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Abstract

Spiking neural networks have attracted increasing attention for their energy effi-
ciency, multiplication-free computation, and sparse event-based processing. In
parallel, state space models have emerged as scalable alternatives to transformers
for long-range sequence modeling by avoiding quadratic dependence on sequence
length. We propose SHaRe-SSM (Spiking Harmonic Resonate-and-Fire State
Space Model), a second-order spiking SSM for classification and regression on
ultra-long sequences. SHaRe-SSM outperforms transformers and first-order SSMs
on average while eliminating matrix multiplications, making it highly suitable
for resource-constrained applications. To ensure fast computation over tens of
thousands of time steps, we leverage a parallel scan formulation of the underlying
dynamical system. Furthermore, we introduce a kernel-based spiking regressor, en-
abling accurate modeling of dependencies in sequences up to 50k steps. Our results
demonstrate that SHaRe-SSM achieves superior long-range modeling capability
with energy efficiency (52.1x less than ANN-based second-order SSM), position-
ing it as a strong candidate for resource-constrained devices such as wearables.

1 Introduction

Spike-based deep learning has established itself as an ultra-low-power consumption and sparse
computing paradigm for efficient Al in recent years. Spike-based neuromorphic hardware such as
Loihi [11} 28]], TrueNorth [2], and Dynapse [25] utilize far lower resources than conventional ANN-
based designs. Apparently, most such spike-based models [34, 35| 201 27, 30] rely on integrate-and-
fire (IF) or leaky IF neurons, which miss key biological traits like oscillations. While the biophysically
detailed Hodgkin-Huxley model captures these dynamics, it is computationally prohibitive. Driven
by these observations, Resonate-and-fire (RF) neurons [[18]], computationally as light as IF but more
expressive, have gained recent attention [28} 15, [12]. However, RF neurons remain underexplored for
very long sequence modeling.

For sequential tasks, transformers are de facto standards [31]], but they suffer from quadratic de-
pendence on sequence length. Alternatives like KV caching [[10] and memory updates [7]] reduce
overhead but lack the simplicity of RNNs. State space models (SSMs) [14} 29} [13] and their spiking
variants [30l 27, 6] bridge this gap. Yet current spiking SSMs struggle with very long sequences.

LinOSS [26! 9]}, a second-order SSM, addresses this by using stable discretizations with diagonal
state matrices, achieving state-of-the-art results on long-range tasks. However, it lacks spike-based
communication, which is crucial for energy efficiency [28}[17], such as demanded by a battery-driven
wearable. Hence, in this work, we introduce SHaRe-SSM, a second-order spiking SSM designed for
extremely long-range tasks and energy-efficient edge Al. Our contributions are: (1) A fully spike-
based second-order SSM, without ANN nonlinearities (GeLU, GLU, or GSU). (2) A compatible
parallel scan algorithm for fast training and inference. Superior accuracy over first-order SSMs on
long-sequence classification, with higher efficiency than ANN-based second-order SSMs. (3) An
extension to regression via a convolving kernel, outperforming first-order SSMs on 50K-length tasks.
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2 Methods

2.1 Network Description

The Resonate-and-Fire (RF) neuron [18] provides a closer approximation to the Hodgkin-Huxley
(HH) model than the Leaky Integrate-and-Fire (LIF) neuron by capturing subthreshold resonance
through a 2D linear system with complex eigenvalues. This enables oscillatory dynamics and
frequency selectivity, traits absent in LIF but observed in HH neurons. To simplify implementation,
second-order real-valued variants such as the Harmonic RF (HRF) [3, [15]] reformulate RF as a real
harmonic oscillator while preserving oscillatory behavior without requiring complex initialization.
RF’s complex dynamics make it more biophysically realistic, and recent work [[15] shows that RF-
based models perform best without membrane resets. Building on these insights, we integrate HRF
into an SSM framework, compute dynamics linearly via parallel scans, and use a spike function as
the activation to propagate spikes. This original HRF formulation is limited to a single neuron. We
propose formulating HRF in an SSM framework (SHaRe-SSM). This approach helps in capturing
better dynamics. The input spikes are multiplied by a weight matrix, and we propagate spikes from the
hidden state v(t). Moreover, removing the damping parameter in such second-order approximations
enhances the neuron’s ability to capture long-range temporal dependencies by preserving longer
oscillations [26]. We define the SHaRe-SSM model by:

u'(t) = —Qu(t) + Bx(t)
v'(t) = u(t) (1
2(t) = ©(v(t) - 0c)

where u(t),v(t) € RP denote the hidden states, y(¢) € R" the output, and z(¢) € R" the input spike
signal. The system is defined by weights 2 € RP*? which is diagonal, B € RP*" C ¢ Rh*P,
D € R”, and an output learnable spiking parameter fc € RP such that spikes are emitted if v > .
These thresholds () are learned using a step-double Gaussian surrogate gradient [23} [15]]. Since [15]]
showed that HRF works well with no reset, we here employed the same strategy. This avoids the need
for sequential processing, and the model can be implemented across time as an activation function.
Each SHaRe-SSM block is comprised of a SHaRe-SSM neuron, followed by a linear layer, and a
spike function (IF neuron with no reset).

2.2 Encoder and Decoder

For SHaRe-SSM, we design an encoder for encoding the input signal into spike trains (see Algorithm
[I). Herein, the inputs every timestep are passed through a learnable linear layer. Finally, an IF neuron
with no reset, i.e., a spike function, generates spikes into the SHaRe-SSM block. Notably, this is a
data-dependent trainable encoder (without requiring us to specify whether to utilize rate coding or
any other encoding variants). Moreover, it utilizes neuronal heterogeneity and is instantaneous. The
decoder projects the spikes back using a linear Layer with the output dimension equal to the number
of classes. For regression, we also propose convolving the output with a learnable filter.

2.3 Discretization methods

Euler Forward (explicit) discretization causes divergence over time, making the model unstable. In
contrast, IMEX discretization remains stable and preserves energy, while the IM scheme, though
dissipative, is also stable. Below, we analyze the generalizability of IM and IMEX for long sequences.
IMEX is particularly promising for regression: as shown in [26], removing damping yields a
Hamiltonian system [5], where energy conservation is guaranteed under symplectic discretizations.
We also evaluate the non-conservative but empirically stable IM scheme. Our formulation adopts
a second-order system with position-like state u,, and velocity-like state v,,. The general form of
discrete updates is denoted by:

Up = Up—1 + At(—Qu, + Bzy,), 2)
Up = Up—1 + At uy,, 3)
Spn=Msp_1+ Fp, @

where the choice of v, distinguishes the discretization schemes: v, = v, for IM (implicit), and
v, = vp—1 for IMEX (implicit-explicit).
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Unlike IM, the eigenvalues of M™EX Jie near the unit circle, preserving oscillatory energy over long
horizons. This makes IMEX especially suitable for modeling long sequences, where maintaining
temporal structure is crucial.

Algorithm 1 SHaRe-SSM Algorithm

Require: Input sequence x
Ensure: N-blocks, spike function © , output sequence o
20 « Encoder(z) {Encode input sequence into spikes}
forn=1,...,Ndo
2™ « solution of HRF in (T)) with input 2"~ via parallel scan aggregated
y" < C2" + Dz~ ! {Weighted spike mixing in ()}
y" < O(y" —0p)
y" + Linear(y")
yn — @(yn _ en)
™ < y" + "1 {Spike mixing}
end for
0 + Decoder(x™) {Decode spikes}

3 Emperical Results

3.1 Human Activity Recognition

Our SNN model is capable of learning multiple states without any sequential recurrence, as we don’t
have a reset mechanism. Such a design enables parallelization and reduced energy consumption.
Hence, it is well-suited for wearable devices. Although our model is designed for long-range sequence
datasets, we also evaluated its performance on Human Activity Recognition(HAR) datasets: UCI-
HAR[4] and SHAR datasets[22]]. For 30 subjects, UCI-HAR comprises 10.3k instances of 6 activities
(walking, walking upstairs/downstairs, sitting, standing, lying) captured with a 3-axis accelerometer
and gyroscope (50 Hz) on a Samsung Galaxy SII, while UniMB SHAR includes 11.7k instances of
17 activities (9 daily, 6 fall) recorded with a 3-axis accelerometer (< 50 Hz) on a Samsung Galaxy
Nexus 19250. SHaRe-SSM achieves an accuracy of 99% and outperforms the best-performing model
[21]] for UCI-HAR by 0.2%. For SHAR, our model achieves 92.7%, which is better than non-spiking
models in terms of energy and performance, and is competitive with spiking models, as it outperforms
SpikeDCL by 0.6% and falls behind SpikeDCL by 1.2%.

Table 1: Performance comparison between different networks on HAR datasets: UCI-HAR[4]], and
SHAR [22], (DCL:DeepConvLSTM, Trans:Transformer)

Model CNN DCL LSTM Trans SpikeCNN  SpikeDCL Our(IM) Our(IMEX)
SNN N N N N Y Y Y Y

UCIHAR | 96.3+0.1 979403 824440 96.0+0.3 96.4+0.2  98.9+0.3 | 99.02+t0.3  96.93+0.5
SHAR 92440.5 90.8+1.0 83.9+0.9 83.2+0.7 94.0+0.3  92.1+0.8 | 92.76+0.07 89.08+0.7

3.2 Very-Long Range Interactions

Wearable devices operate over long durations, demanding robust prediction on extended sequences.
Spiking SSMs, with their high throughput and energy efficiency, are well-suited for this setting. To
evaluate performance on very long temporal dependencies, we study the longest benchmark datasets:
the Eigenworms dataset (17,984 sequences) for classification and the PPG-DaliA dataset (49,920
sequences) for regression. Following the hyperparameter protocol of [26] and employing Bayesian
search [1]], we ensure an optimized training. Eigenworms, a subset of the UEA archive, represent C.
elegans motion through six eigenworm features to distinguish wild-type from other mutant behaviors.
PPG-DaLiA involves heart rate prediction from wrist-worn sensor data collected from 15 individuals
over 150 minutes at 128 Hz.

For the Long-range classification task on EigenWorms, we can observe that our model performs
comparably to LinOSS with just 2.2% drop in performance, but with huge energy benefits (Fig. .



112
113

114
115
116
17
118
119
120
121

122

123
124
125
126
127
128

129

130
131
132
133
134
135
136

We can also observe that it outperforms all previous models, especially first-order SSMs such as LRU
and S6 by 5% and 7.8% respectively.

We present the first regression results of a spiking SSM on extremely long sequences (up to 50k). To
address the limited output range of spiking neurons, we introduce a kernel-based spiking regressor
with a learnable temporal kernel. As shown in Table 2] SHaRe-SSM models consistently outperform
all first-order SSMs, with SHaRe-SSM-IMEX surpassing Mamba by 0.016 MSE, demonstrating both
the energy-efficient nature of IMEX discretization and the strong representation power of resonating
neurons. Despite their efficiency, our models are only 0.027 MSE below second-order SSMs. We
observed from [26] that IM discretization outperforms IMEX for all datasets for classification and
vice-versa for regression. We observed similar results for our model (refer to Table3).

Table 2: Mean and Standard Deviation reported for longest sequences: Accuracy for EigenWorms,
and Mean-Squared Error (MSE x 10~2) for PPG-DaLiA dataset across five training runs for the best
model. (LNCDE: Log-NCDE, OSS: LinOSS)

Data Metric NRDE NCDE LNCDE LRU S5 S6 Mamba OSS | Ours
SNN N N N N N N N N Y

EW ACC (1) 83.9 75.0 85.6 87.8 81.1 85.0 70.9 95.0 | 92.8

(18k) | (Classification) | +7.3 +3.9 +5.1 +2.8 £37 =161 £158 +4.4 | +3.3
PPG MSE (1) 9.9 13.5 9.6 122 12.6 12.9 10.7 6.4 9.1

(50k) | (Regression) +1.0 +0.7 +0.6 +05 £13 £2.1 +£22 £0.2 | +£0.2

3.2.1 Energy computation
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Figure 1: Variation of energy computation of a LinOSS Block [26] to the SHaRe-SSM Block for
EigenWorms with respect to State (P), Hidden size (H).

In this section, we assess and compare the energy computation for LinOSS and SHaRe-SSM for
similar hidden-size(H), state-size(P), and num-blocks(N) on the EigenWorms dataset. From Figure
[I] we observe that for different state-to-hidden ratios, we get different energy numbers. For the
EigenWorms dataset, the average spike rate per time step per block is 0.42. For a lower P/H ratio, we
yield high energy efficiencies (~ 82.6x). Our best performing model (as per Table2) is 52.1x more
energy efficient than an equivalent LinOSS model.

4 Discussion

We propose SHaRe-SSM, an energy-efficient second-order spiking SSM built with harmonic resonate-
and-fire neurons, along with a learnable encoder, decoder, and parallel scan method. Unlike prior
similar SSMs, SHaRe-SSM is fully spike-based without GeLU/GLU and is tailored for very long-
sequence modeling. The model performs well on HAR datasets while consuming significantly less
energy, and also achieves superior classification and regression performance on 18k EigenWorms
and 50k-length sequences PPG datasets, respectively. Hence it is ideally suited for wearables in
healthcare. Future work will focus on Intel Loihi2 [28]] deployment of SHaRe-SSM for edge Al
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A Technical Appendix

A.1 Background Theory

To study the theoretical properties of a second-order ODE in SHaRe-SSM, we take inspiration from
[26]. Our model, just like their model, can be formulated as energy-conserving and with dissipative
attributes.

A.1.1 TImplicit Discretization (IM):

We consider the implicit (backward Euler) discretization of a second-order system involving a
position-like state u,, and a velocity-like state v,,, similar to|Rusch and Rus| The implicit scheme is
known to introduce additional dissipative terms, which contribute to the stability of the dynamics,
particularly in the presence of stiffness.

The discretized updates are given by:

Up = Up—1 + At (—Qu,, + Bxy,),
Up = Un—1+ Atunv

where (2 is a diagonal matrix of oscillation frequencies and B is an input projection matrix. Note that
both u,, and v,, are evaluated at the future timestep, in contrast to explicit methods.

Letting the concatenated state be s,,, the above system can be written compactly as:

Ms, = sp_1 + Fy,

I AQ AtBz,
MZ(—AtI I>’ Fn:( 0 )

To obtain an explicit update rule, we algebraically solve the coupled system by introducing the matrix
inverse S = (I + At?Q)~!. Substituting and simplifying yields:

where

Sn = MIMSn—l + F711M’ (5)

where

™M __ S —SAtQ M SAtBZL’n
M <SAt S ) En (SAtQan'

This formulation highlights the stabilizing effect of the implicit method: the matrix S = (I+At?Q)~!
is a Schur complement that acts as a preconditioner that suppresses high-frequency components.
Consequently, the eigenvalues of M™ remain bounded within the unit circle for a wide range of At,
leading to improved numerical stability. The Schur complement can be computed in O(m) instead of
the typical O(m?) operations using Gauss-Jordan elimination.
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Proposition A.1. Let M™ ¢ R?P*2P pe the hidden-to-hidden weight matrix of the implicit model
SHaRe-SSM-IM (). We assume that Q; > 0 for all diagonal elements j =1, ..., p of Q, and further

that At > 0. Then, the complex eigenvalues of M™ are given as,

A= 1 LoV

2T AR, 1+ At2Q;

with \j, = Xj,. Moreover, the spectral radius p(M™) is bounded by 1, i.e.,
j=1...,p

Aj| < 1 for all

Proof. The matrix M™ & R?P*?P ig defined as

m_ | S —AtQS
M= {At s s |
where S = (I + At?Q)71, and Q € RP*? is diagonal with non-negative entries {2; > 0 for all
j=1...,p.
To determine the eigenvalues, we compute the characteristic polynomial:

S—\ —At QS‘

M _
det(M _)‘I)_’AtS S — Al

Using block Gaussian elimination, we subtract (At S)(S — M) ™1 (= At QS) from the lower-right
block, giving
=det(S — AI)-det (S — AT + A2 QS*(S — AI)71).

Since S and €2 are diagonal and commute, this expression decouples elementwise. Let s; = m
J

be the j-th diagonal element of S. Then for each j = 1,...,p, the scalar characteristic equation
becomes
(Sj — A)2 + AtQQjS? = 0

Solving this quadratic gives the eigenvalue pair

)‘j1,2 =5 + i At Si\/ Qj,
where \;, = sz i.e., the pair are complex conjugates.
To compute their magnitude:

1

2 _ 2 2 —

Hence, all eigenvalues lie on or inside the unit circle in the complex plane, and the spectral radius
satisfies p(M™) < 1, as claimed. O

Proposition A.2. Let {)\; }?’;1 denote the eigenvalues of the hidden-to-hidden matrix M™ ¢ R?P*x2p
of the SHaRe-SSM-IM model (3). Suppose the diagonal entries of 2 € RP*P are independently
drawn as Q; ~ U([0, Qmax]), With Qumax > 0. Then, the N-th moment of the magnitude of the
eigenvalues is given by

_N
2

(1+A2Qua)t ™2 — 1

E(I) 1Y) = :
7 APQ (1 - )

Vi=1,...,2p.

Proof. From Proposition each eigenvalue of M™ has magnitude

1
= V3 =\ [T A,

1
<1+At2Qj>

The N-th moment of the magnitude is thus.

w|Z

E(I\Y) =E
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Applying the law of the unconscious statistician and the uniform distribution of ; ~ U([0, Qmax]),
we write:
1

Qmax

Qmax
E(I) 1Y) = / (1+ At?2)” 7 da.
0
Substituting u = 1 + At?z, so that du = At? dx, the limits change from z = 0 to £ = Quay,
corresponding to u = 1 to u = 1 + At?Q.«. The integral becomes:

N 1 A Qmax

This evaluates to ~
(1+A2Qua)t 2 — 1

Ny _
E(|>\J| ) - AtQQmax(l — %) )

O

We can observe from proposition [A.2]that even though the spectral radius of eigenvalues is smaller
than one (proposition[A.T), it is large enough to capture long-range dependencies even for very long-
range sequences, even for Q. = 1, At = 1. Hence, we initialize 2; ~ U([0, 1]), At; ~ U([0,1])

A.1.2 Implicit-Explicit Discretization (IMEX):

We also utilize an implicit-explicit (IMEX) scheme for discretizing the second-order harmonic
oscillator system, similar to|Rusch and Rusl IMEX methods treat the stiff terms implicitly and the
non-stiff or input terms explicitly, resulting in a balanced scheme that enables stable yet undamped
oscillations. As shown in [26]], such schemes preserve the total energy of the system and therefore
are particularly well-suited for learning long-range sequential patterns without introducing artificial
dissipation.
The update equations under the IMEX discretization are given by:

Up = Up—1 + At (—Qup,—1 + Bzy,),

Up = Un—1+ Atuna
where the velocity update depends implicitly on the newly computed u,,, while the force term
—Qu,_1 + Bx, is evaluated using previous state values.
Defining the state vector as s,,, we can rewrite the update in matrix form:

Msy, = Misp—1 + an

where the matrices M, M, and input vector F,, are:
I 0 I —AtQ AtBuz,
M(—Atl 1>7M1<o I )F"< 0 >
Multiplying both sides by M ! yields the closed-form update:

sp = MM, | 4 FIMEX, ©)

where the transition matrix and input vector are given by:

NJIMEX _ I —AtQ FIMEX _ AtBz,
At 1—-A2Q) n At’Bz,, )
Proposition A.3. Let M™EX ¢ R2P*2P pe the hidden-to-hidden weight matrix of the implicit-explicit
model SHaRe-SSM-IMEX (6). Suppose that Q € RP*? is diagonal with strictly positive entries

Non

Q; >0forallj =1,...,p, and that the time step satisfies 0 < At < max; (2> Then, the

MIMEX

eigenvalues of are given by

1 1
- 5(2 — At*Q;) £ 5\/Aze2§2j(4 — At2Q;),

A

J1,2

with \j, = \j,. Moreover; the eigenvalues lie on the complex unit circle, i.e., |[\;| = 1, Vj =
1,...,p.
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Proof. The matrix M™EX ¢ R2PX2P hag the block form

avex | L =ALQE (T ArQ)~1 0
AtT I 0 (I+Ar2Q)~1

So the effective system matrix becomes

S —AtQS _
MMEX — [AtS g ], where S = (I + At*Q)

We analyze the characteristic polynomial:

det(M™MEX _ \J) — ‘S — M At QS‘ _

AtS S —=)
Using block elimination, we simplify:
= det(S — \)? + At?QS2.

Since all matrices are diagonal, the problem decouples elementwise. Let s; = m for each
J
7 =1,...,p. Then, for each j, the characteristic polynomial becomes

A2 = (25)A + (55 + At?Q;s7) = A% — (2 — APQ)A+1=0.

Solving this gives the eigenvalue pair

A= %(2 — A2Q)) + %\/AtZQj(él — ALQ;).

J1,2

To show |\, ,| = 1, we consider two cases:

1. If At?Q); = 4, then the square root vanishes and
/\jl = >‘j2 =—1, |>‘j1,2| =1.

2. If At?Q; < 4, then the eigenvalues are complex conjugates. Their squared magnitude is

2 - A2 \? (1 ?
|>‘j1,2‘2 = < B) j> + (2\/At2Qj(4 — AtQQj)>
_ (2 A;)% + A%Q;(4 — AtPQy)
4
4 — AAPQ; + AQS + 4A2Q; — AtTQ3
= == 1
4
Thus, in both cases, |\, ,| = 1, completing the proof. O

A.2 Parallel scan in SHaRe-SSM

Parallel scans [[19, 8] exploit associativity to reduce recurrent computation from O(N) to O(log ).
Originally developed for RNNs, they have recently been adapted to state-space models [29]], enabling
efficient architectures such as LRUs [24] and Mamba [[13]]. In our setting, parallel scans accelerate
linear updates, with spike functions applied afterward. Following [26], we define an associative
binary operation:

(a1,az2) @ (b1,b2) = (b1 - a1, by - az + ba), (7N
where - denotes matrix-matrix or matrix-vector multiplication. Applying a parallel scan to the input
sequence {(M, F,)} efficiently solves

Sp = Msp_1 + Iy, (8)

with the second tuple element storing x,,. Efficiency is achieved by exploiting structured matrices
(e.g., diagonal block 2 x 2 forms in M;y; and My Ex), where each multiplication is linear in the
hidden dimension. We use this formulation to implement IM and IMEX discretizations for HRF
neurons. Algorithm [I]summarizes the SHaRe-SSM implementation.

10
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A.3 Energy Computation

We compute the energy for a LinOSS block and compare it to our SHaRe-SSM block. We can
observe that our block doesn’t perform any matrix multiplications and is well-suited for neuromorphic
hardware. For event-based sensors, we can detach the encoder head and feed data directly to the
model for real-time sequential processing. Spike rates from linear layers, SHaRe-SSM neuron and
post weighted spike-mixing layers are given by f?, f9¢, £ for Sequence Length(L), State Size(P),
Hidden Size(H), respectively.

The ratio of Energy consumed by LinOSS/SHaRe-SSM computed by:

EnvacXN(2LPH+(7+2) LH?)

Ratio = : - 9
Eac 3N, ((E;=1 ff+fiC>LPHB c+fiDLH2)

We estimate the theoretical energy consumption of our model based on prior works [27, 16l 32].
Accordingly, we assume that MAC and AC operations are implemented on a 45nm hardware [16]],
where Eypac = 4.6pJ and Eac = 0.9pJ. Notably, as discussed in |Shen et al., the computational
cost of multiplication of a floating-point weight by a binary activation number is represented as an
addition-only operation. For ANNSs, the theoretical energy consumption of a block 7 is given by
4.6pJ x FLOPs(n). For SNN, the energy consumption for n is given by 0.9pJ x SOPs(n). Calculating
theoretical energy consumption requires first calculating the synaptic operations, SOPs(n) = f,. X
FLOPs(n), f, is the firing rate of the input spike train of the block/layer, FLOPs(n) refers to the
number of floating-point operations in layer n, equivalent to the number of multiply-and-accumulate
(MAC) operations. SOPs denote the number of spike-based accumulate (AC) operations.

Since (2 is a diagonal matrix, it can be efficiently implemented using parallel scans with computations
of order O(P log(L)), which is negligible. Also, D is O(H L), which is much smaller than O(LPH),
i.e., computation for B & C matrices or even O(LH 2), which is for the GLU layer. [26] uses GeLU
and GLU non-linearities, which we replace with a linear layer. And, [33]] described that GeLU
consumes 14 FLOPs per operation. Moreover, GLU has twice as many FLOPs as a linear layer.

Table 3: Hyperparameters for the Best model for each dataset

Dataset Method | LR | Hidden | State | Blocks | Time | Kernel
UCI-HAR | IM le-3 128 256 2 False -
SHAR IM le-3 128 256 2 False -
‘Worms M le-3 128 64 2 False -
PPG IMEX le-3 128 256 6 False 16

11
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