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ABSTRACT

Recent years have seen growing interest in learning disentangled representations,
in which distinct features, such as size or shape, are represented by distinct neu-
rons. Quantifying the extent to which a given representation is disentangled is
not straightforward; multiple metrics have been proposed. In this paper, we iden-
tify two failings of existing metrics, which mean they can assign a high score
to a model which is still entangled, and we propose two new metrics, which re-
dress these problems. First, we use hypothetical toy examples to demonstrate
the failure modes we identify for existing metrics. Then, we show that similar
situations occur in practice. Finally, we validate our metrics on the downstream
task of compositional generalization. We measure the performance of six existing
disentanglement models on this downstream compositional generalization task,
and show that performance is (a) generally quite poor, (b) correlated, to varying
degrees, with most disentanglement metrics, and (c) most strongly correlated with
our newly proposed metrics. Anonymous code to reproduce our results is available
at https://github.com/anon296/anon.

1 INTRODUCTION

Early proponents of neural networks argued that a significant advantage was their ability to form
distributed representations, where each input is represented by multiple neurons, and each neuron
is involved in the representation of multiple different inputs (Hinton et al., 1986). Compared to
using a separate neuron for each input, distributed representations are exponentially more compact
(Bengio, 2009). An extension of distributed representations is the idea of disentangled representations,
where each neuron represents a single human-interpretable feature of the input data, such as colour,
size or shape. These features are often referred to as “generative factors” or “factors of variation”.
Intuitively, a disentangled vector representation is one in which a certain subset of neurons represents
(for example) shape and shape only, another distinct subset represents size and size only, etc., and
changing the size of the input but not the shape, will mean that the size neurons change their activation
value, but the shape neurons remain unchanged. In the strongest case, each factor is represented by a
single neuron so that, e.g., changing the colour of the object in the image would cause a single neuron
to change its value while all other neurons remain unchanged. (We discuss further below the ambiguity
as to whether this stronger condition is required.) Disentanglement (DE) was originally formulated
by Bengio (2009) (see also Bengio et al. (2013); Bengio (2013)). More recently, following Higgins
et al. (2016), there have been many unsupervised DE methods proposed based on autoencoders.

In this paper, we examine the commonly used metrics to assess disentanglement. Firstly, we show
how they fail to pick up certain forms of entanglement, and that representations can score highly
on such metrics while being entangled. Specifically, we expose two problems with existing metrics:
that they incorrectly align ground-truth factors to neurons, as they do not require distinct variables to
be assigned to distinct factors; and that they measure the strength of the relationship of features to
individual neurons, which is fundamentally different from the relationship to sets of neurons, and
hence can give undesirable results. We show that these problems occur in practice by examining the
results of six different DE models trained on three different datasets.

To address these problems, we present two new DE metrics, based on the ability of a classifier to
predict the generative factors from the encoded representation. If a representation is truly disentangled,
then all the relevant information should be contained in a single neuron (or possibly a few neurons,
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see discussion in Section 2), and so a classifier using only this/these neuron(s) should be just as
accurate as one using all neurons, and one using all other neurons should be very inaccurate. Our first
metric is the accuracy of the single-neuron classifier. Our second metric is the difference between the
accuracy of a classifier using all neurons, vs one using all neurons but the single selected neuron.

We also establish the superiority of our proposed metrics using a downstream compositional general-
ization task of identifying novel combinations of familiar features. Humans could recognize a purple
giraffe, even if we have never seen one or even heard the phrase “purple giraffe” before, because we
have disentangled the concepts of colour and shape, so could recognize each separately. The ability
to form and understand novel combinations is a deep, important aspect of human cognition and is
a direct consequence of humans being able to disentangle the relevant features of the objects we
encounter. Our downstream task tests, for example, whether a network trained to identify blue squares,
blue circles and yellow squares can, at test time, correctly identify yellow circles. If it had learned to
disentangle colour from shape, then it could simply identify “yellow” and “circle” separately, each of
which is familiar. We show that existing DE models generally perform poorly at this task, suggesting
they are further from DE than previous analyses have implied. We also show that a high score on
DE metrics is predictive of performance on this task, and that our proposed DE metrics are the most
predictive in this respect. Our contributions are briefly summarized as follows.

• We identify and describe two shortcomings of existing DE metrics: (1) incorrect alignment
of neurons to factors and (2) focusing on the importance of individual neurons instead of
sets of neurons.

• We show, experimentally, that these problems with existing metrics occur in practice.
• We propose two alternative metrics, (1) single-neuron classification and (2) neuron knockout,

that do not suffer from the problems that existing metrics suffer from.
• We validate our metrics on a downstream task of compositional generalization. We show

empirically that, while existing models generally perform badly at recognizing novel com-
binations of familiar features (compositional generalization), their performance correlates
with DE metrics, and correlates most strongly with our proposed metrics.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 describes
the shortcomings of existing DE metrics. Section 4 proposes our new metrics. Section 5 presents
empirical results, including those on the downstream compositional generalization task. Section 6
then discusses some limitations and future work, and summarizes our contributions.

2 RELATED WORK

Disentanglement Models. After the initial proposal by Bengio (2009), disentangled representations
received new interest beginning when Higgins et al. (2016) proposed β-VAE, as an adaption of
the variational autoencoder (VAE) (Kingma and Welling, 2013). By taking the prior to have a
diagonal covariance matrix, and increasing the Kullback-Leibler divergence (KL) loss weight, β-VAE
encourages the model representations to have diagonal covariance too, which the authors claim
enforces DE. Kumar et al. (2017) further encouraged a diagonal covariance matrix by minimizing the
Euclidean distance of the model’s covariance matrix from the identity matrix. Burgess et al. (2018)
proposed to gradually increase the reconstruction capacity of the autoencoder by annealing the KL in
the VAE loss. Note that these works implicitly equate uncorrelated variables (i.e., diagonal covariance
matrix) with independent variables, which is incorrect. For example, Y = X2 are totally uncorrelated
but totally dependent. Chen et al. (2018) propose β-TCVAE, which minimizes the total correlation
of the latent variables, approximated using Monte-Carlo based on importance sampling. Kim and
Mnih (2018) propose FactorVAE, which also minimizes total correlation, this time approximating
using a discriminator network. Locatello et al. (2019) challenged earlier DE methods, proving that
it is always possible for a model to learn an entangled representation that appears disentangled
only on the available data, and presenting experiments that call into question whether disentangled
representations lead to superior downstream performance, as previous works had claimed. Later,
Locatello et al. (2020) claimed that including a small amount of supervision was sufficient to learn
disentangled representations. More recently, other authors have pushed back against the claim that
unsupervised DE is impossible, arguing that the priors embodied in autoencoder architectures still
allow unsupervised DE in practice Roth et al. (2022); Rolinek et al. (2019). The models we test on
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Figure 1: Left: Hinton diagram for β-TCVAE on 3dshapes. The size of the square at (i, j) shows the mutual
information between factor i and neuron j. Existing metrics incorrectly align both factor 2 and factor 5 to neuron
2, whereas we correctly align factor 2 to neuron 1 instead. Right: Toy example of partially encoding two factors.

include a range of both unsupervised and weakly supervised. Recent unsupervised models include
Klindt et al. (2020), a VAE-based model to learn disentangled representations from videos of natural
scenes. Semi-supervised methods include WeakDE Valenti and Bacciu (2022), which adversarially
pushes the latent distribution for each factor close to a prior computed using a small labelled subset.
Some DE models are fully supervised, such as MTD (Sha and Lukasiewicz, 2021), which partitions
the neurons into a subset for each factor, and defines several losses using the ground-truth labels.
Some can operate either supervised or unsupervised, such as Parted-VAE (Hajimiri et al., 2021),
which minimizes the Bhattacharyya distance (Bhattacharyya, 1946) from a multivariate normal.

Disentanglement Metrics. Higgins et al. (2016) made an early attempt to quantify disentanglement,
by fixing one generative factor and varying others, then predicting which factor was fixed from the
mean each absolute difference. Kim and Mnih (2018) replace mean absolute difference with the
index of the lowest variance neuron. Ridgeway and Mozer (2018) decompose DE into modularity and
explicitness, each with its own metric. They measure modularity as the deviation from an “ideally
modular” representation, where every latent neuron has nonzero mutual information with exactly
one generative factor. Explicitness is measured similarly to the metric of Kim and Mnih (2018),
except using the mean of one-vs-rest classification and AUC-ROC. The SAP score Kumar et al.
(2017) calculates, for each factor, the R2 coefficient with each latent dimension, and then takes
the difference between the largest and second largest. A representation will score highly on SAP
if, for each generative factor, one neuron is very informative and no other individual neuron is. A
similar idea is employed by the mutual information gap (MIG) metric (Chen et al., 2018), except
using mutual information instead of R2. Eastwood and Williams (2018) decompose the task into
disentanglement, completeness and informativeness (DCI). Then, they train a classifier (commonly a
linear model or a gradient-boosted tree) to predict each generative factor from the latent factors, and
estimate DCI from a measure of importance of each feature to each factor from the classifier. IRS
(Suter et al., 2019) measures the maximum amount that a given neuron can be changed by changing a
generative factor other than the one it corresponds to. Another recent metric is MED Cao et al. (2022),
which is the same as DCI, using mutual information as feature importance.

Definitions of Disentanglement. There is ambiguity in the literature as to whether DE requires
that each factor is represented by a single neuron (strong DE), or allows representation by multiple
neurons (weak DE). The original definition by Bengio (2009) (echoed by Higgins et al. (2016),
Kim and Mnih (2018) and others) stipulates that “each neuron represents a single factor”, which
seems to allow that each factor is represented by multiple neurons. Other treatments of DE imply
a stronger notion of the concept, namely, an injective function from factors to the unique neurons
that represent them. This is implicit in the common metrics that map each factor to a single neuron,
in the technique of latent traversals that aim to vary a single factor through its range of values by
varying a single neuron, and in the descriptions of DE in other works, e.g., “learning one exclusive
factor per dimension” (Pineau and Lelarge, 2018). Attempts at formal definitions, e.g. equivariance
in group theory (Higgins et al., 2018), allow the possibility of many-to-one mappings in theory,
but present examples and discuss benefits of DE with respect to one-to-one mappings. Weak DE
is less compact than strong DE, and loses some interpretability benefits: it would be hard to tell
which neurons represent a given factor if we have to check all subsets of neurons, of which there
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are exponentially many. Our proposed metrics focus on the strong notion, for the following reasons:
(1) strong DE is generally assumed by many common DE metrics, (2) strong DE is assumed by the
common practice of latent traversals, (3) weak DE loses interpretability as compared with strong DE.
This does not mean that weak DE is without value, indeed some authors have argued that it is more
suitable for certain factors to be represented by multiple neurons Esmaeili et al. (2022). However, it
is not possible for a single metric to measure both because they are different objectives. For example,
if each factor is perfectly represented by a distinct set of 5 neurons, which don’t overlap, then the
representation shows perfect weak DE and should get a max score by a metric measuring weak DE.
But it could be that none of these 5 neurons individually represent the corresponding factor (see
Section 3.2), in which case the representation shows poor strong DE and should get a low score by a
metric measuring strong DE. Thus, strong DE is valuable to measure because it has some advantages
that weak DE does not (compactness, interpretability), and, as we have just argued, it requires a
metric specifically dedicated to strong DE; there cannot be a metric that adequately measures both
strong and weak DE at the same time. Therefore, there is value to a metric for strong DE, and that is
what we provide in this paper.

3 PROBLEMS WITH EXISTING DISENTANGLEMENT METRICS

3.1 INCORRECT ALIGNMENT OF LATENT VARIABLES

The majority of existing metrics are based on aligning the set of factors G with the set of neurons Z;
that is, for each factor, finding the neuron that it is represented by. Each neuron is only supposed
to represent a single factor, however, existing metrics simply relate each factor to the maximally
informative variable, e.g., as measured by mutual information (Chen et al., 2018) or weight from a
linear classifier (Kumar et al., 2017). This does not enforce the constraint of having distinct neurons
for distinct features, it means that the same neuron could be selected as representing multiple different
factors. For example, consider again the model trained on a dataset of blue squares, blue circles,
yellow squares and yellow circles. Suppose such a model has two latent variables, z1 and z2, the first
is as shown on the right of Figure 1, and the second is random noise, unrelated to the inputs. Then z1
encodes both colour and shape, each to an accuracy of 75%, whereas z2 encodes both only to 50%
(random guess). Thus, z1 will be chosen as the representative of both colour and shape.

This situation is not merely theoretical, it often occurs in practice. One example is the left of Figure 1,
which shows a Hinton diagram for β-TCVAE trained on 3dshapes (further examples of other datasets
and models are given in the appendix). There, the existing approach of aligning each factor to the most
informative neuron (e.g., by mutual information), incorrectly concludes that two different factors, size
(factor 2) and colour (factor 5), should be aligned to the same neuron (neuron 2). In a Hinton diagram,
the size of the square is proportional to the MI, and the square at (5,2) (using matrix indexing) the
biggest in its row, so existing metrics align factor 5 to neuron 2. The square at (2,2) is also the biggest
in its row, so existing metrics also align factor 2 to neuron 2. This is not good, because each neuron
should only be aligned with one factor. Our method enforces aligning distinct factors to distinct
neurons and so avoids this problem. It ends up aligning factor 2 to neuron 1 and factor 5 to neuron 2.

The model from the right of Figure 1 (call it M1), would get a higher score than another (call it M2) in
which z1 is as above and z2 represents shape to an accuracy of 70%. The appendix gives calculations
of MIG, DCI and SAP in this case, which all give a higher score to M1 than M2, and our metrics,
which do the opposite. What our metrics do is incorrect, as M2 is closer to the desired case where
z1 represents colour and colour only, and z2 represents shape and shape only. M1 needs z2 to learn
shape and z1 to unlearn shape, M2 just needs z1 to unlearn shape. See also the appendix in Cao et al.
(2022), which mentions a similar failing.

3.2 CONFLATING REPRESENTATION BY INDIVIDUAL NEURONS VS BY A SET OF NEURONS

The second problem with existing metrics is how they handle information distributed over multiple
neurons. Let g0, . . . , gn be the ground-truth generative factors, and z = z0, . . . , zm, m ≥ n the
corresponding neurons and suppose g1 has been aligned to z1. Further, let z̸=i be the set of neurons
other than zi. Now, consider XOR: g1 = z2 ⊕ z3. (We use discrete values for clarity, a continuous
approximation could be |z2 − z3|, z2, z3 ∈ [0, 1].) Almost all existing metrics, would fail here. Those
based on linear classifiers Kumar et al. (2017); Ridgeway and Mozer (2018); Eastwood and Williams
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(2018) would conclude that z2 and z3 are unrelated to g1, because the strength of the linear relationship
in XOR is zero. Those that use pairwise mutual information Chen et al. (2018); Cao et al. (2022); Do
and Tran (2019) would also react incorrectly. They would find that I(g1; z2) = I(g1; z3) = 0, and so
conclude that g1 is not represented by z̸=i, when in fact g1 is perfectly represented by z̸=i. In Section
5.1 we show these distributed entanglements occur in practice.

DCI can be used with a non-linear classifier, most commonly a gradient-boosted tree, but it still
computes an importance score for each feature individually to each factor, so fails for a different but
similar reason. This is shown by Theorem 3.1, using an extension of XOR to multiple feature values.

Theorem 3.1. As the number of neurons and factors increases, the D and C components of DCI can,
under a very broad class of feature importance measures, including gradient-boosted trees, assign a
score that is arbitrarily close to perfect, even though the model is completely entangled in the sense
that no neuron, by itself, contains any information about any generative factor.

The full proof is in the appendix. Intuitively, the proof shows that it is possible for n neurons to
perfectly encode n factors, where each factor depends only on two neurons, but where knowing the
value of any one neuron reveals nothing about the value of any factor. It is proved in the appendix
for the case of uniformly distributed feature values. This situation constitutes a false positive for
DCI. The representation is not disentangled at all, but DCI gives it a high score. A good metric
should function in both uniform and non-uniform cases, so this demonstrates a shortcoming of DCI.
The only assumption on the feature importance measure is that it assigns a score of 0 whenever
the mutual information, even when conditioned on any number of other neurons, is zero. This is a
weak assumption and should be met by any reasonable feature importance measure. We do not need
very many neurons/factors before there can be occasions on which the value of D and C becomes
spuriously high. For 10 neurons/factors, D,C ≥ 0.8; for 20, D,C ≥ 0.9. While DCI to some extent
approximates measuring both weak DE and strong DE, Theorem 3.1 shows that it can be an unreliable
measure of strong DE, further motivating the search for reliable strong DE metrics.

4 PROPOSED METRICS

Single-neuron Classification (SNC) Our first metric, SNC, begins by aligning factors to neurons.
Unlike prior works, we align all factors simultaneously so that we can enforce aligning distinct factors
to distinct neurons:

argmax
{f :G→Z| f is injective }

∑
g∈G

I(g; f(g)) , (1)

where I denotes mutual information (this could be replaced with R2 or any other measure of
informativeness). A solution to equation 1 can be computed efficiently using the Kuhn-Munkres
algorithm (Munkres, 1957), giving a mapping in which no two factors are mapped to the same neuron.
This better fits the notion of DE than previous approaches. After alignment, we use zi as a classifier,
by dividing its values across the dataset into bins, where the bin size is the greatest common divisor
of the size of classes in the dataset. We then align these bins with the K ground-truth classes, and
compute the chance-adjusted accuracy Let X = (x)1≤i≤N denote the data, c : X → {0, . . . ,K − 1}
specify the ground truth labels, and and b : X → {0, . . . ,K−1} specify the bin index after alignment.
Then, the metric score is the accuracy a on a single neuron, adjusted for chance accuracy r:

SNC = max(0,
a− r

1− r
) ,

where a = 1
N

∑N
i=1 1(b(xi) = c(xi)) and r = 1

N2

∑K
j=1(

∑N
i=1 1(c(xi) = j)2). This essentially

quantifies the property that latent traversals aim to show qualitatively. In the terminology of Ridgeway
and Mozer (2018), it is a measure of explicitness, except that they fit a linear classifier on all neurons,
not just zi. That is, if, for each gi, there is some line in representation space such that the representation
vector encodes gi as the distance of the projection along that line, then this is regarded as disentangled.
Using a single-neuron classifier, on the other hand, requires that line to be an axis. In the appendix,
we also show linear classifier scores, which are broadly similar.

Neuron Knockout (NK) Our second proposed metric is inspired by the technique of gene knockout
in genetics, which tests how relevant a given gene is to a given function, by removing the gene and
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β-VAE β-TCVAE FactorVAE PartedVAE PartedVAE-ss weakde

Dsprites SNC 24.8 (3.20) 41.3 (3.00) 15.1 (1.78) 16.1 (4.54) 19.0 (4.80) 5.8 (0.75)
MLP 89.4 (3.95) 86.2 (1.10) 77.1 (4.10) 70.7 (10.33) 48.5 (9.08) 99.8 (3.50)
NK 39.9 (1.11) 31.3 (4.10) 32.9 (1.45) 34.9 (4.23) 14.5 (8.17) 5.9 (1.17)

3dshapes SNC 19.9 (4.70) 20.1 (2.06) 16.9 (3.36) 43.8 (24.97) 68.3 (9.55) 15.4 (2.11)
MLP 99.8 (3.50) 99.9 (2.50) 98.1 (7.24) 96.2 (6.83) 88.9 (14.53) 99.8 (0.68)
NK 8.0 (0.20) 8.1 (0.11) 16.8 (2.94) 60.2 (6.19) 41.8 (8.07) 2.5 (0.18)

MPI3D SNC 32.6 (5.63) 35.2 (4.43) 27.5 (3.63) 35.1 (3.29) 23.9 (1.77) 17.1 (0.39)
MLP 91.3 (3.36) 83.5 (9.00) 88.6 (2.85) 65.5 (1.51) 60.6 (3.04) 83.4 (0.89)
NK 19.8 (0.39) 17.8 (10.82) 23.2 (0.41) 9.5 (1.64) 3.3 (7.11) 6.0 (0.14)

Table 1: Central tendency across five runs for our proposed metrics, SNC and NK, along with the chance-
adjusted accuracy of an MLP on all neurons (MLP). The best in each block is in bold.

measuring the loss in function. We test whether z̸=i contains any information about gi, by training an
MLP to predict gi from z̸=i. If the representation is disentangled, then this accuracy should be low, in
comparison to an MLP that uses all neurons. Our second metric is NKi = Accz −Accz̸=i

, where
Ax denotes the accuracy of an MLP trained on neurons x to predict gi. This is crucially different
from most existing methods, which only measure the feature importance of each neuron individually,
and so suffer the problems articulated in Section 3.2. Some existing works have used a similar idea to
NK, (Sha and Lukasiewicz, 2021; Mathieu et al., 2016). These works partition the neurons, a priori,
into two subsets, A and B, representing distinct factors a and b, respectively. Performance is then
measured by training an MLP to predict b from A and a from B. This technique, however, is only
applicable where the set of neurons has been partitioned during training by the use of labels, whereas
ours is more broadly applicable because we include a method for identifying which neurons to knock
out. Secondly, we measure the difference with an MLP trained on all neurons, and so can distinguish
between a disentangled representation and one that simply contains no information about the input.
For prior works, the latter would score highly, but for NK, it would not, as then Accz ≈ Accz̸=i

≈ 0.

5 EXPERIMENTAL EVALUATION

Datasets. We test our metrics and task on three datasets. Dsprites contains 737,280 black-and-white
images with features (x, y)-coordinates, size, orientation and shape. 3dshapes contains 480,000
images with features object/ground/wall colour, size, camera azimuth, and shape. MPI3D contains
103,680 images of objects at the end of a robot arm with features object colour, size and shape,
camera height and azimuth, and altitude of the robot arm. All datasets have images of size 64× 64.

Implementation Details. We test several popular DE models, β-VAE, FactorVAE and β-TCVAE,
which are unsupervised, WeakDE, which is semisupervised, and PartedVAE, which can be trained
unsupervised or semisupervised, and for which we test both settings. The details of these models
are given in Section 2. Parted-VAE and Weak-DE are trained using the authors’ public code for 100
epochs. Other models are trained using the library at https://github.com/YannDubs/disentangling-vae,
all use default parameters. The MLPs and linear classification heads are trained using Adam, learning
rate .001, β1=0.9, β2=0.999, for 75 epochs. The MLP has one hidden layer of size 256. MTD is
trained using the author’s code (obtained privately) with all default parameters, for 10 epochs. All
experiments were performed on a single Tesla V100 GPU on an internal compute cluster.

5.1 SNC AND NK RESULTS

Table 1 shows the results of our two proposed metrics, SNC and NK on the three datasets described
above. Each dataset includes a slightly different set of features, and displaying all features impairs
readability, so we report the average across all features. Full results are given in the appendix.

The SNC accuracy is substantially lower than that of the full MLP. This suggests that each gi is
represented more accurately by a distributed, non-linear entangled encoding across all neurons, rather
than just by zi. Although an MLP is a more powerful model, this should not help test set accuracy
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unless there is relevant information in the input that it can leverage, i.e., distributed entanglements.
The fact that MLP accuracy is much higher than SNC, suggests that such entanglements exist.

Distributed entanglements are also evidenced by the NK results. Here, there is often only a marginal
drop in accuracy after removing the neuron that was supposed to contain all the relevant information,
suggesting that much of the representation of gi is distributed over z̸=i. Consider, e.g., WeakDE on
Dsprites. SNC=5.8, meaning (roughly) that the neuron aligned to each factor predicts with 5.8%
accuracy, so all non-aligned neurons predict that factor with accuracy <5.8%. Yet NK=5.9, meaning
all these non-aligned neurons predict with 99.8-5.9 = 93.9% accuracy. (NK is the difference between
the full MLP and the MLP with the aligned neuron knocked out.) This is much higher even than the
sum of the accuracies for all of the seven non-aligned neurons, which would be < 7 ∗ 5.8 = 40.6%.
This constitutes a distributed entanglement: the MI for a set is high, while the MI for each individual
neuron is very low. Thus, Table 1 substantiates the argument Section 3.2 about the importance of
distributed entanglements. showing that they are not merely a theoretical possibility, but that they
also occur in practice.

5.2 DOWNSTREAM TASK: COMPOSITIONAL GENERALIZATION

Compositional generalization (CG) is the ability to combine familiar, learned concepts in novel
ways. Here, we quantify CG using the same method as Xu et al. (2022). That is, we test whether
the representations produced by a model can be used to correctly classify novel combinations of
familiar features. The CG ability of machine learning models has mostly been studied in the context
of language (Baroni, 2020). However, recently, a number of authors have observed the connection
between CG and DE Zheng and Lapata (2021); Montero et al. (2020; 2022); Esmaeili et al. (2019);
Zhang et al. (2022); Higgins et al. (2016). Disentangled models should be capable of performing
CG, because they can represent each component separately and independently, whereas if there is
entanglement between the different features, then the novel combination is out of distribution, and so
the model will likely struggle to classify it correctly. Following Xu et al. (2022), we (1) randomly
sample values for two features, e.g., shape and size, (2) form a test set of points with those two values
for those two features, e.g., all points with size=0 and shape=‘square’, and a train set of all other
points, (3) train the VAE (or supervised model) on the train set, (4) encode both the train and test sets,
(5) train and test an MLP to predict the generative factors from the encodings.

Table 2 shows results for the task of classifying novel combinations of familiar features. As well as
the models from Section 5.1, we also report results for MTD, a fully supervised method (Sha and
Lukasiewicz, 2021).

Dsprites 3dshapes mpi3d
shape size both shape size both shape size both

β-VAE CG 0.00 61.55 0.00 33.00 67.70 14.75 89.00 3.66 2.34
normal test set 82.35 66.24 89.44 96.30 96.90 99.85 90.53 77.44 91.29

βTCVAE CG 0.00 49.56 0.00 29.40 77.50 17.73 87.87 0.00 0.00
normal test set 82.32 66.22 86.21 96.50 96.80 99.89 89.22 72.91 83.47

FactorVAE CG 0.00 37.28 0.86 0.86 6.36 6.36 89.36 0.47 0.00
normal test set 80.85 65.08 77.05 89.50 95.70 98.09 89.52 73.94 88.59

PartedVAE CG 0.00 29.61 0.00 0.00 19.11 18.52 81.28 91.67 0.00
normal test set 58.33 63.83 70.65 93.50 95.90 96.24 72.36 91.67 65.49

PartedVAE-ss CG 0.00 31.83 0.00 0.00 30.33 30.33 72.30 0.00 0.00
normal test set 39.47 38.48 48.48 76.70 94.20 88.93 71.20 25.70 60.61

WeakDE CG 0.00 41.79 0.00 0.00 7.83 7.83 87.10 0.00 0.00
normal test set 74.66 65.58 79.01 96.50 96.90 99.81 82.90 50.79 83.36

MTD CG 0.00 0.03 0.00 0.00 0.50 0.00 23.30 0.00 0.00
normal test set 99.66 100.00 99.56 100.00 100.00 100.00 99.80 95.01 95.36

Table 2: MLP classification accuracy for novel combinations of familiar features, denoted ‘CG’ and ‘CG linear’
respectively, and classification accuracy when the test set is chosen randomly, denoted ‘normal test set’.
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Due to the huge number of feature value combinations, it is not feasible to test all of them in enough
detail to obtain reliable results. We restrict attention to shape and size, use five feature combinations
for Dsprites, six for MPI3D and eight for 3dshapes (details in appendix), and report the average. The
“normal test set” setting uses the same method except divides the train and test sets randomly. We
adjust for chance agreement as max(0, (a − r)/(1 − r)), where a is the model accuracy, and r is
the chance agreement. Even restricting our attention to a single combination of feature types, our
experimental results are already extensive involving ∼ 200 VAE models, and > 1000 classification
heads (see appendix). An empirical study of multiple feature types would require 10-100x more,
which would be a valuable future contribution, but is outside the scope of the present work.

The accuracy for identifying novel combinations of familiar features is generally low, often at the
level of random guessing (i.e., 0 after adjusting for chance agreement). This is even true for MTD, the
supervised model. In the ‘normal test set” setting, every model is capable of classifying the unseen
data accurately, which shows that it is the novelty of the combination that is degrading performance.

There is perhaps a danger that the MLP itself entangles the two features. For example, if yellow
circles are excluded then, when classifying shape, the MLP could learn that whenever the “colour”
neuron indicates “yellow”, it should place low probability mass on “circle”. We feel this is unlikely
to affect results significantly, as the relationship between the “size” neuron and the value of shape
would be highly irregular and present only for a small subset of data points. To make sure of this,
repeat the experiment using a linear classifier instead of an MLP, so this non-linear relationship could
not be learnt. The performance of the linear classifier is as low or lower, almost never above a random
baseline, which suggests the poor performance is not due to the MLP itself entangling the two factors.

There is a clear difference across datasets: results on Dsprites and MPI3D are essentially always at
the level of random guessing, whereas those on 3dshapes are more promising, reaching nearly 30%
(chance adjusted) for some models. PartedVae performs best, especially the semi-supervised variant,
though perhaps surprisingly, the other recent semi-supervised method, WeakDE, performs less well.

Some prior works have claimed their model can meaningfully represent novel combinations: Higgins
et al. (2016) display figures of reconstructed chairs with a round bottom for certain latent traversals
and Esmaeili et al. (2019) present reconstructions for MNIST digits with certain combinations of
digits and features (e.g., line thickness) excluded. Conflicting results were found by Montero et al.
(2020; 2022), who claimed that ability to represent novel combinations was unrelated to the degree of
DE. However, those prior works have mostly only examined the reconstructions by the decoder and
so do not provide sufficient evidence to make claims about the internal representation. Being able
to reconstruct an image accurately does not establish anything about the internal representation, it
could just be the result of learning the identity function. The key question is not what the decoder
reconstructs from the encoding or from a latent traversal or from a sampled latent vector, it is what
representation the encoder produces. Also, the experiment by Montero et al. (2020) attempted to
quantify CG performance as the decoder’s pixel loss, which has long been observed to be a poor
measure of the quality of a generated image Oprea et al. (2020); Higgins et al. (2016). Montero
et al. (2022) does manage to assess the encoder, but this is only a qualitative assessment, so cannot
determine quantitative correlation. On the other hand, classifying novel combinations, as we do,
following Xu et al. (2022), is both quantitative, and is able to assess the encoder rather than the
decoder. Unlike Higgins et al. (2016); Esmaeili et al. (2019), our experiments mostly show poor
performance of existing DE models at CG. They also differ from Montero et al. (2020), as they reveal
a correlation between DE and CG, with almost all metrics, and most strongly with our metrics.

5.3 OUR METRICS PREDICT COMPOSITIONAL GENERALIZATION

Table 3 shows the Pearson correlation of our metrics and existing metrics, computed from the
disentanglement_lib library, with CG performance. We restrict our metrics to just size and shape,
because they are the relevant features for this task. We also tried restricting existing metrics to these
two features only, without much change in results; see appendix. We show correlation on 3dshapes,
and across all datasets. There is no insight to be gained from the correlation on Dsprites only or
MPI3D only, since performance there is rarely above random, so all correlations will be essentially
zero. Although performance is generally low on CG, there is still enough variation to measure a
meaningful correlation. Some models (PVAE on 3dshapes) achieve up to 30% even after chance
adjusting, which is significantly higher than the random guessing of the lower-scoring models. A
good DE metric should distinguish between models at the higher and lower ends of this range.
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SNC NK MIG SAP IRS D C I DCI MED

3dshapes .849 .710 .800 .726 .668 .472 .819 .740 .717 .785
all datasets .850 .716 .571 .311 .106 .457 .414 .535 .493 .566

Table 3: Correlation of DE metrics with accuracy on novel combinations. Best in bold, second best underlined.

The first observation is that all metrics are at least weakly correlated with compositional generalization
performance, with some showing a moderate to strong correlation. This contradicts Montero et al.
(2020), who claimed to find no relationship between DE and CG. As argued in Section 5.2, our
method for measuring CG performance is more indicative of the encoding quality. Additionally, we
test six models, eight metrics and three datasets, whereas Montero et al. (2020) test only two models,
one metric and two datasets. Later, the same authors conduct a more thorough investigation of CG in
DE models Montero et al. (2022). They show that the encoder often maps CG test examples to the
wrong region of latent space, despite achieving high DCI score, and so conclude that DE does not
offer much benefit to CG performance. However, the discrepancy between DCI and CG can also be
explained by DCI overestimating DE, as in Theorem 3.1, and experimentally in Cao et al. (2022).
The conclusion that our work supports is that DE and CG are indeed closely related, but that this
relationship is obscured by the fact that, so far, DE has been overestimated by all existing metrics,
including DCI. That is, both DE and CG are low for all models, but they are correlated.

The consistent correlation between DE and CG evidenced by Table 3 also shows that there is more than
enough variance in the CG scores to obtain a meaningful correlation. If all models were essentially at
random guessing, correlation with any metric would be due only to chance, and we would expect
correlations close to zero, but this is not the case. There is clearly enough variation in the CG results
to identify a meaningful relationship to metric score, because the correlation is strong, far above
zero, for most metrics, and far above statistical significance (p < 0.01) for our metrics (calculation in
appendix). This further validates the suitability of CG as a downstream task to evaluate DE metrics.

SNC correlates more strongly than NK. This is expected, as SNC measures the extent to which
information about the generative factors is encoded in a disentangled way, whereas NK penalizes
representations that also encode information in a redundant, entangled way. NK is perhaps more
relevant than SNC to interpretability, where we want to know that a given factor is encoded by a single
neuron only, whereas SNC is more relevant for downstream performance. A similar comparison can
be made between the components of DCI: C and I measure the extent to which the information is
present in a disentangled way Thus, they are loosely analogous, in the context of DCI, to our SNC,
and, like SNC, are a better predictor of downstream performance than D.

6 DISCUSSION

Limitations and Future Work. One limitation of our work is the focus on only two features in
combination. Our experimental results are already extensive involving ∼ 200 VAE models, and >
1000 classification heads, but an interesting future work would be to perform the same analysis for a
different feature combination. This could investigate, for example, whether novel combinations of
simple features like (x, y) coordinates, are easier to recognize than novel size-shape combinations.
Another limitation is the applicability of our metrics only to strong DE. As we have argued, strong
DE and weak DE are fundamentally different objectives, and so we claim that they should be assessed
by different metrics. This implies that it is not possible to design a metric that works for both forms.
Instead, one could consider a modification of our metrics that work in the case of weak DE.

Conclusion. In this paper, we identified two common flaws in existing disentanglement metrics:
incorrect alignment of generative factors with neurons and conflating the importance of individual
neurons with that of sets of neurons, and showed how these problems occur in real-world examples.
We then introduced two new metrics, single-neuron classification and neuron knockout, which avoid
these problems. Next, we proposed the classification of novel combinations of familiar features as a
real-world downstream task against which to compare disentanglement metrics, and showed that our
metrics are strongly predictive of performance on this task, more strongly than existing metrics.
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A CALCULATIONS FROM THE EXAMPLES IN FIGURE 1

Here, we show the calculation of MIG, DCI, and SAP, as well as our metrics, from the example
of Table 1 in Section 3. We are interested in the change of these metrics when z1The others all,
incorrectly, decrease, while ours, correctly, increase.

MIG. Let g1 denote shape and g2 denote colour, and let H denote entropy and MI denote mutual
information. We then calculate the MIG for the model in Table 1 as follows. First, note that

MI(z2, g1) = MI(z2, g2) = 0 , (2)

because z2 is just noise. Then, assuming balanced classes, we have H(g1) = H(g2) = 1. As z1
encodes each to an accuracy of 75%, the conditional entropy is

−0.75 log(0.75)− (0.25) log 0.25 = 0.8113 ,

and so
MI(z1, g1) = MI(z1, g2) = 1− 0.8113 = 0.1887 .

The MIG, which is identical for both features, is then

MI(z1, g1)−MI(z2, g1) = MI(z1, g2)−MI(z2, g2) =

0.1887− 0 = 0.1887 .

Now, we calculate MIG for the second described model. Here,

MI(z1, g1) = MI(z1, g2) = 0.1887 ,

as above, and also MI(z2, g1) = 0 as above. Now, however,

MI(z2, g2) = 1− (−0.7 log(0.7)− (0.3) log 0.3) =

1− 0.8813 = 0.1187 ,

So, the MIG for g1 is the same as for the first model, but the MIG for g2 is

MI(z1, g2)−MI(z2, g2) = 0.1887− 0.1187 = 0.07 .

DCI. The I component is unchanged at 75%. To calculate D and C, we need some measure of
the importance or strength of the connection of each neuron to each feature. DCI usually measures
feature importance with a classifier, but of course we cannot train a classifier on a theoretical example.
The only information is the accuracy to which each neuron encodes each feature, and this provides
a reasonable way to quantify feature importance for this example. There are three obvious ways in
which one could use the given accuracies in our example to quantify feature importance: we could
use the accuracy values themselves, we could use the normalized accuracy values so that the random
noise neuron is measured as being of zero importance, and we could use the mutual information
scores (as used for MIG). The follow code excerpt computes D and C from the disentanglement_lib
implementation for each of these three choices. In all three, the average decreases, when it should
decrease.

from d c i i m p o r t d i s e n t a n g l e m e n t , c o m p l e t e n e s s
i m p o r t numpy as np

d e f p r i n t _ b e f o r e s _ a n d _ a f t e r s ( b , a ) :
bd = d i s e n t a n g l e m e n t ( b ) [ ’ avg ’ ]
ad = d i s e n t a n g l e m e n t ( a ) [ ’ avg ’ ]
bc = c o m p l e t e n e s s ( b ) [ ’ avg ’ ]
ac = c o m p l e t e n e s s ( a ) [ ’ avg ’ ]
bavg = ( bd+bc ) / 2
aavg = ( ad+ac ) / 2
p r i n t ( f ’ Be fo re : \ n{ bd } , { bc } , { bavg } ’ )
p r i n t ( f ’ A f t e r : \ n{ ad } , { ac } , { aavg } ’ )

p r i n t ( ’USING ACC AS IMPORTANCE’ )
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b = np . a r r a y ( [ [ . 7 5 , . 7 5 ] , [ . 5 , . 5 ] ] )
a = np . a r r a y ( [ [ . 7 5 , . 7 5 ] , [ . 5 , . 7 ] ] )
p r i n t _ b e f o r e s _ a n d _ a f t e r s ( b , a )

p r i n t ( ’USING NORMED ACC AS IMPORTANCE’ )
b = np . a r r a y ( [ [ . 5 , . 5 ] , [ . 0 , . 0 ] ] )
a = np . a r r a y ( [ [ . 5 , . 5 ] , [ . 0 , . 2 ] ] )
p r i n t _ b e f o r e s _ a n d _ a f t e r s ( b , a )

p r i n t ( ’USING MUTUAL INFO AS IMPORTANCE’ )
b = np . a r r a y ( [ [ . 1 8 8 7 , . 1 8 8 7 ] , [ . 0 , . 0 ] ] )
a = np . a r r a y ( [ [ . 1 8 8 7 , . 1 8 8 7 ] , [ . 0 , . 1 1 8 7 ] ] )
p r i n t _ b e f o r e s _ a n d _ a f t e r s ( b , a )
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SAP If we take the accuracy as roughly equal to the R2 coefficient, then the SAP score for both
factors before the change is 0.25, whereas after the change it is 0.25 for colour and 0.05 for shape, so
the average decreases to 0.15.

SNC and NK. Our SNC metric is the average of the two chance-adjusted accuracies, (0.5+0)/2 =
0.25. NK is the drop in chance-adjusted accuracy after removing the aligned neuron, which is equal
to 0.25 for colour and 0 for shape. In the variant where z1 encodes shape to an accuracy of 70%, SNC
becomes (0.5 + 0.4)/2 = 0.45, so correctly increases. NK is unchanged.

B HINTON DIAGRAMS FOR MISALIGNED FACTORS

Existing metrics simply assign each generative factor to the neuron that is most informative about it,
as measured by mutual information or the weight in a linear classifier. Section 3 showed an example
of this producing an incorrect alignment where multiple different factors are assigned to the same
neuron. Our method, in contrast, enforces that all assignments are unique. Here we show some further
examples of misalignments resulting from the method used by existing metrics.

The following Hinton diagrams show the size of the square at (i, j) is proportional to the mutual
information between factor j and neuron i.

Figure 2: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for β-VAE
on Dsprites. Existing metrics incorrectly align both factor 3 and factor 4 to neuron 7, our method
correctly aligns factor 3 to neuron 7 and factor 4 to neuron 3.
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Figure 3: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for β-VAE on
3dshapes. Existing metrics incorrectly align both factor 2 and factor 4 to neuron 5, our method
correctly aligns factor 2 to neuron 5 and factor 4 to neuron 1.

Figure 4: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for β-VAE on
MPI3D. Existing metrics incorrectly align both factor 5 and factor 6 to neuron 4, our method correctly
aligns factor 5 to neuron 0 and factor 6 to neuron 4.

Figure 5: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for β-TCVAE
on Dsprites. Existing metrics incorrectly align both factor 3 and factor 4 to neuron 6, our method
correctly aligns factor 3 to neuron 6 and factor 4 to neuron 8.
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Figure 6: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for β-TCVAE
on MPI3D. Existing metrics incorrectly align both factor 1 and factor 4 to neuron 3, our method
correctly aligns factor 1 to neuron 3 and factor 4 to neuron 7.

Figure 7: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for FactorVAE
on Dsprites. Existing metrics incorrectly align both factor 1 and factor 3 to neuron 8, our method
correctly aligns factor 1 to neuron 8 and factor 3 to neuron 7.

Figure 8: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for PartedVAE
on Dsprites. Existing metrics incorrectly align both factor 3 and factor 4 to neuron 3, our method
correctly aligns factor 3 to neuron 3 and factor 4 to neuron 2.
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Figure 9: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for WeakDE
on MPI3D. Existing metrics incorrectly align both factor 0 and factor 2 to neuron 5, our method
correctly aligns factor 0 to neuron 5 and factor 2 to neuron 1.

Figure 10: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for PartedVAE-
semisupervised on Dsprites. Existing metrics incorrectly align both factor 0 and factor 1 to neuron 0,
our method correctly aligns factor 0 to neuron 0 and factor 1 to neuron 7.

Figure 11: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for FactorVAE
on MPI3D. Existing metrics incorrectly align both factor 5 and factor 6 to neuron 7, our method
correctly aligns factor 5 to neuron 3 and factor 6 to neuron 7.
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Figure 12: Hinton diagram showing alignment of factors (y-axis) to neurons (x-axis) for WeakDE
on 3dshapes. Existing metrics incorrectly align both factor 0 and factor 1 to neuron 6, our method
correctly aligns factor 0 to neuron 6 and factor 1 to neuron 4.
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β-VAE β-TCVAE FactorVAE PartedVAE PartedVAE-ss weakde

Dsprites SNC 24.8 (3.20) 41.3 (3.00) 15.1 (1.78) 16.1 (4.54) 19.0 (4.80) 5.8 (0.75)
linear 46.2 (2.54) 49.5 (1.60) 30.8 (2.43) 36.0 (2.58) 26.3 (10.03) 28.6 (2.00)
MLP 89.4 (3.95) 86.2 (1.10) 77.1 (4.10) 70.7 (10.33) 48.5 (9.08) 99.8 (3.50)
NK 39.9 (1.11) 31.3 (4.10) 32.9 (1.45) 34.9 (4.23) 14.5 (8.17) 5.9 (1.17)

3dshapes SNC 19.9 (4.70) 20.1 (2.06) 16.9 (3.36) 43.8 (24.97) 68.3 (9.55) 15.4 (2.11)
linear 79.0 (1.60) 76.3 (3.47) 65.2 (4.74) 70.8 (6.73) 65.4 (11.40) 73.3 (18.17)
MLP 99.8 (3.50) 99.9 (2.50) 98.1 (7.24) 96.2 (6.83) 88.9 (14.53) 99.8 (0.68)
NK 8.0 (0.20) 8.1 (0.11) 16.8 (2.94) 60.2 (6.19) 41.8 (8.07) 2.5 (0.18)

MPI3D SNC 32.6 (5.63) 35.2 (4.43) 27.5 (3.63) 35.1 (3.29) 23.9 (1.77) 17.1 (0.39)
linear 51.3 (2.73) 52.1 (4.20) 46.9 (2.52) 49.4 (2.32) 43.0 (5.11) 46.2 (1.57)
MLP 91.3 (3.36) 83.5 (9.00) 88.6 (2.85) 65.5 (1.51) 60.6 (3.04) 83.4 (0.89)
NK 19.8 (0.39) 17.8 (10.82) 23.2 (0.41) 9.5 (1.64) 3.3 (7.11) 6.0 (0.14)

Table 4: Central tendency across five runs for our proposed metrics, SNC and NK, along with the
accuracy predicting each factor using an MLP on all neurons (MLP) and a linear classifier on all
neurons (linear). The best accuracy in each block is in bold.

C RESULTS WITH LINEAR CLASSIFIERS

Table 4 shows the results from 1 alongside the accuracy from a linear classifier, which aligns more
closely with the conception of disentanglement from Ridgeway and Mozer (2018).
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D PROOF OF THEOREM 1

Theorem D.1. As the number of neurons and factors in the representation increases, the D and
C components of DCI can, under a very broad class of feature importance measures, including
gradient-boosted trees, assign a score that is arbitrarily close to perfect, even though the model
is completely entangled in the sense that no neuron, by itself, contains any information about any
generative factor.

Proof. Let z0, . . . zm−1 be a set of neurons encoding factors g0, . . . , gn−1, with m ≥ n. Let
k0, . . . , kn−1 denote the number of different values of each feature, that is, gi can take on ki different
values, for each i. Assume WLOG that each neuron is normalized to the interval [0, 1]. This is
equivalent to any unnormalized representation via a simple scaling of weights in the output of the
encoder.

Let b(z, k) denote the value of binning z into k different bins:

b(z, k) = ⌊(zk)⌋ ,

and let c(z, k) denote the scaled remaining portion of z that does not contribute to its binned value:

c(z, k) = kz − b(z, k) .

Then, suppose that the representation function is as follows:

gi = b(zi, ki) + b(c(zj , kj), ki) mod ki , (3)

where j = i + 1 mod n. Intuitively, this means that we divide the significant bits of zi into two
portions, the first chunk of significant bits is used to compute b(zi, ki) and contributes towards gi, the
remaining chunk is used to compute c(zi, ki) and contributes towards gi−1 (where i− 1 is taken with
modulo arithmetic). For any values of g0, . . . , gn−1, such a representation exists, by setting

b(zi, ki) =gi − b(c(zj , kj) mod ki

c(zj , kj) =gi − b(c(zj , kj) mod ki .

and then computing a solution for the system of 2n linear equations 2n unknowns. Together b(zi, ki)
and c(zi, ki), along with ki, uniquely determined zi.

Clearly, ∀l ̸= i, j, I(zl; gi) = 0, where I denotes mutual information, because equation 3 does not
involve zl at all. We now show that, when gi is uniformly distributed, I(zi; gi) = I(zj ; gi) = 0 as
well, establishing that the representation is completely entangled in the sense that I(z; g) = for all
neurons z and factors g.

Remark D.2. There is currently interest in applying disentanglement to data where the values of each
feature are non-uniformly distributed, and we expect the following proof could be extended to cover
such cases. However, the present form is enough to show the flaw in DCI. As well as the non-uniform
case, a good metric should also of course be able to give the correct answer in the uniform case. In
other words, giving the correct answer in the uniform case is a necessary but not sufficient condition
for a good metric. We show that DCI fails in the uniform case, and so fails to be a good metric.

If gi is uniformly distributed on {0, . . . , ki−1}, then one solution to the system of equations is where
b(zi, ki) and b(c(zj , kj), ki) are also uniformly distributed. This follows from the fact that, on any
countable discrete group G, the convolution of two uniform probability measures is again uniform,
and the fact that addition of two random variables, as in equation 3, corresponds to a convolution, in
this case over the group of integers modulo ki. Thus, setting p(b(zi, ki) = b(c(zj , kj), ki) = U(ki),
gives, p(gi) = U(ki), where U(k) is the discrete uniform distribution on k elements. This gives the
following:

p(gi|zi = z) =p(b(zi, ki) = gi − b(kjc(z, kj), ki)) = U(k)∀z ∈ [0, 1]

p(gi|zj = z) =p(b(zi, ki) = gi − b(kjc(z, kj), ki)) = U(k)∀z ∈ [0, 1] ,

where the second equality in each line follows from the fact that b(kjc(z, kj), ki) is a constant
that doesn’t depend on gi, and that subtraction of a constant constitutes a bijection in the group of
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integers modulo ki. Therefore, the conditional distribution of gi given zi or zj is equal to the marginal
distribution of gi. In particular, the entropies are equal, giving zero mutual information:

I(gi; zi) =H(gi)−H(gi|zi) = U(ki)− U(ki) = 0

I(gi; zj) =H(gi)−H(gi|zj) = U(ki)− U(ki) = 0 .

This completes the first part of the proof. Now we must show that DCI assigns a high score to such a
representation. In principle, DCI can use any measure of feature importance, however the following
argument makes a very general assumption about the feature importance measure, which includes
all but pathological feature importance measures, and so covers all cases of practical interest. Let R
be the m× n matrix of feature importance, where Rji is the importance of neuron j in predicting
feature i. The assumption is that, if gi is uniquely defined by an equation that does not involve zj ,
and zj gives no indication as to the value of gi, then Rji = 0. We can formalize “gives no indication
as to the value of” as I(zj , gi) = 0 and, for any non-empty set of neurons z̄, I(gi; zj , z̄) = I(gi; z̄).
This means

R =


R1,1 0 0 . . . 0 0 R1,n−1

R2,1 R2,2 0 . . . 0 0 0
0 R3,2 R3,3 . . . 0 0 0
0 0 0 . . . Rn−2,n−3 Rn−2,n−2 0
0 0 0 . . . 0 Rn−1,n−2 Rn−1,n−1

 .

DCI normalizes feature importance across all features, Pj,i = Rj,i/
∑n−1

k=0 Rj,k. Assuming the
feature importances are not all zero for any feature, in which case DCI is undefined because of
zero-division, both D and C are equal to one minus the entropy of some distribution over n elements,
with either exactly one or exactly two elements given non-zero probability. The entropy of such a
distribution is maximized when both non-zero elements are equal to 1

2 , giving entropy

−
n∑

i=0

p(x) log p(x) = 2 logN 2 =
2

log n
.

Thus, D,C ≥ 1− 2/ log n and so

lim
n→∞

D = lim
n→∞

C = 1 .

This holds for all features individually, and so by symmetry, it holds on the weighted sum across all
features.

Remark D.3. We do not need very many neurons before the lower bound on both D and C becomes
significant. For only 16 neurons, D,C ≥ 0.5, for 64 neurons, D,C ≥ 0.67.
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E CORRELATIONS OF DIFFERENT VERSIONS OF EXISTING METRICS WITH
COMPOSITIONAL GENERALIZATION PERFORMANCE

As reported in Section 5.3, our metrics, restricted to the two novel feature types of size and shape,
are more predictive of performance on compositional generalization than are existing metrics. When
calculating the scores for other metrics, we took the average across all features. Table E shows the
correlation when restricting to just the features of shape and size. We show both the mean of these
two features and the product (as for our metrics) of these two features. Note that the D component
from DCI, and the IRS metric, are not computed feature-wise, so we cannot restrict it to just two
features. These alternative variants of existing metrics perform better in some cases and worse in
others. Overall, they are about equally predictive and, importantly, still all less predictive than our
metrics, especially the SNC metric.

all datasets 3dshapes

SNC 0.850 0.849
NK 0.716 0.710
MIG 0.571 0.800
MIG product of 2 0.570 0.640
MIG mean of 2 0.514 0.786
SAP 0.311 0.726
SAP product of 2 0.626 0.544
SAP mean of 2 0.453 0.625
IRS 0.106 0.668
D 0.457 0.472
C 0.414 0.819
C product of 2 0.288 0.681
C mean of 2 0.280 0.770
I 0.535 0.740
I product of 2 -0.052 0.605
I mean of 2 0.119 0.682
DCI 0.493 0.717

Table 5: Correlation (Pearson) of our metrics, and existing metrics, with accuracy on novel combina-
tions. Best results in bold, second best italicized.
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F STATISTICAL SIGNIFICANCE CALCULATION

Here, we show the statistical significance of the correlations from Table 3. For the ‘all datasets”
experiment, there are 6 methods on 3 datasets, so 18 data points, giving t-value

0.85
√
18− 2√

1− 0.852
≈ 6.45 ,

which gives a p-value < 1e-5.

For the ’3dshapes’ experiment, there are 6 methods on 1 datasets, so 6 data points, giving t-value

0.85
√
6− 2√

1− 0.852
≈ 3.23 ,

which gives a p-value < 0.033, so still significant at p < 0.05.

24



Under review as a conference paper at ICLR 2024

G RESULTS OF ALL METRICS

Table 6 shows the results of our metrics and existing metrics on the datasets and methods we test on,
averaged over five runs for Dsprites, eight for 3dshapes and six for MPI3D.

Dsprites 3dshapes mpi3d
betaH btcvae factor pvae pvae-ss weakde betaH btcvae factor pvae pvae-ss weakde betaH btcvae factor pvae pvae-ss weakde

SNC 6.954 8.302 6.400 3.310 4.339 0.678 8.354 7.494 5.747 12.369 23.674 10.328 2.830 2.718 2.573 6.054 0.990 0.143
NK 0.072 0.116 1.567 3.015 0.000 0.002 0.028 0.000 0.166 16.992 13.608 0.033 0.341 0.351 0.536 0.075 0.001 0.062
MIG2p 0.012 0.036 0.008 0.004 0.001 0.000 0.005 0.004 0.000 0.062 0.037 0.001 0.001 0.001 0.000 0.000 0.001 0.000
MIG 0.085 0.144 0.088 0.070 0.058 0.014 0.063 0.062 0.032 0.279 0.255 0.026 0.104 0.171 0.086 0.086 0.023 0.013
MIG2m 0.130 0.204 0.177 0.068 0.047 0.014 0.069 0.051 0.018 0.265 0.236 0.038 0.023 0.030 0.012 0.072 0.046 0.005
SAP 0.052 0.048 0.062 0.034 0.030 0.012 0.043 0.033 0.030 0.219 0.176 0.019 0.099 0.122 0.183 0.197 0.094 0.012
SAP2p 0.006 0.004 0.009 0.004 0.003 0.001 0.003 0.000 0.002 0.070 0.034 0.001 0.001 0.001 0.002 0.000 0.000 0.000
SAP2m 0.106 0.098 0.140 0.054 0.050 0.024 0.056 0.020 0.047 0.200 0.151 0.038 0.025 0.031 0.038 0.040 0.090 0.012
IRS 0.448 0.601 0.558 0.610 0.732 0.491 0.385 0.490 0.510 0.720 0.708 0.466 0.427 0.604 0.545 0.739 0.622 0.531
C2p 0.349 0.472 0.521 0.264 0.739 0.047 0.232 0.455 0.141 0.703 0.448 0.131 0.279 0.341 0.326 0.199 0.252 0.040
C2m 0.576 0.686 0.750 0.505 0.395 0.219 0.494 0.505 0.387 0.842 0.714 0.369 0.554 0.551 0.545 0.859 0.503 0.230
I2p 0.544 0.644 0.533 0.319 0.739 0.175 0.149 0.419 0.114 0.515 0.322 0.155 0.102 0.265 0.213 0.157 0.539 0.164
I2m 0.745 0.783 0.733 0.580 0.503 0.424 0.387 0.395 0.365 0.826 0.698 0.407 0.327 0.372 0.305 0.508 0.840 0.442
D 0.574 0.721 0.483 0.474 0.400 0.189 0.415 0.454 0.488 0.841 0.769 0.335 0.515 0.546 0.473 0.472 0.374 0.257
C 0.544 0.595 0.453 0.461 0.459 0.084 0.320 0.372 0.296 0.792 0.687 0.219 0.457 0.477 0.437 0.331 0.231 0.134
I 0.591 0.629 0.481 0.492 0.491 0.095 0.342 0.394 0.308 0.801 0.720 0.228 0.476 0.483 0.439 0.339 0.243 0.139
DCI 0.012 0.040 0.009 0.005 0.000 0.000 0.003 0.001 0.000 0.075 0.039 0.001 0.001 0.001 0.000 0.000 0.002 0.000
MED 0.068 0.113 0.071 0.050 0.042 0.008 0.048 0.044 0.029 0.231 0.213 0.026 0.071 0.147 0.076 0.079 0.020 0.013

Table 6: Results of existing metrics on the datasets and methods we test on. The suffix ‘2p’ and
‘2m’ indicate, respectively, the product and mean across the two features being compositionally
generalized, size and shape. When this suffix is absent, the figure is the mean across all features. Our
own metrics, SNC and NK, are shown as the product across size and shape, because those are the
figures used to calculate the correlation as reported in the main paper.

H FULL RESULTS

Each of the following tables shows all results for a particular dataset and method combination. That is,
each table shows results for single-neuron classification (SNC), neuron knockout (NK1 and NK2) and
recognition of novel combinations of familiar features (NCFF) under the various settings described in
the main paper.

For the compositional generalization settings, we indicate the values of two features excluded. Recall
that we always exclude a combination of size and shape. So, for example “NC 3-2” means that the
disentanglement model and the classifer trained on top of it, used a train set that excluded exactly
those data points with size 3 and shape 2 (under some arbitrary ordering of the values of shape, e.g.
0=square, 1=circle, 2=crescent).

For all settings, we report the results for all features (where measured). The feature lists for each data
set are as follows:

• Dsprites: x-position (x), y-position (y), object size (size), object orientation (orient), and
object shape (shape)

• 3dshapes: floor colour (floor h), wall colour (wall h), object size (size), camera azimuth
(orient), object shape (shape), and object colour (object h)

• MPI3D: azimuth of robot arm (hor), altitude of robot arm (vert), size of object (size), colour
of object (obj h), shape of object (shape), height of camera above the object (cam he), and
background colour (bg h)

We also report the accuracy on both of the novel features, i.e. the fraction of the points for which the
classifier correctly predicted both size and shape. This is shown in the “NC” column.
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x y size orient shape NC

Normal Test set 0 SNC 40.78 46.84 44.80 7.34 52.17 23.17
linear 70.11 72.09 48.02 7.24 44.31 17.55
NK1 17.59 20.80 48.83 50.04 98.87 -
MLP 89.63 92.87 99.04 65.54 99.64 98.83

Normal Test set 1 SNC 29.74 32.44 45.90 7.17 49.99 23.52
linear 57.68 62.44 50.26 9.12 46.75 20.06
NK1 17.43 21.17 48.97 50.10 99.17 -
MLP 91.22 92.46 99.22 66.79 99.53 98.86

Normal Test set 2 SNC 31.58 28.61 32.82 8.02 47.69 16.25
linear 61.54 62.28 42.46 7.33 41.20 16.44
NK1 17.26 18.61 74.60 45.49 99.21 -
MLP 90.43 91.39 98.92 65.73 99.78 98.79

Normal Test set 3 SNC 31.49 28.75 45.15 6.61 48.19 25.62
linear 68.12 71.43 44.93 7.99 53.61 24.95
NK1 23.67 23.21 47.74 46.00 99.46 -
MLP 94.07 94.23 98.88 67.51 99.87 98.78

Normal Test set 4 SNC 38.37 43.16 31.20 7.49 51.50 16.36
linear 59.68 57.23 50.29 6.09 53.58 20.61
NK1 20.02 19.29 80.06 52.03 99.52 -
MLP 89.92 89.44 99.02 61.74 99.07 98.38

Table 7: Full results of β-VAE on Dsprites for the main and normal test set settings.

x y size orient shape zs

normal test set 0 SNC 76.85 75.00 44.44 13.89 52.67 23.92
linear 47.59 49.17 54.77 11.84 84.57 48.70
NK1 23.98 28.35 69.64 23.71 99.05 -
MLP 80.65 79.30 98.92 43.05 98.94 98.48

normal test set 1 SNC 75.33 74.54 44.47 12.02 52.51 22.30
linear 59.16 60.37 46.89 14.22 73.57 33.34
NK1 26.26 27.84 84.47 50.73 99.99 -
MLP 81.46 85.46 98.73 80.30 99.99 98.73

normal test set 2 SNC 58.51 65.02 44.59 10.37 49.79 18.20
linear 73.12 55.32 44.70 10.66 65.07 31.50
NK1 36.64 36.20 73.92 29.06 94.66 -
MLP 79.52 81.48 98.99 60.69 98.93 98.59

normal test set 3 SNC 74.07 76.21 44.40 9.30 45.48 19.92
linear 59.95 51.65 45.22 8.39 68.82 31.01
NK1 24.42 35.19 79.75 53.27 99.24 -
MLP 82.82 90.03 99.31 76.45 99.97 99.29

normal test set 4 SNC 76.66 51.64 44.21 12.28 49.30 20.82
linear 59.30 75.21 43.98 9.03 66.13 28.84
NK1 23.53 38.40 80.50 33.70 99.96 -
MLP 81.54 87.05 98.97 72.86 99.96 98.95

Table 8: Full results of β-TCVAE on Dsprites for the main and normal test set settings.
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x y size orient shape NC

Normal Test set 0 SNC 11.28 17.09 45.07 4.49 43.69 18.85
linear 31.39 29.82 49.05 4.66 46.28 20.45
NK1 41.93 22.33 33.99 19.36 93.18 -
MLP 76.29 77.66 97.36 33.98 98.58 96.29

Normal Test set 1 SNC 10.81 7.93 46.25 3.96 46.74 22.18
linear 20.26 21.70 49.82 3.89 43.93 22.90
NK1 22.60 40.56 35.44 18.87 93.65 -
MLP 74.98 74.87 96.95 32.41 97.45 95.15

Normal Test set 2 SNC 11.81 17.05 47.09 4.13 43.17 20.49
linear 5.53 27.45 49.76 6.27 53.39 27.48
NK1 44.08 42.64 39.35 23.61 94.90 -
MLP 78.16 78.72 98.43 42.24 98.96 97.72

Normal Test set 3 SNC 16.38 17.62 48.49 5.78 47.36 22.66
linear 31.39 32.27 52.65 3.97 46.45 24.15
NK1 25.68 20.32 34.40 18.53 95.26 -
MLP 76.09 77.75 97.86 36.38 98.55 96.82

Normal Test set 4 SNC 7.60 9.13 48.08 3.38 44.32 21.36
linear 29.74 25.99 51.36 4.30 48.41 27.40
NK1 44.79 46.11 37.80 23.25 92.10 -
MLP 74.00 75.37 97.00 37.73 98.55 96.03

Table 9: Full results of FactorVAE on Dsprites for the main and normal test set settings.

x y size orient shape NC

Normal Test set 0 SNC 47.10 12.54 27.42 9.11 43.62 13.83
linear 42.23 48.93 42.88 8.64 52.07 22.91
NK1 5.90 56.56 48.59 7.91 75.46 -
MLP 72.14 68.87 75.58 32.03 95.87 73.99

Normal Test set 1 SNC 13.76 8.47 29.44 7.54 40.12 11.44
linear 31.00 36.90 33.00 7.50 49.71 15.37
NK1 10.05 37.85 67.24 9.31 80.02 -
MLP 72.75 74.11 57.29 29.83 97.91 56.84

Normal Test set 2 SNC 10.13 6.04 33.26 8.11 53.70 16.78
linear 30.84 31.57 39.80 11.07 60.01 23.97
NK1 9.97 5.95 33.05 8.07 54.04 16.67
MLP 70.26 74.17 78.93 55.02 98.96 78.51

Normal Test set 3 SNC 13.31 48.36 43.50 4.87 38.62 17.35
linear 52.68 41.83 42.51 4.26 46.01 17.42
NK1 56.76 5.44 43.97 7.50 85.22 -
MLP 66.55 75.06 74.94 20.91 94.07 72.75

Normal Test set 4 SNC 42.76 15.96 31.59 8.10 46.75 14.95
linear 37.48 46.10 46.31 11.65 45.52 20.31
NK1 6.37 29.60 59.92 9.25 80.02 -
MLP 70.27 73.46 88.22 50.11 98.99 87.70

Table 10: Full results of PartedVAE on Dsprites for the main and normal test set settings.
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x y size orient shape NC

Normal Test set 0 SNC 19.43 39.12 46.53 5.94 39.56 -
linear 40.02 36.01 47.00 3.24 43.69 20.85
NK1 23.91 10.08 42.01 4.63 72.54 -
MLP 71.62 71.87 68.06 3.58 64.98 50.67

Normal Test set 1 SNC 19.43 39.12 46.53 5.94 39.56 18.11
linear 3.11 3.11 16.78 2.48 33.27 5.56
NK1 23.91 10.08 42.01 4.63 72.54 -
MLP 3.14 3.11 16.52 2.46 33.39 5.43

Normal Test set 2 SNC 19.43 39.12 46.53 5.94 39.56 18.11
linear 34.37 38.18 44.65 6.63 46.61 23.49
NK1 9.70 47.66 47.17 7.46 72.25 -
MLP 63.27 70.20 61.73 13.32 88.56 58.16

Normal Test set 3 SNC 7.94 4.48 29.43 9.32 48.59 14.17
linear 7.86 4.40 29.43 9.52 48.59 14.17
NK1 9.70 47.66 47.17 7.46 72.25 -
MLP 16.77 67.65 57.61 15.13 81.59 -

Normal Test set 4 SNC 43.74 21.89 37.34 7.95 48.38 15.66
linear 43.56 22.18 37.34 7.89 48.38 15.66
NK1 5.48 30.74 51.88 5.21 80.36 -
MLP 71.56 72.21 76.74 26.32 90.54 72.10

Table 11: Full results of PartedVAE-semisupervised on Dsprites for the main and normal test set
settings.

x y size orient shape NC

Normal Test set 0 SNC 7.51 8.11 29.11 3.04 37.47 11.79
linear 37.30 42.80 48.32 3.51 42.66 18.55
NK1 71.77 67.55 77.71 39.14 98.89 -
MLP 81.40 82.05 92.76 46.80 99.07 92.13

Normal Test set 1 SNC 8.14 8.15 22.10 3.07 37.62 8.61
linear 39.39 38.30 28.17 3.53 40.74 10.64
NK1 66.54 66.77 79.80 39.02 98.79 -
MLP 80.93 80.02 87.71 44.05 98.93 87.01

Normal Test set 2 SNC 8.35 7.53 24.05 3.25 37.67 9.12
linear 41.35 41.21 44.33 3.47 42.61 18.22
NK1 64.68 71.90 83.36 40.52 98.92 -
MLP 82.55 82.89 94.37 47.91 98.73 93.49

Normal Test set 3 SNC 8.61 7.80 26.70 3.22 38.92 10.73
linear 38.94 38.46 43.26 3.87 43.54 17.74
NK1 67.53 71.59 80.87 40.75 98.92 -
MLP 82.14 83.36 92.53 48.07 98.97 91.87

Normal Test set 4 SNC 7.28 6.28 21.78 3.18 38.30 8.30
linear 38.70 41.32 35.41 3.10 42.46 13.88
NK1 71.17 73.76 81.51 39.35 98.89 -
MLP 81.78 82.90 89.26 47.07 98.87 88.51

Table 12: Full results of WeakDE on Dsprites for the main and normal test set settings.

28



Under review as a conference paper at ICLR 2024

floor h wall h size orient shape obj h NC

Normal Test set 0 SNC 20.23 22.98 35.49 24.63 36.73 20.61 12.85
linear 99.06 99.25 55.55 87.31 35.56 99.03 13.93
NK1 98.92 97.14 87.62 42.19 99.91 99.10 -
MLP 100.00 100.00 100.00 99.92 100.00 100.00 100.00

Normal Test set 1 SNC 21.86 16.99 16.37 15.77 41.45 17.30 7.11
linear 99.00 99.12 15.72 96.39 64.16 99.05 8.39
NK1 96.53 98.18 94.16 70.73 98.91 99.00 -
MLP 100.00 100.00 97.34 100.00 100.00 100.00 99.74

Normal Test set 2 SNC 29.08 18.93 28.50 12.61 36.68 18.54 10.97
linear 99.28 98.94 66.14 31.35 79.27 99.10 55.60
NK1 95.52 98.28 93.71 81.05 99.40 99.11 -
MLP 100.00 100.00 99.63 99.68 100.00 100.00 99.63

Normal Test set 3 SNC 25.06 18.19 36.35 19.88 35.68 21.74 14.70
linear 99.19 99.34 44.92 88.59 53.89 99.00 26.22
NK1 98.58 98.92 84.52 75.17 99.99 99.39 -
MLP 100.00 100.00 99.98 99.97 99.99 99.99 99.97

Normal Test set 4 SNC 22.60 19.65 25.16 65.74 35.74 21.88 9.35
linear 99.30 98.80 46.12 83.24 36.65 99.01 13.09
NK1 96.60 98.85 96.51 58.67 99.13 99.21 -
MLP 100.00 100.00 100.00 98.87 100.00 100.00 100.00

Table 13: Full results of β-VAE on 3dshapes for the main and normal test set settings.

floor h wall h size orient shape obj h NC

Normal Test set 0 SNC 31.69 20.30 36.03 20.79 39.68 21.05 14.58
linear 99.13 99.08 59.18 82.33 29.42 99.03 17.38
NK1 85.91 95.27 92.73 65.54 99.37 97.91 -
MLP 100.00 100.00 98.76 99.98 99.81 100.00 98.51

Normal Test set 1 SNC 27.81 19.87 21.44 25.79 39.33 25.51 9.74
linear 98.83 98.75 31.02 83.30 37.69 98.96 10.72
NK1 88.46 98.28 92.15 75.89 99.19 99.40 -
MLP 100.00 100.00 99.72 99.98 100.00 100.00 99.72

Normal Test set 2 SNC 21.71 18.87 28.32 43.90 34.91 20.41 12.09
linear 98.87 99.10 31.58 73.53 35.15 99.00 9.22
NK1 97.43 98.97 94.61 72.15 98.87 98.85 -
MLP 100.00 100.00 100.00 99.03 100.00 100.00 100.00

Normal Test set 3 SNC 20.46 19.47 17.74 19.26 35.79 28.23 6.16
linear 98.94 - 17.01 83.20 67.16 98.97 10.27
NK1 98.68 97.62 95.41 79.64 99.40 98.71 -
MLP 100.00 100.00 99.71 99.99 100.00 100.00 99.71

Normal Test set 4 SNC 24.25 18.61 22.31 20.17 42.96 20.95 10.65
linear 98.96 99.06 18.62 83.30 70.90 99.03 12.27
NK1 93.09 95.87 99.13 47.21 99.84 97.66 -
MLP 100.00 100.00 99.99 99.85 100.00 100.00 99.99

Table 14: Full results of β-TCVAE on 3dshapes for the main and normal test set settings.
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floor h wall h size orient shape obj h NC

Normal Test set 0 SNC 30.63 23.69 31.55 15.74 31.90 12.77 10.63
linear 98.94 98.97 38.43 38.27 31.99 74.98 11.52
NK1 83.37 89.94 79.34 67.52 98.39 94.20 -
MLP 100.00 99.54 67.03 98.46 98.90 98.99 66.20

Normal Test set 1 SNC 23.26 14.53 24.64 10.35 33.13 17.75 8.01
linear 96.79 99.02 18.76 57.48 54.74 86.12 9.14
NK1 87.50 91.06 94.80 64.25 99.03 94.86 -
MLP 100.00 100.00 98.95 99.25 98.86 99.19 97.82

Normal Test set 2 SNC 21.50 20.55 23.11 15.92 26.72 18.10 6.63
linear 99.03 99.04 37.24 49.19 36.76 90.54 10.63
NK1 83.37 89.94 79.34 67.52 98.39 94.20 -
MLP 100.00 100.00 99.02 99.30 99.91 99.99 98.93

Normal Test set 3 SNC 24.16 41.23 17.53 18.93 41.61 23.83 7.54
linear 99.08 99.09 17.62 52.32 50.72 76.24 8.70
NK1 70.51 77.89 73.82 43.53 91.63 94.80 -
MLP 100.00 99.99 99.04 94.05 97.18 99.27 96.33

Normal Test set 4 SNC 21.65 20.46 21.08 15.24 31.19 23.95 6.46
linear 95.49 93.47 18.97 31.85 38.35 75.64 5.68
NK1 53.05 67.19 97.95 49.33 89.71 73.08 -
MLP 100.00 99.49 98.94 99.21 99.03 99.06 97.99

Table 15: Full results of FactorVAE on 3dshapes for the main and normal test set settings.

floor h wall h size orient shape obj h NC

Normal Test set 0 SNC 99.86 37.53 38.02 99.53 93.45 82.14 35.10
linear 89.72 96.97 17.46 78.20 82.05 82.20 13.72
NK1 26.44 94.22 18.01 8.04 13.02 61.88 -
MLP 99.07 98.86 90.97 99.07 99.03 98.94 90.13

Normal Test set 1 SNC 7.50 6.68 30.74 8.29 44.40 13.48 -
linear 99.04 90.69 33.07 15.41 89.03 98.97 30.04
NK1 14.24 90.43 20.57 9.57 17.77 56.55 -
MLP 98.86 99.37 98.94 95.95 99.12 99.70 98.07

Normal Test set 2 SNC 9.97 5.95 33.05 8.07 54.04 16.67 -
linear 91.98 90.53 50.64 9.16 79.54 42.59 40.33
NK1 10.40 45.82 80.42 6.82 15.06 56.19 -
MLP 98.87 99.04 96.26 30.39 98.95 98.84 95.29

Normal Test set 3 SNC 30.85 31.22 28.99 99.52 66.82 34.19 19.56
linear 97.81 94.28 28.81 76.05 87.90 57.23 25.61
NK1 10.40 45.82 80.42 6.82 15.06 56.19 -
MLP 98.98 98.34 98.12 99.29 99.11 99.05 97.32

Normal Test set 4 SNC 99.88 47.20 55.89 99.34 97.51 67.04 54.05
linear 96.44 95.66 22.61 77.58 92.48 58.63 20.56
NK1 26.44 94.22 18.01 8.04 13.02 61.88 -
MLP 98.93 99.10 98.98 99.05 99.01 99.07 97.99

Table 16: Full results of PartedVAE on 3dshapes for the main and normal test set settings.
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floor h wall h size orient shape obj h NC

Normal Test set 0 SNC 90.16 99.79 27.72 87.55 96.70 43.88 25.92
linear 61.00 62.00 41.00 8.00 99.00 51.00 40.00
NK1 99.98 15.74 28.94 15.21 21.65 51.11 -
MLP 99.97 99.33 79.00 94.17 93.03 98.61 75.68

Normal Test set 1 SNC 99.89 99.78 68.99 18.86 94.32 95.50 64.38
linear 81.55 86.23 82.90 44.33 98.64 78.13 82.02
NK1 26.95 35.40 46.68 47.05 81.65 38.12 -
MLP 99.41 99.29 98.98 58.70 99.20 99.09 98.26

Normal Test set 2 SNC 99.82 92.48 28.06 54.41 96.78 87.30 27.06
linear 91.99 82.74 38.46 50.64 98.75 82.02 37.57
NK1 27.60 66.39 79.25 25.12 75.34 36.68 -
MLP 99.45 99.15 83.86 77.90 99.50 99.05 83.42

Normal Test set 3 SNC 53.39 97.57 27.78 20.63 81.10 86.31 23.05
linear 98.94 85.54 27.05 8.22 85.31 82.89 22.84
NK1 98.96 49.49 50.40 22.36 90.80 29.90 -
MLP 99.01 99.23 83.17 44.09 99.01 98.93 82.56

Normal Test set 4 SNC 98.91 99.48 17.40 8.05 47.32 86.12 6.76
linear 69.56 81.85 32.41 13.94 62.67 75.35 19.28
NK1 28.90 27.48 51.00 16.60 93.09 35.97 -
MLP 99.05 98.99 54.16 19.93 96.11 98.41 52.52

Table 17: Full results of PartedVAE-semisupervised on 3dshapes for the main and normal test set
settings.

floor h wall h size orient shape obj h NC

Normal Test set 0 SNC 19.50 22.68 17.03 9.62 27.94 19.02 4.98
linear 99.22 99.31 13.61 15.92 35.06 99.02 4.77
NK1 98.97 99.05 88.36 98.51 99.02 98.87 -
MLP 100.00 100.00 99.92 99.18 100.00 100.00 99.92

Normal Test set 1 SNC 22.14 23.58 17.98 9.43 50.12 19.52 9.04
linear 98.80 98.96 32.86 23.15 70.65 96.92 23.18
NK1 98.25 98.94 95.03 91.48 99.09 98.47 -
MLP 100.00 100.00 98.90 98.61 99.97 99.92 98.87

Normal Test set 2 SNC 15.70 23.55 18.35 8.41 31.98 28.50 6.16
linear 99.10 99.24 15.56 19.52 36.15 98.96 6.76
NK1 98.98 99.17 88.31 97.94 98.94 98.98 -
MLP 100.00 100.00 99.46 99.74 100.00 100.00 99.46

Normal Test set 3 SNC 17.46 20.01 18.14 13.83 38.22 20.15 6.92
linear 99.18 99.31 28.04 90.54 45.35 99.02 10.36
NK1 98.89 99.05 98.88 88.39 99.36 98.62 -
MLP 100.00 100.00 99.74 99.24 100.00 100.00 99.74

Normal Test set 4 SNC 18.07 16.72 21.09 13.43 54.16 17.62 11.16
linear 99.59 99.26 97.40 90.49 99.48 99.29 96.89
NK1 98.97 99.32 98.80 95.86 99.21 99.05 -
MLP 100.00 100.00 99.99 99.78 100.00 100.00 99.99

Table 18: Full results of WeakDE on 3dshapes for the main and normal test set settings.
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hor vert size obj h shape cam he bg h NC

Normal Test set 0 SNC 5.30 5.24 66.06 73.80 26.15 94.84 54.61 17.39
linear 17.63 11.68 77.79 76.17 36.94 99.71 48.30 28.21
NK1 66.18 40.06 92.69 70.65 74.81 88.90 50.87 -
MLP 86.51 70.23 98.92 99.82 88.28 100.00 99.99 87.61

Normal Test set 1 SNC 6.26 4.45 66.69 78.82 27.08 74.31 52.44 18.36
linear 16.87 9.24 76.29 88.91 34.92 100.00 45.30 25.93
NK1 59.51 40.68 91.87 69.46 71.61 91.04 70.78 -
MLP 86.01 66.49 98.96 99.90 87.26 100.00 99.83 86.56

Normal Test set 2 SNC 5.92 5.63 59.77 57.65 23.22 87.11 36.20 14.21
linear 15.54 14.62 71.78 73.45 34.85 99.89 36.64 24.08
NK1 60.73 37.18 94.33 84.45 68.74 85.02 79.00 -
MLP 85.17 68.24 98.68 99.58 84.47 100.00 99.99 83.71

Normal Test set 3 SNC 5.77 4.95 62.93 72.61 27.47 73.22 55.50 17.16
linear 15.54 14.62 71.78 73.45 34.85 99.89 36.64 24.08
NK1 59.92 40.15 93.69 76.82 69.83 95.18 58.62 -
MLP 87.32 67.92 98.90 99.74 84.63 100.00 100.00 83.94

Normal Test set 4 SNC 6.25 4.59 56.47 62.55 27.04 58.91 40.52 15.17
linear 14.15 8.50 64.75 97.15 33.86 99.08 44.15 21.45
NK1 62.05 40.96 94.50 81.50 68.85 97.42 73.09 -
MLP 86.68 68.55 98.88 99.86 84.24 100.00 99.99 83.54

Table 19: Full results of β-VAE on MPI3D for the main and normal test set settings.

hor vert size obj h shape cam he bg h NC

Normal Test set 0 SNC 5.13 4.14 65.64 70.81 23.31 67.86 55.50 14.34
linear 13.54 10.34 75.53 70.25 32.45 99.84 40.92 23.82
NK1 56.75 40.24 92.83 80.80 66.90 91.88 46.96 -
MLP 85.59 66.92 98.79 99.44 86.87 100.00 100.00 86.06

Normal Test set 1 SNC 5.91 5.60 69.62 71.87 27.90 67.77 55.60 18.94
linear 17.20 12.70 76.87 75.50 35.48 100.00 46.89 26.01
NK1 56.99 40.43 92.79 80.58 66.93 91.78 46.76 -
MLP 86.95 67.02 98.92 99.73 86.77 100.00 100.00 86.10

Normal Test set 2 SNC 6.80 4.53 57.17 39.40 24.66 77.33 99.99 13.77
linear 15.48 9.25 65.72 43.77 31.83 99.54 100.00 20.39
NK1 58.99 40.16 95.22 74.86 65.18 86.65 35.03 -
MLP 86.18 65.38 97.93 99.38 81.62 100.00 0.00 80.38

Normal Test set 3 SNC 6.25 5.40 59.49 75.47 26.99 76.81 99.99 16.53
linear 13.13 7.52 66.07 74.07 34.60 99.90 99.99 22.44
NK1 64.93 40.40 93.30 74.53 66.91 84.87 35.26 -
MLP 87.72 69.01 98.36 99.92 82.72 100.00 0.00 81.69

Normal Test set 4 SNC 5.82 4.47 64.64 77.51 23.02 68.20 55.64 14.48
linear 15.39 9.03 70.90 76.98 34.63 99.55 48.02 23.89
NK1 45.27 29.36 88.51 74.28 56.42 89.65 45.42 -
MLP 67.18 48.54 93.79 98.46 68.25 100.00 99.90 65.03

Table 20: Full results of β-TCVAE on MPI3D for the main and normal test set settings.
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hor vert size obj h shape cam he bg h NC

Normal Test set 0 SNC 6.14 4.98 64.12 40.64 24.57 68.75 46.87 15.79
linear 12.66 8.85 63.69 52.95 36.11 99.10 36.79 23.72
NK1 47.85 29.58 89.10 74.60 63.35 81.47 59.91 -
MLP 77.95 59.73 97.43 98.88 80.46 100.00 99.83 78.84

Normal Test set 1 SNC 5.15 4.48 56.76 69.91 26.81 75.57 52.86 15.10
linear 6.30 9.78 61.18 76.65 35.10 99.33 35.35 21.39
NK1 54.76 32.60 91.11 66.24 65.88 80.98 62.50 -
MLP 80.17 62.57 98.12 99.51 83.14 100.00 99.88 82.00

Normal Test set 2 SNC 5.23 4.63 64.89 34.89 26.00 70.51 50.20 16.53
linear 15.99 10.08 75.54 46.83 41.87 99.68 45.27 31.97
NK1 51.14 33.54 89.47 75.24 69.38 81.07 58.45 -
MLP 79.81 60.92 98.25 98.73 84.47 100.00 99.79 83.31

Normal Test set 3 SNC 6.17 4.47 61.02 35.92 24.58 74.69 38.31 15.23
linear 11.41 9.66 69.75 77.15 39.51 98.97 38.68 27.03
NK1 51.61 34.31 90.53 77.10 66.95 85.15 78.39 -
MLP 81.20 62.05 97.99 99.09 82.61 100.00 99.13 81.28

Normal Test set 4 SNC 6.06 4.18 61.39 47.24 27.46 67.78 55.04 17.39
linear 13.21 8.51 65.71 57.53 36.77 99.11 46.84 24.16
NK1 52.83 32.99 90.80 70.03 61.81 84.48 53.82 -
MLP 80.62 61.44 97.49 98.91 80.69 100.00 99.98 79.16

Table 21: Full results of FactorVAE on MPI3D for the main and normal test set settings.

hor vert size obj h shape cam he bg h NC

Normal Test set 0 SNC 10.13 6.90 59.61 20.70 85.20 79.62 21.03 50.95
linear 13.61 5.03 74.11 30.09 100.00 99.84 28.68 19.89
NK1 18.90 8.51 74.45 76.52 100.00 92.26 32.14 -
MLP 38.36 26.28 81.37 93.46 100.00 99.97 37.50 31.20

Normal Test set 1 SNC 9.03 6.75 59.86 23.50 99.46 89.06 21.09 59.42
linear 13.81 4.39 72.60 30.92 100.00 98.54 28.38 19.38
NK1 16.40 6.67 76.40 71.57 100.00 94.37 31.05 -
MLP 35.75 23.08 81.95 88.11 100.00 99.87 35.97 30.19

Normal Test set 2 SNC 7.51 4.23 69.29 20.73 95.12 89.54 21.89 65.55
linear 12.42 4.52 75.20 32.37 100.00 98.98 28.73 19.95
NK1 15.15 9.09 73.99 72.14 100.00 83.84 29.93 -
MLP 32.55 21.78 79.78 84.59 100.00 99.80 34.82 28.86

Normal Test set 3 SNC 8.16 5.18 66.09 23.87 99.91 99.97 21.12 66.01
linear 11.58 5.26 73.16 34.27 100.00 99.40 27.87 19.20
NK1 15.15 9.09 73.99 72.14 100.00 83.84 29.93 -
MLP 29.91 21.00 80.05 86.00 100.00 99.99 33.08 26.50

Normal Test set 4 SNC 7.27 4.43 72.89 21.18 99.93 66.75 24.29 72.84
linear 12.72 5.04 74.30 32.78 100.00 70.82 29.77 21.37
NK1 14.64 7.27 77.84 84.96 100.00 74.73 31.71 -
MLP 32.78 24.02 80.31 91.45 100.00 84.24 34.44 28.60

Table 22: Full results of PartedVAE on MPI3D for the main and normal test set settings.
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hor vert size obj h shape cam he bg h NC

Normal Test set 0 SNC 6.72 3.87 59.61 22.89 19.24 86.08 34.16 11.75
linear 11.16 5.91 63.43 33.39 24.05 99.19 35.72 14.95
NK1 23.80 16.78 74.27 71.11 31.55 100.00 50.64 -
MLP 25.23 16.15 74.58 72.87 31.49 100.00 51.22 23.16

Normal Test set 1 SNC 5.11 4.01 64.20 26.78 18.82 77.92 53.51 11.86
linear 13.61 5.10 71.16 38.57 26.76 99.79 56.38 17.84
NK1 25.79 12.96 79.32 84.73 33.45 100.00 60.71 -
MLP 29.60 18.78 79.98 86.22 33.07 100.00 62.59 26.30

Normal Test set 2 SNC 5.54 5.45 67.48 31.15 19.64 58.11 56.64 13.64
linear 11.16 7.16 72.97 35.26 26.55 99.59 50.12 18.07
NK1 27.81 19.01 80.15 68.04 34.17 99.89 89.02 -
MLP 31.35 22.00 81.21 91.17 35.05 99.88 99.15 28.98

Normal Test set 3 SNC 7.27 4.43 69.31 22.95 20.91 75.50 47.48 14.97
linear 13.15 6.35 74.10 32.70 29.05 100.00 84.06 20.00
NK1 26.60 16.82 80.10 70.85 36.12 100.00 98.94 -
MLP 34.88 21.69 81.56 97.47 36.37 100.00 98.93 30.72

Normal Test set 4 SNC 7.50 4.95 57.62 28.21 19.86 79.57 35.90 11.41
linear 11.22 5.62 67.17 30.98 26.43 99.64 38.44 16.83
NK1 27.89 15.32 80.01 80.55 33.47 100.00 54.95 -
MLP 31.72 20.49 80.47 87.28 33.94 100.00 54.83 27.71

Table 23: Full results of PartedVAE-semisupervised on MPI3D for the main and normal test set
settings.

hor vert size obj h shape cam he bg h NC

Normal Test set 0 SNC 0.57 3.84 52.53 20.78 18.40 71.63 35.50 9.66
linear 15.81 17.02 58.85 33.60 25.14 100.00 62.21 15.30
NK1 70.17 48.03 88.73 82.23 53.53 100.00 93.98 -
MLP 76.40 60.47 90.95 98.67 60.03 100.00 99.99 56.00

Normal Test set 1 SNC 5.16 4.72 52.89 19.39 19.53 72.53 35.00 10.75
linear 18.03 16.50 65.62 25.35 27.76 100.00 79.91 17.64
NK1 75.25 53.43 89.21 84.39 55.02 100.00 98.85 -
MLP 77.80 60.68 92.24 97.39 58.37 100.00 100.00 55.17

Normal Test set 2 SNC 6.59 4.96 54.00 21.59 18.64 69.29 35.13 10.30
linear 15.14 18.09 57.60 46.99 24.25 100.00 68.84 14.36
NK1 71.32 49.02 85.29 90.70 52.83 99.92 99.00 -
MLP 75.79 59.77 91.18 98.35 58.47 100.00 99.98 54.64

Normal Test set 3 SNC 5.67 4.88 52.95 19.65 19.62 69.05 35.11 10.64
linear 15.55 15.67 58.43 37.06 24.38 100.00 66.96 14.43
NK1 65.89 41.08 88.59 86.18 55.12 100.00 95.88 -
MLP 73.11 56.72 91.00 98.74 59.10 100.00 100.00 55.35

Normal Test set 4 SNC 7.34 4.77 50.52 20.14 18.68 68.40 37.05 9.30
linear 16.50 15.55 59.31 36.19 26.50 100.00 69.90 15.76
NK1 63.21 45.49 88.87 83.88 55.06 100.00 98.30 -
MLP 74.64 58.74 90.68 98.68 59.65 100.00 100.00 55.68

Table 24: Full results of WeakDE on MPI3D for the main and normal test set settings.
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x y size orient shape NC

NC 0-0 CG linear 30.14 19.38 7.91 2.64 0.01 0.00
CG 95.77 93.95 7.03 10.84 78.52 5.08

NC 5-2 CG linear 21.06 21.44 18.52 8.38 8.94 0.00
CG 44.42 51.18 0.01 76.80 96.88 0.00

NC 2-1 CG linear 3.12 3.12 0.00 2.50 0.00 0.00
CG 89.07 87.75 5.55 38.73 99.69 5.49

NC 3-1 CG linear 86.13 30.04 0.00 9.85 2.16 0.00
CG 98.44 97.87 8.42 73.54 99.94 8.37

NC 3-2 CG linear 22.47 20.41 0.00 9.40 9.70 0.00
CG 79.55 84.32 0.00 92.19 99.39 0.00

Table 25: Full results of β-VAE on Dsprites for the compositional generalization setting.

x y size orient shape NC

NC 0-0 CG linear 31.96 38.55 0.55 2.96 0.00 0.00
CG 91.24 96.66 0.00 6.40 19.02 0.00

NC 5-2 CG linear 23.32 22.40 0.00 21.37 0.00 0.00
CG 22.06 19.77 0.00 40.17 95.48 0.00

NC 2-1 CG linear 65.64 66.06 0.42 15.96 26.21 0.01
CG 97.68 95.48 0.00 78.81 99.99 0.00

NC 3-1 CG linear 99.54 99.39 0.00 82.19 100.00 0.00
CG 99.54 99.39 0.00 82.19 100.00 0.00

NC 3-2 CG linear 22.60 28.62 0.06 5.32 63.63 0.02
CG 38.94 51.74 0.00 94.16 100.00 0.00

Table 26: Full results of β-TCVAE on Dsprites for the compositional generalization setting.

x y size orient shape NC

NC 0-0 CG linear 37.29 29.55 2.13 2.91 0.00 0.00
CG 96.60 95.51 0.37 7.52 31.49 0.00

NC 5-2 CG linear 33.84 35.84 0.00 7.23 6.25 0.00
CG 34.67 20.87 0.20 46.77 67.82 0.20

NC 2-1 CG linear 26.98 27.80 11.16 7.22 57.42 1.57
CG 26.98 27.80 11.16 7.22 57.42 1.57

NC 3-1 CG linear 24.69 17.07 2.32 4.78 31.77 0.00
CG 89.27 85.19 30.59 28.76 98.82 30.11

NC 3-2 CG linear 23.10 17.11 0.00 6.23 46.23 0.00
CG 41.77 39.57 0.00 64.69 97.54 0.00

Table 27: Full results of FactorVAE on Dsprites for the compositional generalization setting.

x y size orient shape NC

NC 0-0 CG linear 8.78 25.76 15.76 2.47 2.52 0.00
CG 99.44 99.14 0.01 2.48 0.00 0.00

NC 5-2 CG linear 19.78 21.52 0.24 16.12 1.33 0.00
CG 16.81 20.48 0.18 36.63 60.67 0.00

NC 2-1 CG linear 50.62 49.59 0.02 26.67 98.71 0.00
CG 93.12 90.44 0.00 74.15 95.71 0.00

NC 3-1 CG linear 31.28 39.57 2.21 5.88 23.20 0.00
CG 86.59 86.15 2.90 33.01 98.21 2.23

NC 3-2 CG linear 25.13 25.57 0.00 10.81 2.38 0.00
CG 27.62 22.72 0.00 13.23 60.12 0.00

Table 28: Full results of PartedVAE on Dsprites for the compositional generalization setting.
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x y size orient shape NC

NC 0-0 CG linear 43.96 26.48 13.41 2.95 7.58 0.00
CG 80.95 87.81 1.19 4.81 65.34 0.07

NC 5-2 CG linear 19.61 19.25 0.00 8.70 0.00 0.00
CG 15.49 20.46 0.07 8.85 14.52 0.00

NC 2-1 CG linear 53.81 69.43 1.07 15.81 39.05 0.00
CG 94.84 93.81 0.23 50.94 99.83 0.23

NC 3-1 CG linear 42.65 52.21 3.89 11.40 53.01 0.00
CG 87.30 83.14 4.55 29.54 92.29 2.94

NC 3-2 CG linear 25.22 25.84 0.19 7.90 15.72 0.00
CG 21.01 25.08 0.02 14.37 53.86 0.00

Table 29: Full results of PartedVAE-semisupervised on Dsprites for the compositional generalization
setting.

x y size orient shape NC

NC 0-0 CG linear 67.06 55.46 28.83 2.75 0.00 0.00
CG 95.00 93.37 4.57 13.08 13.14 0.54

NC 5-2 CG linear 30.97 30.00 0.08 2.95 0.00 0.00
CG 28.75 32.85 0.00 42.50 65.22 0.00

NC 2-1 CG linear 45.72 45.86 15.60 3.80 0.24 0.00
CG 90.76 91.81 3.38 50.05 100.00 3.38

NC 3-1 CG linear 32.40 39.59 5.65 3.82 0.43 0.01
CG 89.90 90.93 2.35 50.28 99.92 2.33

NC 3-2 CG linear 32.24 35.32 2.93 3.03 16.48 0.00
CG 50.35 49.95 0.00 60.74 97.33 0.00

Table 30: Full results of WeakDE on Dsprites for the compositional generalization setting.

floor h wall h size orient obj h shape NC

NC 0-0 CG linear 99.25 99.03 48.31 86.55 0.00 96.83 0.00
CG 100.00 100.00 46.61 100.00 52.34 99.89 4.97

NC 5-2 CG linear 100.00 100.00 0.00 92.12 100.00 100.00 0.00
CG 100.00 100.00 0.00 100.00 100.00 100.00 0.00

NC 2-1 CG linear 100.00 99.87 0.00 64.17 16.77 100.00 0.00
CG 100.00 100.00 38.27 99.66 79.52 100.00 32.94

NC 3-1 CG linear 99.41 99.70 0.00 90.09 41.61 100.00 0.00
CG 100.00 100.00 47.07 100.00 15.80 100.00 0.00

NC 3-2 CG linear 99.95 99.93 15.86 90.67 0.00 99.33 0.00
CG 100.00 100.00 0.00 99.77 100.00 100.00 0.00

NC 7-3 CG linear 97.30 96.90 59.35 78.43 0.00 100.00 0.00
CG 100.00 99.88 43.79 83.65 93.99 100.00 37.78

NC 0-3 CG linear 99.59 99.81 0.00 89.38 63.08 68.14 0.00
CG 100.00 100.00 53.88 100.00 44.76 67.69 14.41

NC 7-1 CG linear 97.33 98.96 11.47 94.43 0.00 100.00 0.00
CG 100.00 100.00 59.56 100.00 79.87 100.00 49.19

Table 31: Full results of β-VAE on 3dshapes for the compositional generalization setting.
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floor h wall h size orient obj h shape NC

NC 0-0 CG linear 93.59 95.03 45.30 90.57 76.21 76.68 26.85
CG 99.11 100.00 45.35 99.96 49.21 80.89 0.03

NC 5-2 CG linear 99.12 98.65 1.41 97.91 95.38 90.47 1.41
CG 100.00 100.00 0.00 100.00 100.00 93.93 0.00

NC 2-1 CG linear 100.00 100.00 0.00 88.60 74.31 99.99 0.00
CG 100.00 100.00 43.31 99.95 73.91 100.00 36.43

NC 3-1 CG linear 99.85 99.88 0.00 83.13 84.91 100.00 0.00
CG 100.00 100.00 12.79 100.00 84.64 100.00 0.00

NC 3-2 CG linear 99.04 99.73 0.00 85.46 99.99 99.87 0.00
CG 100.00 100.00 0.00 99.69 100.00 99.93 0.00

NC 7-3 CG linear 99.99 99.21 8.26 83.51 25.83 100.00 2.92
CG 100.00 99.99 39.67 97.91 90.04 100.00 30.63

NC 0-3 CG linear 99.94 100.00 0.04 87.69 4.49 69.07 0.00
CG 100.00 100.00 22.02 100.00 53.25 81.16 2.39

NC 7-1 CG linear 99.70 99.65 1.99 70.85 30.21 100.00 0.00
CG 100.00 99.92 97.39 99.99 94.09 100.00 92.89

Table 32: Full results of β-TCVAE on 3dshapes for the compositional generalization setting.

floor h wall h size orient obj h shape NC

NC 0-0 CG linear 100 99.8 0.00 65.11 47.82 48.82 0.00
CG 100 100 38.69 100.00 40.93 99.16 0.73

NC 5-2 CG linear 93.81 95.39 0.00 59.65 56.00 77.95 0.00
CG 100 100 0.00 99.97 100.00 100.00 0.00

NC 2-1 CG linear 88.57 90.95 0.00 33.27 2.14 61.83 0.00
CG - - 1.92 99.32 51.35 100.00 0.91

NC 3-1 CG linear 93.55 88.59 0.00 56.30 0.00 65.76 0.00
CG 100 100 49.81 100.00 98.73 100.00 48.74

NC 3-2 CG linear 100 100 0.00 83.40 99.06 100.00 0.00
CG 100 100 11.51 99.80 99.90 100.00 11.51

NC 7-3 CG linear 91.25 89.19 13.79 51.55 0.00 97.49 0.00
CG 100 95.83 26.48 94.97 67.05 100.00 2.47

NC 0-3 CG linear 98.27 99.94 14.73 58.26 61.55 90.27 0.32
CG 0 100 22.18 99.63 56.30 99.41 0.95

NC 7-1 CG linear 100 100 79.76 98.46 28.47 99.78 8.97
CG 100 100 79.76 98.46 28.47 99.78 8.97

Table 33: Full results of FactorVAE on 3dshapes for the compositional generalization setting.
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floor h wall h size orient obj h shape NC

NC 0-0 CG linear 92.95 91.58 0.75 76.03 80.19 0.00 0.43
CG 99.07 99.04 31.42 99.35 92.53 67.45 27.71

NC 5-2 CG linear 98.63 91.13 0.00 89.03 94.97 13.33 0.00
CG 0.00 99.34 2.49 99.71 99.87 99.93 2.49

NC 2-1 CG linear 91.69 93.41 57.20 85.97 97.07 0.00 55.72
CG 99.87 99.12 94.90 99.71 99.57 64.74 94.53

NC 3-1 CG linear 96.72 91.91 0.00 83.17 86.87 99.97 0.00
CG 99.91 97.51 0.00 99.07 99.82 99.94 0.00

NC 3-2 CG linear 93.36 98.02 0.00 86.93 89.82 92.88 0.00
CG 99.55 99.75 1.97 99.49 99.69 99.95 1.97

NC 7-3 CG linear 94.49 89.35 0.00 67.20 71.25 0.64 0.00
CG 98.38 96.93 18.09 67.31 96.62 98.57 17.62

NC 0-3 CG linear 98.17 97.79 0.00 80.65 80.35 28.11 0.00
CG 99.09 98.93 0.13 97.96 73.55 24.63 0.01

NC 7-1 CG linear 94.46 98.07 21.74 86.32 98.42 0.00 21.72
CG 98.29 99.45 28.81 98.67 99.91 85.17 28.81

Table 34: Full results of PartedVAE on 3dshapes for the compositional generalization setting.

floor h wall h size orient obj h shape NC

NC 0-0 CG linear 84.14 81.98 2.17 15.61 0.80 86.56 0.00
CG 98.41 98.77 23.85 20.11 71.33 97.00 13.74

NC 5-2 CG linear 97.77 97.29 0.00 88.28 5.29 91.21 0.00
CG 98.98 99.91 30.91 99.23 99.21 99.17 30.91

NC 2-1 CG linear 99.96 92.79 0.00 88.49 19.61 91.82 0.00
CG 99.99 99.35 30.35 99.49 100.00 99.22 30.35

NC 3-1 CG linear 99.61 90.49 0.00 23.73 83.33 93.39 0.00
CG 99.91 99.11 38.73 73.62 98.71 99.65 38.31

NC 3-2 CG linear 93.93 98.53 6.41 38.83 99.09 94.86 5.69
CG 99.87 99.36 95.13 65.39 99.93 99.45 95.06

NC 7-3 CG linear 98.71 93.34 0.00 72.27 18.47 89.05 0.00
CG 97.44 99.29 37.93 83.13 85.01 97.67 37.31

NC 0-3 CG linear 83.18 89.81 0.06 45.12 44.21 80.80 0.03
CG 83.29 99.48 4.13 57.53 23.19 81.03 1.50

NC 7-1 CG linear 70.73 83.83 45.95 13.14 21.61 84.67 2.12
CG 97.48 99.06 30.89 20.65 56.57 98.29 12.87

Table 35: Full results of PartedVAE on 3dshapes for the compositional generalization setting.

38



Under review as a conference paper at ICLR 2024

floor h wall h size orient obj h shape NC

NC 0-0 CG linear 72.72 76.91 6.35 47.21 82.32 65.43 2.61
CG 78.71 77.17 44.06 73.61 82.43 79.39 33.00

NC 5-2 CG linear 95.11 95.78 0.00 67.89 28.85 94.55 0.00
CG 94.98 94.80 2.63 90.65 99.87 95.61 2.63

NC 2-1 CG linear 97.13 96.12 0.00 61.19 37.03 93.30 0.00
CG 97.71 96.29 19.42 89.35 97.95 96.95 19.32

NC 3-1 CG linear 93.30 94.49 0.07 93.72 88.01 91.71 0.01
CG 92.23 93.37 0.00 98.49 99.52 94.33 0.00

NC 3-2 CG linear 97.22 95.55 0.00 75.38 3.08 92.79 0.00
CG 95.69 94.25 8.77 92.27 99.25 96.82 8.67

NC 7-3 CG linear 88.71 95.09 0.46 12.38 48.32 92.52 0.00
CG 87.91 95.92 6.57 68.71 100.00 94.47 6.57

NC 0-3 CG linear 97.44 94.11 6.71 17.36 59.99 88.23 0.40
CG 98.04 96.01 22.81 84.21 91.52 93.67 15.16

NC 7-1 CG linear 92.85 89.84 0.61 71.59 0.28 92.05 0.00
CG 89.60 87.49 0.29 78.94 97.97 93.85 0.29

Table 36: Full results of WeakDE on 3dshapes for the compositional generalization setting.

hor vert size obj h shape cam he bg h NC

NC 0-0 CG linear 9.68 7.66 80.89 95.20 0.13 99.37 38.20 0.00
CG 75.16 55.28 99.86 98.63 20.23 100.00 100.00 20.12

NC 1-4 CG linear 16.50 6.34 42.34 91.57 5.06 99.00 99.85 0.00
CG 51.51 37.19 94.21 99.93 17.16 100.00 0.00 15.56

NC 0-5 CG linear 12.55 12.39 83.41 90.54 26.06 99.98 50.46 25.62
CG 56.62 47.98 93.39 99.97 21.40 100.00 100.00 15.56

NC 1-3 CG linear 16.35 10.47 67.32 81.67 0.00 99.36 57.25 0.00
CG 87.19 65.85 99.96 99.98 0.62 100.00 100.00 0.62

NC 1-1 CG linear 15.79 10.85 92.48 74.80 0.00 97.95 55.88 0.00
CG 73.84 56.43 99.98 99.77 7.93 100.00 99.70 7.91

NC 0-2 CG linear 16.22 10.56 70.52 80.97 0.00 99.94 46.48 0.00
CG 86.08 67.12 99.24 99.98 0.55 100.00 100.00 0.52

Table 37: Full results of β-VAE on MPI3D for the compositional generalization setting.

hor vert size obj h shape cam he bg h NC

NC 0-0 CG linear 15.62 9.01 97.71 40.08 0.03 100.00 53.47 0.01
CG 69.87 53.41 99.87 96.95 2.30 100.00 100.00 2.30

NC 1-4 CG linear 18.32 12.63 68.95 72.15 1.31 99.99 45.06 0.00
CG 54.29 40.48 93.83 99.66 13.79 100.00 100.00 11.74

NC 0-5 CG linear 6.51 10.99 93.31 38.70 20.30 100.00 44.35 20.30
CG 51.64 41.37 88.87 95.26 10.13 100.00 99.98 5.80

NC 1-3 CG linear 15.55 8.44 86.18 60.64 0.00 99.98 45.47 0.00
CG 85.38 64.75 99.97 99.69 0.53 100.00 98.46 0.53

NC 1-1 CG linear 12.76 8.45 78.44 74.00 0.00 99.18 44.43 0.00
CG 67.06 51.68 99.90 99.53 11.52 100.00 100.00 11.47

NC 0-2 CG linear 18.69 9.13 73.26 78.03 0.00 100.00 44.74 0.00
CG 89.86 70.40 98.49 99.76 0.24 100.00 99.99 0.20

Table 38: Full results of β-TCVAE on MPI3D for the compositional generalization setting.
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hor vert size obj h shape cam he bg h NC

NC 0-0 CG linear 16.06 8.90 71.63 30.92 6.94 97.43 51.25 4.30
CG 65.00 50.01 99.57 93.45 9.92 99.95 99.92 9.71

NC 1-4 CG linear 14.03 11.09 40.42 57.51 0.05 99.86 42.14 0.00
CG 46.42 34.33 93.18 98.03 29.25 100.00 99.99 26.63

NC 0-5 CG linear 11.64 7.73 92.40 64.68 8.43 99.85 52.75 8.43
CG 58.01 39.48 97.24 98.22 3.66 100.00 99.97 2.70

NC 1-3 CG linear 15.18 9.77 57.91 83.34 0.00 99.33 46.93 0.00
CG 79.48 60.41 99.89 99.94 0.55 100.00 99.99 0.55

NC 1-1 CG linear 17.13 11.69 74.08 76.06 0.00 98.12 46.27 0.00
CG 58.10 47.78 98.25 98.80 10.18 100.00 99.32 9.44

NC 0-2 CG linear 16.27 11.76 67.23 80.28 0.25 99.08 48.57 0.00
CG 78.80 59.93 98.58 99.75 0.62 100.00 99.98 0.55

Table 39: Full results of FactorVAE on MPI3D for the compositional generalization setting.

hor vert size obj h shape cam he bg h NC

NC 0-0 CG linear 9.29 2.77 93.64 23.70 100 92.70 0.00 0.00
CG 21.86 18.07 98.32 70.95 100 99.57 0.06 0.06

NC 1-4 CG linear 12.39 5.12 60.38 38.19 100 97.27 0.00 0.00
CG 27.80 18.19 80.16 85.51 100 99.52 0.08 0.07

NC 0-5 CG linear 10.58 4.20 88.16 31.08 100 99.21 0.00 0.00
CG 28.58 24.29 92.93 90.35 100 99.99 0.05 0.04

NC 1-3 CG linear 10.65 4.67 90.47 31.14 100 96.15 0.00 0.00
CG 28.40 17.32 97.09 86.12 100 98.58 0.95 0.85

NC 1-1 CG linear 11.27 4.79 84.14 31.40 100 98.36 0.00 0.00
CG 31.14 18.25 92.75 88.23 100 99.66 0.02 0.01

NC 0-2 CG linear 12.43 4.90 59.53 37.04 100 97.06 0.00 0.00
CG 29.03 18.11 79.58 86.12 100 99.48 0.05 0.01

Table 40: Full results of PartedVAE on MPI3D for the compositional generalization setting.

hor vert size obj h shape cam he bg h NC

NC 0-0 CG linear 11.81 4.95 78.04 25.77 0.00 100.00 42.80 0.00
CG 23.69 20.91 97.15 76.42 0.28 100.00 51.88 0.17

NC 1-4 CG linear 12.78 5.83 50.73 44.75 0.00 100.00 46.50 0.00
CG 16.32 12.89 54.24 90.76 0.50 100.00 64.07 0.02

NC 0-5 CG linear 11.32 4.36 80.33 39.31 0.00 100.00 86.30 0.00
CG 11.32 4.36 80.33 39.31 0.00 100.00 86.30 0.00

NC 1-3 CG linear 13.23 7.50 84.65 37.04 0.00 99.98 76.83 0.00
CG 51.80 29.91 98.30 93.74 0.09 100.00 98.23 0.07

NC 1-1 CG linear 10.27 5.09 74.54 30.44 0.00 96.35 56.67 0.00
CG 29.27 18.07 96.88 92.19 0.49 99.96 94.38 0.31

NC 0-2 CG linear 11.04 4.42 52.11 47.71 0.00 100.00 34.08 0.00
CG 28.44 20.42 73.13 88.58 0.04 100.00 38.63 0.01

Table 41: Full results of PartedVAE-semisupervised on MPI3D for the compositional generalization
setting.
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hor vert size obj h shape cam he bg h NC

NC 0-0 CG linear 14.27 13.70 30.99 29.20 0.02 100.00 95.09 0.00
CG 63.79 51.82 98.45 91.12 14.62 100.00 100.00 13.84

NC 1-4 CG linear 16.80 12.68 32.39 52.54 0.00 100.00 64.50 0.00
CG 30.78 18.92 87.65 97.88 3.69 100.00 100.00 3.13

NC 0-5 CG linear 11.16 12.20 59.33 35.83 0.00 100.00 79.64 0.00
CG 45.44 35.85 96.86 95.43 13.44 100.00 100.00 12.95

NC 1-3 CG linear 18.41 11.59 59.82 37.31 0.00 100.00 62.56 0.00
CG 75.88 54.61 99.15 98.37 0.00 100.00 99.35 0.00

NC 1-1 CG linear 17.74 21.09 74.95 44.00 0.00 99.99 90.88 0.00
CG 70.73 61.00 99.89 97.19 11.80 100.00 99.89 11.77

NC 0-2 CG linear 20.49 19.73 47.85 61.64 0.20 100.00 91.91 0.00
CG 80.54 69.87 95.28 98.97 1.17 100.00 100.00 0.92

Table 42: Full results of WeakDE on MPI3D for the compositional generalization setting.

x y size orient shape zs

NC 5-2 77.90 77.60 6.10 3.30 33.90 2.53
NC 2-1 94.10 95.80 17.80 3.10 25.60 3.79
NC 3-1 93.90 95.80 17.80 3.60 35.60 4.48
NC 3-2 88.20 88.80 3.60 3.10 38.30 0.89
Normal test set 1 99.00 99.40 100.00 83.30 100.00 99.97
Normal test set 2 99.00 98.60 99.80 75.00 100.00 99.80
Normal test set 3 98.30 98.60 99.80 75.40 100.00 99.80
Normal test set 4 97.20 98.80 99.40 74.10 100.00 99.37
Normal test set 5 98.70 97.40 99.60 73.00 100.00 99.58

Table 43: Full results of MTD on Dsprites for the compositional generalization setting.

floor h wall h size orient obj h shape zs

NC 0-0 11.10 90.90 18.80 100.00 29.80 93.00 1.29
NC 5-2 8.50 92.40 4.20 100.00 26.90 94.80 0.57
NC 2-1 8.20 90.50 12.20 100.00 27.80 93.90 4.25
NC 3-1 13.90 90.20 9.40 100.00 24.70 91.30 3.22
NC 3-2 10.10 96.30 10.20 100.00 24.10 94.70 2.17
NC 7-3 10.09 96.02 12.79 99.94 25.03 96.35 2.00
NC 0-3 9.28 88.57 7.69 100.00 21.31 89.02 1.05
NC 7-1 9.57 96.99 15.73 100.00 23.53 96.87 0.75
Normal test set 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Normal test set 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Normal test set 3 9.20 100.00 100.00 100.00 100.00 100.00 100.00
Normal test set 4 7.30 100.00 100.00 100.00 100.00 100.00 100.00
Normal test set 5 20.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 44: Full results of MTD on 3dshapes for the compositional generalization setting.
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hor vert size obj h shape cam he bg h zs

NC 0-0 2.20 2.30 50.50 21.70 8.50 43.90 58.60 2.67
NC 1-4 2.50 0.00 96.60 53.90 11.60 99.60 100.00 11.40
NC 0-5 1.79 2.44 49.55 20.93 7.95 42.79 58.67 7.36
NC 1-3 2.32 2.52 51.52 19.62 9.77 42.05 57.68 3.06
NC 1-1 2.92 2.56 42.73 19.97 8.56 43.30 58.35 2.90
NC 0-2 2.39 2.52 59.98 21.82 6.46 45.27 58.73 2.68
Normal test set 1 2.50 2.50 99.90 100.00 96.20 100.00 100.00 96.10
Normal test set 2 3.43 2.75 99.92 99.99 95.94 100.00 100.00 95.88
Normal test set 3 2.48 3.00 99.92 99.99 96.43 100.00 100.00 96.37
Normal test set 4 2.70 2.34 99.94 99.99 95.56 100.00 100.00 95.51
Normal test set 5 2.65 2.46 99.75 99.99 95.09 100.00 100.00 94.87

Table 45: Full results of MTD on MPI3D for the compositional generalization setting.
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