
CodeTransOcean: A Comprehensive Multilingual Benchmark
for Code Translation

Weixiang Yan1∗ Yuchen Tian2∗ Yunzhe Li3 Qian Chen4 Wen Wang4

1University of California, Santa Barbara 2The University of Hong Kong
3University of Illinois at Urbana-Champaign 4Speech Lab, Alibaba Group

weixiangyan@ucsb.edu yuchent@connect.hku.hk
yunzhel2@illinois.edu {tanqing.cq,w.wang}@alibaba-inc.com

Abstract

Recent code translation techniques exploit
neural machine translation models to trans-
late source code from one programming lan-
guage to another to satisfy production com-
patibility or to improve efficiency of code-
base maintenance. Most existing code trans-
lation datasets only focus on a single pair
of popular programming languages. To ad-
vance research on code translation and meet
diverse requirements of real-world applications,
we construct CodeTransOcean, a large-scale
comprehensive benchmark that supports the
largest variety of programming languages for
code translation. CodeTransOcean consists
of three novel multilingual datasets, namely,
MultilingualTrans supporting translations be-
tween multiple popular programming lan-
guages, NicheTrans for translating between
niche programming languages and popular
ones, and LLMTrans for evaluating executabil-
ity of translated code by large language mod-
els (LLMs). CodeTransOcean also includes
a novel cross-framework dataset, DLTrans,
for translating deep learning code across dif-
ferent frameworks. We develop multilingual
modeling approaches for code translation and
demonstrate their great potential in improving
the translation quality of both low-resource
and high-resource language pairs and boost-
ing the training efficiency. We also propose
a novel evaluation metric Debugging Success
Rate@K for program-level code translation.
Last but not least, we evaluate LLM ChatGPT
on our datasets and investigate its potential for
fuzzy execution predictions. We build base-
lines for CodeTransOcean and analyze chal-
lenges of code translation for guiding future re-
search. The CodeTransOcean datasets and code
are publicly available at https://github.
com/WeixiangYAN/CodeTransOcean.

∗Equal contribution. Work is supported by Speech Lab,
Alibaba Group.

1 Introduction

Early software systems are developed using pro-
gramming languages such as Fortran and COBOL,
which have a significantly smaller user base com-
pared to modern mainstream programming lan-
guages (e.g., Python and Java). Hence maintaining
and modernizing early software systems are ex-
pensive (Opidi, 2020). Moreover, the readability
and compatibility of the mixed multitude of pro-
gramming languages are challenging when migrat-
ing existing software systems to new technology
ecosystems or integrating software systems using
different programming languages. The code trans-
lation task aims to convert source code from one
programming language to another and is of great
value in industry.

Code translation methods evolve from the inef-
ficient, costly, and error-prone manual rewriting
method to automatic methods. Automatic code
translation methods can be categorized into compil-
ers and transpilers, rule-based methods, and neu-
ral network based methods. Neural models (Feng
et al., 2020; Wang et al., 2021, 2023b) have be-
come dominant in code translation. Details of code
translation methods are presented in Appendix A.1.
The performance of neural models relies heavily on
large-scale high-quality parallel data. However, ex-
isting code translation datasets are limited by insuf-
ficient coverage of programming languages and
mostly focusing on a single pair of popular pro-
gramming languages, limited scale, and uneven
data distribution. The widely used CodeTrans (Lu
et al., 2021) is a small dataset containing only Java-
C# parallel data for quite short code samples. Other
datasets (Ahmad et al., 2023; Rozière et al., 2020;
Zhu et al., 2022b; Nguyen et al., 2013; Chen et al.,
2018) suffer from the same limitations. Conse-
quently, existing code translation models (Feng
et al., 2020; Wang et al., 2021; Ahmad et al., 2021)
are confined to a narrow range of one-to-one code

https://github.com/WeixiangYAN/CodeTransOcean
https://github.com/WeixiangYAN/CodeTransOcean

Category Language/Framework Dataset Name Train/Dev/Test #Samples Avg. #Tokens/Sample Avg. Length

Multilingual

Python, C, C++,
Visual Basic, Go,

PHP, Java, C#
MultilingualTrans 19,115 / 3,759 / 7,545 398 / 421 / 491 1099 / 1135 / 1358

Swift, R, Rust,
Fortran, Ada, Perl,
COBOL, Lua, ...

NicheTrans 165,457 / 23,509 / 47,502 292 / 375 / 505 785 / 995 / 1372

Python, C, C++,
Visual Basic, Go,

PHP, Java, C#
LLMTrans – / – / 350 – / – / 270 – / – / 745

Cross-Framework
PyTorch, TensorFlow,

MXNet, Paddle
DLTrans 282 / 36 / 90 625 / 1102 / 875 1318 / 2441 / 1841

Table 1: Summary of our CodeTransOcean. We report #Samples, Avg. #Tokens/Sample and Avg. Length for
Train/Dev/Test sets of each dataset. Note that LLMTrans is only for testing. #Samples are on the program-level.
#Tokens are based on RoBERTa tokenizer (Liu et al., 2019). Length is the number of characters.

translation scenarios. Moreover, deep learning has
been broadly used and achieved unprecedented suc-
cess. However, there are barriers between different
deep learning frameworks during the actual pro-
duction process. Existing code translation datasets
also neglect important demands from real-world
applications, including modernizing early soft-
ware systems developed in niche programming
languages and migrating code across different
deep learning frameworks.

To address these limitations and advance neu-
ral code translation models, we construct a large-
scale comprehensive multilingual code translation
benchmark CodeTransOcean, summarized in Ta-
ble 1. CodeTransOcean is an innovative benchmark
that aims to provide a unified platform for eval-
uating various models on a comprehensive set of
code translation tasks that reflect real-world de-
mands. Based on this goal, each dataset in Code-
TransOcean is specifically designed to tackle a key
challenge in the field of code translation. Code-
TransOcean includes three multilingual datasets,
namely, the MultilingualTrans dataset (includ-
ing eight popular programming languages), the
NicheTrans dataset (translating between thirty-
seven niche programming languages and the eight
popular ones1), and a specialized dataset LLM-
Trans (including 350 data samples and their ex-
ecuted results) to evaluate executability of code
translated by large language models (LLMs), and a
cross-framework dataset DLTrans facilitating our
proposed task for translating code between deep
learning frameworks to enhance code reusability.

1We define popular and niche programming languages
based on the TIOBE Programming Community Index, which
is a metric of the popularity of programming languages.

DLTrans includes 408 samples covering four main-
stream deep learning frameworks.

Multilingual modeling shows great potential in
neural machine translation (Aharoni et al., 2019;
Wang et al., 2020; Zhu et al., 2023), but it has
not been systematically explored for code trans-
lation. We investigate multilingual modeling
for code translation using our MultilingualTrans,
NicheTrans, and DLTrans datasets. Experimen-
tal results demonstrate that multilingual modeling
significantly improves translation quality for both
high-resource and low-resource language pairs and
improves the model training efficiency.

Recent research indicates that the proficiency of
the LLM ChatGPT in natural language translation
is on par with commercial-grade translation sys-
tems (Jiao et al., 2023). To the best of our knowl-
edge, our work is the first to systematically in-
vestigate the potential of ChatGPT in code trans-
lation. We develop a fully automated translation-
execution-evaluation pipeline AutoTransExecuter
to support this study. Note that match-based met-
rics and execution-based metrics have been used
for evaluating code translation methods, with de-
tails in Appendix A.1. In order to accurately evalu-
ate the usability of translated code from ChatGPT,
we propose a novel execution-based evaluation
metric Debugging Success Rate @K (DSR@K),
which is the percentage of samples with translation
results that successfully execute and produce the
expected functionality after K debugging rounds.
On our LLMTrans dataset, the baseline ChatGPT
setting achieves 48.57% DSR@0. We find that
self-debugging and one-shot improve the perfor-
mance while chain-of-thought strategies degrade
the translation accuracy. Since our AutoTransEx-

ecuter still cannot cover arbitrary programming
languages, we also propose a novel metric fuzzy ex-
ecution, attempting to address the limitations of ex-
isting evaluation metrics for code translation. Our
preliminary study using ChatGPT shows that Chat-
GPT is still inadequate to predict fuzzy execution
for any arbitrary programming language, which
demands future research.

Our contributions can be summarized as follows:

• A large-scale multilingual code translation
benchmark: CodeTransOcean covers the largest
number of popular and niche programming lan-
guages so far with the largest scale. It also in-
cludes an unprecedented dataset for translating
code across different deep learning frameworks
and a dataset and an automated pipeline for eval-
uating LLMs on code translation. We establish
baselines for all datasets in CodeTransOcean.

• Multilingual modeling for code translation:
We are the first to systematically evaluate mul-
tilingual modeling on code translation for both
high-resource and low-resource language pairs.
Experimental results demonstrate that multilin-
gual modeling significantly improves translation
quality for both high-resource and low-resource
language pairs and improves training efficiency.

• ChatGPT on code translation: We conduct the
first comprehensive study of the potential of Chat-
GPT on code translation, investigating efficacy
of prompting strategies, hyperparameters, self-
debugging, One-shot, and Chain-of-Thought.

• New evaluation metrics: We propose DSR@K
to evaluate translation and debugging capabilities
of LLMs. We also propose a fuzzy execution
metric based on LLMs and conduct a preliminary
study using ChatGPT on this metric.

2 Related Work

Code Translation Datasets The success of neu-
ral models for code translation relies heavily on
large-scale high-quality parallel data. However,
existing code translation datasets are plagued by
issues such as insufficient coverage of program-
ming languages, limited scale, and imbalanced
data distribution. The widely used code trans-
lation dataset CodeTrans (Lu et al., 2021) in the
CodeXGLUE benchmark consists of Java-C# func-
tion pairs. The small parallel corpus AVATAR (Ah-
mad et al., 2023) is constructed for Java-Python
code translation. Nguyen et al. (2013) construct
a Java-C# dataset to explore statistical machine

translation on code translation tasks2. Chen et al.
(2018) explore this dataset from Nguyen et al. and
also construct a CoffeeScript-JavaScript parallel
dataset for investigating tree-to-tree neural models
for code translation. Rozière et al. (2020) create
a dataset containing 852 programs to evaluate un-
supervised methods. Recently, Zhu et al. (2022b)
construct a new translation dataset CoST from the
GeeksForGeeks website3. Subsequently, they re-
lease the translation dataset XLCoST (Zhu et al.,
2022a), which expands the CoST dataset by 7.3
times. However, the limited language coverage
of these datasets and their imbalanced data distri-
bution hinder their practical applications. Rozière
et al. (2022) construct the TransCoder-ST dataset to
perform unsupervised code translation using auto-
mated unit tests. Details of these datasets are sum-
marized in Table 2. Rithy et al. (2022) proposes
a code translation dataset XTest containing nine
programming languages with unit tests, but it is
not open-sourced4. Although CodeNet (Puri et al.,
2021) comprises many problem statements and pro-
vides corresponding solutions, experts have proven
that about half of the CodeNet dataset has incorrect
solutions (Zhu et al., 2022b), making it unsuitable
for code translation tasks. With the limitations of
existing code translation datasets, neural models
trained on them may encounter overfitting, underfit-
ting, and poor generalizability. Clearly, these issues
impede the development of neural models for code
translation. Therefore, constructing datasets that
effectively address these problems is critical to en-
hance performance of code translation algorithms.

Code Translation Methods and Evaluation Met-
rics Details of code translation methods and
evaluation metrics are presented in Appendix A.1.

3 The CodeTransOcean Benchmark

In this section, we provide detailed descriptions
and analyses of our CodeTransOcean benchmark,
including the code translation tasks, their associ-
ated datasets, and dataset statistics. Details of data
collection methods and licensing information as
well as quality control and quality assessment are
presented in Appendix A.2. Note that the vast

2It was not possible to count specific information about
this dataset because it was not released to the public and we
were unable to obtain response from the authors.

3In Table 2, we report the program-level counts for the
CoST dataset to facilitate a fair comparison with our own
program-level datasets.

4We tried to contact the authors but there was no response.

Dataset Source Programming Languages #Samples Avg. #Tokens/Sample Avg. Length

CodeTrans (Lu et al., 2021) Java, C# 11,800 59 / 63 / 58 205 / 218 / 202
Avatar (Ahmad et al., 2023) Java, Python 9,517 239 / 235 / 234 691 / 687 / 688

Nguyen et al.(Nguyen et al., 2013) Java, C# 16,966 – –
Lachaux et al.(Rozière et al., 2020) C++, Java, Python 852 - / 119 / 120 - / 313 / 311

CoST (Zhu et al., 2022b)
C++, Java, Python, C#,

Javascript, PHP, C
16,738 272 / 180 / 199 770 / 458 / 511

TransCoder-ST (Rozière et al., 2022) Java, C++, Python 437,030 – –

XLCoST (Zhu et al., 2022a)
C++, Java, Python, C#,

Javascript, PHP, C
122,151 234 / 232 / 222 644 / 634 / 606

Table 2: Summary of existing code translation datasets. For #Samples, we report program-level counts for Avatar,
CoST, and XLCoST. Given that the original samples from other datasets are not organized at the program-level, we
report counts at the snippet-level for these datasets. Avg. #Tokens/Sample and Avg. Length are counted in the same
way as Table 1.

majority of the samples in CodeTransOcean pro-
vides explicit input and output, which is equivalent
to unit tests. Overall, CodeTransOcean consists
of 270,507 samples (over 200K unit tests), cov-
ering 45 programming languages for multilingual
code translation and 4 deep learning frameworks
for cross-framework code translation5. Note that
all samples in all CodeTransOcean datasets are
constructed at the program-level. We ensure a
balanced distribution of each language/framework
when constructing the datasets (Appendix A.2).
There is no overlap between CodeTransOcean
datasets and existing code translation datasets.

3.1 Multilingual Code Translation

With the increasing need to unify the language
variety when implementing system integration
or extensions with multilingual programming en-
vironments, we construct the MultilingualTrans
dataset for multiple popular programming lan-
guages6. Among programming languages in the
rankings, we select the Top-10 languages as popu-
lar ones except JavaScript and SQL7 and construct
the MultilingualTrans dataset based on the 8 pro-

5Code Translation also extends to conversions between
different versions of the same language, e.g., Python 2 to
Python 3. However, according to our survey, these translation
tasks are quite straightforward. Naive Copy methods, specific
translation tools, and tutorials (e.g., Python 2 to 3 Conversion
Guide) already achieve high translation accuracy. As a result,
we no longer include these types of tasks in our benchmark.

6We categorize languages as popular or niche based
on the TIOBE Index Programming Language Rankings
released in April 2023 https://www.tiobe.com/
tiobe-index/.

7It is important to note that JavaScript and SQL, both
within the top 10, are mainly used for front-end programming
and database management respectively, signifying consider-
able differences in their usage scenarios compared to the other
8 languages.

gramming languages. We treat the other languages
in the rankings as niche languages and construct the
NicheTrans dataset for translating between niche
languages and popular languages. Additionally,
in order to quantitatively evaluate the execution
capabilities of the code generated by LLMs (e.g.,
ChatGPT, PaLM2 (Anil et al., 2023)), we construct
LLMTrans, which includes the execution results
for a subset of MultilingualTrans and facilitates
evaluating LLMs for multilingual code translation.

MultilingualTrans Dataset This dataset con-
tains 30,419 program samples covering eight popu-
lar programming languages, namely, C, C++, C#,
Java, Python, Go, PHP, and Visual Basic. Table 11
shows the statistics of each language pair. Note that
XLCoST (Zhu et al., 2022a) is the only existing
multilingual code translation dataset. Compared
to XLCoST, MultilingualTrans is advantageous in
more balanced data distribution across various pro-
gramming languages, practicality of language pairs,
and data quality. For example, the real-world re-
quirement for translating Java into JavaScript as
in XLCoST is quite limited. As to data quality,
our MultilingualTrans originates from a program-
ming chrestomathy website, with all data already
reviewed and verified by the website.

NicheTrans Dataset The NicheTrans dataset
contains 236,468 program samples, covering code
translation pairs from thirty-seven niche program-
ming languages, including Ada, COBOL, Pascal,
Perl, Erlang, Fortran, Scala, Julia and others, to the
eight popular ones. Table 12 shows statistics of
each niche language. Although many studies have
highlighted the practical necessity of code transla-
tion for modernizing niche programming languages
(Chen et al., 2018; Zhu et al., 2022b; Rozière et al.,

https://docs.python.org/2/library/2to3.html
https://docs.python.org/2/library/2to3.html
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

2020), our NicheTrans dataset is the first dataset for
code translation between these niche languages and
popular ones. We believe this dataset will not only
facilitate modernization of outdated programming
languages more effectively, but also augment and
evaluate generalizability of neural models.

LLMTrans Dataset The LLMTrans dataset aims
to provide a benchmark for evaluating the perfor-
mance of LLMs on code translation. The dataset
translates seven popular programming languages
to Python, totaling 350 program samples. We com-
pile and test these samples and record the execu-
tion results. Based on this dataset, we design and
implement an automated pipeline, AutoTransExe-
cuter8, automatically using LLMs to conduct code
translation, execution, debugging, and calculating
the success rate. This dataset and the automated
pipeline ease investigation of the actual debugging
success rate of LLMs on code translation and ef-
fectively measure the practical usability of LLMs.
Details of the LLMTrans dataset are in Table 1.

3.2 Cross-framework Code Translation
Cross-Deep-Learning-Framework Translation
Task The widespread applications of deep learn-
ing (DL) has spawned emergence of various DL
frameworks, such as PyTorch, TensorFlow, MXNet,
and Paddle. However, there are significant differ-
ences in syntax and dependency libraries between
different frameworks, severely impeding reusabil-
ity of projects9. Moreover, studies illustrate signif-
icant disparities in energy consumption and eco-
nomic costs during training and inference between
various frameworks (Georgiou et al., 2022). Se-
lecting an appropriate DL framework for green
AI has become paramount in an era of large mod-
els (Ananthaswamy, 2023). Code reusability and
energy-economic efficiency in DL have emerged
as critical considerations for both research and
practical engineering implementation. Convert-
ing code between different DL frameworks is chal-
lenging, mainly due to differences between frame-
works, code complexity, structural inconsistencies,
and cross-platform compatibility (more details are
in Appendix A.3). Existing cross-DL-framework
adaptive technologies such as the ONNX10 model
conversion protocol require both parties to import

8AutoTransExecuter only supports translation from any
source language to Python. We discuss it in Limitations.

9https://www.assemblyai.com/blog/
pytorch-vs-tensorflow-in-2023/

10https://onnx.ai/

and export based on agreed data formats or to
convert only the final model through the compu-
tation graphs. These technologies have obvious
limitations. In contrast, we propose a Cross-DL-
framework Translation task for code migration
between different DL frameworks through code
translation (Appendix A.4). Compared to existing
cross-framework adaptive technologies, Cross-DL-
framework Translation achieves re-implementation
under multiple DL frameworks through an auto-
mated process, which not only generates highly
readable code and enables secondary development,
but also provides developers with flexibility on
combining advantages of multiple frameworks.

DLTrans Dataset We construct the DLTrans
dataset for Cross-DL-framework Translation, in-
cluding four deep learning frameworks and span-
ning twelve directions. To the best of our knowl-
edge, our work is the first to define the cross-DL-
framework translation task and construct a corre-
sponding dataset. We create two subsets of dif-
ferent granularities based on the collected code,
namely, coarse-grained at the program level and
fine-grained at the function or class level. Each
code pair comprises code that shares the same
functionality but is written in different popular
DL frameworks, including PyTorch, TensorFlow,
MXNet, and Paddle. The coarse-grained and fine-
grained datasets have 408 and 3,270 samples, re-
spectively. In this work, we only experiment on the
coarse-grained subset.

4 Experiments

We present experiments of multilingual training
for code translation (Section 4.1). We then intro-
duce a novel evaluation metric Debugging Success
Rate@K for program-level code translation (Sec-
tion 4.2) and the first comprehensive exploration of
ChatGPT for code translation (Section 4.3).

4.1 Multilingual Modeling

Multilingual modeling has been pivotal in broad-
ening the applicability of neural machine transla-
tion (Aharoni et al., 2019; Wang et al., 2020; Zhu
et al., 2023; Johnson et al., 2017). This is pri-
marily evidenced in enhancing the performance of
low-resource languages and cross-language trans-
fer learning (Mohammadshahi et al., 2022; Zoph
et al., 2016; Nguyen and Chiang, 2017; Johnson
et al., 2017). CodeTransOcean covers nearly fifty

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
https://onnx.ai/

Average One-to-One (baseline) Many-to-One Many-to-Many One-to-Many

High-resource 4.68 5.56 (↑ 0.88) 5.94 (↑ 1.26) 6.18 (↑ 1.50)
Low-resource 4.83 4.85 (↑ 0.02) 4.95 (↑ 0.12) 5.84 (↑ 1.01)

All 5.19 5.31 (↑ 0.12) 5.81 (↑ 0.62) 6.42 (↑ 1.23)

Table 3: Average BLEU scores of the four multilingual modeling strategies, One-to-One, Many-to-One, Many-to-
Many, and One-to-Many, for All language pairs, High-resource language pairs, and Low-resource language pairs.

programming languages and deep learning frame-
works. We use its datasets to explore multilingual
modeling on code translation tasks.

Experimental Setups In this work, we use pre-
trained CodeT5+ (Wang et al., 2023b)11 as the
backbone based on its superior performance on
code understanding and generation evaluations re-
ported in (Wang et al., 2023b). We use the Multilin-
gualTrans dataset to investigate four multilingual
modeling strategies based on data sharing in the
source or target language or both, namely, One-to-
One, One-to-Many, Many-to-One, and Many-to-
Many, with One-to-One as the baseline. Details
of the four strategies are in Appendix A.5. To un-
derstand the strengths and weaknesses of the four
strategies, we compare their average performance
on all language pairs and focus on low-resource
and high-resource pairs. Since the CodeBLEU
metric (Ren et al., 2020) does not cover all eight
languages in MultilingualTrans, we use BLEU to
measure translation accuracy for the four strategies.
Then, we establish baselines for the DLTrans and
NicheTrans datasets.

We rank the resource richness of the eight pro-
gramming languages in MultilingualTrans in de-
scending order based on their amounts in the
CodeT5+ pre-training data, as Java, PHP, C, C#,
Python, C++, and Go (Visual Basic is not covered
by the CodeT5+ pre-training data). Based on this
ranking, we consider Visual Basic, C++, and Go
as low-resource languages and Java, PHP and C as
high-resource languages.

Results and Analysis Detailed experimental re-
sults are shown in Table 14 in Appendix. For All
language pairs, the performance of the four strate-
gies is ranked as One-to-Many > Many-to-Many
> Many-to-One > One-to-One. (1) Under One-to-
Many strategy, the model encoder can provide more
comprehensive information for source language
translation due to its ability to absorb more source

11We will conduct evaluations of a broader selection of mod-
els on our datasets in future work, including LLaMA (Touvron
et al., 2023), WizardCoder (Luo et al., 2023), etc.

language features, thereby improving generalizabil-
ity of the model. (2) Many-to-Many can be consid-
ered as expanding the One-to-Many strategy by em-
ploying a greater volume of non-source language
data for training. Since the encoder must be attuned
to the features of various languages simultaneously
under Many-to-Many, parameter sharing may po-
tentially undermine the performance. (3) Many-
to-One helps the model to learn from a broader
range of data than the baseline. Specific patterns
or expressions in diverse source languages assist
the model in more precisely comprehending how
to translate into the target language. The shared
semantic representations across different source
languages allow the model to implement effective
transfer learning strategies. Furthermore, increase
in training samples enables the model to optimize
the loss function more stably. These results are
consistent with previous findings on multilingual
modeling for natural language translation (Aharoni
et al., 2019): Many-to-Many models, trained across
multiple target languages instead of just one target
language, can function effectively as a regulariza-
tion strategy for Many-to-One, thereby reducing
the possibility of over-matching.

For High-resource and Low-resource languages,
as shown in Table 3, the ranking of the four strate-
gies is the same as for All, but there is notable
difference in their adaptability across languages
of varying resource scales. High-resource lan-
guages can take advantage more effectively from
the shared information across multiple source lan-
guages; whereas, low-resource languages are rela-
tively less equipped to handle the additional uncer-
tainty and noise introduced by shared parameters,
and thus often have to rely on a larger volume of
source language data to optimize their benefits.

Results from the Many-to-Many strategy on DL-
Trans and NicheTrans datasets are shown in Ta-
bles 4 and 5. The experimental results suggest that
significant improvements in translation accuracy
can be achieved by swapping the source and tar-
get languages in the training set to facilitate data
augmentation and training a bidirectional model.

Method Metric PyTorch TensorFlow MXNet Paddle

EM BLEU CodeBLEU EM BLEU CodeBLEU EM BLEU CodeBLEU EM BLEU CodeBLEU

Naive

PyTorch – – – 27.27 66.25 69.46 28.18 72.77 76.63 30.91 80.35 83.13
TensorFlow 27.27 66.32 68.92 – – – 29.09 63.79 67.94 27.27 63.04 65.81

MXNet 28.18 72.86 74.15 29.09 63.84 66.06 – – – 28.18 69.49 71.09
Paddle 30.91 80.25 84.83 27.27 62.94 67.78 28.18 69.43 75.09 – – –

CodeT5+

PyTorch – – – 35.45±0.91 71.16±0.73 70.54±0.75 42.73±2.41 81.76±0.45 82.52±0.56 43.64±1.58 85.76±0.60 85.07±0.74
TensorFlow 34.85±1.38 71.97±0.56 71.08±0.72 – – – 36.67±1.89 72.77±0.61 73.04±0.18 29.70±2.63 69.38±0.38 68.76±0.32

MXNet 32.12±2.29 77.79±0.13 76.43±0.14 31.82±1.58 67.22±0.39 67.68±0.27 – – – 29.09±0.91 74.26±0.46 73.27±0.42
Paddle 43.03±4.10 86.25±0.86 86.09±0.88 29.39±2.93 69.43±0.57 69.57±0.51 35.75±0.53 78.65±0.62 79.46±0.38 – – –

Table 4: Results on DLTrans of Naive and CodeT5+_220M with Many-to-Many strategy. We run each experiment
with 3 random seeds and report the mean and standard deviation of EM, BLEU, and CodeBLEU scores.

BLEU Naive Two-way One-way

Many-to-C 2.36 4.60 4.86
Many-to-C# 2.53 4.48 3.82

Many-to-C++ 1.99 4.78 3.32
Many-to-Go 3.11 5.24 3.19

Many-to-Java 3.18 5.23 5.34
Many-to-PHP 4.37 2.46 1.98

Many-to-Python 2.87 2.38 1.67
Many-to-VB 1.69 2.17 1.97

Average 2.76 3.92 3.27

Table 5: BLEU scores on NicheTrans of Naive and
CodeT5+_220M with Many-to-Many strategy. One-
way denotes training models only from niche to popular,
while Two-way denotes training in both directions.

Notably, prior studies on multilingual neural ma-
chine translation often overlook the comparison
between One-to-Many and other strategies. Nev-
ertheless, One-to-Many demonstrates superiority
over the One-to-One baseline across all our exper-
iments. Overall, our results strongly recommend
a targeted multilingual modeling strategy for code
translation, as it not only can translate multiple lan-
guage pairs with a single model, but also achieves
better and more stable accuracy than baselines.

4.2 Debugging Success Rate@K

For evaluations, we adopt existing code translation
evaluation metrics in our experiments, including
Exact Match (EM), BLEU, and CodeBLEU (de-
tails are in Appendix A.1.2). However, all these
metrics are based on surface-form matching (or
with some adaptations as for CodeBLEU) and are
not suitable for our program-level translation tasks
since they cannot reliably evaluate functional cor-
rectness of translated code. Moreover, in real-world
software development scenarios, developers typi-
cally ensure the functionality of code by testing
and debugging upon completion, rather than writ-
ing and testing multiple versions of the code to
achieve the expected functionality as measured by
the existing pass@k (Kulal et al., 2019) metric.

Meanwhile, recent research shows that LLMs such
as ChatGPT demonstrate preliminary code debug-
ging capabilities (Chen et al., 2023b,a). Hence,
we propose a novel and robust evaluation metric
for LLM on code translation, Debugging Success
Rate@K (DSR@K), by measuring whether the
translated code can be compiled and executed with
the same behavior as the input source code, with K
rounds of debugging. To the best of our knowl-
edge, DSR@K is the first metric designed to accu-
rately reflect real-world software development
scenarios.

DSR@K is the percentage of the samples that
successfully execute and produce the expected re-
sults among all samples. Each sample is given K
generation and debugging attempts by an LLM. If
the generated code successfully executes and pro-
duces the expected results with these K rounds,
the sample is marked as successful. DSR@K is
computed as 1

N

∑N
i=1 S(i,K), where N denotes

the total number of samples. If the ith code sam-
ple succeeds within K attempts, then S(i,K) = 1;
otherwise, S(i,K) = 0. Note that DSR@0 can be
used for program-level code translation evaluation
for any models. In this work, we employ DSR@K
to evaluate the ability of LLMs such as ChatGPT
for debugging code and translating code with de-
bugging results.

4.3 ChatGPT for Code Translation
The recent LLM ChatGPT demonstrates competi-
tive performance on language generation tasks such
as summarization and machine translation (Yang
et al., 2023; Peng et al., 2023; Gao et al., 2023).
However, ChatGPT for code translation has not
been systematically explored. We study the effec-
tiveness and potential of ChatGPT on code transla-
tion and investigate strategies to improve its perfor-
mance. We use DSR@K as the principal evalua-
tion metric since we focus on the practical usability
of ChatGPT. We use the ChatGPT API and gpt-
3.5-turbo as the default model and evaluate on the

LLMTrans dataset for all experiments. We inves-
tigate the efficacy of prompts and hyperparameters
and context in zero-shot setting, then compare one-
shot versus zero-shot and study Chain-of-Thought.

Effect of Prompts and Hyperparameters Prior
works show that prompts can influence the perfor-
mance of ChatGPT (Zhong et al., 2023; Peng et al.,
2023; Jiao et al., 2023). We set an initial prompt
“Translate [SL] to [TL]:[SC].” as the
baseline, where [SL] and [TL] denote the source
language and the target language respectively and
[SC] denotes the source code. We also add “Do
not return anything other than the translated code.”
for each prompting strategy to require ChatGPT to
return only code in order to ease code execution.
We design three prompt variants. Details of the
experimental settings and prompt variants are in
Appendix A.6. We also investigate the effect of
hyperparameters on code translation performance.

As shown in Table 6, implementing role as-
signments, clarifying usage, and polite inquiry in
prompts all degrade the performance compared to
the baseline prompt. These results show that the
baseline with the most straightforward prompt pro-
duces the best performance, possibly because it
provides clear, short, and unambiguous instructions
for the task to the model. More intricate prompting
strategies may introduce noise and confuse Chat-
GPT. The performance of polite inquiry prompt
is comparable to but still worse than the baseline
performance. We speculate that the improvement
from polite inquiries in prior studies (Akın, 2023)
may stem from their explicit and comprehensive
formulations which make it easier for the model to
understand the task requirements. We also observe
in Table 6 that same as prior findings, BLEU and
CodeBLEU have no obvious positive correlations
with the debugging success rate (DSR@0). Since
the reference target code exhibits the same function-
ality as the source language code but their execu-
tion results could differ slightly, EM also does not
correlate with DSR@0. Therefore, in subsequent
experiments, we only report DSR@0. We also eval-
uate the CodeT5+_220M model on LLMTrans with
the Many-to-Many strategy and find that DSR@0
is 0, suggesting that CodeT5+_220M Zero-shot is
unable to generate executable translation results.

ChatGPT selects the token with the highest prob-
ability during generation. The hyperparameter tem-
perature influences the randomness of the gener-
ated text, while top_p controls the range of vocabu-

Strategy Expt #num EM BLEU CodeBLEU DSR@0

Baseline – 0.29 10.83 24.46 48.57%

Role assignments

1 0.00 11.06 24.36 43.43%
2 0.00 11.06 24.48 43.14%
3 0.00 10.70 24.08 41.71%
4 0.00 10.73 24.08 40.86%

Polite inquiry
1 0.29 10.83 24.37 47.71%
2 0.86 10.87 24.26 47.71%

Clarify usage – 0.29 10.63 24.11 44.00%

Divide-and-Conquer – 0.00 7.44 25.30 22.86%

Table 6: Zero-shot performance of ChatGPT with differ-
ent prompt variants and contextual strategies. Baseline
denotes ChatGPT with the baseline prompt. Details of
the prompt variants (Expt #num) are in Appendix A.6.

Kth Debug DSR Kth Debug DSR

0 48.57% 2 52.29%
1 51.43% 3 52.57%

Table 7: ChatGPT performance at the Kth debugging.

lary considered during generation. Higher temper-
ature or top_p could increase diversity in the gen-
erated results from ChatGPT. However, as shown
in Table 16 in Appendix, independently varying
temperature or top_p does not notably change the
performance of ChatGPT; hence for the other Chat-
GPT experiments, we set both temperature and
top_p as 0 to ensure stability an reproducibility.

Effect of Context We explore a Divide-and-
Conquer strategy, which segments the source lan-
guage code into snippets (e.g., functions and sub-
functions), translate each snippet independently,
then merge their outputs as the final result. As
shown in Table 6, Divide-and-Conquer signifi-
cantly degrades the performance. We hypothe-
size that lack of the global context in Divide-and-
Conquer could prevent ChatGPT from considering
the overall structure and variable configurations of
the code for translation.

Effect of Self-debugging Since ChatGPT has
shown preliminary capability in error detection
and correction during code generation (Shinn et al.,
2023; Chen et al., 2023b; Kim et al., 2023; Nair
et al., 2023; Madaan et al., 2023), we use Chat-
GPT to perform multiple rounds of self-debugging
and investigate the impact on DSR. Specifically,
ChatGPT first translates the source language code
into the target language (which is Python as in our
AutoTransExecuter) and then attempts to execute
the translated code. If the execution passes and
executing the translated code exhibits the same
functionality as the source code, it is regarded as

a successful execution. Otherwise, feedback from
the compiler will be also fed to ChatGPT for the
next round of translation, and this process is re-
peated until reaching a pre-defined number K of
debugging rounds. The whole process is shown in
Table 17 in Appendix. As shown in Table 7, DSR
improves significantly with multiple rounds of self-
debugging. The first self-debugging improves DSR
by 3% absolutely. Each subsequent round of self-
debugging brings further gain but DSR begins to
plateau after the second debugging round. This
suggests that ChatGPT has limitations in its capac-
ity to rectify errors after multiple debugging cycles,
which is consistent with human behaviors.

Effect of One-shot In-context learning (Brown
et al., 2020) allows the model to learn from input
examples, enabling it to understand and manage
each new task. This method has been validated as
an effective strategy for enhancing the performance
of model inference (Peng et al., 2023; Liu et al.,
2023a). Therefore, we explore one-shot learning
for ChatGPT on code translation. We investigate
three one-shot learning sample selection strategies.
Descriptions of the strategies and the correspond-
ing prompts are in Appendix A.7.

Table 8 shows that all three One-shot learning
strategies effectively improve DSR@0 of ChatGPT
over the Zero-shot baseline. The Experiment#2
strategy (provided contextual example has both
same source and target languages as the origi-
nal task) achieves the best performance, yielding
1.72% absolute gain in DSR@0, with Experiment
#1 (example has the same target language but dif-
ferent source language) and #3 (example has differ-
ent source and target languages) following closely
with 1.14% and 0.29% absolute gains, respectively.
These results show that One-shot learning entirely
tailored to the translation requirements is most ef-
fective in boosting code translation performance for
ChatGPT. The results corroborate previous findings
in natural language translation (Peng et al., 2023)
that the performance of ChatGPT is sensitive to the
provided contextual example in One-shot learning.

Effect of Chain-of-Thought Chain-of-Thought
(CoT) allows the model to simulate an orderly and
structured way of thinking by sorting out the think-
ing process. It helps guide the model to output the
final answer step by step (Wei et al., 2022; Peng
et al., 2023; Kojima et al., 2022). For code transla-
tion, we investigate four CoT strategies. Detailed

Strategy Expts #num DSR@0 Strategy Expts #num DSR@0

Baseline – 48.57%

CoT

1 46.00%

One-shot
1 49.71% 2 42.57%
2 50.29% 3 48.29%
3 48.86% 4 45.43%

Table 8: Performance of ChatGPT with One-shot and
CoT strategies compared to the Zero-shot Baseline. De-
tails of Expt #num are in Appendix A.7 and A.8.

descriptions and translation prompts for each strat-
egy are in Appendix A.8. As shown in Table 8,
CoT degrades executability of the translated code.
In Experiment #2, DSR@0 even declines by 6%
absolutely. We study the translation results of Chat-
GPT and find that when CoT strategies are applied,
the model tends to translate the source code line
by line, neglecting compatibility issues between
libraries and functions in different languages. CoT
also compromises the global planning ability of the
model. These observations are consistent with the
findings in (Peng et al., 2023) that CoT may lead
to word-by-word translations of natural language,
thereby degrading the translation quality.

Fuzzy Execution To address the limitations of
existing evaluation metrics and our AutoTransEx-
ecuter, we propose another novel code translation
evaluation metric fuzzy execution using LLMs in
Section Limitations, inspired by recent progress in
using LLMs as evaluation metrics for NLP tasks.
Our preliminary studies evaluates the performance
of ChatGPT for predicting whether a given code
can be executed or not, and if executable, also for
predicting the executed output. Experimental re-
sults show that using ChatGPT for fuzzy execution
is not yet practical and demands future research.

5 Conclusion

We construct CodeTransOcean, a comprehensive
code translation benchmark that includes multilin-
gual and cross-framework datasets. We demon-
strate that multilingual modeling has remarkable
potential in enhancing code translation quality. We
also reveal the superior code translation capability
of ChatGPT and advanced strategies lead to signif-
icant performance gains. Moreover, we introduce
fuzzy execution that may overcome limitations of
existing metrics but requires future research. In
summary, we provide a comprehensive suite of re-
sources, tools, and baselines for code translation.

6 Limitations

Existing match-based evaluation metrics for code
translation (Papineni et al., 2002; Ren et al., 2020;
Eghbali and Pradel, 2022; Zhou et al., 2023; Tran
et al., 2019) focus solely on semantics, overlooking
executability of the code and the functional equiva-
lence under different implementations. Execution-
based metrics (Kulal et al., 2019; Hao et al., 2022;
Hendrycks et al., 2021; Rozière et al., 2020; Dong
et al., 2023) that require providing test cases are
expensive to conduct in practice, and the significant
overhead of executing numerous test cases and the
heightened security risks during the execution pro-
cess remain unresolved. It is crucial to establish an
evaluation metric that overcomes these limitations.

Our proposed DSR@K and the automated Auto-
TransExecuter aim to measure the executability of
the code and reflect the real-world software devel-
opment scenarios. However, AutoTransExecuter
currently only supports Python as the target lan-
guage. This is mainly due to the fact that different
programming languages necessitate distinct run-
time environments and libraries, making it particu-
larly challenging to automatically detect and install
the required dependencies for each code. While
certain existing tools, such as Dynatrace12, can
carry out dependency detection, the range of sup-
ported programming languages remains limited.
Moreover, the configuration methods for compilers
vary substantially among different programming
languages, which further complicates automated
configuration. In addition, fully automated execu-
tion systems could be exploited by malicious code,
thus necessitating further security measures. There-
fore, achieving this goal requires overcoming many
technical and practical difficulties.

To address limitations of existing evaluation met-
rics and limitations of AutoTransExecuter, we pro-
pose another novel code translation evaluation met-
ric fuzzy execution.

Recent studies have begun to utilize LLMs as
evaluation metrics in the field of NLP (Chen et al.,
2023c; Wang et al., 2023a; Fu et al., 2023; Kocmi
and Federmann, 2023; Ji et al., 2023). Inspired by
these works, we create a new dataset ExecuteSta-
tus by randomly selecting 300 executable samples
from MultilingualTrans and 300 non-executable
samples from the translation results of ChatGPT.

12https://www.dynatrace.com/
platform/artificial-intelligence/
dependency-detection/

Zero-Shot Few-Shot

TN FP FN TP TN FP FN TP

292 8 238 62 294 4 242 58

✓12 ×280 ✓14 ×282

Table 9: Confusion matrix of fuzzy execution prediction
by ChatGPT with Zero-shot and Few-shot settings.

Metrics Calculation formula Zero-Shot Few-Shot

Accuracy
TP + TN

TP + TN + FN + FP
59.00% 59.00%

Precision
TP

TP + FP
88.57% 93.55%

Recall
T P

TP + FN
20.67% 19.33%

F1 scores 2 · Precision · Recall
Precision + Recall

33.52% 32.04%

Table 10: Performance of ChatGPT on predicting fuzzy
execution.

Each entry in this dataset includes the execution
status and, if executable, the result of the execution.
We use ExecuteStatus and AutoTransExecuter to
evaluate the performance of ChatGPT for predict-
ing whether a given code can be executed or not,
and if executable, also predict the executed output.
The Zero-shot prompts are shown in Table 18 in
Appendix. For the Few-shot strategy, in addition to
the Zero-shot baseline, we include an example of
executable code and an example of non-executable
code, as detailed in Table 18.

We define fuzzy execution as first testing the
consistency between the actual pass rate and the
predicted pass rate of ChatGPT, followed by fur-
ther testing the accuracy in predicting execution
results using ChatGPT without relying on a com-
piler. Since we are interested in the ability of Chat-
GPT to identify samples that cannot actually be
executed accurately, we present the confusion ma-
trix in Table 9 based on the results. To evaluate the
performance of ChatGPT on the fuzzy execution
prediction task, we use the standard accuracy, pre-
cision, recall, and F1 scores. Experimental results
based on these evaluation metrics are in Table 10.
The low accuracy, recall and F1 scores show that
ChatGPT still has difficulty in identifying errors in
the code, exhibiting about an 88% tendency to pre-
dict that the code is executable. Overall, ChatGPT
has low accuracy in the binary classification task of
“whether it can be executed”, and its ability to pre-
dict execution results, being at a scant 4%, clearly

https://www.dynatrace.com/platform/artificial-intelligence/dependency-detection/
https://www.dynatrace.com/platform/artificial-intelligence/dependency-detection/
https://www.dynatrace.com/platform/artificial-intelligence/dependency-detection/

requires further enhancement. Thus, using Chat-
GPT for fuzzy execution is not yet practical (Liu
et al., 2023b). Despite this, fuzzy execution with
LLMs holds the potential to overcome the deficien-
cies of current code translation evaluation metrics.
We will continue this exploration in future work.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 3874–
3884. Association for Computational Linguistics.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Unified pre-training for
program understanding and generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 2655–
2668. Association for Computational Linguistics.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat
Chakraborty, and Kai-Wei Chang. 2023. AVATAR: A
parallel corpus for java-python program translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 2268–2281. Association for Computa-
tional Linguistics.

Fatih Kadir Akın. 2023. awesome-chatgpt-prompts.

Badr AlKhamissi, Siddharth Verma, Ping Yu, Zhijing
Jin, Asli Celikyilmaz, and Mona T. Diab. 2023. OPT-
R: exploring the role of explanations in finetuning
and prompting for reasoning skills of large language
models. CoRR, abs/2305.12001.

Anil Ananthaswamy. 2023. In ai, is bigger always bet-
ter? Nature.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and

et al. 2023. Palm 2 technical report. CoRR,
abs/2305.10403.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding,
Premkumar T. Devanbu, and Baishakhi Ray. 2022.
Natgen: generative pre-training by "naturalizing"
source code. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
ESEC/FSE 2022, Singapore, Singapore, November
14-18, 2022, pages 18–30. ACM.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R. Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023a. Im-
proving code generation by training with natural lan-
guage feedback. CoRR, abs/2303.16749.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. CoRR, abs/2304.05128.

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-
to-tree neural networks for program translation. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 2552–2562.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and
Ruifeng Xu. 2023c. Exploring the use of large lan-
guage models for reference-free text quality eval-
uation: A preliminary empirical study. CoRR,
abs/2304.00723.

Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li,
Ge Li, and Zhi Jin. 2023. Codescore: Evaluating
code generation by learning code execution. CoRR,
abs/2301.09043.

Aryaz Eghbali and Michael Pradel. 2022. Crystalbleu:
Precisely and efficiently measuring the similarity
of code. In 37th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022, pages
28:1–28:12. ACM.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,

https://doi.org/10.18653/v1/n19-1388
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://github.com/f/awesome-chatgpt-prompts
https://doi.org/10.48550/arXiv.2305.12001
https://doi.org/10.48550/arXiv.2305.12001
https://doi.org/10.48550/arXiv.2305.12001
https://doi.org/10.48550/arXiv.2305.12001
https://doi.org/10.48550/arXiv.2305.10403
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/3540250.3549162
https://doi.org/10.1145/3540250.3549162
https://doi.org/10.48550/arXiv.2303.16749
https://doi.org/10.48550/arXiv.2303.16749
https://doi.org/10.48550/arXiv.2303.16749
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://proceedings.neurips.cc/paper/2018/hash/d759175de8ea5b1d9a2660e45554894f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d759175de8ea5b1d9a2660e45554894f-Abstract.html
https://doi.org/10.48550/arXiv.2304.00723
https://doi.org/10.48550/arXiv.2304.00723
https://doi.org/10.48550/arXiv.2304.00723
https://doi.org/10.48550/arXiv.2301.09043
https://doi.org/10.48550/arXiv.2301.09043
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903

Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. CoRR,
abs/2302.04166.

Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin,
Shiping Yang, and Xiaojun Wan. 2023. Human-
like summarization evaluation with chatgpt. CoRR,
abs/2304.02554.

Stefanos Georgiou, Maria Kechagia, Tushar Sharma,
Federica Sarro, and Ying Zou. 2022. Green AI: do
deep learning frameworks have different costs? In
44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA,
USA, May 25-27, 2022, pages 1082–1094. ACM.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao,
He Zong, Siyuan Jiang, Yang Liu, and He Wei. 2022.
Aixbench: A code generation benchmark dataset.
CoRR, abs/2206.13179.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Yunjie Ji, Yan Gong, Yiping Peng, Chao Ni, Peiyan Sun,
Dongyu Pan, Baochang Ma, and Xiangang Li. 2023.
Exploring chatgpt’s ability to rank content: A prelim-
inary study on consistency with human preferences.
CoRR, abs/2303.07610.

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? yes with gpt-4 as the engine.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation. Trans. Assoc.
Comput. Linguistics, 5:339–351.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
CoRR, abs/2303.17491.

Tom Kocmi and Christian Federmann. 2023. Large lan-
guage models are state-of-the-art evaluators of trans-
lation quality. In Proceedings of the 24th Annual
Conference of the European Association for Machine
Translation, EAMT 2023, Tampere, Finland, 12-15
June 2023, pages 193–203. European Association for
Machine Translation.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In NeurIPS.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy Liang. 2019.
Spoc: Search-based pseudocode to code. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 11883–11894.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1–195:35.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Yongkang Liu, Shi Feng, Daling Wang, Yifei Zhang,
and Hinrich Schütze. 2023b. Evaluate what you can’t
evaluate: Unassessable generated responses quality.
CoRR, abs/2305.14658.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. CoRR, abs/2306.08568.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.48550/arXiv.2302.04166
https://doi.org/10.48550/arXiv.2304.02554
https://doi.org/10.48550/arXiv.2304.02554
https://doi.org/10.1145/3510003.3510221
https://doi.org/10.1145/3510003.3510221
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.48550/arXiv.2206.13179
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.48550/arXiv.2303.07610
https://doi.org/10.48550/arXiv.2303.07610
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.48550/arXiv.2303.17491
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/arXiv.2305.14658
https://doi.org/10.48550/arXiv.2305.14658
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568

Clark. 2023. Self-refine: Iterative refinement with
self-feedback. CoRR, abs/2303.17651.

Alireza Mohammadshahi, Vassilina Nikoulina, Alexan-
dre Berard, Caroline Brun, James Henderson, and
Laurent Besacier. 2022. Small-100: Introducing shal-
low multilingual machine translation model for low-
resource languages. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 8348–8359.
Association for Computational Linguistics.

Varun Nair, Elliot Schumacher, Geoffrey J. Tso, and
Anitha Kannan. 2023. DERA: enhancing large lan-
guage model completions with dialog-enabled resolv-
ing agents. CoRR, abs/2303.17071.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. 2013. Lexical statistical machine transla-
tion for language migration. In Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Peters-
burg, Russian Federation, August 18-26, 2013, pages
651–654. ACM.

Toan Q. Nguyen and David Chiang. 2017. Transfer
learning across low-resource, related languages for
neural machine translation. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing, IJCNLP 2017, Taipei, Taiwan,
November 27 - December 1, 2017, Volume 2: Short
Papers, pages 296–301. Asian Federation of Natural
Language Processing.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Alfrick Opidi. 2020. Why your legacy software is hard
to maintain and what to do about it.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023. Towards making the most
of chatgpt for machine translation. CoRR,
abs/2303.13780.

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir R. Choudhury, Lindsey
Decker, Veronika Thost, Luca Buratti, Saurabh Pujar,
and Ulrich Finkler. 2021. Project codenet: A large-
scale AI for code dataset for learning a diversity of
coding tasks. CoRR, abs/2105.12655.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method

for automatic evaluation of code synthesis. CoRR,
abs/2009.10297.

Israt Jahan Rithy, Hasib Hossain Shakil, Niloy Mondal,
Fatema Sultana, and Faisal Muhammad Shah. 2022.
Xtest: A parallel multilingual corpus with test cases
for code translation and its evaluation*. In 2022 25th
International Conference on Computer and Informa-
tion Technology (ICCIT), pages 623–628.

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Baptiste Rozière, Jie Zhang, François Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
2022. Leveraging automated unit tests for unsuper-
vised code translation. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Ngoc M. Tran, Hieu Tran, Son Nguyen, Hoan Nguyen,
and Tien N. Nguyen. 2019. Does BLEU score work
for code migration? In Proceedings of the 27th
International Conference on Program Comprehen-
sion, ICPC 2019, Montreal, QC, Canada, May 25-31,
2019, pages 165–176. IEEE / ACM.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxi-
ang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie
Zhou. 2023a. Is chatgpt a good NLG evaluator? A
preliminary study. CoRR, abs/2303.04048.

Yiren Wang, ChengXiang Zhai, and Hany Hassan. 2020.
Multi-task learning for multilingual neural machine
translation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 1022–1034. Association for Computational
Linguistics.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023b. Codet5+: Open code large language mod-
els for code understanding and generation. CoRR,
abs/2305.07922.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified

https://doi.org/10.48550/arXiv.2303.17651
https://doi.org/10.48550/arXiv.2303.17651
https://doi.org/10.18653/v1/2022.emnlp-main.571
https://doi.org/10.18653/v1/2022.emnlp-main.571
https://doi.org/10.18653/v1/2022.emnlp-main.571
https://doi.org/10.48550/arXiv.2303.17071
https://doi.org/10.48550/arXiv.2303.17071
https://doi.org/10.48550/arXiv.2303.17071
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.1145/2491411.2494584
https://aclanthology.org/I17-2050/
https://aclanthology.org/I17-2050/
https://aclanthology.org/I17-2050/
https://doi.org/10.48550/arXiv.2303.08774
https://www.freecodecamp.org/news/legacy-software-maintenance-challenges/
https://www.freecodecamp.org/news/legacy-software-maintenance-challenges/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.2303.13780
https://doi.org/10.48550/arXiv.2303.13780
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://doi.org/10.1109/ICCIT57492.2022.10055851
https://doi.org/10.1109/ICCIT57492.2022.10055851
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.48550/arXiv.2303.04048
https://doi.org/10.48550/arXiv.2303.04048
https://doi.org/10.18653/v1/2020.emnlp-main.75
https://doi.org/10.18653/v1/2020.emnlp-main.75
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.18653/v1/2021.emnlp-main.685

pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Justin D. Weisz, Michael J. Muller, Stephanie Houde,
John T. Richards, Steven I. Ross, Fernando Martinez,
Mayank Agarwal, and Kartik Talamadupula. 2021.
Perfection not required? human-ai partnerships in
code translation. In IUI ’21: 26th International Con-
ference on Intelligent User Interfaces, College Sta-
tion, TX, USA, April 13-17, 2021, pages 402–412.
ACM.

Justin D. Weisz, Michael J. Muller, Steven I. Ross, Fer-
nando Martinez, Stephanie Houde, Mayank Agarwal,
Kartik Talamadupula, and John T. Richards. 2022.
Better together? an evaluation of ai-supported code
translation. In IUI 2022: 27th International Confer-
ence on Intelligent User Interfaces, Helsinki, Finland,
March 22 - 25, 2022, pages 369–391. ACM.

Ning Wu, Ming Gong, Linjun Shou, Shining Liang, and
Daxin Jiang. 2023. Large language models are di-
verse role-players for summarization evaluation. In
Natural Language Processing and Chinese Comput-
ing - 12th National CCF Conference, NLPCC 2023,
Foshan, China, October 12-15, 2023, Proceedings,
Part I, volume 14302 of Lecture Notes in Computer
Science, pages 695–707. Springer.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023. Harnessing the power of llms in
practice: A survey on chatgpt and beyond. CoRR,
abs/2304.13712.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2023. Can chatgpt understand too? A
comparative study on chatgpt and fine-tuned BERT.
CoRR, abs/2302.10198.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Gra-
ham Neubig. 2023. Codebertscore: Evaluating code
generation with pretrained models of code. CoRR,
abs/2302.05527.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K. Reddy.
2022a. Xlcost: A benchmark dataset for cross-
lingual code intelligence. CoRR, abs/2206.08474.

Ming Zhu, Karthik Suresh, and Chandan K. Reddy.
2022b. Multilingual code snippets training for pro-
gram translation. In Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth

Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium
on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1,
2022, pages 11783–11790. AAAI Press.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Lingpeng Kong, Jiajun Chen, Lei Li, and Shujian
Huang. 2023. Multilingual machine translation with
large language models: Empirical results and analy-
sis. CoRR, abs/2304.04675.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1568–1575. The
Association for Computational Linguistics.

A Appendix

A.1 Related Work
A.1.1 Code Translation Methods
Naive Copy directly duplicates the source code as
the target code without making any modifications.
Given that the results produced by this method are
often unusable, it is treated as the lower bound of
performance for code translation. Early code trans-
lation relies heavily on manual rewriting, which
requires developers to have a deep understanding
of both source and target languages along with the
ability to navigate various complex programming
structures and semantic challenges. This method is
inefficient, costly, and prone to errors.

Automatic code translation methods fall into sev-
eral categories. Compilers and transpilers13 can
automatically translate the source code into a tar-
get language, significantly saving time and effort.
However, these methods cannot fully preserve all
the linguistic features and behaviors of the source
code, nor can they comprehend the intent and se-
mantics inherent to the source code as humans do.
Rule-based methods (Weisz et al., 2021, 2022;
Rozière et al., 2020) treat the code translation task
as a program synthesis problem. They define a
set of transformation rules and employ the rules or
pattern matching for code translation. Research on
rule-based methods is quite scarce, mainly because
they overly rely on the completeness of the rules
and also require a considerable amount of manual
preprocessing.

Neural network based methods have become
dominant in the field of code translation in recent

13https://en.wikipedia.org/wiki/
Source-to-source_compiler

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/3397481.3450656
https://doi.org/10.1145/3397481.3450656
https://doi.org/10.1145/3490099.3511157
https://doi.org/10.1145/3490099.3511157
https://doi.org/10.1007/978-3-031-44693-1_54
https://doi.org/10.1007/978-3-031-44693-1_54
https://doi.org/10.48550/arXiv.2304.13712
https://doi.org/10.48550/arXiv.2304.13712
https://doi.org/10.48550/arXiv.2302.10198
https://doi.org/10.48550/arXiv.2302.10198
https://doi.org/10.48550/arXiv.2302.05527
https://doi.org/10.48550/arXiv.2302.05527
https://doi.org/10.48550/arXiv.2206.08474
https://doi.org/10.48550/arXiv.2206.08474
https://doi.org/10.1609/aaai.v36i10.21434
https://doi.org/10.1609/aaai.v36i10.21434
https://doi.org/10.48550/arXiv.2304.04675
https://doi.org/10.48550/arXiv.2304.04675
https://doi.org/10.48550/arXiv.2304.04675
https://doi.org/10.18653/v1/d16-1163
https://doi.org/10.18653/v1/d16-1163
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Source-to-source_compiler

years. These methods mainly treat code transla-
tion as a sequence-to-sequence generation prob-
lem. Among them, Chen et al. (Chen et al., 2018)
are the first to successfully apply neural networks
to code translation, designing a tree-to-tree neu-
ral model. CodeBERT (Feng et al., 2020) sig-
nificantly improves code translation accuracy by
pretraining models with masked language mod-
eling and replaced token detection. GraphCode-
BERT (Guo et al., 2021) further improves code
translation accuracy by introducing two additional
pre-training tasks as edge prediction and node
alignment. CodeT5 (Wang et al., 2021), based
on the Transformer encoder-decoder architecture,
achieves excellent performance on code translation
through four pre-training tasks, namely, masked
span prediction, identifier tagging, masked identi-
fier prediction, and bimodal dual generation. With
a similar architecture as CodeT5, PLBART (Ah-
mad et al., 2021) adopts three tasks of token mask-
ing, token deletion and token infilling for denois-
ing seq2seq pre-training, which enables PLBART
to infer language syntax and semantics and to
learn how to generate language coherently. Nat-
Gen (Chakraborty et al., 2022) forces the model to
learn to capture intent of the source code by setting
up “Code-Naturalization” tasks during pre-training,
and forces the model to make the generated code
closer to the human-written style.

In the line of neural network based methods, re-
cently released large language models (LLMs)
(e.g., ChatGPT (OpenAI, 2023)) have shown re-
markable performance in a wide range of NLP
tasks with instructions and a few in-context ex-
amples. ChatGPT is built upon GPT and is opti-
mized with Reinforcement Learning from Human
Feedback. ChatGPT can efficiently understand and
generate code sequences, and can self-learn from
human feedback to improve the quality and accu-
racy of its outputs. This significant advancement
has markedly propelled progress in the field of code
translation.

A.1.2 Code Translation Metrics
Match-Based Evaluation Metrics These evalu-
ation metrics are based on the similarity between
the translation output and the reference translation.
Among them, the Exact Match (EM) metric cal-
culates the percentage of translation outputs that
exactly match the reference translation, which over-
looks the fact that the same function can be im-
plemented in various ways. The Bilingual Evalu-

ation Understudy (BLEU) (Papineni et al., 2002)
metric evaluates the similarity between the transla-
tion output and the reference translation by multi-
plying the geometric average of n-gram precision
scores with a brevity penalty. The CodeBLEU (Ren
et al., 2020) metric extends BLEU by consider-
ing syntactic and semantic characteristics of pro-
gramming languages; it not only considers shal-
low matching but also pays attention to syntactic
and semantic matching. CrystalBLEU (Eghbali
and Pradel, 2022) focuses more on the inherent
differences between source code and natural lan-
guage, such as trivial shared n-gram syntax. Code-
BERTScore (Zhou et al., 2023) uses pre-trained
models to encode the translation output and ref-
erence translation, then calculates the dot product
similarity between them, enabling comparisons of
code pairs with distinct lexical forms. However,
CodeBLEU, CrystalBLEU, and CodeBERTScore
have limitations as they only support a limited
range of programming languages and cannot be
used in general multilingual scenarios. Ruby (Tran
et al., 2019), a new method for evaluating code
translation, considers the lexical, syntactic, and se-
mantic representations of source code. However,
its codebase has not yet been open-sourced. These
match-based evaluation metrics can only evaluate
the surface form and semantic differences of the
code, while neglecting the executability of the code
and the functional equivalence of implementation
variations.

Execution-Based Evaluation Metrics
Execution-based evaluation metrics mainly
compare the executed result of the generated
code with the expected result. The PASS@k
score (Kulal et al., 2019) is evaluated by unit
tests: if any of the k samples meets the expected
result, the generated result is deemed successful.
AvgPassRatio (Hao et al., 2022; Hendrycks et al.,
2021) evaluates the overall executable result of
code by calculating the average pass rate of test
cases. Computational accuracy (Rozière et al.,
2020) measures the quality of the generated code
snippet by comparing the output of this snippet
with the reference code snippet when given the
same input. Additionally, CodeScore (Dong et al.,
2023) claims that it can estimate the PassRatio of
test cases for the generated code without executing
the code, but its codebase has not yet been
open-sourced. These execution-based evaluation
metrics require construction of executable test

Method Train Dev Test Total Method Train Dev Test Total

C ↔ C# 796 84 169 1049 C ↔ C++ 799 149 298 1246
C ↔ Go 877 227 454 1558 C ↔ Java 813 171 343 1327

C ↔ Python 901 213 426 1540 C ↔ PHP 296 51 102 449
C ↔ VB 617 97 194 908 C++ ↔ C# 748 79 160 987

C++ ↔ Go 792 208 418 1418 C++ ↔ Java 753 172 345 1270
C++ ↔ Python 842 202 405 1449 C++ ↔ PHP 291 53 106 450

C++ ↔ VB 586 97 195 888 C# ↔ Go 777 100 202 1079
C# ↔ Java 750 86 174 1010 C# ↔ Python 813 99 199 1111
C# ↔ PHP 293 40 80 413 C# ↔ VB 597 70 142 809
Java ↔ Go 793 221 443 1457 Java ↔ Python 838 217 436 1491

Java ↔ PHP 574 119 239 932 Java ↔ VB 610 104 210 924
Go ↔ Python 887 314 628 1828 Go ↔ PHP 606 128 258 992

Go ↔ VB 618 116 232 966 PHP ↔ Python 927 185 370 1482
PHP ↔ VB 267 44 88 399 VB ↔ Python 644 114 229 987

Table 11: Composition and Distribution of the Multilingual Dataset. The numbers refer to the number of code pair
samples. VB is short for Visual Basic. [Return to Section 3.1]

sets, which could be costly. Furthermore, due
to potential security threats from the execution
environment and the code, they need to be run in
an isolated sandbox.

A.2 Data Management

A.2.1 Data Sources & Licenses

We collect CodeTransOcean from two different
platforms. The MultilingualTrans and NicheTrans
datasets are collected from Rosetta Code14, a pro-
gramming site presenting solution strategies for
identical tasks across as many programming lan-
guages as possible, thereby demonstrating both
similarities and differences among these languages.
We strictly adhere to the data distribution license
of the platform as Attribution-ShareAlike 4.0 Inter-
national (CC BY-SA 4.0) license15.

The DLTrans dataset is derived from an open-
source teaching platform Dive into Deep Learn-
ing16, which is dedicated to teaching deep learning
knowledge ranging from theoretical background,
conceptual understanding, to coding practices. We
strictly adhere to the data distribution license of
this platform as Apache-2.017. To ensure legal and
regulated use of these datasets, we require strict

14https://rosettacode.org/wiki/Rosetta_
Code

15https://creativecommons.org/licenses/
by-sa/4.0/

16https://github.com/d2l-ai/d2l-zh
17https://github.com/d2l-ai/d2l-zh/

blob/master/LICENSE

adherence to these licenses.

A.2.2 Data Processing
Multilingual Datasets Given the variations in
compilation requirements among programming lan-
guages, we keep the original format as much as pos-
sible to ensure the compilability of the data while
ensuring its accuracy. Additionally, we employ a
duplicate-file-detection tool to identify and remove
duplicate data from the dataset to avoid any poten-
tial data leakage problems during model training.

Cross-Framework Dataset To ensure the compi-
lability of Python, we keep the original formatting
information. We manually verify all automatically
collected samples, identify and exclude samples
that do not meet the requirements.

A.2.3 Data Quality
We randomly select 1K samples from each dataset
within CodeTransOcean for manual quality as-
sessment. We find that for the MultilingualTrans
dataset with compilation requirements, the compil-
ability rate exceeds 90%. We verify that the code
pairs in each dataset are functionally identical and
confirm that CodeTransOcean is of high quality.

Additionally, during data collection, we pay spe-
cial attention to the diversity of domain knowledge
and code styles. CodeTransOcean includes vari-
ous code examples ranging from basic syntactic
structures to complex algorithm implementations,
as well as building neural networks from scratch
and conducting training and inference. This rich

https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/Rosetta_Code
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/d2l-ai/d2l-zh
https://github.com/d2l-ai/d2l-zh/blob/master/LICENSE
https://github.com/d2l-ai/d2l-zh/blob/master/LICENSE

diversity ensures that CodeTransOcean reflects a
wide variety of real-world scenarios.

A.3 Specific Challenges in Implementing
Cross-framework Translation

Firstly, there are significant design differences be-
tween frameworks, including data processing meth-
ods, model-building strategies, and network con-
nection techniques. Secondly, the inherent com-
plexity of DL code increases the difficulty of con-
version, as these codes usually contain various
components such as neural network layers, loss
functions, optimizers, and learning rate schedulers.
Thirdly, there are significant inconsistencies in
the code structure of different frameworks, such
as code organization and variable naming rules.
Lastly, cross-platform compatibility must be con-
sidered because DL code may encounter compati-
bility issues when executing on different hardware
platforms (e.g., GPUs, CPUs, TPUs) and operating
systems.

A.4 Code Examples on Different Deep
Learning Frameworks

Figures 1 and 2 show the implementation of two
different deep learning components in various deep
learning frameworks.

A.5 Multilingual Modeling

One-to-One For each language pair in the
dataset, we train an independent model, e.g., trans-
lating C++ to Java.

One-to-Many We train individual models from
one language to many other languages, e.g., trans-
lating Python to all other languages.

Many-to-One We train individual models from
multiple languages to one language, e.g., translat-
ing all other languages to Python.

Many-to-Many We train a unified model for the
multiple to multiple languages in the dataset, which
can handle translations between all languages.

We ensure all experiments are performed un-
der the same hyperparameters and environment for
comparison. Table 13 shows these in detail.

A.6 Prompt Variations

Role Assignment (Peng et al., 2023; AlKhamissi
et al., 2023; Wu et al., 2023; Akın, 2023) We con-
figured two distinct roles for the model, each with
unique skills. This arrangement empowers the

PyTorch
1 class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
2 def forward(self, pred, label, valid_len):
3 weights = torch.ones_like(label)
4 weights = sequence_mask(weights, valid_len)
5 self.reduction='none'
6 unweighted_loss = super(MaskedSoftmaxCELoss, self

).forward(
7 pred.permute(0, 2, 1), label)
8 weighted_loss = (unweighted_loss * weights).mean(

dim=1)
9 return weighted_loss

TensorFlow
1 class MaskedSoftmaxCELoss(tf.keras.losses.Loss):
2 def __init__(self, valid_len):
3 super().__init__(reduction='none')
4 self.valid_len = valid_len
5
6 def call(self, label, pred):
7 weights = tf.ones_like(label, dtype=tf.float32)
8 weights = sequence_mask(weights, self.valid_len)
9 label_one_hot = tf.one_hot(label, depth=pred.

shape[-1])
10 unweighted_loss = tf.keras.losses.

CategoricalCrossentropy(
11 from_logits=True, reduction='none')(

label_one_hot, pred)
12 weighted_loss = tf.reduce_mean((unweighted_loss*

weights), axis=1)
13 return weighted_loss

MXNet
1 class MaskedSoftmaxCELoss(gluon.loss.SoftmaxCELoss):
2 def forward(self, pred, label, valid_len):
3 weights = np.expand_dims(np.ones_like(label),

axis=-1)
4 weights = npx.sequence_mask(weights, valid_len,

True, axis=1)
5 return super(MaskedSoftmaxCELoss, self).forward(

pred, label, weights)

Paddle
1 class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
2 def forward(self, pred, label, valid_len):
3 weights = paddle.ones_like(label)
4 weights = sequence_mask(weights, valid_len)
5 self.reduction='none'
6 unweighted_loss = super(MaskedSoftmaxCELoss, self

).forward(
7 pred, label)
8 weighted_loss = (unweighted_loss * weights).mean(

axis=1)
9 return weighted_loss

Figure 1: Softmax cross-entropy loss function with mask-
ing in PyTorch, TensorFlow, MXNet and Paddle.

model to simulate more domain-adaptable and spe-
cialized expert roles.

Polite inquiry (Akın, 2023) These strategies add
polite expression and set up imperative and inter-
rogative requests. Given that ChatGPT is designed
to simulate human conversation styles as closely as
possible, including understanding and simulating
polite language expressions. Therefore, we expect
these strategies to boost the comprehension of the
model and augment the quality of its generated
results.

Clarify usage This strategy aims to make the
model clearly aware of its requirements during the
code translation process - the generated code needs
to be guaranteed to execute without issues.
The translation prompts of the above four strategies

Method Train Dev Test Total Method Train Dev Test Total

Ada 6022 464 937 7423 Elixir 3618 297 599 4514
Arturo 3802 470 947 5219 Erlang 3269 217 449 3935

AutoHotKey 4305 555 1120 5980 Factor 4724 860 1756 7340
AWK 3880 578 1162 5620 Forth 3619 339 690 4648

BBC Basic 3663 239 485 4387 Fortran 4050 305 617 4972
Clojure 3617 310 633 4560 Groovy 3773 227 467 4467

Common Lisp 5085 467 933 6485 Haskell 5647 1045 2097 8789
D 5541 825 1662 8028 Icon 2646 158 326 3130

Delphi 3547 436 889 4872 J 5476 1204 2422 9102
Julia 5829 1511 3055 10395 Ruby 5793 1290 2600 9683
Lua 5316 677 1366 7359 COBOL 2438 167 355 2960

Mathematica 5485 1046 2105 8636 REXX 5595 1118 2241 8954
MATLAB 2872 157 322 3351 R 2803 197 402 3402

Nim 5814 1321 2675 9810 Racket 5646 901 1817 8364
OCaml 4286 405 817 5508 Rust 5146 717 1439 7302
Pascal 3393 465 942 4800 Tcl 5354 740 1502 7596
Perl 5818 1445 2914 10177 PowerShell 3563 240 490 4293

Scala 5852 1074 2164 9090 F# 4517 638 1287 6442
Swift 3653 404 818 4875

Table 12: The number of code samples for each language in the NicheTrans datasets. [Return to Section 3.1]

MultilingualTrans NicheTrans DLTrans

Learning rate 3e-5 2e-5 3e-5
Beam size 1 1 5

Max source length 1536 1536 512
Max target length 1536 1536 512

Batch size 16
Max epoch 5

Fp16 True
GPU NVIDIA Tesla V100 32GB

Table 13: Parameters and hardware configuration for
training CodeT5+_220M (220M is the model size) on
CodeTransOcean.

are shown in Table 15.

A.7 One-Shot

Experiment #1 selects a training sample from a
high-resource language code pair as an example.
In this case, the target language type aligns with
the target language type of the translation request,
but the source language does not.

Experiment #2 selects a code pair whose source
and target language directions are congruent with
the translation requirements as an example. That
is, the source and target languages of the exam-
ple dynamically adjust following the translation
requirements.

Experiment #3 randomly selects a code pair as
an example, in which neither the source nor the tar-
get languages match the translation requirements.
The specific translation prompts are shown in Table
19.

A.8 Chain of Thought

Experiment #1 First, describe the function of the
source code in the natural language, then translate it
according to the source code and the corresponding
natural language description.

Experiment #2 First, let ChatGPT understand
the function of the source code, followed by the
translation, while ensuring that the function of the
code remains unchanged during the translation pro-
cess.

Experiment #3 First, let ChatGPT understand
the function of the source code, then predict the
output result of the source code, and finally perform
the translation, demanding that the translated code
successfully executes.

Experiment #4 Building upon Experiment #3
and the one-shot approach of Experiment #2, we
introduce a CoT one-shot variation. That is, first,
provide a case in the same direction for ChatGPT
reference, then require it to understand the func-

PyTorch
1 class Seq2SeqDecoder(d2l.Decoder):
2 def __init__(self, vocab_size, embed_size,

num_hiddens, num_layers, dropout=0, **kwargs):
3 super(Seq2SeqDecoder, self).__init__(**kwargs)
4 self.embedding = nn.Embedding(vocab_size,

embed_size)
5 self.rnn = nn.GRU(embed_size + num_hiddens,

num_hiddens, num_layers, dropout=dropout)
6 self.dense = nn.Linear(num_hiddens, vocab_size)
7
8 def init_state(self, enc_outputs, *args):
9 return enc_outputs[1]

10
11 def forward(self, X, state):
12 X = self.embedding(X).permute(1, 0, 2)
13 context = state[-1].repeat(X.shape[0], 1, 1)
14 X_and_context = torch.cat((X, context), 2)
15 output, state = self.rnn(X_and_context, state)
16 output = self.dense(output).permute(1, 0, 2)
17 return output, state

TensorFlow
1 class Seq2SeqDecoder(d2l.Decoder):
2 def __init__(self, vocab_size, embed_size,

num_hiddens, num_layers, dropout=0, **kwargs):
3 super().__init__(**kwargs)
4 self.embedding = tf.keras.layers.Embedding(

vocab_size, embed_size)
5 self.rnn = tf.keras.layers.RNN(tf.keras.layers.

StackedRNNCells(
6 [tf.keras.layers.GRUCell(num_hiddens, dropout

=dropout)
7 for _ in range(num_layers)]),

return_sequences=True, return_state=
True)

8 self.dense = tf.keras.layers.Dense(vocab_size)
9

10 def init_state(self, enc_outputs, *args):
11 return enc_outputs[1]
12
13 def call(self, X, state, **kwargs):
14 X = self.embedding(X)
15 context = tf.repeat(tf.expand_dims(state[-1],

axis=1), repeats=X.shape[1], axis=1)
16 X_and_context = tf.concat((X, context), axis=2)
17 rnn_output = self.rnn(X_and_context, state, **

kwargs)
18 output = self.dense(rnn_output[0])
19 return output, rnn_output[1:]

MXNet
1 class Seq2SeqDecoder(d2l.Decoder):
2 def __init__(self, vocab_size, embed_size,

num_hiddens, num_layers, dropout=0, **kwargs):
3 super(Seq2SeqDecoder, self).__init__(**kwargs)
4 self.embedding = nn.Embedding(vocab_size,

embed_size)
5 self.rnn = rnn.GRU(num_hiddens, num_layers,

dropout=dropout)
6 self.dense = nn.Dense(vocab_size, flatten=False)
7
8 def init_state(self, enc_outputs, *args):
9 return enc_outputs[1]

10
11 def forward(self, X, state):
12 X = self.embedding(X).swapaxes(0, 1)
13 context = state[0][-1]
14 context = np.broadcast_to(context, (X.shape[0],

context.shape[0], context.shape[1]))
15 X_and_context = np.concatenate((X, context), 2)
16 output, state = self.rnn(X_and_context, state)
17 output = self.dense(output).swapaxes(0, 1)
18 return output, state

Paddle
1 class Seq2SeqDecoder(d2l.Decoder):
2 def __init__(self, vocab_size, embed_size,

num_hiddens, num_layers, dropout=0, **kwargs):
3 super(Seq2SeqDecoder, self).__init__(**kwargs)
4 self.embedding = nn.Embedding(vocab_size,

embed_size)
5 weight_attr = paddle.ParamAttr(initializer=nn.

initializer.XavierUniform())
6 weight_ih_attr = paddle.ParamAttr(initializer=nn.

initializer.XavierUniform())
7 weight_hh_attr = paddle.ParamAttr(initializer=nn.

initializer.XavierUniform())
8 self.rnn = nn.GRU(embed_size + num_hiddens,

num_hiddens, num_layers, dropout=dropout,
9 time_major=True, weight_ih_attr

=weight_ih_attr,
weight_hh_attr=
weight_hh_attr)

10 self.dense = nn.Linear(num_hiddens, vocab_size,
weight_attr=weight_attr)

11
12 def init_state(self, enc_outputs, *args):
13 return enc_outputs[1]
14
15 def forward(self, X, state):
16 X = self.embedding(X).transpose([1, 0, 2])
17 context = state[-1].tile([X.shape[0], 1, 1])
18 X_and_context = paddle.concat((X, context), 2)
19 output, state = self.rnn(X_and_context, state)
20 output = self.dense(output).transpose([1, 0, 2])
21 return output, state

Figure 2: Implementing RNN Decoder for Seq2Seq Learning in PyTorch, TensorFlow, MXNet and Paddle. [Return
to Section 3.2]

tion of the source code, then predict the output of
the source code, and finally translate it, with the
condition that the translated code must successfully
execute.
The specific translation prompts are shown in Table
19.

Method C C++ C# Go VB Python Java PHP

C

Naive – 14.61 9.08 4.52 1.64 2.17 11.23 2.09
OtO – 11.13±0.28 4.77±0.85 8.18±0.40 2.02±0.23 1.85±0.14 6.50±2.91 1.71±0.32
OtM – 12.33±0.58 7.56±0.98 9.58±0.74 2.22±0.89 2.82±0.58 8.92±0.67 3.42±0.09
MtO – 7.99±1.94 5.35±0.41 6.94±0.83 3.77±0.44 2.09±0.25 8.65±0.52 1.93±0.49
MtM – 9.61±0.32 7.15±1.41 7.54±0.33 2.30±0.71 2.11±0.43 8.29±0.45 3.30±0.92

C++

Naive 14.88 – 10.08 3.87 3.76 1.69 11.39 1.92
OtO 10.58±0.37 – 6.52±1.96 6.77±1.08 2.34±0.90 1.82±0.37 9.41±1.59 1.50±0.03
OtM 13.32±2.46 – 9.87±1.15 9.83±1.37 2.62±1.15 2.93±0.18 12.10±1.51 2.87±0.82
MtO 10.54±2.33 – 6.98±1.46 7.29±0.73 3.57±0.74 2.28±0.18 7.82±1.26 1.96±0.20
MtM 9.92±1.14 – 7.79±1.49 7.70±0.48 2.06±0.74 2.38±0.30 10.20±1.20 4.12±0.81

C#

Naive 9.05 10.03 – 5.05 7.20 1.83 13.60 2.58
OtO 5.41±1.25 6.45±1.68 – 7.10±0.63 9.42±5.50 1.73±0.46 10.55±1.67 1.97±0.76
OtM 7.42±1.82 8.99±0.17 – 9.81±0.68 6.13±2.92 2.80±0.43 11.92±2.52 4.55±0.81
MtO 6.37±0.69 6.13±1.60 – 7.53±0.94 9.92±1.00 2.47±0.62 10.16±1.40 1.70±0.20
MtM 6.19±0.88 7.22±0.93 – 9.36±0.92 4.60±2.87 2.23±0.36 12.50±1.35 4.70±0.27

Go

Naive 4.52 3.75 5.04 – 2.46 3.00 6.56 2.14
OtO 5.65±0.41 6.88±0.47 4.70±1.28 – 1.87±0.54 2.89±0.16 5.41±1.06 2.48±0.23
OtM 6.06±0.99 6.56±0.89 7.28±0.82 – 2.12±0.65 3.32±0.36 8.79±1.06 3.48±0.20
MtO 5.41±0.63 4.77±0.76 6.89±0.33 – 2.94±0.63 3.12±0.48 7.81±0.32 1.79±0.51
MtM 5.18±1.23 6.06±0.28 7.12±0.72 – 1.82±0.93 2.83±0.50 8.99±1.28 2.55±0.40

VB

Naive 1.64 3.76 7.29 2.54 – 1.42 2.89 0.46
OtO 3.96±0.20 5.25±0.68 17.34±1.79 5.85±0.64 – 1.34±0.06 5.51±0.43 0.61±0.18
OtM 5.15±0.15 6.10±0.30 19.63±1.03 7.83±0.45 – 2.02±0.32 7.91±0.92 2.02±0.20
MtO 4.25±0.86 4.15±1.09 11.96±1.96 6.38±0.45 – 1.66±0.58 7.26±1.39 1.18±0.33
MtM 5.18±0.65 5.09±0.15 14.13±1.83 6.97±1.30 – 2.34±0.11 8.39±0.77 2.92±0.22

Python

Naive 1.73 1.14 1.44 2.50 0.89 – 1.82 1.28
OtO 4.35±0.44 3.66±0.95 5.38±0.76 5.67±0.34 2.53±1.11 – 4.70±0.07 3.24±0.60
OtM 4.51±1.33 5.18±0.52 6.48±0.71 6.04±0.96 1.50±0.56 – 6.29±0.39 6.55±0.94
MtO 4.70±0.28 3.44±0.76 5.48±0.55 4.80±0.63 2.42±0.18 – 5.32±0.66 2.74±0.39
MtM 4.54±0.67 4.74±0.14 5.69±0.72 5.84±0.36 2.09±0.94 – 6.45±0.11 4.49±0.63

Java

Naive 11.23 11.15 13.44 6.57 2.84 2.24 – 2.60
OtO 7.15±1.59 9.09±1.00 10.92±1.61 11.05±0.52 2.66±0.13 2.54±0.35 – 2.05±0.95
OtM 9.27±1.52 9.33±0.86 13.52±0.95 12.57±0.96 2.92±0.78 3.98±0.86 – 6.20±1.08
MtO 6.69±0.83 6.32±1.66 10.57±1.16 8.79±0.44 3.91±0.57 2.86±0.36 – 2.48±0.34
MtM 6.56±0.33 7.60±0.46 9.40±1.08 8.30±0.87 2.20±0.85 2.53±0.15 – 3.57±0.94

PHP

Naive 1.79 1.51 2.36 2.00 0.37 1.30 2.30 –
OtO 4.18±1.44 2.91±0.43 6.45±0.43 5.85±0.54 0.42±0.09 1.98±0.26 6.47±0.59 –
OtM 3.78±1.80 1.93±1.35 5.51±0.60 5.13±0.60 0.56±0.36 2.70±0.80 5.51±1.91 –
MtO 4.97±1.09 3.69±0.46 6.08±3.03 6.44±0.78 2.28±0.12 3.55±0.18 8.66±0.84 –
MtM 6.03±0.61 5.15±0.67 10.64±1.27 6.69±0.31 1.69±0.57 2.46±0.46 7.87±1.90 –

Table 14: BLEU scores from different multilingual modeling strategies by fine-tuning the pre-trained
CodeT5+_220M model (220M is the model size) (Wang et al., 2023b). Naive denotes Naive Copy, which directly
duplicates the source code as the target code without making any modifications. Method OtO, OtM, MtO, and MtM
denote One-to-One, One-to-Many, Many-to-One, and Many-to-Many, respectively. The rows correspond to the
source language while the columns correspond to the target language. We run each experiment with three different
random seeds and report the mean and standard deviation of BLEU scores. [Return to Section 4.1.]

Method Translation Prompt

Role Assignment #1 "role": "system", "content":
"Your are a code translation
system.", "role": "user",
"content": "Please provide the
[TL] translation for the following
[SL] code:[SC]

Role Assignment #2 "role": "system", "content":
"You are a code translation system
that specializes in [SL] and [TL]
programming languages.", "role":
"user", "content": "Please
provide the [TL] translation for
the following [SL] code:[SC]

Role Assignment #3 "role": "system", "content":
"You are a programmer proficient
in multiple programming
languages.", "role": "user",
"content": "Please provide the
[TL] translation for the following
[SL] code:[SC]

Role Assignment #4 "role": "system", "content":
"You are a programmer proficient
in [SL] and [TL] programming
languages.", "role": "user",
"content": "Please provide the
[TL] translation for the following
[SL] code:[SC]

Polite Inquiry #1 Please translate the following
[SL] code into [TL] code:[SC]

Polite Inquiry #2 Can you rewrite this [SL] code in
[TL]?[SC]

Clarify Usage Translating [SL] to [TL]
ensures that Python code can be
executed.[SC]

Divide & Conquer Translate [SL] to [TL]:[SC]

Table 15: Translation prompts for prompt variants and contextual strategies on ChatGPT. [SL] refers to the source
language, [SC] refers to the source code, [TL] refers to the target language. [Return to Section 4.3]

Strategy Temp. EM BLEU CodeBLEU DSR@0 Strategy Top-K EM BLEU CodeBLEU DSR@0

Top-K = 0

0 0.57 10.83 24.45 48.57%

Temp. = 0

0 0.57 10.83 24.45 48.57%
0.2 0.57 10.82 24.43 47.71% 0.2 0.57 10.81 24.45 48.29%
0.4 0.57 10.80 24.37 48.00% 0.4 0.57 10.81 24.44 48.29%
0.6 0.57 10.78 24.45 48.00% 0.6 0.57 10.82 24.42 48.29%
0.8 0.57 10.82 24.49 47.71% 0.8 0.57 10.80 24.38 47.71%
1.0 0.57 10.81 24.41 48.00% 1.0 0.57 10.81 24.38 48.00%

Table 16: Code translation performance of ChatGPT under different parameter settings. Temp. refers to temperature.
[Return to Section 4.3]

Self-debug@0

Translate [source_language] to [target_language]: [source_code].

Here is the [target_language] code equivalent
of the given [source_language] code: [translated_code].

Self-debug@n

The above python code executes with the following errors,
please correct them. [Compiler reports errors]

Here is the modified [target_language] code: [translated_code].

Table 17: A simple demo: Translation prompting of ChatGPT in the multi-round debugging strategy. The content in
red is returned by the compiler. [Return to section 4.3.]

Zero-shot prompting

Does the following Python code execute? [python_code].

Yes, the Python code executes without errors.

Please predict the executed output of the Python code above.

The predicted execution result of the Python code above is [output].

Few-shot prompting

This is a executable Python code [python_code], and this is a Python code [python_code]
that cannot be executed. Does the following Python code execute? [python_code].

Yes, the Python code executes without errors.

Please predict the executed output of the Python code above.

The predicted execution result of the Python code above is [output].

Table 18: Two simple demos: prompting in fuzzy execution experiments. [Return to Section 6.]

Method Translation Prompt

One-Shot Here is an example of a
translation from [ESL] to
[ETL].[ESL]: [ESC], [ETL]: [ETC].
Please imitate this example to
translate following code from [SL]
to [TL]:[TC].

One-Shot #1 where [ESL]̸=[SL] and [ETL]=[TL]
One-Shot #2 where [ESL]=[SL] and [ETL]=[TL]
One-Shot #3 where [ESL]̸=[SL] and [ETL]̸=[TL]

CoT #1 1.Please explain the function of
the following [SL] code, which
is limited to 200 words.[SC]
2.Please translate into [TL]
code according to the following
[SL] code and its functional
description.[SL]:[SC].Function
description:[DSC]

CoT #2 First, understand the function of
the following [SL] code. Then,
translate the [SL] code into [TL]
code while keeping the function
unchanged.[SC]

CoT #3 First, understand the
functionality of the following
[SL] code and predict the
execution output. Then, translate
the [SL] code into [TL] while
maintaining the same functionality,
ensuring that the translated code
can be successfully executed.[SL]

CoT #4 First, learn how to translate
[ESL] code to [ETL] based on the
example, [SL]:[ESC],[TL]:[ETC].
Then, understand the functionality
of the following [SL] code and
predict the execution output,
[SL]:[SC]. Finally, translate
the [SL] code into [TL] while
maintaining the same functionality,
ensuring that the translated code
can be successfully executed.

Table 19: ChatGPT translation prompts on one-shot & CoT strategies. [SL] refers to the source language, [SC]
refers to the source code, [TL] refers to the target language,[ESL] refers to the source language in the example,
[ESC] refers to the source code in the example, [ETL] refers to the target language in the example, [ETC] refers
to the target code in the example, [DSC] refers to the natural language description of the source code. [Return to
Section 4.3]

