
SENSE: SENsing Similarity SEeing Structure
Dimensionality reduction (DR) is central to modern ML, allowing high-dimensional data to be mapped into interpretable
low-dimensional spaces. Among many DR techniques, a prominent subclass is neighbor embedding (NE) methods,
which learn embeddings that preserve pairwise similarities. Classical NE algorithms such as t-SNE and UMAP [1]
compute 𝑆𝑑ℎ
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DR methods assume centralized access to pairwise distances, which fails in decentralized settings. Different methods
degrade differently. Force-layout methods (t-SNE/UMAP) are also fragile since attraction to neighbors and repulsion
from others require global negatives. When negatives are sampled only locally, repulsion is biased, yielding cluster drift
and distorted layouts [2, 3]. Several approaches have been proposed to address this gap, but they fall short on scalability,
privacy, or deployment realism. SMAP [4] secures t-SNE with multi-party computation but requires ∼32-50 hrs for 4k
points and lacks UMAP support. FedNE [2] uses surrogate distillation with inter-client exchange, is not scalable and is
inversion-prone. FedTSNE [3] aligns anchors via MMD but is fragile to adversaries, restricted to multisite, and requires
iterative rounds. To overcome these challenges, we propose SENSE, a geometry-aware, privacy-preserving framework
for global NE without raw data exchange. SENSE reconstructs global structure using local distance measurements
and structured matrix completion, enabling embeddings that preserve both local and global geometry in Euclidean
and hyperbolic spaces. This eliminates the need for raw feature sharing, iterative communication, or cryptographic
protocols. Privacy is built into the design: when the number of anchors satisfies 𝐾 < 𝑑ℎ, the inverse mapping from
anchor distances to original features is provably non-unique, preventing exact recovery. By combining structured matrix
completion with anchor-based coordination, SENSE provides an efficient, privacy-preserving alternative to existing
NE methods in decentralized environments. It further integrates contrastive learning by deriving cross-client positive
and negative pairs from estimated similarities, effectively generalizing negative sampling under structural constraints.

Figure 1: Observed entries in the global distance matrix 𝐷 under four SENSE configurations: (1)
Pointwise-Full, (2) Pointwise-Partial, (3) Multisite-Full, and (4) Multisite-Partial. These differ in the
visibility of Anchor–NonAnchor (A–NA) and NA–NA blocks, governed by client-level data locality and
anchor access. Multisite settings permit intra-client NA–NA observations (e.g., A1, A2, ..., C2), while
Pointwise settings restrict each client to a single NA (e.g., 1, 2, ..., 9). Full modes provide all NAs with
access to the global anchor set (e.g., A–E), yielding complete A–NA blocks; Partial modes expose disjoint
anchor subsets per client, resulting in sparse and structured observations.

Overall, SENSE introduces the following advantages: 1)
Communication-efficient and geometry-aware: Re-
quires a single server-client interaction and supports both
Euclidean and hyperbolic spaces for modeling flat and hi-
erarchical data. 2) Deployment flexibility (described in
Fig. 1): Operates under two regimes SENSE-Pointwise
for single-point clients (e.g., edge/mobile) and SENSE-
Multisite for multi-sample clients (e.g., hospitals, banks).
3) Provable reliability: Offers theoretical guarantees
on privacy preservation, ensuring embedding fidelity,
validated across diverse modalities and geometries. These properties make SENSE suitable for privacy-sensitive,
structurally diverse domains. Hospitals can jointly visualize patient data without violating HIPAA/GDPR, banks can
detect fraud patterns without sharing transactions, and mobile/IoT clients with a single sample can still contribute
to global embeddings. Genomic labs can embed single-cell transcriptomes into a shared hyperbolic space that
preserves cellular hierarchy and privacy. Crucially, SENSE also supports evolving data scenarios and dynamic
client participation: new clients or data points can be integrated by estimating only their partial distances to a subset
of existing entities, avoiding full re-computation and preserving global coherence with minimal overhead. This
makes SENSE not only privacy-preserving and geometry-aware but also inherently scalable to dynamic and federated
settings.
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