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Abstract

This paper presents a dynamic shortest path planning
approach that addresses traffic uncertainty and time-
dependency, with a focus on utilizing lookahead traffic infor-
mation. Building on the approximate dynamic programming
(ADP) algorithm, the approach is tested against a determin-
istic path planning baseline for comparison. Preliminary case
studies demonstrate that the proposed dynamic path planning
enhances the algorithm’s ability to anticipate and adapt to dy-
namic changes by integrating lookahead information on fu-
ture traffic conditions.

Introduction
Path planning is a widely studied topic with significant prac-
tical applications in the real world. Beyond its practicality,
it has also attracted considerable research interest due to the
inherent uncertainties and time-dependent nature of traffic
conditions. Traffic dynamics can vary substantially based
on the time of day, even along the same route, introducing
challenges related to travel speed and reliability. This paper
addresses the challenges of time uncertainties and dynamic
variations through a dynamic planning strategy, with a par-
ticular focus on utilization of lookahead traffic information.
The proposed approach builds on stochastic shortest path
planning, as outlined by Powell (Powell 2007). This study
extends the analysis by comparing the deterministic path,
fixed at a specific time, with approximate dynamic program-
ming (ADP) approaches, using real-world traffic data on an
actual map. The lookahead information used in the ADP
approach reflects expected future traffic conditions. Similar
problems addressed in studies like (Sever et al. 2018) of-
ten incorporate clustering or lookahead strategies. By lever-
aging real-world road networks and traffic data, this study
seeks to generate actionable insights, highlighting their im-
portance in achieving practical outcomes.

Temporal factors such as time-varying in travel time due
to changes in traffic over time, which exemplifies the time-
varying route problem. In relation to the problem of routes
that vary in time, research (Gendreau, Ghiani, and Guerriero
2015) (Berbeglia, Cordeau, and Laporte 2010) extensively
introduce the relevant papers and problem definitions. Kim
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et al. (Kim et al. 2016) proposed a stochastic traffic mod-
eling approach and presented a routing policy for stochas-
tic travel times under traffic congestion. Common topics
mainly address adjustments to departure and arrival times
in route planning while considering traffic (Pedersen, Yang,
and Jensen 2020), (Basso et al. 2016). Regarding the time-
dependent routing problem with energy efficiency aware,
Kramer et al. (Kramer et al. 2015) present a time-dependent
routing problem with fuel consumption and start& return
time.

Following the Introduction, the main sections of the paper
provide a brief description of the road network data used in
this study and an explanation of the time-varying and uncer-
tain nature of traffic. Next, the paper presents the problem
description and the proposed stochastic shortest path plan-
ning ADP algorithms. After a preliminary case study, the
paper concludes with a summary and directions for future
work.

Preparatory Processes and Preprocessing

Graph network construction

The foundation of a path planning problem involves con-
structing a graph network, which requires creating a road
network graph made up of nodes and edges. In this study,
geospatial data for Columbus, OH, were obtained from the
HERE Fleet Telematics API. The dataset includes road seg-
ment lengths, average road speeds at different times of the
day, coordinates (latitude and longitude), and road connec-
tivity information. This data was processed to create directed
graphs. Mathematically, the road network is represented as
G(N,A), where N denotes the set of nodes (road intersec-
tions) and A represents the set of arcs (edges), which corre-
spond to road segments. These processes are also illustrated
in Fig. 1. The primary cost associated with the problem is
the travel time for each arc. To determine the arc costs, I re-
trieve key attributes, including ”Travel speed,” ”Variance of
travel speed,” and ”Length of the road”. A portion of this
data is visualized in Fig. 2, where each edge is shown in a
different color. The base map included helps to illustrate the
geographic alignment of the road network.



Figure 1: Graph preprocessing to construct road network
graph

Figure 2: Partial visulaization of the road network data

Time-varying route feature from traffic
The main focus of this paper is on stochastic shortest path
planning utilizing lookahead traffic data, with a particular
emphasis on the time-varying characteristics of urban traffic.
In urban areas, travel speeds fluctuate throughout the day,
with slower speeds during peak periods. This study empha-
sizes the need to incorporate time-dependent traffic condi-
tions into routing. This starts by analyzing a deterministic
case to evaluate traffic conditions at different times of the
day before addressing the stochastic planning problem. Us-
ing the graph introduced in the previous section with prede-
fined travel costs, optimal routes between points are identi-
fied using path-planning algorithms such as Dijkstra’s Algo-
rithm.

Figs. 3 and 4 show the route planning between specific
locations under different time scenarios. Fig. 3 presents the
optimal routes, which vary based on traffic conditions. The
estimated travel times between the same origin and desti-
nation are calculated throughout the day, considering vary-
ing traffic conditions. The speed profiles indicate that travel
times during free-flow conditions, such as at 2 AM, are sig-
nificantly shorter compared to daytime periods with heavier
traffic. Traffic conditions lead to an approximate 15% dif-
ference in travel times. Although these analyses are based
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Figure 3: Route visualization under different time of the day
traffic
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Figure 4: Travel time under different time of the day traffic

on fixed travel speeds corresponding to specific times of the
day, which serve as a baseline for algorithm benchmarking.

Regarding the uncertainty of the travel time from the traf-
fic, Ideally, it would be best to directly access and utilize
traffic data for each time period, along with its distribution
and associated uncertainties. However, collecting such data
is practically infeasible. As an alternative, this project uti-
lized daily speed patterns as an assumption. Roads with sig-
nificant fluctuations in daily speed patterns were assumed
to experience large variations in speed due to traffic, and
high variance values were assigned accordingly. Conversely,
for roads with minimal speed variations across time periods,
they were considered less impacted by traffic volume, and
low variance values were applied.

This approach is illustrated in Fig. 5, which demonstrates
how uncertainty is determined based on whether a road ex-
hibits traffic variance or not.

Problem description and Methodology
This section presents dynamic shortest path planning un-
der stochastic conditions, accounting for traffic variability
through ADP algorithm. Unlike deterministic approaches,
this framework explicitly incorporates uncertainty and time-
dependency introduced by fluctuating traffic conditions. To
formalize the problem, we sequentially define key elements:
the state, decision variables, exogenous information, tran-



Figure 5: Preprocess data to generate uncertainties from the
traffic

sition function, objective function, and the Bellman equa-
tion, incorporating lookahead information, within a univer-
sal framework.

Each stage is indexed by t, representing the travel step in
the sequence from the origin to the destination. The system
state at stage t, denoted St, includes two primary compo-
nents. First, the current location nt is defined as a node in
the road network nt ∈ N . Second, the state incorporates
the time of day, a factor for traffic dynamics, represented
as Tt. To address computational constraints, the continuous
time variable is discretized into time intervals, denoted by
Tz ∈ [τ0, τ1, . . . , τp], where p represents the number of time
frames. The discretization mapping function ϕ is defined as
Eq. 1:

ϕ(Tt) = Tz where τk ≤ Tt < τk+1 =⇒ z = k (1)

Thus, the state space at stage t is represented as St =
(nt, Tz). The decision variable, xj,t, indicates the choice of
the next node j (or nt+1) at stage t, and the entire set as
Xπ with policy function π. Since traversal is limited to con-
nected nodes in the network, the set of successor nodes for
nt, denoted Sc(nt), restricts j to Sc(nt). For the exogenous
information, Wt+1 = Ĉ(nt, nt+1, Tz) represents the actual
realized travel time from nt to nt+1 under time zone Tz(=
ϕ(Tt)). Accordingly, for state transitions, the stage index t
increments simply as t = t + 1 for each traversal, until it
reaches the final destination at tend. For the time component,
the current time is updated as Tt+1 = Tt + Ĉ(i, j, ϕ(Tt))
given the travel time from node i to node j at time Tz . Fi-
nally, the objective function aims to minimize the total ex-
pected travel time, which is expressed in Eq. 2.

minE


tend∑
t=1

∑
nt+1∈Sc(nt)

C(nt, nt+1, ϕ(Tt))X
π(St)

 (2)

For value iteration step m and learning rate αm as defined
in the problem statement, the value approximation(V̄ ) incor-
porating the lookahead value v̂mt is expressed in Eq. 3:

V̄ m
t (Sm

t ) = (1− αm)V̄ m−1
t (Sm

t ) + αmv̂mt+1 (3)

This paper set up a lookahead information as expected
remaining time to reach the destination. Here, to faciliate
the lookahead information calculation, we approximated the
calculation under the fix time zone. This can be represented
in Eq. 4. Finally, the decision xm

t can be made from Eq. 5.

Figure 6: Travel time comparison between ADP algorithm
with Deterministic solution

v̂mt = min
π

E

(
tend∑

t′=t+1

C̄(nt′ , nt′+1, ϕ(Tt+1))

)
(4)

x̂m
t = argmin

π

(
C̄(nt, nt+1, Tt+1) + V̄ (Sm−1

t )
)

(5)

To address this problem, we introduce the Single-pass Ap-
proximate Dynamic Programming (ADP) algorithm, where
the value function is progressively updated as the algorithm
advances through time. Algorithm 1 details the process: for
each episode m, an updated estimate of the value associ-
ated with state Sm

t is computed. This estimate is refined by
combining the state value from the previous iteration, V̄ t

n−1,
with the lookahead value estimate, v̂nt . The lookahead infor-
mation is based on fixed future traffic conditions.

Algorithm 1: ADP Algorithm with Single-Pass
Input: Maximum number of iterations M
Parameter: Stepsize αm

Output: Value functions {V π
t }

tend
t=1

1: Initialize V π
t with deterministic dynamic programming

2: Set m = 1.
3: while m ≤M do
4: Initialize Tt = 0, Sm

1 = (Origin node, ϕ(Tt)).
5: for t = 0 to tend do
6: Solve Eq. 4 and 5 to compute x̂m

t , v̂mt .
7: Set the chosen node xn

t as the next node to visit.
8: if t > 0 then
9: Update V π

t (Sm
t ) using:

V̄ π
t (Sm

t ) = (1− αm)V̄ π
t (Sm

t ) + αmv̂mt

10: end if
11: Update variables with transition function
12: Compute post-decision state Sm

t+1 =
(xm

i,t, ϕ(Tt+1))
13: end for
14: Increment m← m+ 1.
15: end while
16: return Value functions {V π

t }
tend
t=1 .
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Figure 7: Speed profile graph from the middle case study route
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Figure 8: Route visualization from the middle case study
route

Case N of Nodes N of Edges
Full 77,000 167,000
Medium 24,500 57,200
Small 6,000 12,600

Table 1: Size of the road network per each case

Case study and benchmark
In the case study, as briefly introduced in Fig. 3, this pa-
per conducts a comparison and benchmarking of various al-
gorithms using actual map data. To examine the variations
based on problem size, we divided the data into three dis-
tinct sizes, as shown in Table 1. The ”Full” dataset utilizes
the entire road network information for the city of Colum-
bus, while the ”Medium” and ”Small” datasets consist of se-
lected areas from the full dataset. The number of nodes and
edges for each case is detailed in Table 1.

In Fig. 6, the performance of the ADP algorithm is com-
pared with the deterministic algorithm using 100 samples.
On average, the dynamic path planning approach, which
incorporates time-dependent traffic conditions, outperforms

Figure 9: Comparison of results across different scenarios

deterministic planning by approximately 0.4 hours. Fig. 7
presents the speed profile over time for a selected stochastic
solution path, with each time zone indicated by dashed lines.
The speed variations across the first five periods demonstrate
how stochastic planning dynamically adjusts the travel plan
over time, showcasing its impact on the resulting solution.
Similarly, Fig. 8 visually depicts dynamic path planning as a
function of the current state. The variation in paths arises
from differences in the lookahead values for the remain-
ing route, which are predicted based on the current location
(node) and the time zone Tz .

The extended tests, with additional cases described in
Fig. 9, show that while the limited number of cases
makes generalization challenging, the results suggest that
for shorter paths, there is little difference between dynamic
and deterministic path planning. However, as the path length
increases, stochastic path planning tends to outperform de-
terministic planning, adapting more flexibly to varying con-
ditions.

Conclusion
This paper presents a dynamic path planning methodology
and a real-world case study that account for traffic-related
uncertainty and time-dependency. To date, the validity of the
Single-pass ADP algorithm has been evaluated, with a de-



terministic path, fixed at the start time, serving as the base-
line for comparison. Note that this is ongoing work and only
preliminary studies have been conducted. In the further re-
search, the methodology will be extended to include double-
pass and neural network (NN) -based algorithms, aiming
to broaden the benchmark scope and enhance comparative
analyses.
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