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Abstract

Spiking neural networks have garnered increasing attention due to their energy
efficiency, multiplication-free computation, and sparse event-based processing. In
parallel, state space models have emerged as scalable alternatives to transformers
for long-range sequence modelling by avoiding quadratic dependence on sequence
length. We propose SHaRe-SSM (Spiking Harmonic Resonate-and-Fire State
Space Model), a second-order spiking SSM for classification and regression on
ultra-long sequences. SHaRe-SSM outperforms transformers and first-order SSMs
on average while eliminating matrix multiplications, making it highly suitable
for resource-constrained applications. To ensure fast computation over tens of
thousands of time steps, we leverage a parallel scan formulation of the underlying
dynamical system. Furthermore, we introduce a kernel-based spiking regressor,
which enables the accurate modelling of dependencies in sequences of up to 50k
steps. Our results demonstrate that SHaRe-SSM achieves superior long-range
modelling capability with energy efficiency (52.1× less than ANN-based second-
order SSM), positioning it as a strong candidate for resource-constrained devices
such as wearables.

1 Introduction

Spike-based deep learning has established itself as an ultra-low-power consumption and sparse
computing paradigm for efficient AI in recent years. Spike-based neuromorphic hardware such as
Loihi [11, 33], TrueNorth [2], and Dynapse [29] utilises far lower resources than conventional ANN-
based designs. Apparently, most spike-based models [40, 41, 22, 32, 35] rely on integrate-and-fire
(IF) or leaky IF neurons, which miss key biological traits like oscillations. While the biophysically
detailed Hodgkin-Huxley model captures these dynamics, it is computationally prohibitive. Driven
by these observations, Resonate-and-fire (RF) neurons [19], computationally as light as IF but more
expressive, have gained recent attention [33, 15, 12]. However, RF neurons remain underexplored for
very long sequence modelling.

For sequential tasks, transformers are de facto standards [36], but they suffer from quadratic depen-
dence on sequence length. Alternatives, such as KV caching [10] and memory updates [7], reduce
overhead but lack the simplicity of RNNs. State space models (SSMs) [14, 34, 13] and their spiking
variants [35, 32, 6] bridge this gap. Yet current spiking SSMs struggle with very long sequences.

LinOSS [31, 9], a second-order SSM, addresses this by using stable discretisations with diagonal
state matrices, achieving state-of-the-art results on long-range tasks. However, it lacks spike-based
communication, which is crucial for energy efficiency [33, 18], such as demanded by a battery-driven
wearable. Hence, in this work, we introduce SHaRe-SSM, a second-order spiking SSM designed for
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extremely long-range tasks and energy-efficient edge AI. Our contributions are: (1) A fully spike-
based second-order SSM, without ANN nonlinearities (GeLU, GLU, or GSU). (2) A compatible
parallel scan algorithm for fast training and inference. Superior accuracy over first-order SSMs on
long-sequence classification, with higher efficiency than ANN-based second-order SSMs. (3) An
extension to regression via a convolving kernel, outperforming first-order SSMs on 50K-length tasks.

2 Methods

2.1 Network Description

The Resonate-and-Fire (RF) neuron [19] provides a closer approximation to the Hodgkin-Huxley
(HH) model than the Leaky Integrate-and-Fire (LIF) neuron by capturing subthreshold resonance
through a 2D linear system with complex eigenvalues. This enables oscillatory dynamics and
frequency selectivity, traits absent in LIF but observed in HH neurons. To simplify implementation,
second-order real-valued variants such as the Harmonic RF (HRF) [3, 15] reformulate RF as a real
harmonic oscillator while preserving oscillatory behaviour without requiring complex initialisation.
RF’s complex dynamics make it more biophysically realistic, and recent work [15] shows that RF-
based models perform best without membrane resets. Building on these insights, we integrate HRF
into LinOSS’s SSM framework [31], compute dynamics linearly via parallel scans, and use a spike
function as the activation to propagate spikes. This original HRF formulation is limited to a single
neuron. We propose formulating HRF in an SSM framework (SHaRe-SSM). This approach helps in
capturing better dynamics. The input spikes are multiplied by a weight matrix, and we propagate
spikes from the hidden state v(t). Moreover, removing the damping parameter in such second-
order approximations enhances the neuron’s ability to capture long-range temporal dependencies by
preserving longer oscillations [31]. We define the SHaRe-SSM model by:

u′(t) = −Ωv(t) +Bx(t)

v′(t) = u(t)

z(t) = Θ(v(t)− θC)

(1)

where u(t), v(t) ∈ Rp denote the hidden states, y(t) ∈ Rh the output, and x(t) ∈ Rh the input spike
signal. The system is defined by weights Ω ∈ Rp×p which is diagonal, B ∈ Rp×h, C ∈ Rh×p,
D ∈ Rh, and an output learnable spiking parameter θC ∈ Rp such that spikes are emitted if v ≥ θC .
These thresholds (θ) are learned using a step-double Gaussian surrogate gradient [26, 15]. Since
[15] demonstrated that HRF performs well without a reset, we adopted the same strategy here. This
eliminates the need for sequential processing, allowing the model to be implemented across time as
an activation function. Each SHaRe-SSM block is comprised of a SHaRe-SSM neuron, followed by
a linear layer, and a spike function (IF neuron with no reset).

2.2 Encoder and Decoder

For SHaRe-SSM, we design an encoder for encoding the input signal into spike trains (see Algorithm
1). Herein, the inputs every timestep are passed through a learnable linear layer. Finally, an IF neuron
with no reset, i.e., a spike function, generates spikes into the SHaRe-SSM block. Notably, this is a
data-dependent trainable encoder (without requiring us to specify whether to utilise rate coding or
any other encoding variants). Moreover, it utilises neuronal heterogeneity and is instantaneous. The
decoder projects the spikes back using a linear Layer with the output dimension equal to the number
of classes. For regression, we also propose convolving the output with a learnable filter.

2.3 Discretisation methods

Euler Forward (explicit) discretisation causes divergence over time, making the model unstable. In
contrast, IMEX discretisation remains stable and preserves energy, while the IM scheme, though
dissipative, is also stable. Below, we analyse the generalizability of IM and IMEX for long sequences.
IMEX is particularly promising for regression: as shown in Rusch and Rus [31], removing damping
yields a Hamiltonian system [5], where energy conservation is guaranteed under symplectic discreti-
sations. We also evaluate the non-conservative but empirically stable IM scheme. Our formulation
adopts a second-order system with position-like state un and velocity-like state vn. The general form
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of discrete updates is denoted by:

un = un−1 +∆t(−Ωv⋆ +Bxn), (2)
vn = vn−1 +∆t un, (3)
sn = Msn−1 + Fn, (4)

where the choice of v⋆ distinguishes the discretisation schemes: v⋆ = vn for IM (implicit), and
v⋆ = vn−1 for IMEX (implicit-explicit).

Unlike IM, the eigenvalues of M IMEX lie near the unit circle, preserving oscillatory energy over long
horizons. This makes IMEX especially suitable for modelling long sequences, where maintaining
temporal structure is crucial.

Algorithm 1 SHaRe-SSM Algorithm
Require: Input sequence x
Ensure: N -blocks, spike function Θ , output sequence o

x0 ← Encoder(x) {Encode input sequence into spikes}
for n = 1, . . . , N do
zn ← solution of HRF in (1) with input xn−1 via parallel scan aggregated
yn ← Czn +Dxn−1 {Weighted spike mixing in (1)}
yn ← Θ(yn − θnD)
yn ← Linear(yn)
yn ← Θ(yn − θn)
xn ← yn + xn−1 {Spike mixing}

end for
o← Decoder(xN ) {Decode spikes}

3 Emperical Results

3.1 Human Activity Recognition

Our SNN model is capable of learning multiple states without any sequential recurrence, as it does
not have a reset mechanism. Such a design enables parallelisation and reduced energy consumption.
Hence, it is well-suited for wearable devices. Although our model is designed for long-range
sequence datasets, we also evaluated its performance on Human Activity Recognition(HAR) datasets:
UCI-HAR [4] and SHAR datasets [24]. For 30 subjects, UCI-HAR comprises 10.3k instances of
6 activities (walking, walking upstairs/downstairs, sitting, standing, lying) captured with a 3-axis
accelerometer and gyroscope (50 Hz) on a Samsung Galaxy SII, while UniMB SHAR includes
11.7k instances of 17 activities (9 daily, 6 fall) recorded with a 3-axis accelerometer (≤ 50 Hz) on
a Samsung Galaxy Nexus I9250. SHaRe-SSM achieves an accuracy of 99% and outperforms the
best-performing model [23] for UCI-HAR by 0.2%. For SHAR, our model achieves 92.7%, which is
better than non-spiking models in terms of energy and performance, and is competitive with spiking
models, as it outperforms SpikeDCL by 0.6% and falls behind SpikeDCL by 1.2% (Refer to Table 1).

Model SNN UCIHAR SHAR
CNN No 96.3±0.1 92.4±0.5
DeepConvLSTM No 97.9±0.3 90.8±1.0
LSTM No 82.4±4.0 83.9±0.9
Transformers No 96.0±0.3 83.2±0.7
SpikeCNN Yes 96.4±0.2 94.0±0.3
SpikeDCL Yes 98.9±0.3 92.1±0.8
Ours (IM) Yes 99.02±0.3 92.8±0.1
Ours (IMEX) Yes 96.9±0.5 89.1±0.7

Table 1: Performance comparison (Accuracy %) between different networks on Human Activity
Recognition datasets: UCI-HAR[4], and SHAR [24]
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3.2 Very-Long Range Interactions

Wearable devices operate over long durations, demanding robust prediction on extended sequences.
Spiking SSMs, with their high throughput and energy efficiency, are well-suited for this setting.
To evaluate performance on very long temporal dependencies, we study the longest benchmark
datasets: the Eigenworms dataset (17,984 sequences) for classification and the PPG-DaLiA dataset
(49,920 sequences) for regression. Following the hyperparameter protocol of Rusch and Rus [31]
and employing Bayesian search [1], we ensure an optimised training. Eigenworms, a subset of the
UEA archive, represent C. elegans motion through six eigenworm features to distinguish wild-type
behaviour from that of other mutants. PPG-DaLiA involves heart rate prediction from wrist-worn
sensor data collected from 15 individuals over 150 minutes at 128 Hz.

For the Long-range classification task on EigenWorms, we observe that our model performs compara-
bly to LinOSS with just 2.2% drop in performance for IM discretisation, and significantly outperforms
the IMEX counterpart by 10%. We observe an additional 82.6% energy improvement for the IMEX
discretisation (Fig. 1). Our model outperforms all previous models, especially first-order SSMs such
as LRU and S6 by 5% and 7.8% respectively.

We present the first regression results of a spiking SSM on extremely long sequences (up to 50k). To
address the limited output range of spiking neurons, we introduce a kernel-based spiking regressor
with a learnable temporal kernel. As shown in Table 2, SHaRe-SSM models consistently outperform
all first-order SSMs. SHaRe-SSM-IMEX surpassing Mamba by 0.016 MSE, demonstrating both the
energy-efficient nature of IMEX discretisation and the strong representation power of resonating
neurons. Despite their efficiency, our models are only at most 0.027 MSE below second-order SSMs.

We observed from Rusch and Rus [31] that IM discretisation outperforms IMEX for all datasets for
classification and vice versa for regression. This trend is observed similarly for our model. Addition-
ally, Hu et al. [17] demonstrated that linear SSM-based models outperform RNN-based models for
chaotic systems. Pourcel and Ernoult [28] observed similar trends for the EigenWorms dataset, where
the non-linear dynamics from Rusch and Mishra [30] suffer a tragic drop in performance; however,
for the PPG dataset, it outperforms its linear counterpart, and only lags behind LinOSS-based models.

Method Integrator SNN EW (ACC ↑) PPG (MSE ↓)
NRDE[25] No 83.9 ± 7.3 9.9 ± 1.0
NCDE[20] No 75.0 ± 3.9 13.5 ± 0.7
Log-NCDE[37] No 85.6 ± 5.1 9.6 ± 0.6
LRU[27] No 87.8 ± 2.8 12.2 ± 0.5
S5[34] No 81.1 ± 3.7 12.6 ± 1.3
S6[13] No 85.0 ± 16.1 12.9 ± 2.1
Mamba[13] No 70.9 ± 15.8 10.7 ± 2.2
LinOSS[31] IM No 95.0 ± 4.4 7.5 ± 0.5
Ours IM Yes 92.8 ± 3.3 11.8± 0.9
RHEL-Lin[28] IMEX No 75.0 ± 9.9 9.5± 1.0
RHEL-Nonlin[28] IMEX No 50.1 ± 6.7 8.4± 0.5
LinOSS[31] IMEX No 80.0 ± 4.4 6.4 ± 0.2
Ours IMEX Yes 90.0 ± 5.7 9.1 ± 0.2

Table 2: Mean and Standard Deviation reported for longest sequences: Accuracy for EigenWorms,
and Mean-Squared Error (MSE ×10−2) for PPG-DaLiA dataset across five training runs for the best
model (Top three models are highlighted in red, blue, violet respectively).

3.2.1 Energy computation

In this section, we assess and compare the energy computation for LinOSS and SHaRe-SSM for
similar hidden-size(H), state-size(P), and num-blocks(N) on the EigenWorms dataset. From Figure 1,
we observe that for different state-to-hidden ratios, we get different energy numbers. For the Eigen-
Worms dataset, the average spike rate per time step per block is 0.42. We observe our best performing
IMEX model to be ∼ 52.1× energy efficient than an equivalent LinOSS model. Furthermore, since
our model also outperforms LinOSS by 10%, it can captures state dynamics better than LinOSS.
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Figure 1: Variation of energy computation of a LinOSS Block [31] to the SHaRe-SSM Block for
EigenWorms with respect to State (P), Hidden size (H).

4 Discussion

We propose SHaRe-SSM, an energy-efficient second-order spiking SSM built with harmonic resonate-
and-fire neurons, along with a learnable encoder, decoder, and parallel scan method. Unlike prior
similar SSMs, SHaRe-SSM is fully spike-based without GeLU/GLU and is tailored for very long-
sequence modelling. The model performs well on HAR datasets while consuming significantly less
energy, and also achieves superior classification and regression performance on 18k EigenWorms
and 50k-length sequences PPG datasets, respectively. Hence, it is ideally suited for use in wearable
devices in healthcare. Future work will focus on the deployment of SHaRe-SSM for edge AI using
Intel Loihi2 [33].
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A Technical Appendix

A.1 Background Theory

To study the theoretical properties of a second-order ODE in SHaRe-SSM, we take inspiration from
Rusch and Rus [31]. Our model, like theirs, can be formulated as energy-conserving and possessing
dissipative attributes.

A.1.1 Implicit discretisation (IM):

We consider the implicit (backward Euler) discretisation of a second-order system involving a
position-like state un and a velocity-like state vn, similar to Rusch and Rus [31]. The implicit scheme
is known to introduce additional dissipative terms, which contribute to the stability of the dynamics,
particularly in the presence of stiffness.

The discretised updates are given by:

un = un−1 +∆t (−Ωvn +Bxn) ,

vn = vn−1 +∆t un,

where Ω is a diagonal matrix of oscillation frequencies and B is an input projection matrix. Note that
both un and vn are evaluated at the future timestep, in contrast to explicit methods.

Letting the concatenated state be sn, the above system can be written compactly as:

Msn = sn−1 + Fn,

where

M =

(
I ∆tΩ
−∆tI I

)
, Fn =

(
∆tBxn

0

)
.

To obtain an explicit update rule, we algebraically solve the coupled system by introducing the matrix
inverse S = (I +∆t2Ω)−1. Substituting and simplifying yields:

sn = M IMsn−1 + F IM
n , (5)

where

M IM =

(
S −S∆tΩ

S∆t S

)
, F IM

n =

(
S∆tBxn

S∆t2Bxn

)
.

This formulation highlights the stabilising effect of the implicit method: the matrix S = (I+∆t2Ω)−1

is a Schur complement that acts as a preconditioner, suppressing high-frequency components. Con-
sequently, the eigenvalues of M IM remain bounded within the unit circle for a wide range of ∆t,
leading to improved numerical stability. The Schur complement can be computed in O(m) instead of
the typical O(m3) operations using Gauss-Jordan elimination.

Proposition A.1 is rephrased from proposition 3.1 of Rusch and Rus. [31]
Proposition A.1. Let M IM ∈ R2p×2p be the hidden-to-hidden weight matrix of the implicit model
SHaRe-SSM-IM (5). We assume that Ωj ≥ 0 for all diagonal elements j = 1, . . . , p of Ω, and further
that ∆t > 0. Then, the complex eigenvalues of M IM are given as,

λj1,2 =
1

1 +∆t2Ωj
±∆t

√
Ωj

1 + ∆t2Ωj

with λj1 = λj2 . Moreover, the spectral radius ρ(M IM) is bounded by 1, i.e., |λj | ≤ 1 for all
j = 1, . . . , p.
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Proof. The matrix M IM ∈ R2p×2p is defined as

M IM =

[
S −∆tΩS

∆t S S

]
,

where S = (I + ∆t2Ω)−1, and Ω ∈ Rp×p is diagonal with non-negative entries Ωj ≥ 0 for all
j = 1, . . . , p.

To determine the eigenvalues, we compute the characteristic polynomial:

det(M IM − λI) =

∣∣∣∣S − λI −∆tΩS
∆t S S − λI

∣∣∣∣ .
Using block Gaussian elimination, we subtract (∆t S)(S − λI)−1(−∆tΩS) from the lower-right
block, giving

= det(S − λI) · det
(
S − λI +∆t2 ΩS2(S − λI)−1

)
.

Since S and Ω are diagonal and commute, this expression decouples elementwise. Let sj = 1
1+∆t2Ωj

be the j-th diagonal element of S. Then for each j = 1, . . . , p, the scalar characteristic equation
becomes

(sj − λ)2 +∆t2Ωjs
2
j = 0.

Solving this quadratic gives the eigenvalue pair

λj1,2 = sj ± i∆t sj
√
Ωj ,

where λj1 = λj2 , i.e., the pair are complex conjugates.

To compute their magnitude:

|λj1,2 |2 = s2j (1 + ∆t2Ωj) =
1

1 +∆t2Ωj
≤ 1.

Hence, all eigenvalues lie on or inside the unit circle in the complex plane, and the spectral radius
satisfies ρ(M IM) ≤ 1, as claimed.

Proposition A.2 is adapted from proposition 3.2 of Rusch and Rus. [31]

Proposition A.2. Let {λj}2pj=1 denote the eigenvalues of the hidden-to-hidden matrix M IM ∈ R2p×2p

of the SHaRe-SSM-IM model (5). Suppose the diagonal entries of Ω ∈ Rp×p are independently
drawn as Ωj ∼ U([0,Ωmax]), with Ωmax > 0. Then, the N -th moment of the magnitude of the
eigenvalues is given by

E(|λj |N ) =
(1 + ∆t2Ωmax)

1−N
2 − 1

∆t2Ωmax(1− N
2 )

, ∀j = 1, . . . , 2p.

Proof. From Proposition A.1, each eigenvalue of M IM has magnitude

|λj | =
√
sj =

√
1

1 + ∆t2Ωj
.

The N -th moment of the magnitude is thus.

E(|λj |N ) = E

[(
1

1 + ∆t2Ωj

)N
2

]
.

Applying the law of the unconscious statistician and the uniform distribution of Ωj ∼ U([0,Ωmax]),
we write:

E(|λj |N ) =
1

Ωmax

∫ Ωmax

0

(1 + ∆t2x)−
N
2 dx.
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Substituting u = 1 + ∆t2x, so that du = ∆t2 dx, the limits change from x = 0 to x = Ωmax,
corresponding to u = 1 to u = 1 +∆t2Ωmax. The integral becomes:

E(|λj |N ) =
1

∆t2Ωmax

∫ 1+∆t2Ωmax

1

u−N
2 du.

This evaluates to

E(|λj |N ) =
(1 + ∆t2Ωmax)

1−N
2 − 1

∆t2Ωmax(1− N
2 )

,

We can observe from proposition A.2 that even though the spectral radius of eigenvalues is smaller
than one (proposition A.1), it is large enough to capture long-range dependencies even for very long-
range sequences, even for Ωmax = 1,∆t = 1. Hence, we initialize Ωj ∼ U([0, 1]),∆tj ∼ U([0, 1])

A.1.2 Implicit-Explicit discretisation (IMEX):

We also utilise an implicit-explicit (IMEX) scheme for discretising the second-order harmonic
oscillator system, similar to Rusch and Rus [31]. IMEX methods treat the stiff terms implicitly
and the non-stiff or input terms explicitly, resulting in a balanced scheme that enables stable yet
undamped oscillations. As shown in Rusch and Rus [31], such schemes preserve the total energy
of the system and therefore are particularly well-suited for learning long-range sequential patterns
without introducing artificial dissipation.

The update equations under the IMEX discretisation are given by:

un = un−1 +∆t (−Ωvn−1 +Bxn) ,

vn = vn−1 +∆t un,

where the velocity update depends implicitly on the newly computed un, while the force term
−Ωvn−1 +Bxn is evaluated using previous state values.

Defining the state vector as sn, we can rewrite the update in matrix form:

Msn = M1sn−1 + Fn,

where the matrices M , M1, and input vector Fn are:

M =

(
I 0
−∆tI I

)
,M1 =

(
I −∆tΩ
0 I

)
, Fn =

(
∆tBxn

0

)
.

Multiplying both sides by M−1 yields the closed-form update:

sn = M IMEXsn−1 + F IMEX
n , (6)

where the transition matrix and input vector are given by:

M IMEX =

(
I −∆tΩ

∆tI I −∆t2Ω

)
, F IMEX

n =

(
∆tBxn

∆t2Bxn

)
.

Proposition A.3 is adapted from proposition E.1 of Rusch and Rus. [31]
Proposition A.3. Let M IMEX ∈ R2p×2p be the hidden-to-hidden weight matrix of the implicit-explicit
model SHaRe-SSM-IMEX (6). Suppose that Ω ∈ Rp×p is diagonal with strictly positive entries

Ωj > 0 for all j = 1, . . . , p, and that the time step satisfies 0 < ∆t ≤ maxj

(
2√
Ωj

)
. Then, the

eigenvalues of M IMEX are given by

λj1,2 =
1

2
(2−∆t2Ωj)±

1

2

√
∆t2Ωj(4−∆t2Ωj),

with λj1 = λj2 . Moreover, the eigenvalues lie on the complex unit circle, i.e., |λj | = 1, ∀j =
1, . . . , p.
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Proof. The matrix M IMEX ∈ R2p×2p has the block form

M IMEX =

[
I −∆tΩ

∆t I I

] [
(I +∆t2Ω)−1 0

0 (I +∆t2Ω)−1

]
,

So the effective system matrix becomes

M IMEX =

[
S −∆tΩS

∆t S S

]
, where S = (I +∆t2Ω)−1.

We analyse the characteristic polynomial:

det(M IMEX − λI) =

∣∣∣∣S − λI −∆tΩS
∆t S S − λI

∣∣∣∣ .
Using block elimination, we simplify:

= det(S − λI)2 +∆t2ΩS2.

Since all matrices are diagonal, the problem decouples elementwise. Let sj = 1
1+∆t2Ωj

for each
j = 1, . . . , p. Then, for each j, the characteristic polynomial becomes

λ2 − (2sj)λ+ (s2j +∆t2Ωjs
2
j ) = λ2 − (2−∆t2Ωj)λ+ 1 = 0.

Solving this gives the eigenvalue pair

λj1,2 =
1

2
(2−∆t2Ωj)±

1

2

√
∆t2Ωj(4−∆t2Ωj).

To show |λj1,2 | = 1, we consider two cases:

1. If ∆t2Ωj = 4, then the square root vanishes and

λj1 = λj2 = −1, |λj1,2 | = 1.

2. If ∆t2Ωj < 4, then the eigenvalues are complex conjugates. Their squared magnitude is

|λj1,2 |2 =

(
2−∆t2Ωj

2

)2

+

(
1

2

√
∆t2Ωj(4−∆t2Ωj)

)2

=
(2−∆t2Ωj)

2 +∆t2Ωj(4−∆t2Ωj)

4

=
4− 4∆t2Ωj +∆t4Ω2

j + 4∆t2Ωj −∆t4Ω2
j

4
= 1.

Thus, in both cases, |λj1,2 | = 1, completing the proof.

A.2 Parallel scan in SHaRe-SSM

Parallel scans [21, 8] exploit associativity to reduce recurrent computation from O(N) to O(logN).
Originally developed for RNNs, they have recently been adapted to state-space models [34], enabling
efficient architectures such as LRUs [27] and Mamba [13]. In our setting, parallel scans accelerate
linear updates, with spike functions applied afterwards. Following Rusch and Rus [31], we define an
associative binary operation:

(a1, a2) • (b1, b2) = (b1 · a1, b1 · a2 + b2), (7)

where · denotes matrix-matrix or matrix-vector multiplication. Applying a parallel scan to the input
sequence {(M,Fn)} efficiently solves

sn = Msn−1 + Fn, (8)

with the second tuple element storing xn. Efficiency is achieved by exploiting structured matrices
(e.g., diagonal block 2× 2 forms in MIM and MIMEX ), where each multiplication is linear in the
hidden dimension. We use this formulation to implement IM and IMEX discretisations for HRF
neurons. Algorithm 1 summarises the SHaRe-SSM implementation.
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A.3 Energy Computation

We compute the energy for a LinOSS block and compare it to our SHaRe-SSM block. We can
observe that our block doesn’t perform any matrix multiplications and is well-suited for neuromorphic
hardware. For event-based sensors, we can detach the encoder head and feed data directly to the
model for real-time sequential processing. Spike rates from linear layers, SHaRe-SSM neuron and
post weighted spike-mixing layers are given by fθ, fθC , fθD for Sequence Length(L), State Size(P),
Hidden Size(H), respectively.
The ratio of Energy consumed by LinOSS/SHaRe-SSM computed by:

Ratio =
EMAC×N(2LPH+(7+2)LH2)

EAC

∑N
i=1

((∑i
j=1 fθ

j +f
θC
i

)
LPH

B,C
+f

θD
i LH2

)

We estimate the theoretical energy consumption of our model based on prior works [32, 6, 38].
Accordingly, we assume that MAC and AC operations are implemented on a 45nm hardware [16],
where EMAC = 4.6pJ and EAC = 0.9pJ. Notably, as discussed in Shen et al., the computational
cost of multiplication of a floating-point weight by a binary activation number is represented as an
addition-only operation. For ANNs, the theoretical energy consumption of a block n is given by
4.6pJ×FLOPs(n). For SNNs, the energy consumption for n is given by 0.9pJ×SOPs(n). Calculating
theoretical energy consumption requires first calculating the synaptic operations, SOPs(n) = fr ×
FLOPs(n), fr is the firing rate of the input spike train of the block/layer, FLOPs(n) refers to the
number of floating-point operations in layer n, equivalent to the number of multiply-and-accumulate
(MAC) operations. SOPs denote the number of spike-based accumulate (AC) operations.

Since Ω is a diagonal matrix, it can be efficiently implemented using parallel scans with computations
of order O(P log(L)) (Total computations are O(PL)), which is negligible. Also, D is O(HL),
which is much smaller than O(LPH), i.e., computation for B & C matrices or even O(LH2), which
is for the GLU layer. [31] uses GeLU and GLU non-linearities, which we replace with a linear layer.
And, as described in [39], GeLU consumes 14 FLOPs per operation. Moreover, GLU has twice as
many FLOPs as a linear layer.

Table 3: Hyperparameters for the Best model for each dataset
Dataset Method LR Hidden State Blocks Time Kernel
UCI-HAR IM 1e-3 128 256 2 False -
UCI-HAR IMEX 1e-3 128 256 2 False -
SHAR IM 1e-3 128 256 2 False -
SHAR IMEX 1e-3 128 256 2 False -
Worms IM 1e-4 128 256 2 False -
Worms IMEX 1e-3 128 64 2 False -
PPG IM 1e-3 64 64 6 False 8
PPG IMEX 1e-3 128 256 6 False 16
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