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ABSTRACT

Graph pooling compresses graph information into a compact representation. State-
of-the-art graph pooling methods follow a hierarchical approach, which reduces
the graph size step-by-step. These methods must balance memory efficiency
with preserving node information, depending on whether they use node dropping
or node clustering. Additionally, fixed pooling ratios or numbers of pooling
layers are predefined for all graphs, which prevents personalized pooling structures
from being captured for each individual graph. In this work, inspired by bottom-
up grammar induction, we propose an efficient graph parsing algorithm to infer
the pooling structure, which then drives graph pooling. The resulting Graph
Parsing Network (GPN) adaptively learns personalized pooling structure for each
individual graph. GPN benefits from the discrete assignments generated by the
graph parsing algorithm, allowing good memory efficiency while preserving node
information intact. Experimental results on standard benchmarks demonstrate that
GPN outperforms state-of-the-art graph pooling methods in graph classification
tasks while being able to achieve competitive performance in node classification
tasks. We also conduct a graph reconstruction task to show GPN’s ability to
preserve node information and measure both memory and time efficiency through
relevant tests.1

1 INTRODUCTION

Graph neural networks (GNNs) (Scarselli et al., 2008; Bruna et al., 2013; Defferrard et al., 2016;
Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017; Gilmer et al., 2017; Xu et al.,
2019) have shown remarkable success in processing graph data from various fields (Li & Goldwasser,
2019; Yan et al., 2019; Suárez-Varela et al., 2021; Kipf et al., 2018). Graph pooling is built on top of
GNNs. It aims to capture graph-level information by compressing a set of nodes and their underlying
structure into a more concise representation. Early graph pooling methods, such as mean or add pool
(Atwood & Towsley, 2016; Xu et al., 2019), perform permutation-invariant operations on all nodes in
a graph. These flat pooling methods disregard the distinctions between nodes and fail to model the
latent hierarchical structure within a graph. Thus, they can only capture information at the graph level
in a rough manner. To overcome this limitation, researchers drew inspiration from pooling designs
in computer vision (Ronneberger et al., 2015; Noh et al., 2015; Jégou et al., 2017), they turned to
perform hierarchical pooling on graph data to capture structural information more accurately. The
dominant approaches are node dropping (Gao & Ji, 2019; Lee et al., 2019) and node clustering (Ying
et al., 2018; Bianchi et al., 2020). Each approach has its own advantages and disadvantages: node
dropping methods reduce the size of a graph by dropping a certain proportion of nodes at each step.
While they are memory-efficient, they irreversibly lose node information and may damage graph
connectivity (Baek et al., 2021; Wu et al., 2022), leading to sub-optimal performance. On the other
hand, node clustering methods perform clustering at each pooling layer, allowing for soft cluster
assignments for each node, thus preserving its information. However, this comes at the cost of a dense
cluster assignment matrix with quadratic memory complexity (Baek et al., 2021; Liu et al., 2023),
sacrificing scalability. The comparison of graph pooling methods can refer to Figure 1. Hierarchical
pooling methods need to strike a balance between preserving node information and being memory
efficient, while our model excels in both aspects.

∗Zhouhan Lin is the corresponding author.
1Code is available at https://github.com/LUMIA-Group/GraphParsingNetworks
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Graph parsing: Sparse assignment, Keep nodes, connectivity & locality, Learnable pooling treeNode clustering: Dense assignment, Break locality, Fixed pooling tree

Flat pooling: Coarse-grained, Lose graph structre, Fixed pooling tree Node dropping: Lose node irreversibly, Break connectivity, Fixed pooling tree

Figure 1: Comparison of graph pooling methods. The colors of the nodes indicate their pooling levels.
The solid/dotted lines with arrows represent hard/soft node assignment matrixes.

Another fundamental problem of existing graph pooling methods is that they are unable to learn
personalized pooling structure for each individual graph (Liu et al., 2023), i.e., they predefine a fixed
pooling ratio or number of layers for all graphs. However, some graphs may be more compressible
compared to others and imposing a constant pooling ratio may hurt performance on less compressible
ones (Gao & Ji, 2019; Ranjan et al., 2020; Wu et al., 2022), leading to suboptimal performance. We
represent the graph pooling structure as a rooted-tree to illustrate the problem, which we name the
pooling tree (cf. Figure 1). The root node represents the graph-level representation, while the leaf
nodes are taken from the input graph. The nodes produced by the k-th pooling layer correspond to the
height k of the tree. Ideally, the model should learn a personalized pooling tree for each graph with a
flexible shape. This means that we should not constrain the total height hmax or the number of nodes
nk at height k. There are numerous methods that focus on optimizing graph structure (Gasteiger et al.,
2019; Jiang et al., 2019; Chen et al., 2020b; Jin et al., 2020; Suresh et al., 2021; Topping et al., 2022;
Bo et al., 2023). However, only a few (Diehl, 2019; Wu et al., 2022) attempt to optimize pooling
structure, and even those can only learn a partially flexible shape of the pooling tree and not in an
end-to-end fashion. In Appendix B and Appendix C, we discuss these methods in detail and highlight
the differences. Our model is the first to end-to-end learning of a fully flexible pooling tree.

To overcome these two crucial problems, we propose a graph parsing algorithm inspired by recent
advancements in bottom-up grammar induction (Shen et al., 2018b;a; 2019). In natural language
processing, grammar induction techniques extract latent discrete structures from input text sequences
without any guided supervision. We adapted this approach for the graph domain and used it to
learn pooling trees. As shown in Figure 2, our model employs a graph parsing algorithm that
assigns a discrete assignment to each node at layer k, allowing us to infer the number of nodes
nk at height k. The parsing process ends when the graph has been fully parsed (i.e., the graph
size remains unchanged), enabling us to infer the total height hmax. Therefore, our model can
learn a pooling tree with a flexible shape for each individual graph in an end-to-end fashion. Our
parsing algorithm is based on locality, thus ensures graph connectivity during pooling. We clustering
nodes instead of dropping them, which preserves node information intact, and the discrete clustering
process guarantees memory efficiency. Jo et al. (2021) also performs edge-centric graph pooling,
however, they still need to pre-define the number of pooling layers or pooling ratio. A more detailed
introduction for related works can be found in Appendix B.

2 PROPOSED METHOD

In this section, we first divide the graph pooling layer into three modules and introduce our design for
each. Then, we present the details of our proposed graph parsing algorithm. Finally, we introduce the
model architecture that is applied to both graph classification and node classification tasks.

2.1 GRAPH POOLING COMPONENTS

We represent a graph G = (V, E), |V| = n, |E| = m with its feature matrix X ∈ Rn×d and adjacent
matrix A ∈ Rn×n, where n,m, d represents the number of nodes, the number of edges and the
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dimension of the node feature vector, respectively. Hierarchical graph pooling compress the original
graph G(0) = G into a single vector, step-by-step. At each pooling layer, an input graph G(k), which
has n(k) nodes, is transformed into a smaller output graph G(k+1) with fewer nodes (n(k+1) < n(k)).
In this study, we present a unified framework which consists of three modules: graph information
encoding, structural transformation, and multiset computation (see Figure 2).

Graph information encoding This module extracts node features and graph structure to generate
useful metrics. For instance, it can generate node scores for node dropping methods or cluster
assignment vectors for node clustering methods. Considerable effort has been put into improving the
quality of these metrics, as evidenced by the advanced designs discussed in Section B. To encode
structural information, we apply a GNN block and then use an MLP on adjacent nodes to calculate
the edge score:

H(k) = GNN
(
X(k),A(k)

)
,C

(k)
i,j = σ

(
MLP

(
H

(k)
i,: ⊙H

(k)
j,:

))
(1)

σ(·) here is a sigmoid function, C(k) is the edge score matrix that satisfy C(k) = C(k) ⊙A(k). In
practice, we simply implement the GNN block with multiple GCN layers.

Structural transformation This module consists of two steps: node assignment and output graph
construction. In the k-th pooling layer, the first step involves mapping nodes from the input graph to
the output graph, resulting in an assignment matrix S(k) ∈ Rn(k)×n(k+1)

. S(0),S(1), · · · ,S(K) fully
encode the pooling tree with height K. The primary challenge here is to learn a flexible pooling tree
for each graph, as we described in Section 1. We propose a graph parsing algorithm A to construct
node assignment and perform matrix multiplication for the second step:

S(k) = A
(
C(k)

)
,A(k+1) = S(k)TA(k)S(k) (2)

Multiset computation This module computes the feature matrix X(k+1) for G(k+1). As the input
node set can be treated as a multiset, this module can be seen as a multiset function (Baek et al., 2021).
Simple implementations include operators such as ADD(·),MEAN(·), and MAX(·). Recent studies
have explored more expressive methods like DeepSets (Zaheer et al., 2017), or attention mechanisms
(Baek et al., 2021). We implement this module using DeepSets:

X̂(k+1) = DeepSets
(
H(k),S(k)

)
= MLP2

(
S(k)T MLP1

(
H(k)

))
(3)

To update the MLP in Equation 1, we need to involve edge scores in backpropagation since the
graph parsing algorithm A is not differentiable. To achieve this, we compute a mask y(k) through
edge scores. Let us consider a subgraph Ĝ

(k)
i ⊆ G(k) induced by cluster vi in G(k+1). We denote

edges inside Ĝ
(k)
i as Ê(k)i , and 1 is a d-dimension ones vector. Through adding the score and then

multiplying to the features, the cluster can be aware of the number of edges assigned to it.2

X(k+1) = X̂(k+1) ⊙
(
y(k)1T

)
,y

(k)
i = ADD

({
C

(k)
j,k |(j, k) ∈ Ê

(k)
i

})
(4)

2.2 GRAPH PARSING ALGORITHM

Our graph parsing algorithmA takes edge score matrix C(k) as input and returns an assignment matrix
S(k). We do not impose any constraints on the pooling ratio or the number of clusters. Therefore,
we infer clusters from nodes in a manner similar to how larger units (e.g., clauses) are inferred from
smaller units (e.g., phrases) in grammar induction. In order to make the pooling structure learnable,
we rely on both the graph topology and a set of continuous values defined on it, namely edge scores.
As such, when edge scores are updated through gradients, the pooling structure can also be updated
via decoding from it. To elaborate on this decoding process, we first introduce three operators that
are utilized within it.
Definition 1. DOM(·) (short for “dominant”): this operator selects the dominant edge for each
node, which determines its assignment. First it performs a row-wise max indexing on the edge score
matrix C(k) to obtain seed edges idx, then construct matrix Ĉ(k) by filtering out other edges:

idx = argmaxrow-wise(C
(k)), Ĉ

(k)
i,j =

{
C

(k)
i,j , (i, j) ∈ idx

0, otherwise
(5)

2Details for Equation 4 and end-to-end training can be found in Appendix F.
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Figure 2: Proposed graph parsing networks, driven by the graph parsing algorithm A. The box with
three stages indicates the graph pooling layer, which recurrently builds the entire model. The red box
shows the details and an example of how A works.

Definition 2. EXP (·) (short for “expand”): this operator expands a set of seed edges idx on the
filtered graph Ĉ(k) through a neighbor lookup. First induce the node set l using idx, then merge
neighboring edges idx′ that are dominated by them. idxx, idxy represent the sets of starting and
ending node indices for the edge set idx:

l = union ({idxx}, {idxy}) , idx′ = {(i, j)|(i ∈ l ∨ j ∈ l) ∧ Ĉ
(k)
i,j ̸= 0} (6)

Definition 3. GEN(·) (short for “generate”): given an assignment mapping s that maps node i to
cluster j, this operator generates the assignment matrix S(k) using s:

S
(k)
i,j =

{
1, (i, j) ∈ s

0, otherwise
(7)

Algorithm 1 Graph parsing algorithm A
Input: edge score matrix C(k)

Output: assignment matrix S(k)

1: Ĉ(k) ← DOM
(
C(k)

)
▷ Stage 1

2: s← ∅
3: p← 0
4: while sum(Ĉ(k)) ̸= 0 do ▷ Stage 2
5: idx← argmax(Ĉ(k))
6: do
7: q ← |idx|
8: l, idx′ ← EXP

(
idx, Ĉ(k)

)
9: idx← union (idx, idx′)

10: while |idx| = q
11: s← union (s, {(i, p)|i ∈ l})
12: Ĉ

(k)
i,j ← 0,∀(i, j) ∈ idx

13: p← p+ 1
14: end while
15: S(k) = GEN(s) ▷ Stage 3
16: return S(k)

Based on these definitions, we present the afore-
mentioned decoding process in Algorithm 1. To
facilitate understanding, we divided it into three
stages. In Stage 1, we use the DOM(·) operator
to identify the dominant edge for each node,
which determines its assignment. To ensure
memory efficient, we opt for a sparse assign-
ment by selecting a single dominant edge for
each node. This also protects locality by avoid-
ing instances where a single node is assigned to
multiple clusters, which could result in uncon-
nected nodes being assigned to the same cluster.
During this stage, we initialize an empty map-
ping s that associates nodes with clusters. As
we create clusters and map nodes to them one
by one, we also set up an indicator variable p,
which keeps track of the latest cluster’s index.

In Stage 2, we use Ĉ(k) to create s. This is
done through a double-loop approach, where
new cluster is generated in the outer loop and
nodes are assigned to it in the inner loop. In the
outer loop, we choose the edge with the highest
score in Ĉ(k) as the seed edge. This edge is considered as the first member of a new cluster. In
the inner loop, we expand this seed edge iteratively using the EXP(·) operator which performs
neighborhood lookup and merges. The inner loop terminates when no additional edges can be
covered by expanding from the seed edges, i.e., |idx| = q. We then map all the nodes in final node
set l to the same p-th cluster. After that, we clear all the edges covered in this loop (idx) from Ĉ(k),
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and update the indicator p. In Stage 3, we use the GEN(·) operator to create an assignment matrix
S(k) with s. If the graph has isolated nodes, we generate a separate cluster for each isolated node and
create a corresponding mapping in s.

Complexity The time complexity for Algorithm 1 is O(
n(k+1)∑
i=1

di), di indicate the diameter of the

subgraph Ĝ
(k)
i ⊆ G(k) induced by node vi in G(k+1). Compared to EdgePool, which has a time

complexity of O(m(k)), our worst case time complexity of O(n(k)) is much smaller. In Appendix
A.3, we provide further comparison to SEP and demonstrate that our model is more efficient than it.
These results indicate that our model is also time efficient and can handle dense or large graphs.
Proposition 4. (Proof in Appendix A.1.) In k-th graph pooling layer, the time complexity for

Algorithm 1 is O(
n(k+1)∑
i=1

di), which is upper-bounded by the worst case O(n(k)).

Permutation invariance Permutation invariance is a crucial property in graph representation learning
as it ensures the model’s ability to generalize on graph data. As the other components (GNN,
DeepSets) of our model are already permutation invariant, we only focus on analyzing the permutation
invariance of the graph parsing algorithm A.
Proposition 5. (Proof in Appendix A.2.) Given a permutation matrix P , suppose the row-wise
non-zero entries in C are distinct, A (C) = A

(
PCPT

)
, thus A is permutation invariant.

Graph connectivity Keep the graph connectivity during pooling is important. Our parsing algorithm
keep the connectivity of the input graph unchanged during graph pooling, which guarantees a fluent
flow of information on the pooled graph.

Proposition 6. (Proof in Appendix A.4.) For nodes i, j ∈ G(k), if there is a path s
(k)
ij connect them,

then a path s
(k+1)
pipj would exist between the corresponding clusters pi, pj ∈ G(k+1) after parsing.

2.3 MODEL ARCHITECTURE

Graph-level architecture By utilizing the pooling layer that was introduced in previous sections, we
can directly employ this model for graph classification tasks. The architecture of our model (depicted
in Figure 3) comprises solely of one pooling layer which progressively decreases the size of the input
graph until it matches the output graph produced by our graph parsing algorithm A. Subsequently, a
multiset computation module is utilized to convert the final graph into a single node and generate a
compressed vector for graph classification.

Pooling Pooling

PoolingPooling Un-pooling Un-pooling

Graph
classification

Node
classification

Figure 3: Graph-level and node-level GPN archi-
tecture. Each un-pooling layer receives an as-
signment matrix and node feature through a skip-
connection from its corresponding pooling layer.

Node-level architecture We developed an
encoder-decoder architecture (refer to Figure
3) for the node classification task, inspired by
previous graph pooling methods used in node-
level tasks like TopKPool (Gao & Ji, 2019) and
SEP (Wu et al., 2022). Our approach involves
compressing the graph into a smaller size using
bottom-up pooling in the encoder block, fol-
lowed by expanding it in the decoder block. We
store the assignment at every pooling layer dur-
ing the encoding process and use this informa-
tion for un-pooling in the decoding process. We
implement k-th un-pooling layer as follows:

A(k+1) = ST(h−k)

A(k)S(h−k) (8)

X(k+1) = S(h−k)X(k) (9)

the variable h represents the height of the pooling tree in the encoder block. The assignment
matrix S(h−k) is stored in the (h− k)-th pooling layer and corresponds to the k-th un-pooling layer.
Additionally, skip connections are applied between the encoder and decoder, following methods used
in Gao & Ji (2019); Wu et al. (2022).
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Table 1: Graph classification accuracy with mean and standard deviation based on 20 random seeds,
we bold the model with best performance.

DD PROTEINS NCI1 NCI109 FRANKENSTEIN
# Graphs 1,178 1,113 4,110 4,127 4,337
# Nodes (Avg.) 284.3 39.1 29.9 29.7 16.9
# Classes 2 2 2 2 2

Set2Set (Vinyals et al., 2016) 71.60±0.87 72.16±0.43 66.97±0.74 61.04±2.69 61.46±0.47

Attention (Li et al., 2016) 71.38±0.78 71.87±0.60 69.00±0.49 67.87±0.40 61.31±0.41

GCN (Kipf & Welling, 2017) 68.33±1.30 73.83±0.33 73.92±0.43 72.77±0.57 60.47±0.62

SortPool (Zhang et al., 2018) 71.87±0.96 73.91±0.72 68.74±1.07 68.59±0.67 63.44±0.65

GMT (Baek et al., 2021) 78.11±0.76 74.97±0.79 70.35±0.65 69.45±0.45 66.76±0.60

TopKPool (Gao & Ji, 2019) 75.01±0.86 71.10±0.90 67.02±2.25 66.12±1.60 61.46±0.84

SAGPool (Lee et al., 2019) 76.45±0.97 71.86±0.97 67.45±1.11 67.86±1.41 61.73±0.76

HGP-SL (Zhang et al., 2019) 75.16±0.69 74.09±0.84 75.97±0.40 74.27±0.60 63.80±0.50

GSAPool (Zhang et al., 2020) 76.07±0.81 73.53±0.74 70.98±1.20 70.68±1.04 60.21±0.69

ASAP (Ranjan et al., 2020) 76.87±0.70 74.19±0.79 71.48±0.42 70.07±0.55 66.26±0.47

SPGP (Lee et al., 2022) 77.76±0.73 75.20±0.74 78.90±0.27 77.27±0.32 68.92±0.71

DiffPool (Ying et al., 2018) 66.95±2.41 68.20±2.02 62.32±1.90 61.98±1.98 60.60±1.62

EdgePool (Diehl, 2019) 72.77±3.99 71.73±4.31 78.93±2.22 76.79±2.39 69.42±2.28

MinCutPool (Bianchi et al., 2020) 77.36±0.49 75.00±0.96 75.88±0.57 74.56±0.47 68.39±0.40

HoscPool (Duval & Malliaros, 2022) 76.83±0.90 75.05±0.81 78.69±0.45 78.36±0.52 68.37±0.61

SEP (Wu et al., 2022) 76.54±0.99 75.28±0.65 78.09±0.47 76.48±0.48 67.79±1.54

GPN 77.09±0.81 75.62±0.74 80.87±0.43 79.20±0.47 70.45±0.53

An informative node representation is crucial for node-level tasks. To achieve this, we utilize a
separate GNN encoder for the multiset computation module. In the node-level architecture, Equation
3 in the pooling layer needs to be rewritten as:

X̂(k+1) = DeepSets
(
GNN′

(
X(k),A(k)

)
,S(k)

)
(10)

3 EXPERIMENTS

In this section, we evaluate our model’s performance on six graph classification and four node
classification datasets. We also demonstrate how the node information is well-preserved through
a graph reconstruction task. To assess the efficiency of our parsing algorithm, we conduct time
and memory tests. Additionally, we showcase our model’s ability to learn a personalized pooling
structure for each graph by visualizing the number of pooling layers during training across different
datasets. Finally, an ablation study is performed on all three graph pooling modules to determine
their contributions.

3.1 GRAPH CLASSIFICATION

Graph classification requires a model to classify a graph into a label, which calls for graph-level
representation learning.

Experimental setup We evaluate our model on five widely-used graph classification benchmarks
from TUDatasets (Morris et al., 2020): DD, PROTEINS, NCI1, NCI109, and FRANKENSTEIN.
Table 1 presents the statistics of them. Additionally, we evaluate our model’s performance at scale on
ogbg-molpcba, one of the largest graph classification datasets in OGB (Hu et al., 2020), comprising
over 400,000 graphs. For baselines, we select GCN (Kipf & Welling, 2017) (with simple mean
pooling), Set2Set (Vinyals et al., 2016), Global-Attention (Li et al., 2016), SortPool (Zhang et al.,
2018), and GMT (Baek et al., 2021) from the flat-pooling family. For hierarchical pooling methods,
we include TopKPool (Gao & Ji, 2019), SAGPool (Lee et al., 2019), HGP-SL (Zhang et al., 2019),
GSAPool (Zhang et al., 2020), ASAP (Ranjan et al., 2020), and SPGP (Lee et al., 2022) for node
dropping and DiffPool (Ying et al., 2018), EdgePool (Diehl, 2019), MinCutPool (Bianchi et al., 2020),
HoscPool (Duval & Malliaros, 2022), and SEP (Wu et al., 2022) for node clustering3. We adopt
10-fold cross-validation with 20 random seeds for both model initialization and fold generation. This

3SEP is a special case in node clustering based pooling, since it computes a sparse pooling tree before
training, while others generate dense assignments for each forward pass.
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Table 3: Node classification accuracy with mean and standard deviation based on 10 splits, we bold
the model with best performance.

Cora CiteSeer PubMed Film
# Nodes 2,708 3,327 18,717 7,600
# Edges 5,278 4,676 44,327 26,752
# Classes 6 7 3 5

MLP 75.69±2.00 74.02±1.90 87.16±0.37 36.53±0.70

GCN (Kipf & Welling, 2017) 86.98±1.27 76.50±1.36 88.42±0.50 27.32±1.10

GraphSAGE (Hamilton et al., 2017) 86.90±1.04 76.04±1.30 88.45±0.50 34.23±0.99

GAT (Veličković et al., 2018) 86.33±0.48 76.55±1.23 87.30±1.10 27.44±0.89

MixHop (Abu-El-Haija et al., 2019) 87.61±0.85 76.26±1.33 85.31±0.61 32.22±2.34

PairNorm (Zhao & Akoglu, 2020) 85.79±1.01 73.59±1.47 87.53±0.44 27.40±1.24

Geom-GCN (Pei et al., 2020) 85.35±1.57 78.02±1.15 89.95±0.47 31.59±1.15

GCNII (Chen et al., 2020a) 88.37±1.25 77.33±1.48 90.15±0.43 37.44±1.30

H2GCN (Zhu et al., 2020) 87.87±1.20 77.11±1.57 89.49±0.38 35.70±1.00

GPRGNN (Chien et al., 2021) 87.95±1.18 77.13±1.67 87.54±0.38 34.63±1.22

GGCN (Yan et al., 2022) 87.95±1.05 77.14±1.45 89.15±0.37 37.54±1.56

NSD (Bodnar et al., 2022) 87.30±1.15 77.14±1.85 89.49±0.40 37.81±1.15

TopKPool (Gao & Ji, 2019) 79.65±2.82 71.97±3.54 85.47±0.71 −
SEP (Wu et al., 2022) 87.20±1.12 75.34±1.20 87.5±0.35 −
GPN 88.07±0.87 77.02±1.65 89.61±0.34 38.11±1.23

means there are 200 runs in total behind each data point, ensuring a fair comparison. This approach
is consistent with Lee et al. (2019), Ranjan et al. (2020), and Lee et al. (2022). More details about
datasets, implementations and model tuning can be found in Appendix H.1.

Table 2: Graph classification accuracy
on large scale dataset ogbg-molpcba.

ogbg-molpcba
# Graphs 437,929
# Nodes (Avg.) 26.0
# Classes 2

GCN (Kipf & Welling, 2017) 20.20±0.24

HGP-SL (Zhang et al., 2019) 18.64±0.28

EdgePool (Diehl, 2019) 23.48±0.41

ASAP (Ranjan et al., 2020) OOM
GMT (Baek et al., 2021) 23.70±0.50

SPGP (Lee et al., 2022) 23.95±0.97

GPN 26.65±0.31

Classification results Table 1 shows that our model out-
performs SOTA graph pooling methods on four out of five
datasets, demonstrating its ability to capture graph-level
information precisely. The sub-optimal performance of
our model on the DD dataset can be attributed to graph
size, as DD has an average node count of 284.3, making
it the dataset with large and sparse graphs that pose long-
range issues (Alon & Yahav, 2020). Resolving such issue
requires global information, the complete attention graph
in GMT (Baek et al., 2021) provide such information short-
cut, thus they perform better. Notably, our method does not
include these designs, yet it has achieved considerable re-
sults on DD. On the large-scale ogbg-molpcba dataset, our
model outperforms all SOTA graph pooling models and
significantly improves upon GCN’s performance, demon-
strating the superior scalability of our model, and the po-
tential to handle complex large scale data.

3.2 NODE CLASSIFICATION

The node classification task focuses on node-level information. Each graph node is assigned a label,
and the goal is to predict its label.

Experimental setup We conduct node classification experiments under full supervision for four
datasets: Cora, CiteSeer, and PubMed from Sen et al. (2008), and Film from Pei et al. (2020).
Table 3 shows the datasets’ statistics. To evaluate our model’s performance comprehensively, we
compare it with a range of baselines, including classical methods: GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), PairNorm (Zhao & Akoglu,
2020), MixHop (Abu-El-Haija et al., 2019); and SOTA methods: Geom-GCN (Pei et al., 2020),
GCNII (Chen et al., 2020a), GPRGNN (Chien et al., 2021), H2GCN (Zhu et al., 2020), GGCN (Yan
et al., 2022), and NSD (Bodnar et al., 2022). We further compare with two graph pooling methods,
TopKPool (Gao & Ji, 2019) and SEP (Wu et al., 2022), as other pooling models cannot scale to
thousands of nodes or lack a node-level architecture. We follow the same dataset splitting and settings
as Zhu et al. (2020), Yan et al. (2022) and Bodnar et al. (2022) and report the average results of 10
dataset splits. Dataset and implementation details can be found in Appendix H.2.
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Classification results The results in Table 3 demonstrate the competitiveness of our model on
the selected datasets. Our approach achieves SOTA performance on Film dataset and performs
comparably to the SOTA model for node classification, GCNII, on Cora and PubMed datasets.
Furthermore, we surpass most baseline models on CiteSeer dataset. Since the compared SOTA
methods are explicitly designed for node-level tasks and did not extend to graph-level, our overall
performance is satisfactory. Notably, when compared with the leading graph pooling model SEP, we
outperform it on all datasets. This reveals the superior generality across graph-level and node-level
tasks of our proposed method.

3.3 GRAPH RECONSTRUCTION

To demonstrate our model’s ability to maintain node information, we conduct a graph reconstruction
experiment. This can visually illustrate the potential structural damage from graph pooling.

(a) Original (b) TopKPool (c) MinCutPool (d) GPN

Figure 4: Graph reconstruction task on ring and grid syn-
thetic graphs, which tests whether a graph pooling model can
preserve node information intact.

Experimental setup We follow
Bianchi et al. (2020) to construct a
graph autoencoder that includes pool-
ing and un-pooling operations on the
input graph G = (X,A) to recover
the original node features. The recov-
ered graph Gr = (Xr,Ar) has the
same structure as the input graph, but
the node features are produced solely
by the pooling and un-pooling process.
The mean square error loss |X−Xr|2
is used to train the autoencoder. We
use the coordinates in a 2-D plane as
the node features, thus the recovered
node features can be visually assessed
to evaluate the pooling model’s ability
to preserve node information. We test
on the grid and ring graphs. We choose TopKPool and MinCutPool as baselines, which represent the
node dropping and node clustering methods, respectively. More baseline results and higher resolution
images can be found in Appendix H.3.

Reconstruction results Figure 4 shows the graph reconstruction results on a 2D plane. It is obvious
that TopKPool, which drops nodes, damages node information and performs poorly on two graphs.
In contrast, MinCutPool uses clustering and preserves the original coordinates better. Compared to
these methods, our model recovers a clearer ring graph and effectively preserves the central part of
the grid graph, demonstrating its ability to preserve node information intact.

3.4 EFFICIENCY STUDY

In this section, we assess the memory and time efficiency of our proposed model. Since models from
the same class will have similar memory and time performance, we choose one model from each class
of pooling methods as our baseline. Specifically, we select GMT, TopKPool, MinCutPool, EdgePool
for flat pooling, node dropping, node clustering, and edge-scoring based pooling respectively.

Memory efficiency We test memory efficiency as described in Baek et al. (2021). Varying numbers
of nodes (n) were used to generate Erdos-Renyi graphs, while keeping the number of edges constant
at 2n per graph. Applying pooling to each graph once, we compare our model’s GPU memory usage
with baselines (Figure 5). Our parsing-based model shows much better memory efficiency when
compared to MinCutPool. This confirms our approach’s memory-efficient nature.

Time efficiency To test time efficiency, we creat Erdos-Renyi graphs with m = n2/10, and time one
forward graph pooling as in Baek et al. (2021). Our results, as shown in Figure 6, demonstrate that
GPN is much more efficient than EdgePool, a model also based on edge-scoring. This is because
our model has an upper-bound time complexity of O(n), making it able to handle a large number
of edges, whereas EdgePool’s time complexity of O(m) would result in significant delays when
processing too many edges.
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3.5 VISUALIZATION

In this section, we verify if our model learns personalized pooling structure for each graph. To achieve
this, we have created a visualization in Figure 7 that shows the number of pooling layers learned
during training on various datasets. Each data point and its shadow represent the mean and variance
of the number of pooling layers for all graphs within a dataset. The star indicate the step with best
validation loss. It is evident that the heights of star indicators vary across datasets, indicating our
model learns distinct pooling layers for each. The fluctuating curve and its shadows during training
confirm that our model effectively learns personalized pooling layers for every graph in a dataset.

3.6 ABLATION STUDY

Table 4: Ablation study on three components of a graph pooling
layer, covering both graph dataset and node dataset.

Graph-level Node-level
PROTEINS FRANKENSTEIN Cora CiteSeer

Original 75.62±0.74 70.45±0.53 88.07±0.87 77.02±1.65

w/GAT 75.41±0.91 69.94±2.56 87.46±1.13 77.16±1.50

w/GIN 75.02±1.25 70.18±0.44 86.62±1.26 76.50±1.67

w/Mean pool 75.26±1.13 69.75±0.54 87.40±1.02 76.50±1.51

w/Max pool 75.12±0.68 69.61±0.46 87.08±1.26 76.23±1.29

Complete graph 74.12±1.63 67.03±1.05 74.85±1.47 OOM

In this subsection, we conducted
an ablation study to assess the
contribution of each module that
we described in Section 2.1. We
use four datasets, including both
graph and node levels. We evalu-
ated these variants: for the graph
information encoding module,
we used GAT or GIN layers in-
stead of GCN layers; we trans-
formed the input graph to a com-
plete graph to check the necessity
of graph locality and our proposed graph parsing algorithm; we tested two simple aggregators without
parameters, mean pool and max pool, instead of DeepSets for multiset computation. Table 4 shows
that overall superior performance was obtained by these variants, except when we broke the locality
with a complete graph, the model suffered a significant performance drop, highlighting the importance
of graph locality and underscoring the crucial role of our parsing algorithm. The good performance
on other variants indicates that our model is robust regarding the selection of GNN encoder and
multiset function. Notably, GPN with a GAT backbone get better results on CiteSeer, which reveals
the potential of our model.

4 CONCLUSION

In this paper, we address two pressing challenges associated with hierarchical graph pooling: the
inability to preserve node information while simultaneously maintaining a high degree of memory
efficiency, and the lack of a mechanism for learning graph pooling structures for each individual graph.
To address these challenges, we introduce a novel graph parsing algorithm. We demonstrate that our
model outperforms existing state-of-the-art graph pooling methods in graph classification, while also
delivering competitive performance in node classification. Additionally, a graph reconstruction task
validates our model’s ability to preserve node information intact, while an efficiency study confirms
the effectiveness of our solution in terms of both time and memory consumption. All the proofs, a
more detailed introduction to related works, the limitations of our model and broader impacts can be
found in Appendix due to the space limit.
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5 ETHICS STATEMENT

In this work, we propose a novel graph pooling model. Our model is a general graph pooling model
that does not make explicit assumptions about data distribution, thus avoiding the occurrence of
(social) bias. However, our data-driven pooling mechanism needs to learn from samples with labels,
and it is possible to be misled by targeting corrupted graph structures or features, which can have a
negative social impact because both internet data and social networks can be represented as graphs.
We can develop corresponding ethical guidelines and constraints for the usage of our model to avoid
such problems.

6 REPRODUCIBILITY STATEMENT

We provide an introduction to our used datasets and model configuration in the experimental section
of our paper. The dataset is mentioned first in this section. In our Appendix, we report the hardware
and software environment used in our experiments, the methods used for hyper-parameter tuning,
and the steps for downloading, loading, and pre-processing the datasets. In our released source
code, we list the steps required to reproduce the results and provide yaml files that include all the
hyper-parameters for the reported performance in this paper.
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A PROOFS

A.1 PROOFS REGRADING PROPOSITION 4

Proof. Since in the k-th graph pooling layer, the number of iterations for outer loop in Algorithm 1

is n(k+1), to prove the time complexity O(
n(k+1)∑
i=1

di), we only need to prove the number of iterations

in i-th inner loop is di. Notice that in Definition 2, the DOM(·) performs a edges neighborhood
lookup on graph Ĉ(k), and this lookup operation can be effectively parallelized for all edges, thus the
number of iterations in inner loop equals to the lookup steps needed to traverse all the nodes in that
subgraph (a subgraph corresponding to node i in the output graph), which equals to the diameter di
of the subgraph.

Since graph Ĉ(k) has n(k) non-zero entries as we described in Definition 1, the time complexity
can never exceed it; then, suppose the input graph C(k) is a pure set of isolated nodes, without any
structure, then the number of iterations in Algorithm 1 equals to n(k), which is the worst case.

A.2 PROOFS REGRADING PROPOSITION 5

Proof. Since the commonly used operations like sum (·), argmax (·), union (·) in Algorithm 1 are
based on set and are permutation invariant, we only need to prove 3 operators we introduced are
also permutation invariant: for DOM(·) operator, it first doing a row-wise max index, which is
permutation invariant, then a masking is applied, since the masking is based on the idx from last step,
thus it is also permutation invariant; for EXP (·) operator, it performs a neighborhood lookup on
matrix in a parallel way (has no need to specify the order), thus it is also permutation invariant; for
GEN(·) operator, it’s results has no relationship with ordering since it’s just a matrix filling process,
thus it is also permutation invariant.

The above analysis are based on a set of distinct values in edge score matrix C(k), if there are some
duplicate values, the argmax (·) operator cannot guarantee uniqueness. Thus we need to assume the
row-wise non-zero entries in C are distinct, when the assumption breaks, it means there are at least
two nodes with common neighbors and their node features are exactly the same.

A.3 PROOFS REGRADING TIME COMPLEXITY COMPARISON WITH SEP

Proof. Suppose we have hmax pooling layers in total, then the overall time complexity is

O(
hmax∑
j=1

n(j)∑
i=1

dij), dij indicate the diameter for subgraph i in j-th pooling layer. The worst case

is that the input graph has no edge and get time complexity of O(n(k)). Thus we have overall time

complexity O(
hmax∑
j=1

n(j)∑
i=1

dij) ≤ O(
hmax∑
j=1

n(j−1)) ≤ O(hmaxn
(0)). Compared to SEP Wu et al. (2022)

that also apply heuristic algorithm, our parsing algorithm has a better time efficiency: SEP has a
overall time complexity O(2n(0) + hmax(m

(0) log n(0) + n(0))) (Wu et al., 2022), which is much
larger than ours.

A.4 PROOFS REGRADING PROPOSITION 6

Proof. In order to prove the conclusion, we only need to demonstrate that any two nodes in the
graph G(k) = (V(k), E(k)), if there is a path connect them, then a path would exist between the
corresponding clusters in the graph G(k+1) = (V(k+1), E(k+1)).

Assuming nodes i, j ∈ V(k) , and there exists a path s between them: s = (i = v0 − v1 − · · · −
vN−1 − vN = j), where vl ∈ V(k), l = 0, · · · , N . Suppose the cluster assigned to node vl ∈ V(k)

is pvl ∈ V(k+1), now we examine the relationship between the clusters pvl , pvl+1
. If the edge

(vl, vl+1) ∈ E(k) is a dominant edge, meaning Ĉ
(k)
vl,vl+1 > 0. It should be noted that the operator

EXP (·) conducts a neighborhood-lookup operation on Ĉ(k), regardless of whether the node vl or
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vl+1 is traversed first in Stage 2 of the parsing algorithm, since these two nodes are adjacent in Ĉ(k),
they will both be assigned to the same cluster, we have pvl = pvl+1

.

If the edge (vl, vl+1) ∈ E(k) is not a dominating edge, i.e., Ĉ(k)
vl,vl+1 = 0, then the two nodes

will be assigned to different clusters. According to Equation 2, A(k+1) = S(k)TA(k)S(k), then
A

(k+1)
pvl

,pvl+1
= (S(k)T)pvl

,:A
(k)S

(k)
:,pvl+1

=
∑n(k)

r=1 (
∑n(k)

t=1 S
(k)
t,pvl

A
(k)
t,r )S

(k)
r,pvl+1

. Noting that S(k)
vl,pvl

=

S
(k)
vl+1,pvl+1

= 1,A
(k)
vl,vl+1 = 1, when t = vl, r = vl+1, the corresponding summation term is 1,

which means that at least one non-zero term exists among all the summed terms. Since all summation
items are non-negative, it follows that A(k+1)

pvl
,pvl+1

> 0. We have (pvl
, pvl+1

) ∈ E(k+1).

In conclusion, pvl and pvl+1
are either the same node or adjacent nodes. Therefore, the node sequence

(pv0 , · · · , pvN ) is a path on the graph G(k+1). This completes the proof.

B RELATED WORKS

Graph pooling Researchers have shifted their focus to hierarchical pooling as flat pooling methods
(Atwood & Towsley, 2016; Xu et al., 2019) face difficulties in capturing comprehensive structural
information. Early node dropping methods (Gao & Ji, 2019; Lee et al., 2019) only retain nodes
with higher computed scores. This explicit dropping risks the irreversible loss of important node
information and can break the graph connectivity (Baek et al., 2021; Wu et al., 2022). To better
preserve node information, InfoMax-based (Li et al., 2020), memory-based (Khasahmadi et al., 2020)
and global prototype-based (Lee et al., 2022) techniques have been suggested; Zhang et al. (2019;
2020); Ranjan et al. (2020) improves graph connectivity by graph structure learning. These attempts
alleviate the problem of node dropping, but at cost of additional computing burden. On the other
hand, the node clustering approach calculates a soft assignment vector for each node. This method
effectively retains the node’s information but can be memory-intensive due to its dense assignment
matrix. Some works try to make this matrix sparser using various priors, such as penalty entropy in
Ying et al., or Haar wavelet transforms in Wang et al.. However, these penalty terms may hurt model
training. Another drawback of node clustering methods is that they can easily converge to trivial
solutions where each node has uniform soft assignments, due to the ignorance of locality. Several
methods inject locality into GNN encoders, such as CRF-based (Yuan & Ji, 2020) or MinCut-based
(Bianchi et al., 2020), but they are unable to scale to larger graphs. Unlike the previous mentioned
works, Jo et al. (2021) focuses on edges as the center and emphasizes precise learning of both node
and edge information. Finally, none of these approaches can optimize the pooling structure for each
individual graph.

Structure Optimization Structure optimization on graphs has gained significant attention in recent
times. The majority of these methods concentrate on the horizontal level, which involves learning
graph structure through techniques such as structure learning (Jiang et al., 2019; Chen et al., 2020b;
Jin et al., 2020; Suresh et al., 2021) to determine node adjacency with or without a graph prior, or
graph rewiring (Gasteiger et al., 2019; Topping et al., 2022; Bo et al., 2023) that adds or removes
edges to enhance message passing. Only a few focus on the vertical level, which is concerned with
learning pooling structures. EdgePool (Diehl, 2019) is an initial attempt to dynamically learn pooling
trees by iteratively contracting edges based on calculated scores, unless one of their nodes has already
been part of a contracted edge. Although they achieve end-to-end pooling tree learning through
edge scores, their contraction-based strategy limits flexibility as it results in a near-half pooling
ratio. On the other hand, SEP (Wu et al., 2022) uses combinatorial optimization to generate pooling
trees by defining and optimizing a metric with a greedy algorithm. While this optimizes the pooling
tree well for each graph, it is only used as a pre-processing step before training and cannot benefit
from downstream supervision signals. Additionally, SEP relies solely on graph topology and fails to
capture node features.

Grammar Induction Grammar induction, which aims at learning the latent structure behind natural
language in an unsupervised way, can be dated back to Klein & Manning (2004). It has seen many
advances recently, such as by using amortized variational inference on a transition-based parser
Kim et al. (2019b), by dynamic programming Drozdov et al. (2019), or by maximizing the marginal
likelihood of a sentence generated by PCFG Kim et al. (2019a), etc. Among all these various
approaches, the most related is the works based on syntactic distance Shen et al. (2018b), which
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SEP GPN EdgePool

Figure 8: A comparison for SEP, EdgePool and GPN in terms of their pooling mechanisms.

is a sequence of continuous scalar values that allows the tree to be inferred from it in a bottom-up
fashion. This approach has been successfully shown to work for both recurrent models Shen et al.
(2018a; 2019) and Transformer-based models Shen et al. (2021). Different from the above works that
induce latent tree structures as a byproduct of some self-supervised training process, our approach let
the latent structure drive graph pooling and engage in gradient backpropagation, resulting in a more
task-relevant model.

C DIFFERENCES COMPARED TO CLOSE METHODS

Our model significantly differs from EdgePool. In EdgePool, each cluster is usually composed of
two adjacent nodes, and only when all neighbors of a certain node have been assigned, a cluster with
a single node will be formed. Therefore, the proportion of pooling in the EdgePool is always close to
50%, which is not learnable. In contrast, in our model, the pooling ratio is not constrained and is
entirely inferred by the parsing algorithm, allowing for end-to-end learning. Moreover, the number
of pooling layers in EdgePool is set as a hyperparameter, and each pooling layer uses independent
parameters. However, we recursively use a single pooling layer to construct our model, the number of
which is inferred by the parsing algorithm. This varies continuously during the training process, with
all pooling layers sharing the same parameters. Figure 8 visually illustrates the differences between
three methods for optimizing pooling tree, i.e., SEP, EdgePool, and our proposed GPN.

D LIMITATION

In Section 3.4, our model demonstrates good time efficiency when processing batched graphs.
However, if a batch contains graphs with varying numbers of pooling layers, the model may not be as
time-efficient. This is because graphs with fewer pooling layers would have to wait for those with
more iterations to finish before proceeding, potentially leading to inefficiencies when dealing with
pretty large batches of graph data. For potential extreme cases that the inferred height of pooling tree
is too large, we can set a maximum height limit for the pooling tree in the algorithm. This means the
algorithm will stop during the parsing process once this height is reached.

E DISCUSSION

When running our model on a large-scale graph with a significant number of nodes, our graph
parsing algorithm may infer a high pooling tree. In this case, the model will perform numerous graph
convolutions and continuously smooth node features. The model structure for node classification
task already includes residual connections from the encoder to the decoder, which helps alleviate
potential over-smoothing issues by preserving local neighborhood information and original node
features through residual connections.

17



Published as a conference paper at ICLR 2024

F DETAILS FOR EQUATION 4 AND END-TO-END TRAINING

Here we describe the forward and backward passes of our model to clarify the training process:
During the forward pass, we first use GNN and MLP to compute the edge scores (Equation 1).
Then we run Algorithm 1 to obtain the assignment matrix (Equation 2) and performs the multiset
computation to obtain the coarsened graph (Equation 3). The final step is to compute the edge score
mask (Equation 4) to ensure the gradients can flow into GNN and MLP. During the backward pass,
Algorithm 1 does not run. Instead, the gradient backpropagation is performed directly. The GNN and
MLP can be updated through the gradients of the edge score mask.

We further present the details of Equation 4 to enhance understanding: Induce subgraph Ĝ
(k)
i ⊆ G(k)

from node vi means: each node vi in graph G(k+1) is a cluster generated by the k-th pooling layer,
thus it corresponds to a connected subgraph Ĝ

(k)
i in G(k). In order to allow gradients to flow into the

MLP used for calculating edge scores, we aggregate the scores of all the edges Ê(k)i in each subgraph
Ĝ

(k)
i . We then obtain a vector y(k)

i ∈ Rn(k+1)

represents the score of clusters. This vector is then
replicated into a mask matrix y(k)1T ∈ Rn(k+1)×d, which matches the shape of the node feature
matrix X̂(k+1). Finally, this mask is element-wise multiplied with the node feature matrix. During
the backward pass, Algorithm 1 does not run. Instead, the gradient backpropagation is performed
directly. The GNN and MLP can be updated through the gradients of the edge score mask.

G BROADER IMPACTS

In this study, we suggest a new graph pooling model that can address issues with current methods.
Our model derives the pooling structure from both the topology of the graph and the node features,
and is not founded on any assumptions regarding the data, which mitigates the risk of social bias.
Nonetheless, since the algorithm used for data parsing is data-driven, it is possible that the pooling
structure may be misguided by corrupted graph structure or features, which could lead to unfavorable
social consequences. Since both internet data and social networks can be presented as graphs, we
need to establish ethical guidelines and limit the usage of our model to avert such issues.

H EXPERIMENTAL DETAILS

We use NVIDIA GeForce RTX 3090 and NVIDIA GeForce RTX 4090 as the hardware environment,
and use PyTorch and PyTorch Geometric (Fey & Lenssen, 2019) as our software environment. The
datasets are downloaded from PyTorch Geometric, we also use dataloader provided by PyTorch
Geometric to load and pre-process datasets. We fix the random seed for reproducibility. We report
detailed configurations as follows.

H.1 GRAPH CLASSIFICATION

Dataset details DD and PROTEINS are datasets of protein structures that represent macromolecules.
Our task is to distinguish whether they are enzymes or non-enzymes based on their structure. The
graph size of DD is larger than the other four datasets, resulting in the highest number of graph-pooling
layers. NCI1 and NCI109 are two medium-sized datasets of chemical compounds labeled according
to whether they are active against lung cancer cells and/or ovarian cancer cells. FRANKENSTEIN is a
chimeric dataset of Mutagenicity and MNIST. It is relatively small and has the lowest average number
of nodes among these five datasets, as reflected in its smallest number of learned graph-pooling layers.
ogbg-molpcba is a chemical compound dataset used to determine molecular properties. It is a curated
dataset from PubChem BioAssay (PCBA) that provides information on the biological activities of
small molecules. The performance of ogbg-molpcba is measured using Average Precision, as this
dataset is highly biased due to the small number of positive examples. We borrowed the baseline
results from Lee et al. (2019), Ranjan et al. (2020), and Lee et al. (2022). Except for MinCutPool,
HoscPool, GMT and SEP, we reran their code and report the performance, since they did not have
public records under our setting. We followed PyTorch Geometric (Fey & Lenssen, 2019) scripts to
reimplement EdgePool for testing.
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Table 5: Best hyper-parameters for graph classification

Dataset Hyper-parameters
DD LGNN : 2, LDeepSets : 1, Dropout : 0.2, lr : 0.0001, H : 128, B : 64

PROTEINS LGNN : 3, LDeepSets : 1, Dropout : 0.1, lr : 0.0005, H : 128, B : 128

NCI1 LGNN : 2, LDeepSets : 3, Dropout : 0.4, lr : 0.0005, H : 256, B : 256

NCI109 LGNN : 3, LDeepSets : 1, Dropout : 0.2, lr : 0.0005, H : 128, B : 64

FRANKENSTEIN LGNN : 3, LDeepSets : 1, Dropout : 0.2, lr : 0.001, H : 128, B : 128

ogbg-molpcba LGNN : 3, LDeepSets : 1, Dropout : 0.3, lr : 0.001, H : 128, B : 128

Table 6: Best hyper-parameters for node classification

Dataset Hyper-parameters
Cora LGNN1

: 1, LGNN2
: 2, LDeepSets : 2, LMLP : 1, Dropout : 0.5, DropEdge : 0.5, lr : 0.005

CiteSeer LGNN1 : 2, LGNN2 : 3, LDeepSets : 2, LMLP : 3, Dropout : 0.6, DropEdge : 0.1, lr : 0.005

PubMed LGNN1
: 2, LGNN2

: 2, LDeepSets : 1, LMLP : 1, Dropout : 0.7, DropEdge : 0.7, lr : 0.001

Film LGNN1
: 2, LGNN2

: 2, LDeepSets : 1, LMLP : 2, Dropout : 0.5, DropEdge : 0.5, lr : 0.001

Implementation details For each experiment, we repeat the experiment on 20 seeds (from 0 to 19),
and we use the 10-fold cross-validation method. So for each dataset we end up reporting the average
result of 200 runs on the test set, which allows us to effectively avoid noise in the results and makes
the results more credible. For all datasets, we use an early stopping strategy to avoid overfitting. We
use validation loss as the criterion the early stopping. Also, the maximum number of epochs is set to
500 for all datasets. The Table 5 gives the best hyperparameters used in the 5 graph classification
datasets. For the sake of brevity, we use abbreviations in the table. LGNN represents number of
GCN layers inside the GNN block, LDeepSets represents number of MLP layers of DeepSets, LMLP

represents number of layers of the MLP for edge score computation, Dropout represents dropout in
the MLP, DropEdge represents the ratio of the edge dropout when perform parsing, lr represents
learning rate, H represents hidden channel, B represents batch size.

H.2 NODE CLASSIFICATION

Dataset details CiteSeer, Cora and PubMed are all citation network datasets. They share a common
feature in that their node features are 0/1-valued word vectors. CiteSeer consists of 3,312 scientific
publications, which contain a total of six categories. It has a citation network consisting of 4,732 links.
Its word vector has a dimension of 3,703. Cora consists of 2,708 scientific publications containing a
total of seven categories. Its citation network consists of 5,429 links. Its word vector has a dimension
of 1,433. PubMed consists of 19,717 scientific publications related to diabetes, which are divided
into three different categories. Its citation network consists of 44,338 links. Its word vector has a
dimension of 500. We obtain all baseline results from Zhu et al. (2020), Yan et al. (2022) and Bodnar
et al. (2022), except for TopKPool and SEP, we rerun their code and perform a grid search on Cora,
CiteSeer, and PubMed to ensure a fair comparison.

Implementation details For the node classification task, we used a ten-fold cross-validation method.
We keep the same hidden layer for all datasets and limit the maximum number of epochs to 2000.
we use an early stopping strategy for all datasets. We also use validation loss as an early stopping
criterion. We use the grid search method to find suitable hyperparameters. Table 6 gives the different
hyperparameters used for the four node classification datasets. And unlike the first three datasets,
Film is a dataset that describes the collaborative relationships between actors.
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(a) TopKPool (b) SAGPool (c) ASAPPool

(d) DiffPool (e) minCutPool (f) GPN

Figure 9: Reconstruction results of ring synthetic graphs, compared to node drop and clustering
methods.

H.3 GRAPH RECONSTRUCTION

Implementation details In order to keep the same setting with Bianchi et al. (2020), we use two
message passing layers before the pooling operation and after the unpooling operation. We choose
mean squared error (MSE) as the loss function. We use an early stopping strategy where patience is
set to 1,000 epochs. The maximum number of epochs is set to 10,000. We then optimise the network
using the Adam optimiser. In the experiment of Bianchi et al. (2020), they retained 25% of the nodes
by adjusting the height of the tree. In contrast, our GPN model automatically retains around 30% of
the nodes of the grid and ring during pooling.

More reconstruction results Figure 9 and Figure 10 show the results of graphs reconstructed using
various pooling methods. We can visually see that the node-drop method suffers from information
loss, resulting in the original graph being basically unrecognisable. Also, we can see that GPN
preserves the shape of the ring as well as the coordinates of the interior of the mesh very well.
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(a) TopKPool (b) SAGPool (c) ASAPPool

(d) DiffPool (e) minCutPool (f) GPN

Figure 10: Reconstruction results of grid synthetic graphs, compared to node drop and clustering
methods.

Sentence parsing Graph pooling

0.8 0.6 0.2 0.7
0.4 0.10.2

0.9
0.8

Figure 11: Sentence parsing build a syntactic tree based on the scores between tokens; graph parsing
build a pooling structure based on the scores defined on edges.
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