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Abstract

Spiking neural networks have attracted increasing attention for their energy effi-1

ciency, multiplication-free computation, and sparse event-based processing. In2

parallel, state space models have emerged as scalable alternatives to transformers3

for long-range sequence modeling by avoiding quadratic dependence on sequence4

length. We propose SHaRe-SSM (Spiking Harmonic Resonate-and-Fire State5

Space Model), a second-order spiking SSM for classification and regression on6

ultra-long sequences. SHaRe-SSM outperforms transformers and first-order SSMs7

on average while eliminating matrix multiplications, making it highly suitable8

for resource-constrained applications. To ensure fast computation over tens of9

thousands of time steps, we leverage a parallel scan formulation of the underlying10

dynamical system. Furthermore, we introduce a kernel-based spiking regressor, en-11

abling accurate modeling of dependencies in sequences up to 50k steps. Our results12

demonstrate that SHaRe-SSM achieves superior long-range modeling capability13

with energy efficiency (52.1× less than ANN-based second-order SSM), position-14

ing it as a strong candidate for resource-constrained devices such as wearables.15

1 Introduction16

Spike-based deep learning has established itself as an ultra-low-power consumption and sparse17

computing paradigm for efficient AI in recent years. Spike-based neuromorphic hardware such as18

Loihi [11, 28], TrueNorth [2], and Dynapse [25] utilize far lower resources than conventional ANN-19

based designs. Apparently, most such spike-based models [34, 35, 20, 27, 30] rely on integrate-and-20

fire (IF) or leaky IF neurons, which miss key biological traits like oscillations. While the biophysically21

detailed Hodgkin-Huxley model captures these dynamics, it is computationally prohibitive. Driven22

by these observations, Resonate-and-fire (RF) neurons [18], computationally as light as IF but more23

expressive, have gained recent attention [28, 15, 12]. However, RF neurons remain underexplored for24

very long sequence modeling.25

For sequential tasks, transformers are de facto standards [31], but they suffer from quadratic de-26

pendence on sequence length. Alternatives like KV caching [10] and memory updates [7] reduce27

overhead but lack the simplicity of RNNs. State space models (SSMs) [14, 29, 13] and their spiking28

variants [30, 27, 6] bridge this gap. Yet current spiking SSMs struggle with very long sequences.29

LinOSS [26, 9], a second-order SSM, addresses this by using stable discretizations with diagonal30

state matrices, achieving state-of-the-art results on long-range tasks. However, it lacks spike-based31

communication, which is crucial for energy efficiency [28, 17], such as demanded by a battery-driven32

wearable. Hence, in this work, we introduce SHaRe-SSM, a second-order spiking SSM designed for33

extremely long-range tasks and energy-efficient edge AI. Our contributions are: (1) A fully spike-34

based second-order SSM, without ANN nonlinearities (GeLU, GLU, or GSU). (2) A compatible35

parallel scan algorithm for fast training and inference. Superior accuracy over first-order SSMs on36

long-sequence classification, with higher efficiency than ANN-based second-order SSMs. (3) An37

extension to regression via a convolving kernel, outperforming first-order SSMs on 50K-length tasks.38
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2 Methods39

2.1 Network Description40

The Resonate-and-Fire (RF) neuron [18] provides a closer approximation to the Hodgkin-Huxley41

(HH) model than the Leaky Integrate-and-Fire (LIF) neuron by capturing subthreshold resonance42

through a 2D linear system with complex eigenvalues. This enables oscillatory dynamics and43

frequency selectivity, traits absent in LIF but observed in HH neurons. To simplify implementation,44

second-order real-valued variants such as the Harmonic RF (HRF) [3, 15] reformulate RF as a real45

harmonic oscillator while preserving oscillatory behavior without requiring complex initialization.46

RF’s complex dynamics make it more biophysically realistic, and recent work [15] shows that RF-47

based models perform best without membrane resets. Building on these insights, we integrate HRF48

into an SSM framework, compute dynamics linearly via parallel scans, and use a spike function as49

the activation to propagate spikes. This original HRF formulation is limited to a single neuron. We50

propose formulating HRF in an SSM framework (SHaRe-SSM). This approach helps in capturing51

better dynamics. The input spikes are multiplied by a weight matrix, and we propagate spikes from the52

hidden state v(t). Moreover, removing the damping parameter in such second-order approximations53

enhances the neuron’s ability to capture long-range temporal dependencies by preserving longer54

oscillations [26]. We define the SHaRe-SSM model by:55

u′(t) = −Ωv(t) +Bx(t)

v′(t) = u(t)

z(t) = Θ(v(t)− θC)

(1)

where u(t), v(t) ∈ Rp denote the hidden states, y(t) ∈ Rh the output, and x(t) ∈ Rh the input spike56

signal. The system is defined by weights Ω ∈ Rp×p which is diagonal, B ∈ Rp×h, C ∈ Rh×p,57

D ∈ Rh, and an output learnable spiking parameter θC ∈ Rp such that spikes are emitted if v ≥ θC .58

These thresholds (θ) are learned using a step-double Gaussian surrogate gradient [23, 15]. Since [15]59

showed that HRF works well with no reset, we here employed the same strategy. This avoids the need60

for sequential processing, and the model can be implemented across time as an activation function.61

Each SHaRe-SSM block is comprised of a SHaRe-SSM neuron, followed by a linear layer, and a62

spike function (IF neuron with no reset).63

2.2 Encoder and Decoder64

For SHaRe-SSM, we design an encoder for encoding the input signal into spike trains (see Algorithm65

1). Herein, the inputs every timestep are passed through a learnable linear layer. Finally, an IF neuron66

with no reset, i.e., a spike function, generates spikes into the SHaRe-SSM block. Notably, this is a67

data-dependent trainable encoder (without requiring us to specify whether to utilize rate coding or68

any other encoding variants). Moreover, it utilizes neuronal heterogeneity and is instantaneous. The69

decoder projects the spikes back using a linear Layer with the output dimension equal to the number70

of classes. For regression, we also propose convolving the output with a learnable filter.71

2.3 Discretization methods72

Euler Forward (explicit) discretization causes divergence over time, making the model unstable. In73

contrast, IMEX discretization remains stable and preserves energy, while the IM scheme, though74

dissipative, is also stable. Below, we analyze the generalizability of IM and IMEX for long sequences.75

IMEX is particularly promising for regression: as shown in [26], removing damping yields a76

Hamiltonian system [5], where energy conservation is guaranteed under symplectic discretizations.77

We also evaluate the non-conservative but empirically stable IM scheme. Our formulation adopts78

a second-order system with position-like state un and velocity-like state vn. The general form of79

discrete updates is denoted by:80

un = un−1 +∆t(−Ωv⋆ +Bxn), (2)
vn = vn−1 +∆t un, (3)
sn = Msn−1 + Fn, (4)

where the choice of v⋆ distinguishes the discretization schemes: v⋆ = vn for IM (implicit), and81

v⋆ = vn−1 for IMEX (implicit-explicit).82
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Unlike IM, the eigenvalues of M IMEX lie near the unit circle, preserving oscillatory energy over long83

horizons. This makes IMEX especially suitable for modeling long sequences, where maintaining84

temporal structure is crucial.85

Algorithm 1 SHaRe-SSM Algorithm
Require: Input sequence x
Ensure: N -blocks, spike function Θ , output sequence o

x0 ← Encoder(x) {Encode input sequence into spikes}
for n = 1, . . . , N do
zn ← solution of HRF in (1) with input xn−1 via parallel scan aggregated
yn ← Czn +Dxn−1 {Weighted spike mixing in (1)}
yn ← Θ(yn − θnD)
yn ← Linear(yn)
yn ← Θ(yn − θn)
xn ← yn + xn−1 {Spike mixing}

end for
o← Decoder(xN ) {Decode spikes}

3 Emperical Results86

3.1 Human Activity Recognition87

Our SNN model is capable of learning multiple states without any sequential recurrence, as we don’t88

have a reset mechanism. Such a design enables parallelization and reduced energy consumption.89

Hence, it is well-suited for wearable devices. Although our model is designed for long-range sequence90

datasets, we also evaluated its performance on Human Activity Recognition(HAR) datasets: UCI-91

HAR[4] and SHAR datasets[22]. For 30 subjects, UCI-HAR comprises 10.3k instances of 6 activities92

(walking, walking upstairs/downstairs, sitting, standing, lying) captured with a 3-axis accelerometer93

and gyroscope (50 Hz) on a Samsung Galaxy SII, while UniMB SHAR includes 11.7k instances of94

17 activities (9 daily, 6 fall) recorded with a 3-axis accelerometer (≤ 50 Hz) on a Samsung Galaxy95

Nexus I9250. SHaRe-SSM achieves an accuracy of 99% and outperforms the best-performing model96

[21] for UCI-HAR by 0.2%. For SHAR, our model achieves 92.7%, which is better than non-spiking97

models in terms of energy and performance, and is competitive with spiking models, as it outperforms98

SpikeDCL by 0.6% and falls behind SpikeDCL by 1.2%.

Table 1: Performance comparison between different networks on HAR datasets: UCI-HAR[4], and
SHAR [22], (DCL:DeepConvLSTM, Trans:Transformer)

Model CNN DCL LSTM Trans SpikeCNN SpikeDCL Our(IM) Our(IMEX)
SNN N N N N Y Y Y Y
UCIHAR 96.3±0.1 97.9±0.3 82.4±4.0 96.0±0.3 96.4±0.2 98.9±0.3 99.02±0.3 96.93±0.5
SHAR 92.4±0.5 90.8±1.0 83.9±0.9 83.2±0.7 94.0±0.3 92.1±0.8 92.76±0.07 89.08±0.7

99

3.2 Very-Long Range Interactions100

Wearable devices operate over long durations, demanding robust prediction on extended sequences.101

Spiking SSMs, with their high throughput and energy efficiency, are well-suited for this setting. To102

evaluate performance on very long temporal dependencies, we study the longest benchmark datasets:103

the Eigenworms dataset (17,984 sequences) for classification and the PPG-DaLiA dataset (49,920104

sequences) for regression. Following the hyperparameter protocol of [26] and employing Bayesian105

search [1], we ensure an optimized training. Eigenworms, a subset of the UEA archive, represent C.106

elegans motion through six eigenworm features to distinguish wild-type from other mutant behaviors.107

PPG-DaLiA involves heart rate prediction from wrist-worn sensor data collected from 15 individuals108

over 150 minutes at 128 Hz.109

For the Long-range classification task on EigenWorms, we can observe that our model performs110

comparably to LinOSS with just 2.2% drop in performance, but with huge energy benefits (Fig. 1).111
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We can also observe that it outperforms all previous models, especially first-order SSMs such as LRU112

and S6 by 5% and 7.8% respectively.113

We present the first regression results of a spiking SSM on extremely long sequences (up to 50k). To114

address the limited output range of spiking neurons, we introduce a kernel-based spiking regressor115

with a learnable temporal kernel. As shown in Table 2, SHaRe-SSM models consistently outperform116

all first-order SSMs, with SHaRe-SSM-IMEX surpassing Mamba by 0.016 MSE, demonstrating both117

the energy-efficient nature of IMEX discretization and the strong representation power of resonating118

neurons. Despite their efficiency, our models are only 0.027 MSE below second-order SSMs. We119

observed from [26] that IM discretization outperforms IMEX for all datasets for classification and120

vice-versa for regression. We observed similar results for our model (refer to Table 3).121

Table 2: Mean and Standard Deviation reported for longest sequences: Accuracy for EigenWorms,
and Mean-Squared Error (MSE ×10−2) for PPG-DaLiA dataset across five training runs for the best
model. (LNCDE: Log-NCDE, OSS: LinOSS)

Data Metric NRDE NCDE LNCDE LRU S5 S6 Mamba OSS Ours
SNN N N N N N N N N Y

EW ACC (↑) 83.9 75.0 85.6 87.8 81.1 85.0 70.9 95.0 92.8
(18k) (Classification) ±7.3 ±3.9 ±5.1 ±2.8 ±3.7 ±16.1 ±15.8 ±4.4 ±3.3
PPG MSE (↓) 9.9 13.5 9.6 12.2 12.6 12.9 10.7 6.4 9.1
(50k) (Regression) ±1.0 ±0.7 ±0.6 ±0.5 ±1.3 ±2.1 ±2.2 ±0.2 ±0.2

3.2.1 Energy computation122
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Figure 1: Variation of energy computation of a LinOSS Block [26] to the SHaRe-SSM Block for
EigenWorms with respect to State (P), Hidden size (H).

In this section, we assess and compare the energy computation for LinOSS and SHaRe-SSM for123

similar hidden-size(H), state-size(P), and num-blocks(N) on the EigenWorms dataset. From Figure124

1, we observe that for different state-to-hidden ratios, we get different energy numbers. For the125

EigenWorms dataset, the average spike rate per time step per block is 0.42. For a lower P/H ratio, we126

yield high energy efficiencies (∼ 82.6×). Our best performing model (as per Table 2) is 52.1× more127

energy efficient than an equivalent LinOSS model.128

4 Discussion129

We propose SHaRe-SSM, an energy-efficient second-order spiking SSM built with harmonic resonate-130

and-fire neurons, along with a learnable encoder, decoder, and parallel scan method. Unlike prior131

similar SSMs, SHaRe-SSM is fully spike-based without GeLU/GLU and is tailored for very long-132

sequence modeling. The model performs well on HAR datasets while consuming significantly less133

energy, and also achieves superior classification and regression performance on 18k EigenWorms134

and 50k-length sequences PPG datasets, respectively. Hence it is ideally suited for wearables in135

healthcare. Future work will focus on Intel Loihi2 [28] deployment of SHaRe-SSM for edge AI.136
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A Technical Appendix243

A.1 Background Theory244

To study the theoretical properties of a second-order ODE in SHaRe-SSM, we take inspiration from245

[26]. Our model, just like their model, can be formulated as energy-conserving and with dissipative246

attributes.247

A.1.1 Implicit Discretization (IM):248

We consider the implicit (backward Euler) discretization of a second-order system involving a249

position-like state un and a velocity-like state vn, similar to Rusch and Rus. The implicit scheme is250

known to introduce additional dissipative terms, which contribute to the stability of the dynamics,251

particularly in the presence of stiffness.252

The discretized updates are given by:253

un = un−1 +∆t (−Ωvn +Bxn) ,

vn = vn−1 +∆t un,

where Ω is a diagonal matrix of oscillation frequencies and B is an input projection matrix. Note that254

both un and vn are evaluated at the future timestep, in contrast to explicit methods.255

Letting the concatenated state be sn, the above system can be written compactly as:256

Msn = sn−1 + Fn,

where257

M =

(
I ∆tΩ
−∆tI I

)
, Fn =

(
∆tBxn

0

)
.

To obtain an explicit update rule, we algebraically solve the coupled system by introducing the matrix258

inverse S = (I +∆t2Ω)−1. Substituting and simplifying yields:259

sn = M IMsn−1 + F IM
n , (5)

where260

M IM =

(
S −S∆tΩ

S∆t S

)
, F IM

n =

(
S∆tBxn

S∆t2Bxn

)
.

This formulation highlights the stabilizing effect of the implicit method: the matrix S = (I+∆t2Ω)−1261

is a Schur complement that acts as a preconditioner that suppresses high-frequency components.262

Consequently, the eigenvalues of M IM remain bounded within the unit circle for a wide range of ∆t,263

leading to improved numerical stability. The Schur complement can be computed in O(m) instead of264

the typical O(m3) operations using Gauss-Jordan elimination.265
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Proposition A.1. Let M IM ∈ R2p×2p be the hidden-to-hidden weight matrix of the implicit model266

SHaRe-SSM-IM (5). We assume that Ωj ≥ 0 for all diagonal elements j = 1, . . . , p of Ω, and further267

that ∆t > 0. Then, the complex eigenvalues of M IM are given as,268

λj1,2 =
1

1 +∆t2Ωj
±∆t

√
Ωj

1 + ∆t2Ωj

with λj1 = λj2 . Moreover, the spectral radius ρ(M IM) is bounded by 1, i.e., |λj | ≤ 1 for all269

j = 1, . . . , p.270

Proof. The matrix M IM ∈ R2p×2p is defined as271

M IM =

[
S −∆tΩS

∆t S S

]
,

where S = (I + ∆t2Ω)−1, and Ω ∈ Rp×p is diagonal with non-negative entries Ωj ≥ 0 for all272

j = 1, . . . , p.273

To determine the eigenvalues, we compute the characteristic polynomial:274

det(M IM − λI) =

∣∣∣∣S − λI −∆tΩS
∆t S S − λI

∣∣∣∣ .
Using block Gaussian elimination, we subtract (∆t S)(S − λI)−1(−∆tΩS) from the lower-right275

block, giving276

= det(S − λI) · det
(
S − λI +∆t2 ΩS2(S − λI)−1

)
.

Since S and Ω are diagonal and commute, this expression decouples elementwise. Let sj = 1
1+∆t2Ωj

277

be the j-th diagonal element of S. Then for each j = 1, . . . , p, the scalar characteristic equation278

becomes279

(sj − λ)2 +∆t2Ωjs
2
j = 0.

Solving this quadratic gives the eigenvalue pair280

λj1,2 = sj ± i∆t sj
√
Ωj ,

where λj1 = λj2 , i.e., the pair are complex conjugates.281

To compute their magnitude:282

|λj1,2 |2 = s2j (1 + ∆t2Ωj) =
1

1 +∆t2Ωj
≤ 1.

Hence, all eigenvalues lie on or inside the unit circle in the complex plane, and the spectral radius283

satisfies ρ(M IM) ≤ 1, as claimed.284

Proposition A.2. Let {λj}2pj=1 denote the eigenvalues of the hidden-to-hidden matrix M IM ∈ R2p×2p285

of the SHaRe-SSM-IM model (5). Suppose the diagonal entries of Ω ∈ Rp×p are independently286

drawn as Ωj ∼ U([0,Ωmax]), with Ωmax > 0. Then, the N -th moment of the magnitude of the287

eigenvalues is given by288

E(|λj |N ) =
(1 + ∆t2Ωmax)

1−N
2 − 1

∆t2Ωmax(1− N
2 )

, ∀j = 1, . . . , 2p.

Proof. From Proposition A.1, each eigenvalue of M IM has magnitude289

|λj | =
√
sj =

√
1

1 + ∆t2Ωj
.

The N -th moment of the magnitude is thus.290

E(|λj |N ) = E

[(
1

1 + ∆t2Ωj

)N
2

]
.
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Applying the law of the unconscious statistician and the uniform distribution of Ωj ∼ U([0,Ωmax]),291

we write:292

E(|λj |N ) =
1

Ωmax

∫ Ωmax

0

(1 + ∆t2x)−
N
2 dx.

Substituting u = 1 + ∆t2x, so that du = ∆t2 dx, the limits change from x = 0 to x = Ωmax,293

corresponding to u = 1 to u = 1 +∆t2Ωmax. The integral becomes:294

E(|λj |N ) =
1

∆t2Ωmax

∫ 1+∆t2Ωmax

1

u−N
2 du.

This evaluates to295

E(|λj |N ) =
(1 + ∆t2Ωmax)

1−N
2 − 1

∆t2Ωmax(1− N
2 )

,

296

We can observe from proposition A.2 that even though the spectral radius of eigenvalues is smaller297

than one (proposition A.1), it is large enough to capture long-range dependencies even for very long-298

range sequences, even for Ωmax = 1,∆t = 1. Hence, we initialize Ωj ∼ U([0, 1]),∆tj ∼ U([0, 1])299

A.1.2 Implicit-Explicit Discretization (IMEX):300

We also utilize an implicit-explicit (IMEX) scheme for discretizing the second-order harmonic301

oscillator system, similar to Rusch and Rus. IMEX methods treat the stiff terms implicitly and the302

non-stiff or input terms explicitly, resulting in a balanced scheme that enables stable yet undamped303

oscillations. As shown in [26], such schemes preserve the total energy of the system and therefore304

are particularly well-suited for learning long-range sequential patterns without introducing artificial305

dissipation.306

The update equations under the IMEX discretization are given by:307

un = un−1 +∆t (−Ωvn−1 +Bxn) ,

vn = vn−1 +∆t un,

where the velocity update depends implicitly on the newly computed un, while the force term308

−Ωvn−1 +Bxn is evaluated using previous state values.309

Defining the state vector as sn, we can rewrite the update in matrix form:310

Msn = M1sn−1 + Fn,

where the matrices M , M1, and input vector Fn are:311

M =

(
I 0
−∆tI I

)
,M1 =

(
I −∆tΩ
0 I

)
, Fn =

(
∆tBxn

0

)
.

Multiplying both sides by M−1 yields the closed-form update:312

sn = M IMEXsn−1 + F IMEX
n , (6)

where the transition matrix and input vector are given by:313

M IMEX =

(
I −∆tΩ

∆tI I −∆t2Ω

)
, F IMEX

n =

(
∆tBxn

∆t2Bxn

)
.

Proposition A.3. Let M IMEX ∈ R2p×2p be the hidden-to-hidden weight matrix of the implicit-explicit314

model SHaRe-SSM-IMEX (6). Suppose that Ω ∈ Rp×p is diagonal with strictly positive entries315

Ωj > 0 for all j = 1, . . . , p, and that the time step satisfies 0 < ∆t ≤ maxj

(
2√
Ωj

)
. Then, the316

eigenvalues of M IMEX are given by317

λj1,2 =
1

2
(2−∆t2Ωj)±

1

2

√
∆t2Ωj(4−∆t2Ωj),

with λj1 = λj2 . Moreover, the eigenvalues lie on the complex unit circle, i.e., |λj | = 1, ∀j =318

1, . . . , p.319
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Proof. The matrix M IMEX ∈ R2p×2p has the block form320

M IMEX =

[
I −∆tΩ

∆t I I

] [
(I +∆t2Ω)−1 0

0 (I +∆t2Ω)−1

]
,

So the effective system matrix becomes321

M IMEX =

[
S −∆tΩS

∆t S S

]
, where S = (I +∆t2Ω)−1.

We analyze the characteristic polynomial:322

det(M IMEX − λI) =

∣∣∣∣S − λI −∆tΩS
∆t S S − λI

∣∣∣∣ .
Using block elimination, we simplify:323

= det(S − λI)2 +∆t2ΩS2.

Since all matrices are diagonal, the problem decouples elementwise. Let sj = 1
1+∆t2Ωj

for each324

j = 1, . . . , p. Then, for each j, the characteristic polynomial becomes325

λ2 − (2sj)λ+ (s2j +∆t2Ωjs
2
j ) = λ2 − (2−∆t2Ωj)λ+ 1 = 0.

Solving this gives the eigenvalue pair326

λj1,2 =
1

2
(2−∆t2Ωj)±

1

2

√
∆t2Ωj(4−∆t2Ωj).

To show |λj1,2 | = 1, we consider two cases:327

1. If ∆t2Ωj = 4, then the square root vanishes and328

λj1 = λj2 = −1, |λj1,2 | = 1.

2. If ∆t2Ωj < 4, then the eigenvalues are complex conjugates. Their squared magnitude is329

|λj1,2 |2 =

(
2−∆t2Ωj

2

)2

+

(
1

2

√
∆t2Ωj(4−∆t2Ωj)

)2

=
(2−∆t2Ωj)

2 +∆t2Ωj(4−∆t2Ωj)

4

=
4− 4∆t2Ωj +∆t4Ω2

j + 4∆t2Ωj −∆t4Ω2
j

4
= 1.

Thus, in both cases, |λj1,2 | = 1, completing the proof.330

A.2 Parallel scan in SHaRe-SSM331

Parallel scans [19, 8] exploit associativity to reduce recurrent computation from O(N) to O(logN).332

Originally developed for RNNs, they have recently been adapted to state-space models [29], enabling333

efficient architectures such as LRUs [24] and Mamba [13]. In our setting, parallel scans accelerate334

linear updates, with spike functions applied afterward. Following [26], we define an associative335

binary operation:336

(a1, a2) • (b1, b2) = (b1 · a1, b1 · a2 + b2), (7)
where · denotes matrix-matrix or matrix-vector multiplication. Applying a parallel scan to the input337

sequence {(M,Fn)} efficiently solves338

sn = Msn−1 + Fn, (8)

with the second tuple element storing xn. Efficiency is achieved by exploiting structured matrices339

(e.g., diagonal block 2× 2 forms in MIM and MIMEX ), where each multiplication is linear in the340

hidden dimension. We use this formulation to implement IM and IMEX discretizations for HRF341

neurons. Algorithm 1 summarizes the SHaRe-SSM implementation.342
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A.3 Energy Computation343

We compute the energy for a LinOSS block and compare it to our SHaRe-SSM block. We can344

observe that our block doesn’t perform any matrix multiplications and is well-suited for neuromorphic345

hardware. For event-based sensors, we can detach the encoder head and feed data directly to the346

model for real-time sequential processing. Spike rates from linear layers, SHaRe-SSM neuron and347

post weighted spike-mixing layers are given by fθ, fθC , fθD for Sequence Length(L), State Size(P),348

Hidden Size(H), respectively.349

The ratio of Energy consumed by LinOSS/SHaRe-SSM computed by:350

Ratio =
EMAC×N(2LPH+(7+2)LH2)

EAC

∑N
i=1

((∑i
j=1 fθ

j +f
θC
i

)
LPH

B,C
+f

θD
i LH2

)

We estimate the theoretical energy consumption of our model based on prior works [27, 6, 32].351

Accordingly, we assume that MAC and AC operations are implemented on a 45nm hardware [16],352

where EMAC = 4.6pJ and EAC = 0.9pJ. Notably, as discussed in Shen et al., the computational353

cost of multiplication of a floating-point weight by a binary activation number is represented as an354

addition-only operation. For ANNs, the theoretical energy consumption of a block n is given by355

4.6pJ×FLOPs(n). For SNNs, the energy consumption for n is given by 0.9pJ×SOPs(n). Calculating356

theoretical energy consumption requires first calculating the synaptic operations, SOPs(n) = fr ×357

FLOPs(n), fr is the firing rate of the input spike train of the block/layer, FLOPs(n) refers to the358

number of floating-point operations in layer n, equivalent to the number of multiply-and-accumulate359

(MAC) operations. SOPs denote the number of spike-based accumulate (AC) operations.360

Since Ω is a diagonal matrix, it can be efficiently implemented using parallel scans with computations361

of orderO(P log(L)), which is negligible. Also, D isO(HL), which is much smaller thanO(LPH),362

i.e., computation for B & C matrices or even O(LH2), which is for the GLU layer. [26] uses GeLU363

and GLU non-linearities, which we replace with a linear layer. And, [33] described that GeLU364

consumes 14 FLOPs per operation. Moreover, GLU has twice as many FLOPs as a linear layer.365

Table 3: Hyperparameters for the Best model for each dataset
Dataset Method LR Hidden State Blocks Time Kernel
UCI-HAR IM 1e-3 128 256 2 False -
SHAR IM 1e-3 128 256 2 False -
Worms IM 1e-3 128 64 2 False -
PPG IMEX 1e-3 128 256 6 False 16
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