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ABSTRACT

Uniquely among primates, humans possess a remarkable capacity to recognize
and manipulate abstract structure in the service of task goals across a broad range
of behaviors. One illustration of this is in the visual perception of geometric forms.
Studies have shown a uniquely human bias toward geometric regularity, with task
performance enhanced for more regular and symmetric forms compared to their
geometrically irregular counterparts. Such studies conclude that this behavior im-
plies the existence of discrete symbolic structure in human mental representations,
and that replicating such behavior in neural network architectures will require
mechanisms for symbolic processing. In this study, we argue that human biases
towards geometric regularity can be reproduced in neural networks, without ex-
plicitly providing them with symbolic machinery, by augmenting them with an
architectural constraint that enables the system to discover and manipulate rela-
tional structure. When trained with the appropriate curriculum, this model exhibits
human-like biases towards symmetry and regularity in two distinct tasks involving
abstract geometric reasoning. Our findings indicate that neural networks, when
equipped with the necessary training objectives and architectural elements, can
exhibit human-like regularity biases and generalization. This approach provides
insights into the neural mechanisms underlying geometric reasoning and offers an
alternative to prevailing symbolic “Language of Thought” models in this domain.

1 INTRODUCTION

Humans have the amazing capability of building useful abstractions that can capture regularities in
the external world. Understanding what is responsible for this special feature of human intelligence
relative to other animals is a longstanding goal in cognitive science (Penn et al., 2008} |Berwick &
Chomskyl, 2016)). One domain in which cognitive scientists have observed this “human singularity”
(Dehaene et al.} 2022) is in geometric reasoning: early Homo sapiens 100,000 years ago were able
to produce structured abstract geometric shapes and drawings on caves (Henshilwood et al.,|2011),
whereas similar behaviors have not been observed for non-human primates despite years of human
contact (Saito et al., 2014]).

Such observations, as well as rigorous empirical work (e.g.,[Sablé-Meyer et al.[2021};2022)) have led
some cognitive scientists to conclude that human mental representations uniquely contain discrete
domain-specific symbols that are recursively and compositionally combined to produce abstractions
that support the capacity for generalization that is characteristic of human behavior (Dehaene et al.}
2022). A corollary of this hypothesis is that artificial neural networks cannot, in principle, produce
human-like intelligence without the exogenous addition of explicit symbolic machinery and/or rep-
resentations (Dehaene} 2021; Marcus) 2020). Indeed, empirical work in this domain has shown that
explicitly symbolic models fit human behavior better than standard neural networks (Sablé-Meyer
et al., |2021). This has led to the view, by some, that symbolic “Language of Thought” models are
the best models of humans’ mental representations (Quilty-Dunn et al.| [2022)).

However, the fact that human behavior, or their inductive biases, may be described effectively with
abstract symbolic processing does not necessarily imply that their internal representations are based
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on discrete symbols (Griffiths et al.l [2023)). Consequently, there may be other forms of representa-
tions, such as the continuous vector spaces of neural networks, that could, under the right conditions,
produce this behavior without explicit symbolic machinery (McCoy et al., 2018). In the present
work, we provide an existence proof of this point by revisiting recent empirical cognitive science
work showing humans’ regularity biases towards abstract geometric concepts (Sablé-Meyer et al.,
2021;2022). We show that standard neural networks augmented with a simple constraint that favors
relational information processing can replicate human generalization and regularity biases without
needing to build in explicit symbolic machinery. Specifically, we implement an architectural motif,
known as the relational bottleneck (Webb et al.l 2023a), that allows networks to exploit relations
between objects rather than the attributes of individual objects.

We focus on the results of two studies. The first is the work of |Sablé-Meyer et al.| (2022), in which
humans were tested on a standard working memory task, Delayed-Match to Sample (DMTS), using
image stimuli sampled from a generative Language of Thought model of geometric concepts. The
second is a study by [Sablé-Meyer et al.| (2021), in which humans and non-human primates were
tested on a version of the Oddball Detection task, a simple categorization paradigm in which partic-
ipants identify a deviant stimulus in a group of quadrilateral stimuli. We show that a standard neural
network, augmented with a relational bottleneck and trained with an appropriately designed curricu-
lum using the same data as the studies by [Sablé-Meyer et al.| (2021) and [Sablé-Meyer et al.| (2022),
exhibited human-like biases for abstract geometric regularity. These results offer an alternative inter-
pretation of such biases, suggesting that with the appropriate inductive biases and curriculum neural
networks can exhibit features associated with the capacity for symbolic processing without the need
to hardcode the network with symbolic representations and/or mechanisms.

2 HISTORICAL BACKGROUND AND RELATED WORK

For decades, cognitive scientists and Al researchers have embraced two main approaches to building
intelligent systems: symbolic models (Fodor, |1975) and neural networks (Rumelhart & McClelland,
1986)). [Fodor] (1975) proposed the “Language of Thought” (LoT) hypothesis: that higher-order cog-
nition in humans is the product of recursive combinations of pre-existing, conceptual primitives,
analogous to the way in which sentences in a language are constructed from simpler elements. Sym-
bolic models are well-suited to naturally embed the abstract, structured knowledge humans possess,
such as causal theories (Goodman et al., 201 1)) or hierarchical motor programs that draw handwritten
characters (Lake et al., [2015)). Neural networks, on the other hand, emphasize emergence of these
abstract concepts purely from data within completely unstructured, distributed representations (Mc-
Clelland et al.,|2010). Despite the incredible recent success of neural networks in machine learning,
cognitive scientists have hypothesized that their systematic failure at generalizing out of their train-
ing distribution comes from a failure to embed the kinds of abstract structural knowledge that can
exist in symbolic models (Lake et al., [2017; |Marcus, [2003)).

Recent work has suggested that these capacities may emerge through learning in neural networks
that implement relational reasoning. Relational reasoning involves abstracting over the details of
particular stimuli or domains and extracting more general forms of structure that are broadly useful
for capturing regularities in the external world (Gentner, |1983; |Holyoak, |2012). This can be accom-
plished in neural networks by introducing an architectural inductive bias: the relational bottleneck
(Webb et al.,|2023a). The general principle of the relational bottleneck is that some components of
the network are restricted to operating on relations over representations rather than the representa-
tions themselves (Webb et al.| 2020} |2023b; Mondal et al., [2023). For example, the network might
be constrained to use the similarity or distance between two embeddings rather than the embeddings
themselves. Critically, unlike many hybrid neuro-symbolic models (Plate, [1995; [Touretzky, [ 1990;
Mao et al., 2019)) the relational bottleneck does not introduce pre-specified symbolic primitives or
any explicit mechanisms for symbolic processing, relying instead on the emergence of abstract con-
cepts within unstructured, distributed representations. The motivation of the relational bottleneck is
similar to that of other works that have built neural network architectures more sensitive to relational
reasoning (Barrett et al.| [2018}]; |Santoro et al., 2017; |Shanahan et al.| |[2020).

The Language of Thought (LoT) approach has been applied to a variety of domains in cognitive
science, including learning causal theories (Goodman et al., 2011), representations of numbers (Pi-
antadosi et al.|[2012)), and logical concepts (Piantadosi et al.,|2016). However, geometry has recently
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Figure 1: Geometric Language of Thought and Delayed Match to Sample Task (A) Primitives
of the generative Language of Thought (LoT) model implemented in |Sablé-Meyer et al.| (2022).
Primitives are recursively composed to produce symbolic programs that can be rendered into ab-
stract geometric pattern stimuli. (B) Schematic of the working memory Delayed-Match to Sample
(DMTS) task. A target stimulus is shown at the beginning, followed by a delay period, and the the
target image must be selected out of a group of choice images containing distractors.

emerged as one of the domains in which the strongest arguments in favor of this kind of representa-
tion have been made (Sablé-Meyer et al., 2021} [2022; |[Dehaene et al., [2022)). This setting is also a
natural one in which to explore the predictions of neural network models, as geometric stimuli can
be presented directly to models in the form of images. In the remainder of the paper, we present
a detailed analysis of two of the studies that have been held up as providing support for the LoT
approach, demonstrating how neural networks that are constrained to focus on relations are capable
of reproducing the key patterns in human behavior.

3 TRAINING NEURAL NETWORKS ON A LANGUAGE OF THOUGHT FOR
GEOMETRY

3.1 BACKGROUND

Sablé-Meyer et al.| (2022)) presented a study designed to test the Language of Thought hypothesis
in the setting of geometry. The study was based on a model of geometric concept learning also
developed by [Sablé-Meyer et al.| (2022). This model framed concept learning as program induc-
tion within the DreamCoder framework (Ellis et al., [2021). A base programming language was
defined such that programs can be written to generate geometric shapes, where motor programs that
draw geometric shapes are generated through recursive combination of symbolic primitives within
a Domain Specific Language (DSL, Fig.[TJA). The DSL contains motor primitives, such as tracing a
particular curve and changing direction, as well as primitives to recursively combine subprograms
such as C'oncat (concatenate two subprograms together) and Repeat (repeat a subprogram n times).
These symbolic programs can then be rendered into images such as the ones seen in Fig.[T] Since
each image has an underlying program, the minimum description length (MDL; [Ellis et al.|[2021])
of the program was used to model the psychological complexity of the corresponding geometric
pattern.

Abstract geometric patterns were generated by this symbolic LoT model (Fig.[I]A) and used as stim-
uli in a standard working memory task, based on a Delayed-Match to Sample (DMTS, Fig. [IB)
paradigm. In this task, human participants were instructed to memorize a geometric stimulus. Fol-
lowing the memorization phase, participants were presented with a blank screen for two seconds.
Subsequently, they were shown six option stimuli, among which one matched the original stimulus
they had memorized (the target image), while the remaining five were distractors. The objective for
participants was to accurately select the image they had seen during the encoding phase and avoid
choosing any of the distractor images.

In preceding work (Sablé-Meyer et al.[2021} discussed further in the next section), the authors sug-
gested that perception of abstract geometric stimuli can be based on two systems: a high-level,
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Figure 2: DMTS Task Architecture Implementation (A) Target and delay images are passed
through a pretrained CNN encoder (Kubilius et al.,2019). The outputs of the encoder are passed to
an LSTM, producing memory embeddings that correspond to participants’ working memory repre-
sentation of the initial target stimulus when performing the DMTS task. Each of the choice images
are encoded using the same CNN encoder. (B) In the baseline model (left), the memory embed-
dings are simply concatenated to the choice embeddings and passed to a fully connected layer that
produces the logits classifying the target image. In the relational bottleneck model (right), the em-
beddings are used to compute the similarity between each choice embedding and the memory em-
bedding, and these similarities are used to produce the logits.

general-purpose symbolic system, supposedly only available to humans; and a lower-level, domain-
specific shape invariant object recognition system, available to both humans and non-human pri-
mates, that can be modeled by a standard Convolutional Neural Network (CNN) model of object
recognition in the brain (specifically, the Ventral Visual Stream; Kubilius et al.|2019). To study
the first system, [Sablé-Meyer et al.| (2022) chose distractor stimuli that were maximally similar to
the target image based on hidden representations of a pre-trained CNN model of the Ventral Visual
system (CorNet; [Kubilius et al.[2019) and the average grey-level of the image. Even with difficult
distractors, humans excelled at the task, with error rates as low as 1.82%.

3.2 NEURAL NETWORK MODELING

We trained two Recurrent Neural Networks (RNNs; one baseline and one implementing a relational
bottleneck) on this task, using the LoT model of (Sablé-Meyer et al., [ 2022) to generate a large train-
ing corpus of geometric stimuli and holding out the specific stimuli used in the human experiments
for the test set. Stimuli were encoded by a CNN encoder, which was comprised of a pre-trained
CNN model (CorNet; Kubilius et al.|2019). On each trial, an encoded representation of the stim-
ulus was used as the input to an LSTM (Fig. [2JA), followed by encoded representations of three
additional timesteps-worth of blank input images | (Fig. ). The resulting output embedding of the
LSTM corresponds to the working memory content of the human participants during choice time
("Memory Embedding”, see Fig. [2JA). The model is subsequently presented with the choice images
(Fig.[2). We implemented two types of decision processes to classify the target image out of the six
choice images (one target, five distractors). One of these was a standard baseline model, and the
other was augmented with a relational bottleneck (Webb et al.|2023a; Fig. ).

For the baseline model, the embeddings of the six choice stimuli, along with the memory embed-
ding, were concatenated and simultaneously fed into a standard feedforward layer that was used
to classify the target image. For the Relational Bottleneck model, the cosine similarity between
the memory embedding and each choice embedding was computed; those similarities were then
used to produce the prediction of the target image. This restricted the model to processing the re-
lations between its memory of the target image and the choice stimulus, without “intrusion” from
any stimulus-specific attributes of the choice stimuli. During training, distractors were chosen ran-
domly, but during testing, we used the exact same trials that were presented to human participants

The delay period for the human experiments was 2 seconds, while the average stimulus presentation time
was around 1.2s. Given this, we believe three timesteps makes the task for the networks at least as hard if not
harder than the human task.
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Figure 3: DMTS Results (A) Training accuracy across epochs of baseline and relational bottleneck
models. Both models eventually reach near-perfect accuracy. (B) Results on tasks held out from
model training that were taken directly from the human trials in/Sablé-Meyer et al.|(2022)). The black
bar denotes chance performance, while the green bar denotes mean human performance. Error bars
are 95% confidence intervals over model training seeds. The Relational Bottleneck model performs
much better out of distribution. (C) We increased the delay period from 3 timesteps to 20. Though
both models suffer in performance, the Relational Bottleneck model still performs much better.

in the empirical study [Sablé-Meyer et al.|(2022), in which difficult distractors were chosen based on
similarity to pretrained CorNet representations (Kubilius et al.,2019) and average grey-levels.

3.3 RESULTS

We tested both implementations of the model on the exact same trials given to human participants
in [Sablé-Meyer et al/ (2022). Performance of the baseline model was well below human perfor-
mance (Fig. 3B). However, the relational bottleneck model generalized extremely well to the test
set, performing significantly better than the baseline model (p < 0.001) and approximating the per-
formance of human participants. In addition, it handled longer delay periods substantially better than
the baseline model (Fig. [B[C), demonstrating its ability to maintain abstract representations of these
geometric stimuli more robustly through the delay period. The results suggest that it is possible to
achieve human-like performance on this task with a neural network model augmented by a simple
constraint that favors learning relations, without imbuing the model with any explicit symbolic rep-
resentations. The training corpus we used had stimuli containing very rich geometric abstractions
(see Fig.[TIA and Fig. [7). While our results suggest that inclusion of a relational bottleneck may be
necessary to produce representations that support out-of-distribution generalization, it is not clear
whether it is sufficient even in cases of a more impoverished training corpus.

Previous work has shown that a rich training data distribution can also contribute to such generaliza-
tion (Chan et al., [2022)). To address this, we tested whether the relational bottleneck would produce
similar human-like performance when training on a relatively more restricted training corpus.

4 HUMAN-LIKE VS MONKEY-LIKE PROCESSING OF QUADRILATERAL
STIMULI

4.1 BACKGROUND

Inspired by early anthropological work investigating abstract geometric concepts in cave drawings
and behavioral research comparing geometric reasoning in humans and non-human primates,
Meyer et al.|(2021) compared diverse human groups (varying in education, cultural background, and
age) to non-human primates on a simple oddball discrimination task. Participants were shown a set
of five reference shapes and one “oddball” shape and prompted to identify the oddball (Fig.[4). The
reference shapes were generated based on basic geometric regularities: parallel lines, equal sides,
equal angles, and right angles. Reference shapes consisted of 11 types of quadrilaterals varying
in their geometric regularity, from squares (most regular) to random quadrilaterals containing no
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Figure 4: Quadrilateral Oddball Task (A) The Oddball task of [Sablé-Meyer et al.| (2021} used
six quadrilateral stimulus images, in which five images were of the same reference shape (differing
in scale and rotation) and one was an oddball (highlighted in red) that diverged from the reference
shape’s geometric properties. In this example, the reference shape is a rectangle; note that the Odd-
ball does not have four right angles like the rectangles. (B) Sablé-Meyer et al| (2021) examined
error rates for humans, monkeys, and pre-trained CNNs (Kubilius et al.| [2019) across quadrilater-
als of decreasing geometric regularity (from squares, which have the highest regularity, to random
quadrilaterals that have little regularity). Humans performed significantly better on more regular
images, with error rates trending significantly upwards with decreasing regularity, whereas monkey
and CNN error rates did not exhibit a significant error rate trend as a function of regularity.

parallel lines, right angles, or equal angles/sides (least regular) (Fig. dB). In each trial, five different
versions of the same reference shape (e.g, a square) were shown in different sizes and orientations.
The oddball shape was a modified version of the reference shape, in which the lower right vertex
was moved such that it violated the regularity of the original reference shape (e.g, moving the lower
right vertex of a trapezoid such that it no longer has parallel sides). Fig.[dA shows an example trial.

Sablé-Meyer et al.| (2021) found that humans, across many different ages, cultures, and education
levels, are naturally sensitive to these geometric regularities (right angles, parallelism, symmetry,
etc) whereas non-human primates are not. Specifically, they found that human performance is best
on the Oddball task for the most regular shapes, and systematically decreases as shapes become more
irregular. Conversely, non-human primates perform well above chance, but they perform worse than
humans overall and, critically, show no influence of geometric regularity (Fig. @B).

To address this pattern of findings, |Sablé-Meyer et al.|(2021) implemented two computational mod-
els: a symbolic model and a neural network model. The symbolic model implemented oddball
identification using an explicitly symbolic feature space constructed from the shapes’ discrete ge-
ometric properties. The neural network model was a pretrained CNN model of the Ventral Visual
stream (CORNet; Kubilius et al. 2019)' ?||Sablé-Meyer et al.|(2021) found that the symbolic model
fit the human performance of their Oddball task significantly better than the neural network model,
and in particular it captured the effect of increasing error with increasing geometric irregularity.
Conversely, the neural network model fit the monkey behavior better, exhibiting no systematic rela-
tionship with the level of geometric regularity (Fig. @B). They interpreted this as evidence that the
human sensitivity to geometric regularity requires the presence of unique symbolic representations
that are absent in both neural networks and non-human primates.

4.2 NEURAL NETWORK MODELING

Here, we show that a neural network trained on the same stimuli used by Sablé-Meyer et al.|(2021),
and provided with a relational bottleneck, exhibits the sensitivity of geometric regularity observed
in humans, without the explicit specification of discrete symbolic representations.

ZSablé-Meyer et al.|(2021) additionally re-trained CorNet on an object recognition task on the quadrilateral
stimuli and reported that re-training CorNet on this task did not affect their results.
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Figure 5: Oddball Task Architecture Implementation (A) To make an oddball decision using the
Relational Bottleneck, we compute an oddball judgement directly from the 6 x 6 similarity matrix
of the encoder’s choice embeddings. (B) We implemented two types of contrastive pretraining on
a ResNet CNN architecture: (top) a standard contrastive objective based on SimCLR
2020) and (bottom) a novel contrastive objective using distances in a geometric feature space.

We started with the ResNet CNN architectureﬂ but we modified this architecture to directly compute
the Oddball judgements end-to-end using the relational bottleneck, using the method described in
(2022) (Fig.[5)A). Specifically, a 6 x 6 cosine similarity matrix is computed across each
of the six stimuli, and the similarity matrix is fed into a feedforward layer that produces an Oddball
decision. This structure forces the model to make decisions based on the relations between choice
stimuli rather than the attributes of an individual choice stimulus.

We pretrained the CNN using one of two contrastive objectives (Fig.[5B): Standard and Geomet-
ric. The Standard objective was based on SimCLR 2020). Specifically, simple random
rotations and scaling were applied to individual quadrilateral images, and then the CNN was trained
to push its representations of those images together, to be more similar (i.e., less distant) to their
augmented counterparts, and pull its representations of different quadrilateral images apart, to be
more dissimilar (i.e., more distant) from each other. The Geometric objective used the geometric
features utilized in [Sablé-Meyer et al.|(2021) as the feature space over which to define distances.
Those geometric features were binary vectors corresponding to the presence or absence of equal
angles, equal sides, parallel lines, and right angles of the quadrilateral. During training, this effec-
tively pushed quadrilaterals with similar geometric features together and pulled quadrilaterals with
different geometric features apart. This allowed us to train the network to exhibit the same ab-
stractions defined by the geometric features without building in the geometric features themselves.
During testing and inference, the geometric features were completely discarded. This is similar to
previous work instilling human biases into neural network agents (Kumar et al 2022)), in which the

3Note that although [Sablé-Meyer et al.| (2021) run their main experiments with CorNet, they show in their
supplement that ResNet produces the same monkey-like behaviorial signatures as CorNet.
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Figure 6: Oddball Task Results (A) Mean error rates over the 11 types of quadrilaterals for each
type of network. The Geometric pre-trained network showed a significant trend between error rate
and geometric regularity (p < .001), while the Standard (SimCLR) pre-trained network did not (p =
0.99). (B). We correlated error rates across quadrilaterals for each model with the corresponding
error rates of humans and monkeys. Geometric pre-training of quadrilaterals led to human-like error
patterns, whereas SimCLR pre-training led to more monkey-like error patterns. Error bars are 95%
confidence intervals across different model training runs.

tabula rasa neural networks that were co-trained with symbolic information exhibited human biases
without explicitly implementing any symbolic representations.

4.3 RESULTS

Similar to the effect observed in the study by [Sablé-Meyer et al.| (2022) discussed in the previous
section, the geometric regularity effect observed for humans in |[Sablé-Meyer et al.| (2021) was an
inverse relationship between geometric regularity and error rate (see green plot in Fig. 4B). For
example, humans performed best on the most regular shapes, such as squares and rectangles. This
regularity effect was again absent in the monkey error rates (Fig. @B).

Following|Sablé-Meyer et al.|(2021)), we show, for each of our networks, the error rates for quadrilat-
erals sorted by geometric regularity and how well they match human and monkey error rates (Fig. [6).
The Geometric pre-trained model showed a strong fit to human behavior (r = 0.72) and a signifi-
cant effect of geometric regularity (p < 0.001; Fig.[6). The Standard (SimCLR) pre-trained model,
however, showed a strong fit to monkey behavior (r = 0.70), but not to human behavior (r = 0.005),
nor did they show the geometric regularity effect (p = 0.99; Fig.[6). This indicates that, although
the relational bottleneck was necessary, it was not sufficient on its own to reproduce human behavior
on this task. However, coupled with the appropriate training, it was able to reproduce the pattern
of results observed for human behavior in |Sablé-Meyer et al.| (2021). These results suggest that,
with the appropriate structural biases and training experience, it is possible for neural network to
learn representations that exhibit human-like biases in the geometric oddball task without explicitly
imposing symbolic representations on the network.

5 DISCUSSION

A prevailing theory in cognitive science is that abstractions that support strong generalization reflect
the presence of symbolic systems innate in humans that may be absent in animals (Fodor, [1975;
Quilty-Dunn et al., 2022} Dehaene et al.||2022). Along similar lines, it has been argued that, without
explicitly imbuing neural networks with such capabilities, they will not be able to exhibit the same
cognitive flexibility as humans (Marcus, |2020; Dehaene,, [2021). Empirical findings in the studies
by (Sablé-Meyer et al., 2021) and |Sablé-Meyer et al|(2022) have been offered in support of these
conjectures. Here, we provide evidence to the contrary, showing how the introduction of a simple,
neurally plausible relational inductive bias, coupled with the appropriate training experiences, is
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sufficient to reproduce behavior consistent with the formation of abstract representations in neural
networks.

The domain of the empirical work we re-examine involves the visual perception of geometric pat-
terns (Sablé-Meyer et al., 2021} [2022). [Sablé-Meyer et al.| (2022) show that humans are adept at
processing geometric patterns, using a delayed-match-to-sample working memory task with stimuli
sampled from a generative probabilistic program induction model (Ellis et al., 2021). We trained
two types of RNN models on this task: a baseline model and a model with a relational bottleneck
that is biased to focus on relations between stimuli to classify the target image. Consistent with
the claims of |Sablé-Meyer et al.| (2022), a baseline model does not reach human-level performance
out of its training distribution. However, a model with the relational bottleneck does indeed reach
human performance on the test set, showing that a simple constraint that favors learning relations
can allow neural networks to achieve human-level performance on this task.

Sablé-Meyer et al.|(2021) further show that humans are sensitive to geometric regularity when per-
forming a visual perception task, the Oddball task, using quadrilateral stimuli, whereas non-human
primates and standard CNNs (Kubilius et al., 2019) are not. Here, we found that even with a re-
lational bottleneck, a network trained with a standard contrastive learning objective produced the
same monkey-like behavior observed from the CNN trained by Sablé-Meyer et al.| (2021)). However,
when trained constrastively on distances produced by geometric features, the model did reproduce
the human geometric regularity effect.

One important difference between the two tasks is that, the delayed match to sample task Sablé-
Meyer et al.| (2022) used reaction times (RTs) to show the geometric regularity effect in humans,
whereas the oddball task [Sablé-Meyer et al.|(2021)) used error rates. This is because error rates in the
former were near zero, and therefore RTs were required to observe significant effects. One limitation
of our study is that we did not construct an analogue to human RTs for our RNN models. Instead,
we used out-of-training-distribution accuracy as the main performance metric. In the Oddball task
(Sablé-Meyer et al., 2021), where human error rates were higher, we were able to conduct a more
direct comparison, where we observed a clear correspondence between human (or monkey) behavior
and our models.

A further difference between the two experiments is that the model of the Oddball task required
geometric contrastive pre-training to match human performance (producing monkey-like behavior
without this objective). We believe this is because the dataset used in the Delayed Match-to-Sample
task features a richer distribution of stimuli (Fig. 7)) sampled from a Bayesian program induction
model (DreamCoder; [Ellis et al|[2021). Building a training distribution of samples from such a
Bayesian model has an interpretation of effectively distilling the Bayesian model’s rich prior into a
neural network (McCoy & Griffiths, [2023). In contrast, the Oddball dataset consisted of a relatively
simple set of 11 quadrilaterals, which may not be sufficiently diverse to allow the network to extract
more abstract representations (see Chan et al.[2022|for a similar argument about how the richness of
training data affects the post-training capabilities of Large Language Models).

Our work provides evidence that simple modifications to standard neural networks are sufficient to
reproduce human behavior on tasks used in cognitive science to showcase allegedly unique human
capabilities. It may be possible that such geometric regularity biases can be instilled in neural net-
works by other methods. For example, previous work has shown Vision Transformer architectures,
like humans, are biased more towards shapes than textures (Tuli et al., 2021)). In general, we sug-
gest that human-like behavior and abstractions can be instilled in neural networks using a variety
of strategies, including through specialized architectures (Webb et al., 2023a; 2020), specialized
loss functions/training curricula (Kumar et al., 2022; |Kepple et al.l [2022), and/or highly rich data
distributions (McCoy & Griffiths, [2023; |Chan et al., 2022).

A hallmark of human intelligence is the ability to develop highly general abstractions that cap-
ture the essential structure in their environments in a strikingly sample-efficient manner (Gershman,
2017; Lake et al., |2017). Our work highlights the possibility of neural network-based architectures
achieving the same level of intelligence without built-in, explicitly symbolic machinery, recapitu-
lating a classic debate in cognitive science (Rumelhart & McClelland, |1986). Given the success
of this approach in the geometric setting, we anticipate that similar models may be able to capture
behavior that has previously been explained in terms of symbolic representations in learning causal
relationships, numerical representations, and logical concepts.
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A APPENDIX

A.1 MORE GEOMETRIC LOT STIMULI
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Figure 7: More examples of samples from the LoT model in[Sablé-Meyer et al.| (2022) (see Fig. [T))
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A.2 ODDBALL HUMAN/MONKEY CORRESPONDANCE OVER TRAINING EPOCHS
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Figure 8: Correlation between Oddball model error rates and human/monkey error rates across
contrastive training epochs. During geometric contrastive pre-training (see Fig. [3)), there is an
inflection point in which the model becomes more human-like and less monkey-like.
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