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Abstract
In recent years, multiple notions of algorithmic
fairness have arisen. One such notion is individual
fairness (IF), which requires that individuals who
are similar receive similar treatment. In parallel,
matrix estimation (ME) has emerged as a natural
paradigm for handling noisy data with missing
values. In this work, we connect the two concepts.
We show that pre-processing data using ME can
improve an algorithm’s IF without sacrificing per-
formance. Specifically, we show that using a pop-
ular ME method known as singular value thresh-
olding (SVT) to pre-process the data provides a
strong IF guarantee under appropriate conditions.
We then show that, under analogous conditions,
SVT pre-processing also yields estimates that are
consistent and approximately minimax optimal.
As such, the ME pre-processing step does not, un-
der the stated conditions, increase the prediction
error of the base algorithm, i.e., does not impose
a fairness-performance trade-off. We verify these
results on synthetic and real data.

1. Introduction
As data-driven decision-making becomes more ubiquitous,
there is increasing attention on the fairness of machine learn-
ing (ML) algorithms. Because what is deemed to be fair
is context-dependent (e.g., reflects a given value system),
there is no universally accepted notion of fairness.

One notion of algorithmic fairness is individual fairness
(IF), which is distinct from notions of group fairness (e.g.,
equalized odds). Stated informally, IF says that similar
individuals should receive similar treatment. More precisely,
an algorithm f : X → Y acting on a set of individuals X is
individually fair if for any two individuals a, b ∈ X ,

D(f(a), f(b)) ≤ L · d(a, b), (1)
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Figure 1. We run a deep neural network on synthetic data with
and without SVT pre-processing (see Section 6, Experiment #1 for
details). We randomly select pairs a, b ∈ X then compute the ratio
D(f(a), f(b))/d(a, b), where f denotes the neural network with
(red) and without (blue) SVT pre-processing. As shown, applying
SVT pre-processing results in lower ratios, which indicates that it
improves individual fairness, as defined in (1). Indeed, we show in
Section 4 that, under appropriate conditions, SVT pre-processing
strengthens an algorithm’s IF guarantee.

for the choice of distance metrics d and D. The Lipschitz
constant L captures how strictly the IF condition is enforced.
An algorithm f that satisfies IF ensures that the outcomes
between two individuals who are close in feature space X
also receive outcomes that are close in outcome space Y ,
where the level of closeness is captured by L. A smaller
Lipschitz constant therefore implies a stronger IF constraint.

In parallel, matrix estimation (ME) has arisen as a natural
paradigm to handle data that is noisy and/or has missing val-
ues. In this work, we propose a two-step procedure in which
the data (e.g., training data) is first pre-processed using a
ME technique known as singular value thresholding (SVT)
before being used by an inference algorithm h (e.g., a neu-
ral network). We show that, under appropriate conditions,
this pre-processing step strengthens the IF guarantee of the
inference algorithm, i.e., combining SVT with h results in a
lower Lipschitz constant in (1) than h does alone.

Although SVT can improve an algorithm’s IF, it is not clear
whether such an improvement comes at a cost to the algo-
rithm’s performance. In this work, we show that the same
thresholds that allow SVT to improve IF also imply that
SVT has strong performance guarantees. In other words,
under the appropriate conditions, SVT improves IF without
imposing a performance cost in settings where ME can be
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Figure 2. We study the effect of ME pre-processing on IF and performance in settings where we need to perform an inference task using
sparse, noisy data. Our main results show that SVT, a popular ME method, provides strong IF guarantees and does not necessarily hurt
performance when used as a pre-processing step.

applied. Our problem setup is visualized in Figure 2 and
described in detail in Section 3.

Our main contributions can be summarized as follows:

• We show SVT pre-processing has strong IF guaran-
tees. ME is used in high-dimensional inference to handle
sparse, noisy data. One of the most popular ME methods
is SVT. In Sections 4.2-4.3, we derive a set of condi-
tions under which SVT pre-processing strengthens the
IF guarantees of the inference algorithm with respect to
the observed covariates and provides an approximate IF
guarantee with respect to the (unknown) ground truth
covariates. We then use this result to explore how SVT
affects predictions in different data regimes.

• We show that IF under SVT does not hurt asymptotic
performance. In Section 4.4, we show that achieving
IF using SVT pre-processing does not necessarily hurt
performance. Specifically, we show that the same con-
ditions that are needed for SVT to guarantee IF mirror
the conditions required under a popular method known as
universal singular value thresholding (USVT). Because
USVT has strong performance guarantees (it produces
an estimator that is consistent and approximately mini-
max (Chatterjee, 2015)), this connection implies that SVT
pre-processing can achieve IF without imposing a perfor-
mance cost. Stated differently, enforcing IF via SVT pre-
processing does not harm performance because it places
no further restrictions on ME than the performance-based
method USVT.

• We empirically verify these results on real and syn-
thetic datasets. In Section 6, we demonstrate our findings
on synthetic data and the MovieLens 1M dataset. We visu-
alize the effect of SVT pre-processing on IF. Figure 1, for
example, illustrates how the ratio D(f(a), f(b))/d(a, b)
decreases under SVT pre-processing. Smaller values in-
dicate a stronger IF guarantee. We also demonstrate the
effect of SVT pre-processing on performance.

To the best of our knowledge, this is the first work that
establishes a theoretical link between IF and ME.

2. Background and Related Work
Matrix estimation (ME). ME studies the problem of esti-
mating the entries of a matrix from noisy observations of
a subset of the entries (Candès & Tao, 2010; Recht, 2011;
Keshavan et al., 2010a; Negahban & Wainwright, 2012;
Davenport et al., 2014; Chatterjee, 2015; Chen & Wain-
wright, 2015). ME is a class of methods that can be applied
to data expressed in matrix form. Specifically, suppose there
is a latent matrix, and one can only obtain noisy samples
of a subset of its entries. The goal of ME is to estimate the
values of every entry based on the noisy subsamples.

ME is used, for example, by recommender systems to esti-
mate a user’s interest in different types of content (Koren
et al., 2009; Song et al., 2016; Borgs et al., 2017). In fact,
the winning solution of the Netflix Prize was built on ME
methods (Koren, 2009). ME has also been used to study
social networks (Anandkumar et al., 2013; Abbe & Sandon,
2015; Hopkins & Steurer, 2017); to impute and forecast
a time series (Agarwal et al., 2018; Amjad et al., 2018);
to aggregate information in crowdsourcing (Shah & Lee,
2018); and more.

Singular value thresholding (SVT). There is an extensive
literature on ME and the closely related areas of matrix
completion and matrix factorization. While there are various
approaches (Rennie & Srebro, 2005), spectral methods are
among the most popular (Candès & Tao, 2010; Mazumder
et al., 2010; Keshavan et al., 2010a;b)

One such method is SVT (Cai et al., 2010), which first
factorizes the matrix of observations, then reconstructs it
using only the singular values that exceed a predetermined
threshold. It is well-known that SVT is a shrinkage operator
that provides a solution to a nuclear norm minimization
problem.
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Universal singular value thresholding (USVT) builds on
SVT by proposing an adaptive threshold that produces an
estimator that is both consistent and approximately minimax
(Chatterjee, 2015). We review SVT and USVT in Sections
4.1 and 4.4. As a pre-processing method, SVT has been
used to improve the performance of an inference algorithm
in time series analysis (Agarwal et al., 2018) and to improve
adversarial robustness of deep neural networks (Yang et al.,
2019).

Individual fairness (IF). IF is the notion that similar indi-
viduals should receive similar treatment (Dwork et al., 2012;
Barocas et al., 2018), as formalized in (1). As an example,
suppose individuals A and B apply for job interviews at the
same time with similar (observed) qualifications a and b.
Then, IF requires that A and B receive interview requests at
similar rates. IF is distinct from notions of group fairness
(e.g., statistical parity in the outcomes across demographic
groups), but there are conditions under which IF implies
group fairness (Dwork et al., 2012).

Under IF, similarity is captured by the choice of distance
metrics D and d (cf, (1)), and IF is enforced as a Lipschitz
constraint based on the chosen metrics. How to define
“similarity” between individuals and their outcomes (i.e.,
how to choose the distance metrics) has been the subject
of significant debate (Gajane & Pechenizkiy, 2017; Beutel
et al., 2019; Ilvento, 2019; Beutel et al., 2019; Gillen et al.,
2018; Bechavod et al., 2020). In this work, we allow for any
D. One of our IF results is given for d as the ℓ2 norm and
the other for d as the ℓq norm.

Fairness and collaborative filtering. In recommendation,
collaborative filtering algorithms leverage similarities be-
tween users to infer user preferences, and ME can be viewed
as one such algorithm. There is some work on the fairness
of collaborative filtering, and these typically study group
fairness (Kamishima et al., 2012; Yao & Huang, 2017; Beu-
tel et al., 2019; Foulds et al., 2020; Pitoura et al., 2021; Shao
et al., 2022). A small number of works examine notions of
fairness related to individuals (Serbos et al., 2017; Biega
et al., 2018; Stratigi et al., 2020), but they are distinct from
our notion of IF as formulated by Dwork et al. (Dwork et al.,
2012). To our knowledge, we provide the first theoretical
analysis connecting IF to ME and collaborative filtering,
which can be found in Section 4.

Accuracy. One common thread of interest in algorithmic
fairness is the fairness-accuracy trade-off (Farnadi et al.,
2018; Zhu et al., 2018; Liu & Burke, 2018; Islam et al.,
2020). By establishing a connection between IF and USVT,
we show in Section 4.4 that IF can be achieved without
significant performance costs in ME applications, including
collaborative filtering.

3. Problem Statement
3.1. Setup

Consider a setting with m individuals. Suppose there is
an unknown ground truth matrix A ∈ Rm×n, where each
row in A corresponds to an individual such that the i-th row
Ai ∈ Rn is an unknown n-dimensional feature vector that
describes individual i ∈ [m]. We assume that Aij ∈ [−1, 1]
for all i ∈ [m] and j ∈ [n].1

Suppose that it is possible to observe a noisy subsample of
A’s entries. Formally, let Ω ⊂ [m]× [n] denote the index set
of observed entries and Z = [−1, 1]∪{∅}. Let Z ∈ Zm×n

denote the matrix of observations, where each entry of Z is
a random variable; EZij = Aij ; Zij ∈ [−1, 1] if (i, j) ∈ Ω
and Zij = ∅, otherwise. As such, the i-th row Zi ∈ Zn

denotes the observed covariates for individual i.

Consider the following inference task. Make a prediction
y ∈ Y for individual i ∈ [m] using the observations (i.e.,
training data) Z. Let F = {f : [m] × Zm×n → Y}
denote the class of algorithms that perform this inference
task. Note that the output of f could be a deterministic value
or a distribution over possible values.

For the remainder of this work, let Bi denote the i-th row
and bi denote the i-th column of a matrix B.

3.2. Individual Fairness

Individual fairness (IF) is the notion that similar individuals
should receive similar treatments (Dwork et al., 2012). IF
is formulated as a (D, d)-Lipschitz constraint, as follows.

Definition 3.1 (IF with respect to observed covariates). Con-
sider an observation matrix Z ∈ Zm×n. An algorithm
f ∈ F is (D, d)-individually fair on Z if

D(f(i, Z), f(j, Z)) ≤ L · d(Zi,Zj),

for all i, j ∈ [m], where L ≥ 0 does not depend on i or j,
D : Y×Y → R≥0 is a distance metric, and d : Zn×Zn →
R≥0 is also a distance metric.

Definition 3.2 (IF with respect to latent covariates). Con-
sider an observation matrix Z ∈ Zm×n and ground truth
matrix A ∈ [−1, 1]m×n. An algorithm f ∈ F is (D, d)-
individually fair on A if

D(f(i, Z), f(j, Z)) ≤ L · d(Ai,Aj),

for all i, j ∈ [m], where L ≥ 0 does not depend on i and j,
and D : Y ×Y → R≥0 and d : [−1, 1]n× [−1, 1]n → R≥0

are distance metrics.
1For any A whose entries are bounded such that |Aij | < ∞

for all i ∈ [m] and j ∈ [n], one can always translate and rescale
A to be between −1 and 1, then adjust the final result accordingly.

3



Matrix Estimation for Individual Fairness

Problem statement. We focus on a subclass of algorithms
F(H,Π) = {f = h ◦ Π : h ∈ H} ⊂ F , where H ⊂ {h :
[m] × [−1, 1]m×n → Y} and Π : Zm×n → [−1, 1]m×n.
Intuitively, Π is a pre-processing method that takes in the
(sparse and noisy) data Z and produces an estimate Π(Z)
of the unknown matrix A. The inference algorithm h is then
applied on top of Π such that f(i, Z) = h(i,Π(Z)).

In this work, we examine the IF of f relative to h when Π is
given by a ME method, i.e., how a ME pre-processing step
affects the IF of an inference algorithm.

3.3. Examples

The setup in Section 3.1 can be applied to many problems
in which the training data and algorithmic inputs are noisy,
sparse, or both. Consider the following examples and the
implications of IF.

Example 3.1 (Recommendation). Consider a platform that
provides personalized movie recommendations to its m
users based on sparse, noisy observations of their pref-
erences. Suppose that the movie preferences of each user
i ∈ [m] can be described by an unknown n-dimensional
vector Ai ∈ Rn. For instance, aij ∈ [−1, 1] could denote
the ground-truth preference of user i for movie j ∈ [n].

Although A = [A1, . . . ,Am]⊤ is unknown, the platform re-
ceives occasional feedback from users in the form of ratings
and can also observe the users’ viewing behaviors. Let these
sparse, noisy observations be stored in Z, where Zij = ∅
implies that user i has not rated movie j. The goal of the
platform is to estimate the users’ movie preferences. Note
that f ∈ F can leverage other information (e.g., ratings
by other users, as done in collaborative filtering). In this
example, IF on Z requires that users with similar viewing
and rating behaviors receive similar recommendations. IF
on A implies that users with similar latent (i.e., unknown)
movie preferences receive similar recommendations.

Example 3.2 (Admissions). Consider an admissions set-
ting in which there are m applicants. Suppose that, for the
purposes of admissions, each applicant i ∈ [m] is described
by an unknown n-dimensional vector Ai ∈ Rn. Suppose
each individual i submits an application Zi, which contains
sparse, noisy measurements of Ai. For example, one’s stan-
dardized test score in math is a noisy measurement of one’s
math abilities. Data sparsity can occur when one applicant
includes information that another does not (e.g., one may
list “debate club” on their resume while another does not,
but this sparsity does not necessarily imply that the latter is
worse at public speaking). As an output, f ∈ F could pro-
duce an admissions score y ∈ [0, 1]. In this example, IF on
Z requires that applicants with similar applications receive
similar admissions scores. IF on A implies that applicants
whose true (but unknown) qualifications are similar receive
similar admissions scores.

Although IF on A is desirable, one generally requires IF on
Z, i.e., that an algorithm ensures IF with respect to the infor-
mation at its disposal. Consider Example 3.2. Suppose that
two applicants i and j have similar ground-truth features
but the first n/2 values of Zi are ∅ while last n/2 values
of Zj are ∅. In other words, the types of qualifications that
i reports contains no overlap with the types of qualifica-
tions j reports. Because i and j have similar ground-truth
features, IF on A would require that a school treat i and j
similarly even though the schools are given vastly different
information about the two applicants.

4. Main Results
In this section, we show that pre-processing data with ME
can improve IF with little to no performance cost under
appropriate conditions. Before providing our main results,
we begin in Section 4.1 by describing a ME method known
as singular value thresholding (SVT). In Sections 4.2-4.3,
we show that SVT pre-processing offers IF guarantees on
both the observation matrix Z and the ground truth matrixA.
In Section 4.4, we show that the class of SVT thresholds that
guarantee IF align with the thresholds used by a well-known
ME technique that has strong performance guarantees. This
connection implies that SVT pre-processing can provide IF
without imposing a high performance cost.

4.1. Singular Value Thresholding

Recall the inference task described in Section 3.1. In this
section, we propose to use a popular ME method known as
singular value thresholding (SVT) as the pre-processing
step. That is, for algorithms in the class F(H,Π) = {f =
h ◦Π : h ∈ H} ⊂ F , we propose that Π denote SVT.

More precisely, SVT(Z, τ, ψ) takes in three values: the
observation matrix Z ∈ Zm×n, a threshold τ ≥ 0, and an
increasing function ψ : R≥0 → R≥0. SVT then proceeds
in four steps, as follows.

1. First, for any element in Z that is ∅, replace that value
with 0, i.e., if Zij = ∅, re-assign it to Zij = 0. 2

2. Perform the singular value decomposition (SVD):

Z =

min(m,n)∑
ℓ=1

σℓuℓv
⊤
ℓ ,

where σℓ ≥ 0 is the ℓ-th singular value, uℓ ∈ Rm×1 is
the ℓ-th left singular vector, and vℓ ∈ Rn×1 is the ℓ-th
right singular vector.

3. For any index ℓ such that σℓ > τ , add ℓ to the set S(τ)
such that S(τ) = {ℓ : σℓ > τ}.

2Several methods exist for handling missing values in ME
literature; common approaches include replacing missing values
with 0 or the expected value of all entries.
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4. Finally, construct estimate of A:

Â = min

(
1,max

(
− 1,

∑
ℓ∈S(τ)

ψ(σℓ)uℓv
⊤
ℓ

))
.

Intuitively, SVT detects and removes components of the
observation matrix Z that correspond to noise while pre-
serving the remaining components S(τ). The threshold τ
determines the boundary between signal and noise, where a
higher value for τ means that fewer components are kept.

4.2. IF With Respect to Observed Covariates

In the previous section, we proposed to pre-process Z using
SVT before applying an inference algorithm h on top of it.
In this section, we show that using SVT for pre-processing
guarantees IF on Z. For the remainder of this section, we
fix the Z of interest.

Consider a specific threshold τ and function ψ. Recall that
σℓ, uℓ, and vℓ are the ℓ-th singular value, left singular vector,
and right singular vector of Z, respectively. Recall further
that S(τ) = {ℓ : σℓ > τ}. Let

K2 =

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)uℓv
⊤
ℓ

σ2
ℓ

∥∥∥∥∥∥
∞

√
nmax

k
∥zk∥1 .

Theorem 4.1. Suppose that h is (D, ℓ2)-individually fair
with constant K1, i.e.,

D(h(i, B), h(j, B)) ≤ K1||Bi −Bj ||2,

for all i, j ∈ [m] and B ∈ [−1, 1]m×n. Then, for f =
h ◦ SVT(Z, τ, ψ),

D(f(i, Z), f(j, Z)) ≤ K1K2 ∥Zi − Zj∥1 ,

for all i, j ∈ [m], i.e., f is (D, ℓ1)-individually fair on Z
with constant K1K2.

Theorem 4.1 states that when h is IF with Lipschitz con-
stant K1, applying SVT pre-processing preserves IF with
constant K1K2 with respect to the observed covariates. In
order for h with SVT pre-processing to have stronger IF
than h alone, we need K2 ≪ 1, as we examine next.

Corollary 4.2. Suppose ψ(x) = βx and Z satisfies the
strong incoherence condition3 with parameter µ1, i.e.,∥∥∥∥∥∥

∑
ℓ∈S(τ)

uℓv
⊤
ℓ

∥∥∥∥∥∥
∞

≤
√
µ1r

mn
,

3Strong incoherence is a standard assumption in the ME lit-
erature (Keshavan et al., 2010a; Negahban & Wainwright, 2012;
Chen, 2015). It requires that the singular vectors of a matrix are
not sparse, which can make it difficult to estimate the underlying
latent matrix when given limited samples.

where r = |S(τ)| denotes the rank of Z. Then for any
threshold τ , K2 ≤ β

√
µ1rm/τ .

Corollary 4.2 characterizes common conditions under which
K2 scales as O(

√
rm/τ).

Specifically, suppose that τ ≥
√
2nβ. Then, K2 =

O(
√
rm/n). This indicates that combining hwith SVT pre-

processing would improve the IF of h as long as n = ω(rm).
In other words, as long as there is enough data n per indi-
vidual relative to the number of individuals m and the rank
r, then K2 → 0 as n → ∞.4 We discuss the implications
of this result further in Section 5.

4.3. IF With Respect to Latent Covariates

In the previous section, we showed that SVT pre-processing
can improve IF on Z. In this section, we show that SVT pre-
processing can also ensure IF on A as long as its estimates
Â are close to the ground-truth values.

Theorem 4.3. Let d denote the ℓq norm. Suppose that h is
(D, d)-individually fair with constant K1, i.e.,

D(h(i, B), h(j, B)) ≤ K1||Bi −Bj ||q,

for all i, j ∈ [m] and B ∈ [−1, 1]m×n. Then, for f =
h ◦ SVT(Z, τ, ψ),

D(f(i, Z), f(j, Z))

≤ K1 ∥Ai −Aj∥q + 2K1||Â−A||q,∞

for all i, j ∈ [m].

Theorem 4.3 states when h is IF with Lipschitz constant K1,
then f is approximately IF on A and approaches exact IF as
Â→ A. Note that Theorem 4.3 holds for any method Π.

This result implies that SVT pre-processing preserves the
IF guarantee of h on A as the estimation error of SVT
approaches 0. We show in the next section (Proposition
4.5) that, under an appropriate choice of threshold, the es-
timation error of SVT indeed goes to 0 (specifically, that
||Â − A||2,∞ → 0) as m,n → ∞. Together, these two
results imply that adding SVT pre-processing to h ensures
IF on A under the same conditions that guarantee that SVT
(or, more generally, ME) is accurate.5

Remark 4.4. Theorem 4.3 shows that it is possible to achieve
approximate IF on A, and the tightness of this guarantee
depends on the accuracy of Π. Even though IF on A may be

4The rank r indicates the “complexity” of the ground-truth
matrix A. Although it is computed using Z, it reflects the amount
of “signal” in Z, which generally depends on A.

5Note that the condition in both theorems that
D(h(i, B), h(j, B)) ≤ K1||Bi − Bj ||q for all i, j ∈ [m]
and B ∈ [−1, 1]m×n is not strong. In fact, if it is not met, then
there is no method Π such that f is IF.
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desirable, IF on Z is important because both individuals and
algorithm designers generally cannot make claims based on
the unknown ground-truth matrix A; they must often point
to evidence, i.e., observations Z.

4.4. Performance Under Individual Fairness

Recall from Theorem 4.1 that, as long as the threshold τ
is sufficiently large, SVT pre-processing guarantees IF on
Z. However, it is unclear if the threshold chosen for IF is
good for prediction performance. We now show that an
adaptive threshold that is known to provide high accuracy
coincides with thresholds that guarantee IF on Z. Because
this adaptive threshold guarantees that Â → A, it also
guarantees IF on A, as per Theorem 4.3. As a result, SVT
pre-processing under the appropriate threshold ensures that
IF on both Z and A at little to no performance cost.

Consider a well-known ME method known as universal sin-
gular value thresholding (USVT). USVT refines SVT by
proposing a universal formula for the threshold τ , thereby
removing the need to tune τ by hand. Under mild assump-
tions onA and Ω, USVT has strong performance guarantees.
In order to study performance, let the mean-squared error
(MSE) of ME be defined as

MSE(Â) =
1

mn

m∑
i=1

n∑
j=1

E
[
(Âij −Aij)

2
]
. (2)

Let ∥M∥∗ denote the nuclear norm of matrix M . We begin
with a well-known performance guarantee on USVT.

Theorem 4.5 (Modified from Theorem 1.1. in Chatterjee
(2015)). Suppose the elements ofZ are independent random
variables, each independently observed with probability
p ∈ [0, 1]. Let p̂ be the proportion of observed values,
ψ(x) = x/p̂, ϵ ∈ (0, 1], and w = (2 + η)2 for η ∈ (0, 1).
Let ρ1 = max(m,n) and ρ2 = min(m,n). Then, if p ≥
ρϵ−1
1 for some ϵ > 0 and τ =

√
wρ1p̂,

MSE (SVT(Z, τ, ψ)) ≤C(η)min

(
∥A∥∗
ρ2
√
ρ1p

,
∥A∥2∗
ρ1ρ2

, 1

)
+ C(ϵ, η) exp(−c(η)ρ1p),

where C(η), c(η) > 0 depend only on η and C(ϵ, η) de-
pends only on η and ϵ.6

6 This upper bound can be improved when the additional con-
dition that Var(Zij) ≤ σ2 for all i, j and σ ≤ 1 holds. Then, if
τ ≥

√
wnq̂, where q̂ = p̂σ2 + p̂(1− p̂)(1− σ2), q ≥ nϵ−1, and

q = pσ2 + p(1− p)(1− σ2) (Chatterjee, 2015),

MSE(Â) ≤ C(η)min

(
∥A∥∗

√
q

mp
√
n
,
∥A∥2∗
mn

, 1

)
+ C(ϵ, η) exp(−c(η)nq).

Theorem 4.5 states that when τ =
√
wρ1p̂ and p is large

enough, the MSE of SVT decays at a rate of o((mn)−1).
As an immediate extension, Theorem 4.5 tells us that if the
loss of h when given perfect information A is small, then
the loss of f = h ◦ SVT(Z,

√
ωρ1p̂, ψ) is also small as

n,m → ∞ because the estimate Â produced by USVT is
close to A.
Remark 4.6. Chatterjee (2015) also show that the MSE of
USVT is within a constant multiplicative factor and an ex-
ponentially small, additive term of the MSE of the minimax
estimator, which implies that one cannot do much better
than USVT (cf. Theorem 1.2 in Chatterjee (2015)).

As such, SVT is consistent and approximately minimax
under the threshold τ =

√
wρ1p̂. Next, we connect this

finding to our earlier results on IF.

Performance under IF on Z. Suppose that n > m. Then,
ρ1 = n and Theorem 4.5 indicates that SVT pre-processing
with the threshold τ =

√
wp̂n has good performance. Un-

der Corollary 4.2, such a threshold also ensures that f with
SVT pre-processing is more individually fair on Z than f
without SVT pre-processing for large enough n such that
n = ω(rm). Therefore, there is no trade-off between per-
formance and IF under SVT pre-processing when n grows
at the rate ω(rm).

Performance under IF on A. Recall from Theorem 4.3
that ME pre-processing is approximately individually fair
on A, and it is fully individually fair on A when ||Π(Z)−
A||q,∞ = 0. Therefore, the relationship between IF on A
and performance under ME is straightforward: the lower
the estimation error ∥Π(Z)−A∥q,∞, the more individually
fair f is on A.

5. Discussion
In this section, we interpret the results and discuss the con-
ditions under which SVT pre-processing guarantees IF and
good performance simultaneously.

Combining the results. Under Theorem 4.5, SVT yields
good performance guarantees as n→ ∞ when τ =

√
wp̂n

and n ≥ m. Under Corollary 4.2, this same τ guarantees
IF on Z with Lipschitz constant K1K2, where K1 is the
Lipschitz constant for h without SVT pre-processing and
K2 = O(

√
rmp̂/n). SVT pre-processing can therefore

improve IF on Z without sacrificing performance when
K2 ≪ 1, So, when is K2 ≪ 1, and why is K2 sometimes
greater than 1?

To answer this question, we examine two data regimes: (i)
when n = o(rmp̂) and (ii) when n = ω(rmp̂).

First data regime. In the first data regime, Corollary 4.2
tells us thatK2 > 1, which implies that SVT pre-processing
does not necessarily improve IF. This phenomenon occurs
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because, when there is not much information by which to
distinguish between individuals (i.e., n, the number of fea-
tures per individual, is small), SVT pre-processing produces
a Â that is smoothed across rows. That is, it causes f to
treat individuals similarly on the whole.

This can, at times, work against IF, which requires that
similar individuals be treated similarly, but not that the pop-
ulation be treated similarly. To see why the latter can work
against IF, consider g1(x) = x and g2(x) = round(x) for
x ∈ [0, 1]. Under g2, individuals can only receive outcomes
0 or 1, so the algorithm treats individuals similarly on the
whole. By this, we mean that individuals fall into one of
two buckets, so the treatment is relatively homogeneous.

On the other hand, under g1, individuals receive one of
infinitely many outcomes in the range [0, 1]. Which of the
two is individually fair? Although g2 treats individuals
similarly on the whole, g1 is IF since d(g1(x), g1(x′)) =
d(x, x′) while g2 is not because g2(0.5 − δ) = 0 while
g2(0.5 + δ) = 1 for arbitrarily small δ > 0. A similar
logic can be used to show that SVT pre-processing does not
always improve IF in this first data regime.7

Second data regime. In the second data regime, Corol-
lary 4.2 tells us that K2 < 1, which implies that SVT pre-
processing improves IF. Intuitively, when n = ω(rmp̂), the
number of features per individual grows faster than the num-
ber of individuals, rank, and observation probability. In this
case, SVT smooths the data in a different way. It produces
a Â that is smoothed across columns. It therefore removes
noise from individual (row) vectors Zi but leaves enough
signal in Zi to differentiate individual i from other individu-
als, thereby avoiding the phenomenon that can occur in the
first data regime (that individuals are treated similarly on
the whole). The fact that the observational data is smoothed
but individuals remain differentiable allows SVT to improve
IF in this data regime.

Putting it together. SVT pre-processing smooths the data
before sending it to h, and this smoothing operation affects
IF differently in different data regimes. We show, however,
that under an appropriately chosen threshold, IF on Z, IF on

7Although SVT pre-processing does not necessarily improve
IF in the first data regime, some might argue that the “smoothing”
that SVT does can prevent f from unnecessarily differentiating
between individuals. For example, suppose that f determines how
much COVID-19 relief each household gets. Suppose that, due
to the short turnaround time, n = o(r2m), e.g., the government
has little information on how each household has been affected by
COVID-19. One might argue that, in such situations, the govern-
ment cannot reliably distinguish between households and should
send the same amount of monetary relief to all households rather
than tailor the amounts based on limited data. The reasoning goes:
in this data regime, it is easy to overfit and use spurious infor-
mation to distinguish between individuals. In this way, one may
debate the importance of IF in the first data regime.

A, and good performance are simultaneously guaranteed as
n → ∞. More precisely, when τ =

√
wp̂n, n = ω(rmp̂),

and n is sufficiently large, SVT pre-processing not only
strengthens IF on Z, but it also guarantees IF on A and
good prediction performance.

6. Experiments
We ran several experiments in order to test the effect of SVT
pre-processing on IF and performance. The inference task
is to estimate the unknown n-dimensional feature vector Ai

for each individual i ∈ [m] using the observations Z.

The results show that SVT pre-processing improves IF, both
in simulation and in the MovieLens1M dataset. We also
examine the performance of an inference algorithm with
and without SVT pre-processing. As expected, we find that
adding SVT pre-processing increases the MSE but only by
a small amount; by Theorem 4.5, we would expect this
amount to decay to 0 as the amount of data grows.

Below, we divide our discussion into three parts. In the
first two parts, we describe our experimental setups for the
synthetic data and on the MovieLens 1M dataset. In the
third part, we discuss the results. Additional results and
implementation details can be found in the Appendix.

6.1. Setup for Experiment #1: Synthetic Data

In Experiment #1, we test h with and without SVT pre-
processing on synthetic data, as follows.

Generating the ground truth matrix A. Consider m =
200 individuals. We sample m feature vectors of length
n = 800, each corresponding to an individual, to form the
ground truth matrix A ∈ [−1, 1]m×n. The feature vectors
(i.e., the rows ofA) are sampled from c = 10 clusters, where
each cluster is given by a multivariate normal distribution.
The mean of each cluster is a vector of length n drawn
uniformly at random from (−1, 1), and the covariance of
each cluster is an n×n diagonal matrix with whose diagonal
values are sampled uniformly at random from (0, 0.1). The
feature vectors are then clipped so that all values fall within
[−1, 1].

Generating the observation matrix Z. Recall that Ω de-
notes the set of observed entries. We generate Z as follows:

Zij =

{
clip(Aij + ηij , [−1, 1]), if (i, j) ∈ Ω,

∅, otherwise,

where ηij ∼ N (0, 0.1). In this section, (i, j) ∈ Ω ⊂ [m]×
[n] with probability p. This is aligned with the conditions
in Theorem 4.5. In the Appendix, we provide results under
a different choice of Ω (specifically, when the probability
of observing an individual i’s j-th feature depends on the
cluster to which i belongs).

7
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Inference algorithm. Recall that the inference task is to
predict the feature vector Ai for individual i given data
B (where B may or may not have undergone SVT pre-
processing). In the synthetic data setting, we let the algo-
rithm h : [m]× [−1, 1]m×n → [−1, 1]n be given as follows.

Let h′ : [m]× [n] → [0, 1] denote a deep neural net (DNN)
trained on data B. Let the DNN be composed of three fully
connected layers of size 300, 100, and 1 with ReLU acti-
vation after the hidden layers and sigmoid after the output
layer. Lastly, let

h(i, B) = 2[h′(i, 1), h′(i, 2), . . . , h′(i, n)]⊤ − 1.

Pre-processing. We compare the IF and performance of
h with and without SVT pre-processing. When there is no
pre-processing step, the data B on which h′ is trained on is
Z (missing entries are replaced with zeros).

When SVT pre-processing is used, the data B on which h′

is trained is SVT(Z, τ, ψ), where p̂ = |Ω|/(mn), ψ(x) =
x/p̂, q̂ = 0.012p̂+ p̂(1− p̂)(1− 0.012), and τ =

√
2.01nq̂.

This form of SVT is consistent with USVT (see Theorem
4.5 and Footnote 6).

6.2. Setup for Experiment #2: MovieLens 1M Dataset

In Experiment #2, we test h with and without SVT pre-
processing on a popular, real-world dataset known as the
MovieLens 1M Dataset.

Dataset. The MovieLens 1M dataset (Harper & Konstan,
2015) contains movie ratings data for 6040 users and 3952
movies. In the context of this work, this ratings data can
be placed in the m × n matrix Z, where m = 6040 and
n = 3952. Each entry Zij contains user i’s rating of movie
j if (i, j) is observed, and Zij = ∅ if user i has not rated
movie j. The ratings are normalized to be between 0 and 1.

As a real-world dataset, there is no ground-truth matrix A.
As such, we cannot evaluate performance relative toA—our
MovieLens discussion instead focuses on IF.

Inference algorithm. Recall that the inference task is to
predict the feature vector Ai for individual i given data
B (where B may or may not have undergone SVT pre-
processing). In the MovieLens setting, we let the inference
algorithm h : [m] × [−1, 1]m×n → [−1, 1]n be the K-
nearest neighbors (K-NN) algorithm (Sarwar et al., 2001).8

K-NN produces an estimate Yi by taking the weighted
average of the K users most similar to user i. In this work,
we let K = 10 and the similarity between users i and j be

8We use K-NN in order to investigate the effect of SVT pre-
processing on another common class of algorithms. In particular,
K-NN smooths data in a way that already encourages IF, which
makes it particularly meaningful if SVT pre-processing is able to
further improve IF.

Table 1. Results on IF and performance in Experiment #1.

p̂ = 0.05 p̂ = 0.1 p̂ = 0.2

MSE(h) 0.33± 0.003 0.21± 0.002 0.10± 0.003

MSE(f ) 0.35± 0.004 0.21± 0.001 0.11± 0.001

IFh
1 (Z) 0.23± 0.005 0.18± 0.003 0.13± 0.001

IFf
1 (Z) 0.02± 0.001 0.02± 0.001 0.03± 0.001

K2 0.01± 0.001 0.01± 0.002 0.02± 0.001

IFh
2 (A) 0.45± 0.011 0.63± 0.012 0.81± 0.005

IFf
2 (A) 0.49± 0.015 0.65± 0.006 0.82± 0.003

measured using adjusted cosine similarity:

sim(i, j) =

∑
k∈[n](Bik − B̄k)(Bjk −Bk)√∑

k∈[n](Bik − B̄k)2
∑

k′∈[n](Bjk′ − B̄k′)2
,

where B̄k represents the average of the k-th item’s ratings.

Pre-processing. We compare the IF of h with and without
SVT pre-processing. When there is no pre-processing step,
the data B used by K-NN is Z (missing entries are replaced
with zeros). When SVT pre-processing is used, the data
B used by K-NN is SVT(Z, τ, ψ), where p̂ = |Ω|/(mn),
ψ(x) = x/p̂, τ =

√
2.01np̂, as consistent with USVT (see

Theorem 4.5).

6.3. Results

Metrics. For a function g : [m]×Zm×n → R, let

MSE(g) =
1

mn− |Ω|
∑

(i,j)/∈Ω

(gj(i, Z)−Aij)
2,

where gj(i, Z) is the j-th element of the vector g(i, Z). For
a matrix X ∈ Rm×n, let

IFg
q(X) =

1

m2

∑
i,j∈[m]

∥g(i, Z)− g(j, Z)∥2
∥Xi −Xj∥q

.

IFf
q (Z) and IFh

q (Z) measure IF on Z with and without SVT
pre-processing, respectively. IFf

q (A) and IFh
q (A) measure

IF onAwith and without SVT pre-processing, respectively.9

A smaller ratio indicates a stronger IF guarantee.

Results. Table 1 summarizes the results for Experiment
#1. The values are averaged over 10 simulations, and the
error bars give +/− two standard deviations. Figures 1-3
visualize the effect of SVT pre-processing on IF on Z for
Experiments #1 and #2. We discuss our findings below.

9We use the ℓ1 norm for Z as per our result in Theorem 4.1 and
the ℓ2 norm for A due to the connection between Theorem 4.3 and
Theorem 4.5.
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Figure 3. Frequencies of ||Yi −Yj ||2/ ∥Zi − Zj∥2 across ran-
domly selected pairs (i, j) in Experiment #2. Y denotes the esti-
mate produced by K-NN on the MovieLens 1M dataset with (red)
and without (blue) SVT pre-processing.

Effect of SVT pre-processing on IF on Z. Table 1 verifies
that SVT pre-processing improves IF onZ in Experiment #1.
In particular, IFf

1 (Z) is much smaller than IFh
1 (Z). Figures

1 and 3 visualize this effect for Experiments #1 and #2,
showing that SVT pre-processing causes the difference in
two individuals’ outcomes relative to the difference in their
features to be smaller than without SVT pre-processing.

Effect of SVT pre-processing on IF on A. IF on A is com-
parable though slightly weaker with SVT pre-processing
than without it. In particular, IFf

2 (A) is slightly larger than
IFh

2 (A) in Table 1. This is in line with Theorem 4.3, which
tells us that adding a pre-processing step Π may weaken IF
on A if the estimation error of Π is non-zero. Since SVT
cannot estimate A perfectly, it yields some estimation error
and, as a result, slightly weakens f ’s IF on A.

As illustrated in Table 1, this effect is small. Moreover, the
gap between IFf

2 (A) and IFh
2 (A) gets smaller as p̂ increases.

This is consistent with our results because the estimation
error of SVT decreases as p̂ increases (see Theorem 4.5),
which means that the IF on A guarantee improves as p̂
increases (see Theorem 4.3).

Effect of SVT pre-processing on performance. The rows
in Table 1 corresponding to MSE(h) and MSE(f) measure
the error of the DNN without and with SVT pre-processing,
respectively, in Experiment #1. As expected from our dis-
cussion in Section 4.4, they show that SVT pre-processing
has a minimal effect on prediction performance, i.e., that
there is little to no fairness-performance trade-off.

7. Conclusion
In this work, we propose using a well-known matrix esti-
mation (ME) method known as singular value thresholding
(SVT) to pre-process sparse, noisy data before applying an
inference algorithm (e.g., a neural network). We show that
pre-processing data using SVT before applying an inference
algorithm comes with strong individual fairness (IF) guar-

antees. Specifically, we derive conditions under which SVT
pre-processing improves IF. We then show that, under these
same conditions, SVT pre-processing has strong perfor-
mance guarantees. Together, these results imply that, under
the appropriate conditions, SVT pre-processing provides a
way to improve IF without imposing a performance cost.
We verify our results on synthetic data and the MovieLens
1M dataset.
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Appendix

A. Proof of Theorem 4.1
Before proving Theorem 4.1, we require two lemmas, as follows.

Lemma A.1. Suppose T ∈ Rm×n and x ∈ Rn×1. Then

∥Tx∥2 ≤ ∥T∥∞ ∥x∥1
√
m.

Proof.

∥Tx∥2 =

∑
i∈[m]

∑
j∈[n]

Tijxj

2


1/2

≤

∑
i∈[m]

∑
j∈[n]

|Tij ||xj |

2


1/2

≤

∑
i∈[m]

∑
j∈[n]

∥T∥∞ |xj |

2


1/2

= ∥T∥∞

∑
i∈[m]

∑
j∈[n]

|xj |

2


1/2

= ∥T∥∞
√
m

∑
j∈[n]

|xj |


= ∥T∥∞ ∥x∥1

√
m.

Lemma A.2. Suppose T ∈ Rm×n and x ∈ Rn×1. Then

∥Tx∥1 ≤ ∥x∥1 max
j

∥tj∥1 .

Proof. Recall Ti denotes the i-th row of T and ti denotes the i-th column of T .

∥Tx∥1 =
∑
i∈[m]

|T⊤
i x|

=
∑
i∈[m]

∣∣∣∣∣∣
∑
j∈[n]

Tijxj

∣∣∣∣∣∣
≤
∑
i∈[m]

∑
j∈[n]

|Tijxj |

≤
∑
i∈[m]

∑
j∈[n]

|Tij ||xj |

=
∑
j∈[n]

|xj |
∑
i∈[m]

|Tij |
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≤
∑
j∈[n]

|xj |max
j′

∑
i∈[m]

|Tij′ |


=
∑
j∈[n]

|xj |
(
max
j′

∥tj′∥1

)
= ∥x∥1 max

j
∥tj∥1 .

Theorem 4.1. Suppose that h is (D, ℓ2)-individually fair with constant K1, i.e.,

D(h(i, B), h(j, B)) ≤ K1||Bi −Bj ||2,

for all i, j ∈ [m] and B ∈ [−1, 1]m×n. Then, for f = h ◦ SVT(Z, τ, ψ),

D(f(i, Z), f(j, Z)) ≤ K1K2 ∥Zi − Zj∥1 , (3)

for all i, j ∈ [m], i.e., f is (D, ℓ1)-individually fair on Z with constant K1K2.

Proof. Let the singular value decomposition (SVD) of Z be given by Z =
∑min(m,n)

ℓ=1 σℓuℓv
⊤
ℓ , where σi,ui,vi denote the

i-th singular value, left singular vector, and right singular vector of Z respectively. Given f = h ◦ SVT(Z, τ, ψ), the input
Â to h is the output of running SVT on Z, i.e.,

Â =
∑

ℓ∈S(τ)

ψ(σℓ)uℓv
⊤
ℓ .

We can expand ||Âi − Âj ||2 to get

||Âi − Âj ||2 =

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)uℓiv
⊤
ℓ −

∑
ℓ∈S(τ)

ψ(σℓ)uℓjv
⊤
ℓ

∥∥∥∥∥∥
2

(4)

=

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)(uℓi − uℓj)v
⊤
ℓ

∥∥∥∥∥∥
2

. (5)

Next we rewrite uℓi − uℓj in terms of Zi and Zj . Since uℓ is the ℓ-th left singular vector of Z, it is the ℓ-th eigenvector of
ZZ⊤. Let λℓ be the ℓ-th eigenvalue of ZZ⊤. Note that λℓ = σ2

ℓ . Then,

λℓuℓ = ZZ⊤uℓ.

Looking at only the i-th row,

λℓuℓi = Z⊤
i Z

⊤uℓ

=⇒ uℓi =
Z⊤

i Z
⊤uℓ

λℓ

=⇒ uℓi − uℓj =
(Zi − Zj)

⊤Z⊤uℓ

σ2
ℓ

.

Plugging this back into equation (5), we get

||Âi − Âj ||2 =

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)(Zi − Zj)
⊤Z⊤uℓv

⊤
ℓ

σ2
ℓ

∥∥∥∥∥∥
2

(6)

13
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=

∥∥∥∥∥∥
 ∑

ℓ∈S(τ)

ψ(σℓ)

σ2
ℓ

(
uℓv

⊤
ℓ

)⊤Z(Zi − Zj)

∥∥∥∥∥∥
2

. (7)

Next we apply Lemma A.1 to (7) to get

||Âi − Âj ||2 ≤

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)uℓv
⊤
ℓ

σ2
ℓ

∥∥∥∥∥∥
∞

√
n ∥Z(Zi − Zj)∥1 . (8)

Applying Lemma A.2 to ∥Z(Zi − Zj)∥1 in (8) gives us

||Âi − Âj ||2 ≤

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)uℓv
⊤
ℓ

σ2
ℓ

∥∥∥∥∥∥
∞

√
nmax

k
∥zk∥1 ∥Zi − Zj∥1 . (9)

Since D(h(i, B), h(j, B)) ≤ K1||Bi −Bj ||2,

D(f(i, Z), f(j, Z)) = D(h(i, Â), h(j, Â)) (10)

≤ K1

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)uℓv
⊤
ℓ

σ2
ℓ

∥∥∥∥∥∥
∞

√
nmax

k
∥zk∥1

 ∥Zi − Zj∥1 (11)

= K1K2 ∥Zi − Zj∥1 . (12)

B. Proof of Corollary 4.2
Corollary 4.2. Suppose ψ(x) = βx and Z satisfies the strong incoherence condition with parameter µ1 (Chen, 2015), i.e.,∥∥∥∥∥∥

∑
ℓ∈S(τ)

uℓv
⊤
ℓ

∥∥∥∥∥∥
∞

≤
√
µ1r

mn
,

where r = |S(τ)| denotes the rank of Z. Then for any threshold τ , K2 ≤ β
√
µ1rm/τ .

Proof. Recall that

K2 =

∥∥∥∥∥∥
∑

ℓ∈S(τ)

ψ(σℓ)uℓv
⊤
ℓ

σ2
ℓ

∥∥∥∥∥∥
∞

√
nmax

k
∥zk∥1 .

Given ψ(x) = βx, we have

K2 = β

∥∥∥∥∥∥
∑

ℓ∈S(τ)

uℓv
⊤
ℓ

σℓ

∥∥∥∥∥∥
∞

√
nmax

k
∥zk∥1 .

Recall S(τ) = {ℓ : σℓ > τ} is the set of components whose singular values exceed τ , so the value of any σℓ in the
denominator must be at least τ , giving us

K2 ≤ β

τ

∥∥∥∥∥∥
∑

ℓ∈S(τ)

uℓv
⊤
ℓ

∥∥∥∥∥∥
∞

√
nmax

k
∥zk∥1 .

Given Z satisfies the strong incoherence condition,

K2 ≤ β

τ
·
√
µ1r

mn
·
√
nmax

k
∥zk∥1 .
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Since each entry Zij ∈ [−1, 1] and there are m entries in each column of Z, ∥zk∥1 ≤ m. Hence

K2 ≤ β

τ
·
√
µ1r

mn
·
√
n ·m ≤

β
√
µ1rm

τ
,

concluding our proof.

C. Proof of Theorem 4.3
Theorem 4.3. Let d denote the ℓq norm. Suppose that h is (D, d)-individually fair with constant K1, i.e.,

D(h(i, B), h(j, B)) ≤ K1||Bi −Bj ||q,

for all i, j ∈ [m] and B ∈ [−1, 1]m×n. Then, for f = h ◦ SVT(Z, τ, ψ),

D(f(i, Z), f(j, Z)) ≤ K1 ∥Ai −Aj∥q + 2K1||Â−A||q,∞ (13)

for all i, j ∈ [m].

Proof. Recall that ∥M∥q,∞ = maxi ∥mi∥q . This result follows from the application of the triangle inequality.

D(f(i, Z), f(j, Z)) = D(h(i, Â), h(j, Â))

≤ K1

∥∥∥Âi − Âj

∥∥∥
q

≤ K1(||Âi −Ai||q + ||Âj −Aj ||q + ||Ai −Aj ||q)
= K1||Ai −Aj ||q + 2K1||Â−A||q,∞.

The first equality follows from the fact that f = h ◦ SVT(Z, τ, ψ), the first inequality follows from the assumption that h is
IF with constant K1, the second inequality follows from applying the triangle inequality twice with intermediate points Ai

and Aj , and the final equality combines like terms, which gives the result as stated.

D. Modification of Theorem 1.1 in Chatterjee (2015)
Theorem 1.1 from Chatterjee (2015). Suppose that we have a m× n matrix M , where m ≤ n and the entries of M are
bounded by 1 in absolute value. Let X be a matrix whose elements are independent random variables, and E(xij) = mij

for all i and j. Assume that the entries of X are also bounded by 1 in absolute value, with probability one. Let p be a real
number belonging to the interval [0, 1]. Suppose that each entry of X is observed with probability p, and unobserved with
probability 1− p, independently of the other entries.

We construct an estimator M̂ of M based on the observed entries of X using the Universal Singular Value Thresholding
(USVT) algorithm with threshold (2 + η)

√
np̂. Suppose that p ≥ n−1+ε for some ε > 0. Then

MSE(M̂) ≤ Cmin

(
∥M∥∗
m
√
np
,
∥M∥2∗
mn

, 1

)
+ C(ε)e−cnp,

where C and c are positive constants that depend only on the choice of η and C(ε) depends only on ε and η.

In our work, we have modified Theorem 1.1 from Chatterjee (2015) for our specific setup. The modifications only involve
the renaming of variables to keep our notation consistent and to clarify the dependencies between variables. The changes are
summarized in the following table.
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Table 2. Modifications to notation in Theorem 1.1 of Chatterjee (2015).

NOTATION IN CHATTERJEE (2015) OUR NOTATION

M A
X Z

M̂ SVT(M, τ, ψ)
n ρ1
m ρ2
C C(η)
c c(η)

C(ε) C(ε, η)

Our modified theorem is as follows.

Theorem 4.5. (Modified from Theorem 1.1. in Chatterjee (2015)). Suppose the elements of Z are independent random
variables, each independently observed with probability p ∈ [0, 1]. Let p̂ be the proportion of observed values, ψ(x) = x/p̂,
ϵ ∈ (0, 1], and w = (2 + η)2 for η ∈ (0, 1). Let ρ1 = max(m,n) and ρ2 = min(m,n). Then, if p ≥ ρϵ−1

1 for some ϵ > 0
and τ =

√
wρ1p̂,

MSE (SVT(Z, τ, ψ)) ≤ C(η)min

(
∥A∥∗
ρ2
√
ρ1p

,
∥A∥2∗
ρ1ρ2

, 1

)
+ C(ϵ, η) exp(−c(η)ρ1p),

where C(η), c(η) > 0 depend only on η and C(ϵ, η) depends only on η and ϵ.

E. Experimental Setup
Below are additional details about our experimental setup:

Training the DNN. Given input matrix B, the training set of the deep neural net (DNN) described in Section 6.1 consists
of (input, target) tuples of the form (

[
Bi bj

]
, Bij). Missing entries in Bi and bj are replaced with zeros. Out of the

observed entries (i, j) ∈ Ω, 80 percent are used for training and the remaining 20 percent are used for validation; the
unobserved entries form our test set. We use a batch size of 128 and 2000 steps of training.

F. Additional Experiments
F.1. Experiment #3: Observing entries non-uniformly at random

Setup. Recall the setup for Experiment #1 in Section 6.1. We sample m = 200 feature vectors of length n = 800, each
corresponding to an individual, to form the ground truth matrix A ∈ [−1, 1]m×n. The feature vectors are sampled from
c = 10 clusters, where each cluster is a multivariate normal distribution.

Next we generate the observation matrix Z. Recall that Ω denotes the set of observed entries. Instead of selecting
each entry independently with probability p, we instead observe entries with different probabilities depending on the
cluster it belongs to. For each cluster k, there is an associated random vector pk ∈ Rn with entries summing to p · n.
For each individual i in cluster k, the entry (i, j) is observed with probability pi[j]. The expected number of observed
entries is p · n ·m, so the proportion observed is as desired, but the entries are no longer drawn uniformly at random as
the probability an entry is drawn is dependent on the cluster it is in. The remaining setup is identical to that for Experiment #1.

Results. Table 3 summarizes the results for Experiment #3. The values are averaged over 10 simulations, and the error
bars give +/− two standard deviations. We observe that IFf

1 (Z) is much smaller than IFh
1 (Z), which again verifies SVT

pre-processing improves IF on Z.

Note that the entries (i, j) ∈ Ω not being selected uniformly at random violates one of the conditions of Theorem 4.5, which
states that each entry of A is independently observed with probability p. Despite violating this condition, we observe in
Table 3 that there is minimal decrease in performance when applying SVT pre-processing. This indicates the performance
guarantees of SVT are robust to relaxations of the independence condition stated in Theorem 4.5.
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Table 3. Results on IF and performance in Experiment #3.

p̂ = 0.05 p̂ = 0.1 p̂ = 0.2 p̂ = 0.4

MSE(h) 0.31± 0.002 0.23± 0.002 0.16± 0.002 0.14± 0.001

MSE(f ) 0.33± 0.003 0.23± 0.001 0.17± 0.001 0.14± 0.001

IFh
1 (Z) 0.24± 0.005 0.17± 0.003 0.11± 0.002 0.06± 0.001

IFf
1 (Z) 0.02± 0.001 0.02± 0.001 0.03± 0.001 0.03± 0.001

K2 0.05± 0.003 0.11± 0.007 0.25± 0.009 0.49± 0.013

IFh
2 (A) 0.46± 0.010 0.63± 0.011 0.75± 0.015 0.75± 0.007

IFf
2 (A) 0.49± 0.014 0.64± 0.006 0.75± 0.008 0.73± 0.014

F.2. Experiment #4: Varying length of feature vectors

Setup. Consider m = 500 individuals. We sample m feature vectors of length n from c = 20 clusters, where each cluster
is a multivariate normal distribution. The mean of each cluster is a vector of length n drawn uniformly at random from
(−1, 1), and the covariance of each cluster is an n× n diagonal matrix with whose diagonal values are sampled uniformly
at random from (0, 0.1). The feature vectors are then clipped so that all values fall within [−1, 1]. When generating the
observation matrix Z, we observe a proportion p = 0.2 of entries uniformly at random. Instead of varying the value of p, we
instead create datasets for varying values of n, the length of the feature vector. The remaining setup is identical to that for
Experiment 1, described in Section 6.1.

Table 4. Results on IF and performance over different values of n in Experiment #4.

n = 25 n = 100 n = 400 n = 800

MSE(h) 0.36± 0.004 0.28± 0.003 0.13± 0.001 0.10± 0.001

MSE(f ) 0.36± 0.004 0.28± 0.003 0.12± 0.001 0.10± 0.001

IFh
1 (Z) 0.43± 0.004 0.26± 0.002 0.17± 0.001 0.13± 0.001

IFf
1 (Z) 0.15± 0.003 0.07± 0.001 0.05± 0.001 0.03± 0.001

K2 0.21± 0.020 0.06± 0.002 0.03± 0.001 0.02± 0.001

IFh
2 (A) 0.51± 0.004 0.63± 0.005 0.80± 0.007 0.83± 0.007

IFf
2 (A) 0.62± 0.011 0.67± 0.007 0.82± 0.011 0.83± 0.010

Results. Table 4 summarizes the results for Experiment #4. Recall from Section 5 that our theoretical guarantees for
SVT pre-processing simultaneously strengthening IF and having good prediction performance hold when n = ω(rmp̂).

In the above setting, both n = 25 and n = 100 fall within o(rmp̂). However, we observe that IFf
1 (Z) is much smaller

than IFh
1 (Z) for all the values of n, and there are very minimal differences between MSE(h) and MSE(f). This means

that even when n = o(rmp̂), we still see large improvements in IF with respect to Z with little to no effect on prediction
performance when applying SVT pre-processing. This demonstrates that the empirical IF and performance benefits of SVT
pre-processing are not restricted to when n = ω(rmp̂).
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