02 27.30.01 44.10.01 49.50.00 58.00.05 63.90.01 36.60.02
Ours 21.50.01 25.40.01 25.50.04 25.60.02 26.10.02 28.40.01 45.90.01 50.30.00 62.00.05 63.70.01 37.40.02

Improvement +0.8% +0.2% +1.0% −1.4% +0.8% +1.1% +1.8% +0.8% +4.0% −0.2% +0.9%

(a) Gradient Similarity (Router)

(b) Gradient Similarity (Experts)

Figure 6: Approximation fidelity. We train MoEs with 32 fine-grained experts, recording the
similarity with the true dense gradient (for the router and the experts) for the standard Top-K=2
baseline and our method. The gradients returned from our method are significantly closer to the
true dense gradient. While prior work such as Liu et al. (2023) only aimed to densely update the
router, we also densely update the experts, and we see that we actually do a better job of updating
the experts than the router. Because Liu et al. (2023) do not design their method to approximate
the true dense gradient of the router, we do not report their gradient similarity here (although it is
low, their method achieves routing imbalance and performance in an entirely different mechanism
to ours). Our method faithfully reconstructs the true dense gradient signals.

4.2 EMPIRICAL ANALYSIS

Gradient Approximation. We verify that our method is indeed faithfully approximating the dense
router gradient i.e. the gradient to the router if all experts were activated. We track the dense
gradient by routing to all experts and backpropagating only on the MoE output (independent of the
full forward pass). In Fig. 6a we compare this dense gradient to the actual router gradient for each
of our approaches and the standard Top-K router, and similarly for the expert weights in Fig. 6b.
We plot the cosine similarity between the dense gradient and our approximated gradient, where the
relatively high similarities our methods achieve indicate we are more accurately approximating the
dense gradient. We also observe a major difference between the gradient of the standard Top-K
router and our approach in later layers. We record the gradient similarity from the start of training
until the trends stabilize; if we were to extend these plots out, we would see the similarities stay
relatively stable. This validates our motivation to try and approximate the true dense gradient.

Load Balance. One reason for our method’s superior performance is in how it improves the routing
distribution. Without a gradient signal for unactivated experts, top-K routing may not learn a bal-
anced distribution across experts, and route more tokens to some experts than others. On the other
hand, our method sends a signal to the router even for experts that a specific token was not routed
to. The router now receives more information to make better decisions on how to route inputs. Load
imbalancing leads to some experts processing a larger fraction of tokens than others, and thus having
to learn a representation for more tokens. although all experts share the same number of parameters.
Balancing expert load thus allows for more efficient utilization of MoE parameters.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 7: Load Balancing using Expert Group Approximation. We define maximum load imbal-
ance at each layer as maxi(N · fi) where fi is the fraction of tokens routed to each of N experts.
The green ring indicates perfect balance, where each expert receives 1/N fraction of tokens; the
outer ring indicates a maximum imbalance of 150%. We record maximum imbalance after training
on 3 billion tokens. Our method improves load balance by sending a complete gradient to the router.

In Fig. 7 we validate that the baseline top-K (K = 2) routing has an “imbalanced load”, as measured
by the proportion of tokens being routed to different experts relative to the optimal balance (green
line) of an even distribution of tokens across experts. Our method improves load balance, which
may be one cause for improved performance and is of independent interest on its own because it
may lead to more efficient inference (although we do not profile inference workloads in this work).

4.3 ABLATIONS

Table 2: Method scaling. Our method’s training perplexity improvement after 10B tokens scales
with the number of total experts, batch size, and number of active experts. The 8-expert MoE and
32-expert MoE both have 2B total parameters and use K = 2. However, in the 32-expert MoE,
each MLP is a bottleneck layer. The 32-expert MoE therefore has just 470M active params, while
the 8-expert MoE has 780M active params. We use the best number of experts (32) for the batch
size scaling experiments, and we use the best batch size (221) for the expert scaling experiments.
We also vary the number of active experts between K = 2 and K = 4 for the 32-expert MoE and
find that our method provides consistent improvements across different values of K.

Num. Experts Batch Size Active Experts
8 32 219 220 221 2 4

Baseline 22.03 22.23 27.54 24.51 22.23 22.23 21.54
Ours 21.80 21.91 27.51 24.37 21.91 21.91 21.22
Improvement 1.1% 1.5% 0.1% 0.6% 1.5% 1.5% 1.5%

Scaling. In Table 2 we show that our method’s improvement over the baseline increases as we scale
up training. As we increase the number of experts from 8 in a standard MoE architecture, to 32
fine-grained experts, our improvement over the TopK baseline increases from 1.1% to 1.5%. This
is because the 32-expert MoE has more sparsity, and therefore the gap between the baseline and
the true dense gradient (that we are trying to approximate with our method) is larger. Our method
constructs an approximation for unactivated experts from the rest of the tokens in the batch, so as
the total training batch size increases, the likelihood that a linear combination of other tokens can

8
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reproduce these missing expert outputs increases, as shown in Fig. 3. As we increase the train batch
size, our improvement over the baseline increases from 0.1% at 219 to 1.5% at 221. DeepSeek-AI
et al. (2024) start with a batch size of ≈ 223 and ramp up to a batch size of ≈ 225, so the batch sizes
we consider are still significantly smaller than those used to train the SOTA MoEs. The improvement
of our method over the baseline may be marginal at the current scale, but we believe that our method
will continue to improve over the baseline as we scale up our models and batch sizes.

Table 3: Method variations. We report perplexity after training an 8-expert 2B total-parameter
MoE for 10B tokens. The “Accurate” variation on our method weights tokens based on how likely
they were to be routed to the expert we’re constructing an approximation for. The “Viable” variation
weights by the probability of the expert we’re using the approximation for. The “Accurate” variation
is the best version of our method, because it gives us more accurate approximations.

Routing Method Val. PPL (K = 1) Improvement Val. PPL (K = 2) Improvement
Baseline 23.91 – 23.16 –

Expert Group Approx. 23.62 0.29% 22.62 0.54%
“Accurate” 23.48 0.43% 22.50 0.66%
“Viable” 23.49 0.42% 22.63 0.53%

Variations on the method. Thus far we have presented results where the approximation we use for
a group of tokens is just a simple average of the expert outputs for similar tokens. However, when
we construct the approximation we can weight tokens based on their router scores. In Table 3 we
compare two variations on our main method. As a reminder, in this method we construct a mask
of shape experts, experts for each token. The row is the expert that token was routed to, and
the column is the expert we want an approximation for. When we take the product of this mask
and the router scores, we can weight each row by the probability corresponding to the expert we
want an approximation for, or weight each approximation by the probability for the expert we’re
using the approximation for. The former should give us more “accurate” approximations, because
it will prioritize tokens that are more likely to be routed to the expert we want an approximation
for. The latter should give us more “viable” approximations, because it weights by closeness to
the space we’re using the approximation for. We find that both variants improve over our original
method, with the “accurate” variation proving to be the best across K = 1 and K = 2. Stacking the
“accurate” variant on top of our method would further improve our main results.

Scaling with Sparsity. We present most results in this paper with K = 2 because Zoph et al.
(2022) finds that it improves performance over K = 1 with minimal overhead, and thus multiple
prior works use K = 2. However, we can see in Table 3 that our method is also better at K = 1.
Virtually zero MoE papers train with K = 1; the closest is Sun et al. (2024), and they use a shared
expert (DeepSeek-AI et al., 2024) alongside the K = 1 expert, so in fact 2 experts are active at each
layer. We believe this can be a new capability that our method unlocks, which in turn will lead to
even greater sparsity and therefore more efficient MoEs.

Comparison to Sparsemixer. Liu et al. (2023; 2024) use Sparsemixer, which estimates the true
router gradient without straight-through. Our method is distinct in that we also provide gradient
updates for the expert weights (as seen in Fig. 6b). Liu et al. (2024) note that Sparsemixer lags
behind TopK (which our method always outperforms) for the first 0.5T tokens, likely due to the
noise that Sparsemixer adds. In the 10B tokens that we were able to run Sparsemixer for, our
method significantly outperforms it.

Further Ablations. We conduct further ablations on design choices in Appendix C.1.

4.4 EFFICIENCY

Although our method outperforms the baseline in all settings we consider, to ensure a fair compari-
son it is crucial that our method does not significantly increase wall-clock time. In Table 4 we report
the throughput in samples per second and TFLOPS of TopK, Sparsemixer, and our method while
training a fine-grained MoE with 32 experts and K = 2 on a single GPU (for reproducibility). We
find that the overhead of Sparsemixer and our method decreases as we increase the hidden size. The
2B model we train has 1024 hidden size, 2048 hidden size is an 8B model, etc. As the hidden size
increases, the proportion of time spent in the MLP matmuls increases, and the overhead of our model

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 8: Sparsemixer comparison. We train
a fine-grained MoE with 32 experts with our
method and Sparsemixer (Liu et al., 2023).
Our method, which outperforms the TopK
baseline from the start of training, outper-
forms Sparsemixer. Liu et al. (2024) report that
Sparsemixer requires many (0.5T ) tokens to catch
up to the TopK baseline.

Figure 9: CUDA overhead scaling. The over-
head of our method, as measured in the percent
of the CUDA time it occupies, decreases as
we increase the hidden size of the model. Our
main experiments are conducted with a hidden
size of 1024, resulting in 470M active param-
eters and 2B hidden parameters. A hidden size
of 4096 would be commonly trained model.

Table 4: Throughput Comparison. We compare the throughput between different routing methods
across hidden dimensions. Throughput is measured in tokens per second (sequence length 2048) on
a single GPU. Overhead is calculated relative to TopK routing.

Hidden Tokens per second Overhead vs TopK
Dim TopK Sparsemixer Ours TopK Sparsemixer Ours

1024 87,039 81,018 75,449 - -6.92% -13.32%
2048 12,288 11,469 11,790 - -6.67% -4.05%
4096 10,404 10,180 10,240 - -2.15% -1.57%

is no longer significant compared to the total MoE layer runtime. The same is true for Sparsemixer,
although our method is slightly faster than Sparsemixer for hidden sizes 2048 and larger.

We further analyze this in Fig. 9, where we record the percent of CUDA time of the MoE layer that
is spent in each part of our method. We develop Triton (Tillet et al., 2019) kernels to efficiently
implement our method. Our code is currently open-source and will be linked here upon publica-
tion. For larger models, most of the overhead comes from the “Router backward” kernel where we
compute the gradients to pass to update the router.

The overhead we report in Table 4 does not account for communication overhead. On our cluster,
about half of the iteration time for the 1024 hidden size MoE is spent in NCCL operations when
training on 8 nodes, and as we increase the number of nodes, the communication costs dominate
following the trend of Wang et al. (2024a). Although performance varies dramatically across clus-
ters, in our training setup our method adds near-zero overhead when training MoE with hidden size
greater than 2048 (that is, more than 10B parameters).

5 DISCUSSION

We propose a training method for MoEs to improve load balancing and language modeling perfor-
mance. By approximating the signal of a dense mixture-of-experts layer, the MoE router is able
to learn a better distribution of routing inputs to different experts. This approximated dense signal
unlocks the possibility for more sparse MoEs at training and inference time. Whereas typical Top-K
routing would provide too sparse of a signal to learn a stable routing distribution, our method demon-
strates significant improvements in load balancing in very sparse configurations. This unlocks better
performance on standard language benchmarks, and has little overhead.
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6 REPRODUCIBILITY STATEMENT

We provide detailed explanations of all our proposed methods in order to encourage reproducibility
of our work: see Fig. 4 and Fig. 14. We use open-source LLM training libraries (Andonian et al.,
2023; Gale et al., 2022) for implementing our experiments, and we train our models using a publicly
available dataset (Penedo et al., 2024). Our methods are built on top of these open-source libraries,
and we plan to release our code publicly in the future. We also provide the details of our experiments
in Section 4, and further details on hyperparameters are included in Appendix B.
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Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre

13

https://arxiv.org/abs/2405.04434


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts, 2022. URL https://arxiv.org/abs/2211.15841.

14

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2211.15841


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.
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Figure 10: Accuracy in approximating the dense router gradient for each approach. We use
a model with 8 experts and K = 2. We artificially compute the dense gradient of the output with
respect to the router weights at each step by passing inputs through a dense mixture of experts layer,
where all experts are selected. We do this independent of the actual forward pass computation, while
using the same set of MoE parameters. The similarity between this dense gradient and the actual
gradient propagated to the router indicates how well the router is learning from all experts. We plot
this similarity with a standard Top-K router, and with each of our proposed router modifications.
Our approaches are much more accurate and stable in approximating the dense router gradient.

Figure 11: Dense router gradient approximation accuracy with fine-grained experts. We imple-
ment fine-grained experts as in DeepSeekMoE (DeepSeek-AI et al., 2024) to observe the behavior
of our approximation methods across more experts while keeping parameter count fixed. In this ex-
ample, the model now has 32 experts with K = 2. With more experts, it becomes increasingly hard
to approximate the dense gradient, and the difference between our methods and the Top-K router
is more apparent. Moreover, we can clearly compare the efficacy of each method and see that the
attention approximation with LSH is the best. Note the average number of tokens per expert also
decreases by a factor of 4 as well, and we would expect even better performance in our approxima-
tions by scaling the local batch size per GPU, because we don’t communicate tokens across ranks.

A APPROXIMATION STATISTICS

A.1 FURTHER GRADIENT ANALYSIS

The differences in our approaches become clear as we scale the model to become more sparse. We
expand to N = 32 experts while maintaining K = 2 in Fig. 11 and find that it is more difficult to
approximate the true dense router gradient. While all of our approaches sufficiently approximate the
dense gradient with N = 8 experts, the performance gap between them is apparent with N = 32.
The expert group approximation and LSH attention methods are significantly better than the direct
attention method, and this is also consistent with our validation results in Table 6. This is likely due
to the heuristics we apply to restrict our approximation to only the most relevant tokens: the expert
group approximation requires tokens to have an expert in common, and LSH requires tokens to be
similar. Moreover, the gap between our methods and Top-K is wider with 32 experts. We believe
that in larger models with even more experts, our method will yield increasingly significant im-
provements over Top-K routing. We provide further analysis on our approximations in Appendix A.
In Fig. 12 we provide an additional analysis of the gradient norm of our approximation compared
to the dense gradient. This logging is also done with N = 8 and K = 2. The Top-K gradient has
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Table 5: Our expert group approximation obtains the best validation perplexity after 20B tokens
on a standard MoE architecture, achieving the same performance as K = 3 without activating an
additional expert, meaning that we achieve the best performance-FLOPS tradeoff.

Activated Experts Routing Method Validation Perplexity
K = 1 Baseline 19.61
K = 2 Baseline 18.92
K = 3 Baseline 18.56

K = 2 Expert Group Approx. (Ours) 18.55

significantly lower norm than the dense gradient. Our methods closely approximate the dense gradi-
ent norm consistently; replicating both the direction and magnitude suggests that we are sufficiently
approximating the dense gradient entirely.

Figure 12: Comparison of gradient norms relative to the dense gradient. When computing the
dense gradient, we also record its L2 norm and log the ratio of this to the L2 norms of the actual
router gradients during training. Our methods produce router gradients with approximately the same
magnitude. Along with the results showing strong cosine similarity, this suggests that we are almost
perfectly approximating the dense gradient.

In Fig. 5 we presented results with a Deepseek-style finegrained MoE. In Table 5 we present results
with a conventional architecture. This model has 2B hidden parameters and has 780M active param-
eters. Our method outperforms the baseline. As we will show, our method improves performance by
improving load balance. Load balancing is especially important early on in training – this is where
our method shows the largest improvement in Fig. 5. Improving the load balance of experts yields
benefits akin to actually activating more experts. In Table 5 we find that our lightweight approxima-
tion method improves performance by a similar amount as activating an additional expert (that is,
going from K = 2 to K = 3), without the additional computational overhead during training and
inference of actually needing to use the parameters of a third expert. The choice of K = 2 in all
experiments follows Zoph et al. (2022).

B HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Model Configuration. Both MoEs have 24 blocks and a hidden dimension of 1024. The Deepseek
MoE has fine-grained experts. Each expert is a bottleneck MLP of shape 1024, 704). The conven-
tional MoE has an expansion factor such that the intermediate size of the MLP is 2816. We use
SwiGLU (Shazeer, 2020) MLPs following Llama (Touvron et al., 2023), 16 attention heads with
dimension of 64, LayerNorm (Ba et al., 2016) and RoPE (Su et al., 2023). Hyperparameters. We
use the initialization from Wang et al. (2022) for residual branch merge layers and the initialization
from Nguyen & Salazar (2019) for all other layers. We use the AdamW optimizer (Loshchilov &
Hutter, 2019). We use the modified cosine learning rate schedule from Ibrahim et al. (2024). We use
a sequence length of 2048 and a global batch size of 1024, resulting in a global token batch size of
221. We set the auxiliary loss (Fedus et al., 2022) to 0.01.

Implementation. We train with the gpt-neox library (Andonian et al., 2023) integrated with
Megablocks (Gale et al., 2022). The TFLOPS vary depending on the method and the number of
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Figure 13: MMLU Scores of our method and the TopK Baseline.

experts chosen; for simplicity, we do not account for the router or the number of experts activated
when reporting the TFLOPS, so that the number of flops we count in a forward and backward pass
is the same as a dense model.

C TOKEN-SPECIFIC APPROXIMATION WITH ATTENTION

Our Expert Group Approximation computes an approximation, for each expert, for all tokens
routed to it from each other expert, resulting in N2 total approximations. However, we may want
to actually compute an approximation for specific tokens. Consider tokens belonging to the set
x ∈ XC

{i,·}, i.e. tokens not routed to expert i. We want to approximate Ei(x) for such x. At a high
level, we want to search for similar tokens to x, select their expert outputs Ei(xj), and aggregate
these outputs as a weighted linear combination. This problem can be solved using attention. We
want to query using all tokens not routed to expert i, i.e. XC

{i,·}. The keys will correspond to tokens
that were routed to expert i, i.e. X{i,·}. And the values will be the expert outputs of these relevant
tokens. Fig. 14a (left) outlines how we compute an approximation using multi-head attention, where
each head corresponds to approximating for a single expert.

Sparse Attention with LSH. Computing attention across all tokens on a GPU is computationally
expensive, and we do not need attention scores for all the tokens to compute the approximation, just
for the most similar tokens to x. With a block-sparse attention mask, we can greatly reduce the at-
tention computation, especially when most of the computed scores would be redundant. In Fig. 14b
we outline our attention approximation that uses locality-sensitive hashing (LSH) to group tokens
into buckets, with a high probability that the nearest neighbors to a token will lie in the same bucket.
The attention mask now has an additional condition: the query index q and key index k must corre-
spond to tokens in the same bucket. We sort the QKV into groups based on their assigned buckets to
encourage a block-diagonal attention mask, and verify that this sparsity reduces the runtime of our
attention approximation. Note that it is possible that some tokens receive no approximation because
there are no keys to query in the bucket. In this case, we set the approximation to 0.

Despite the reduction in computation from using a sparse attention mask, implementing this method
is still computationally infeasible. We cannot use kernel based implementations like FlashAtten-
tion because our attention inputs are the high-dimensional model embeddings instead of the low-
dimensional embeddings that FlashAttention expects. We believe future works expanding efficient
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(a) Direct Attention (b) Attention w/ LSH

Figure 14: Attention scores of direct and LSH attention methods. For each expert, we define
an attention head that uses queries corresponding to inputs not routed to the expert, and keys cor-
responding to inputs routed to the expert. Grey entries denote queries and keys that do not meet
this criteria, and whose attention scores are masked out. We multiply the attention scores of each
head with the values, which are expert outputs of tokens routed to that attention head’s expert. This
implementation is common to both the direct and LSH attention method. In the latter, we further
optimize the attention calculation by sorting inputs into buckets based on cosine similarity. This
creates a block-sparse attention map, allowing kernels to skip most of the attention computation.

attention implementations to higher dimensions could make this token-wise approximation method
more feasible.

C.1 ABLATING DESIGN CHOICES

We ablate our main design choices and show that our main method does not compromise throughput.

Comparing Different Approximation Methods. We use the Expert Group Approximation method
for our main results because it is lightweight, easy to implement, and provides good performance.
However, the other two methods we consider also outperform the top-K (K = 2) baseline. Indeed,
as we showed in Fig. 11, the Attention+LSH method seems to obtain a better approximation of the
true dense gradient. The primary reason why we report our main results with Expert Grouping is
because the Expert Group Approximation method requires no additional memory overhead. This
allows us to use larger microbatches, and therefore there are more tokens on each GPU that we can
use for the approximation. In Table 6 we find that even with a microbatchsize 4× smaller than that
of the Expert Group method, the Attention+LSH method is competitive.

Routing Method Microbatchsize Validation Perplexity
Attention 4 18.72

Attention+LSH 4 18.64
Expert Group 16 18.55

Baseline 16 18.92

Table 6: Comparison of routing methods after training on 20B tokens.
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