
Multi-Architecture Temporal Models for Early Symptom-Based Disease Prediction

Timely diagnosis remains a challenge when relying on patient-reported symptoms. The
sequence and evolution of these symptoms hold crucial information that, if modeled correctly,
can transform early detection. Most existing classifiers treat patient symptoms as static features,
ignoring how they evolve over time. To address this, we evaluate four temporal modeling
approaches on a clinical dataset of 246,000 records spanning over 300 symptoms and 700 diseases.
First, incremental logistic regression (LR) processes cumulative symptom counts across seven
timesteps, achieving 81% accuracy (weighted F1 = 0.83), with performance improving steadily
from 4.1% at t = 1. Second, a Long Short-TermMemory (LSTM) network modeling full symptom
trajectories reaches 83% accuracy, progressing from 6.9% to 83% across timesteps.

Building on these temporal baselines, we introduce two complementary architectures that
balance interpretability with temporal depth. The Hybrid Residual Logistic Sequence (HRLS)
starts with LR as a coefficient-based, interpretable baseline and learns temporal corrections via
an LSTM. Specifically, HRLS predictions are computed as:
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where Lt are the LR logits at timestep t and ∆ is the LSTM-predicted residual capturing temporal
patterns missed by the linear model. By directing the LSTM to model only what the linear
baseline misses, HRLS preserves interpretability while capturing complex temporal symptom
dynamics. While full evaluation is still in progress, initial results indicate that HRLS provides a
practical compromise as a bridge between classical and deep learning methods.

Finally, the Temporal Graph Neural Network (TemporalGNN) models each timestep as a
bipartite graph linking active symptom nodes to disease nodes. Per-graph features are extracted
using GraphSAGE convolutions and aggregated temporally via an LSTM, capturing the evolution
of symptom–disease relationships. In a preliminary study on a balanced subset, class-weighted
TemporalGNN training boosted accuracy from 39% to 91% within eight epochs, highlighting its
potential to learn complex relational patterns even under computational limitations.

To evaluate interpretability, we leverage SHAP values and propose Temporal Explanation
Robustness (TER), defined as the Spearman correlation between feature importance and accuracy
drops under perturbations, ensuring explanations remain reliable under real-world shifts. Future
directions include full-scale HRLS evaluation, extended TemporalGNN training, and integration
of multimodal clinical data to facilitate practical clinical decision-making.
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