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ABSTRACT

With the rapid evolution of generative models, Al-generated synthetic content
has become increasingly realistic and difficult to detect, posing serious threats
to information integrity. Unlike authentic samples that align with well-formed
data distributions, manipulated samples often fall off the underlying data mani-
fold. The foundational insight of our work is that a diffusion model’s response
to such off-manifold inputs can be deliberately engineered. We demonstrate that
through targeted contrastive fine-tuning, subtle latent deviations consistently re-
sult in structured reconstructions failures. Leveraging this engineered sensitivity,
we introduce the Contrastive Reconstruction Amplification Forensics Technique
(CRAFT), a method that actively induces generative collapse for forgeries while
maintaining faithful reconstruction for authentic content. The core of our ap-
proach is a contrastive reconstruction loss that fine-tunes the terminal stages of
the DDIM denoising process. This optimization fundamentally alters the model’s
dynamics, engineering a deliberately fragile and asymmetric generative manifold:
authentic latents are guided toward high-fidelity reconstructions, while any latent
perceived as off-manifold is aggressively pushed toward a state of collapse. To
further amplify this divergence, our framework then employs a class-guided la-
tent perturbation that pushes all inputs away from the real-class center, effectively
steering forged latents into the “failure regions” engineered by our fine-tuning.
The result is a predictable structural collapse for forged samples into distinctive
artifacts (e.g., honeycomb patterns), exposing a failure mode rooted in the model’s
divergent Jacobian dynamics. This induced collapse yields a strong and inter-
pretable authenticity cue that enables robust detection. Extensive experiments
demonstrate that our method achieves superior performance and cross-domain
generalization.

1 INTRODUCTION

Modern GANs and diffusion models can now synthesize content virtually indistinguishable from
reality |Goodfellow et al.| (2020); Rombach et al.| (2021)); |[Karras et al.| (2021a); Ho et al.| (2020);
Bhattad et al.| (2024). While such progress drives innovation in creative industries, simulation, and
data augmentation, it also raises urgent concerns about authenticity and trust. Al-generated con-
tent can be easily misused for misinformation, identity fraud, copyright infringement, and political
manipulation, making reliable detection a critical and growing challenge (Corvi et al.|(2023).

As synthetic imagery becomes increasingly photorealistic, detectors that rely on visual artifacts,
frequency anomalies, or temporal cues are steadily losing effectiveness |L1 & Lyu| (2019); |Afchar,
et al.| (2018)); Qian et al.| (2020); Rajan et al.| (2025)); [Nirkin et al.| (2022); Huang et al. (2023). A
recent counter-trend, reconstruction-based detection, assumes generators better reproduce authentic
images and thus treats reconstruction discrepancies as a cue|Wang et al.|(2023a); Ricker et al.|(2024)).
Yet this paradigm is inherently passive: expressive generators often recreate both real and fake inputs
with high fidelity, resulting in small or ambiguous errors and dilute discriminative power|Ojha et al.
(2023a); Lim et al.| (2024]).
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Figure 1: Reconstruction results under different settings. Top to bottom: input images, recon-
struction without fine-tuning or perturbation, fine-tuned with L1 loss, L2 loss, CR loss, and CR loss
with latent perturbation. Without fine-tuning, reconstruction lacks class-discriminative signals. L1
and L2 loss introduces moderate differences but degrades real samples. In contrast, our CR loss
preserves authentic details while collapsing forged reconstructions into structured artifacts. Pertur-
bation further amplifies this asymmetry.

This work proposes a fundamental shift. Rather than passively evaluating reconstruction behavior,
we ask: Can the generative model itself be provoked into revealing a fake? We answer in the
affirmative by introducing an active-induced failure paradigm that deliberately drives the generator
into a structured collapse, but only for manipulated content. The key lies in exploiting the latent
geometry of diffusion models, turning detection from passive observation into active provocation.

We instantiate this idea as the Contrastive Reconstruction Amplification Forensics Tech-
nique(CRAFT), which engineers divergent generative pathways between authentic and synthetic
samples. The core of our approach is a stage-wise fine-tuning strategy applied to the final DDIM
denoising steps. This instills a fragile yet asymmetric generative dynamic: forged latents collapse,
while authentic ones remain robust. To further magnify this divergence, we apply a class-guided
latent perturbation that shifts all inputs away from the authentic-class center. This pushes forgeries
deeper into off-manifold regions, making them more prone to failure.

This interaction between our components triggers a cascading amplification process: (1) our fine-
tuning first establishes a fragile, asymmetric dynamic within the terminal denoising steps, making
the model hypersensitive to off-manifold inputs, (2) the class-guided perturbation drives forged la-
tents into unstable regions of the latent space, initiating a cascade of divergence, (3) finally, the VAE
decoder, unable to interpret this pathological input, undergoes a structural collapse, manifesting as
the distinctive honeycomb artifacts that serve as interpretable indicators of inauthenticity.

Rather than relying on subtle discrepancies, our framework activates the model’s intrinsic sensi-
tivity to synthetic content, turning the denoising process itself into a forensic tool. By integrating
latent-space geometry, contrastive supervision, and denoising sensitivity, our method achieves ro-
bust, interpretable, and highly generalizable detection of Al-generated images across semantically
and visually distinct domains. Our main contributions are summarized as follows.

* We introduce a novel active failure induction paradigm for diffusion models, transforming
detection from passive error measurement into active structural interrogation of generative
collapse.

* We design a class-guided latent perturbation that shifts all samples away from the authentic-
class center, preserving real inputs near the manifold boundary while pushing synthetic
forgeries deeper into off-manifold regions to exacerbate instability.

* We formulate a contrastive reconstruction loss that exploits the chaotic cascade of DDIM
denoising to enforce reconstruction asymmetry: authentic samples are reconstructed faith-
fully, while forgeries are driven toward collapse with distinctive, human-interpretable arti-
facts.
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* We implement a stage-wise adaptation strategy on the terminal DDIM denoising steps,
converting off-manifold chaos into a learned failure mode, delivering strong cross-domain
generalization with minimal additional compute.

2 RELATED WORK

The rise of photorealistic generative models has spurred the development of forgery detection meth-
ods. Early efforts rely on visual artifacts, frequency inconsistencies, or physiological signal anoma-
lies, while more recent work shifts toward reconstruction-based strategies that leverage pretrained
generative models to measure fidelity gaps between real and fake content.

2.1 TRADITIONAL FORGERY DETECTION

Classical approaches target surface-level cues such as artifacts|Li & Lyu|(2019); Afchar et al.[(2018));
Pellcier et al.| (2024), frequency domain traces [Qian et al.[ (2020); Lanzino et al.| (2024), or physi-
ological irregularities |Agarwal et al.| (2020); Qi et al.| (2020). For instance, MesoNet [Li & Lyu
(2019) exploits warping artifacts from face generation pipelines, F3Net|Qian et al.|(2020) introduces
frequency-aware learning using DCT decompositions, and DeepRhythm |Q1 et al.[ (2020) tracks re-
mote PPG signals to uncover inconsistencies in heartbeat patterns. Though effective in narrow set-
tings, these methods are fragile, as they are rooted in artifacts that can be easily masked by generative
advancements and offering limited insight into distribution-level deviations.

2.2 RECONSTRUCTION-BASED DETECTION

To overcome the limitations of traditional approaches, recent efforts have shifted toward
reconstruction-based methodsCao et al.| (2022), which leverage the generative behavior of pre-
trained models. These methods typically reconstruct an input image and compute its discrepancy
from the original Ricker et al.|(2024)). This based on the premise that authentic images, lying closer
to the learned data manifold, can be more faithfully recovered than forged ones, which deviate
from the training distribution and thus exhibit higher reconstruction errors. This line of research
offers a model-aligned and semantically meaningful alternative to conventional classification-based
detection. Building on these insights, Ojha et al. |(Ojha et al.|(2023a) proposed a training-free detec-
tion paradigm utilizing pre-trained vision—language model features, demonstrating generalization
across unseen generative models. Extending this concept, DIRE |Wang et al| (2023a) introduces
an image representation that quantifies the discrepancy between an input image and its reconstruc-
tion by a pre-trained diffusion model. The authors observed a critical asymmetry: real images
can be more faithfully reconstructed than forged ones. This reconstruction gap serves as an ef-
fective signal for distinguishing real from generated content, enabling robust detection. Similarly,
Fakelnversion |(Cazenavette et al.[ (2024) leverages inversion-derived features from pre-trained Sta-
ble Diffusion models to train real-vs-fake classifiers and introduces a benchmark that better reflects
practical deployment scenarios, thus demonstrating the utility of diffusion inversion as a source of
discriminative representations.

Unlike prior work that passively observes reconstruction errors, we propose an active collapse induc-
tion strategy. By fine-tuning the terminal diffusion stages, we construct a hypersensitive generator
that maintains stability for real inputs but collapses under forged ones. While class-guided perturba-
tion amplifies this instability, our results show that fine-tuning is essential for triggering the collapse,
transforming the generator from a neutral reconstructor into a forensic amplifier.

3 METHOD

In this section, we present our Contrastive Reconstruction Amplification Forensics Technique
(CRAFT), a detection framework that transforms diffusion models into active forgery detectors by
inducing asymmetric reconstruction dynamics. As illustrated in Figure J] Our method leverages
the deterministic reverse process of Denoising Diffusion Implicit Models (DDIM) to map an input
image x into its latent representation z. A class-guided perturbation then shifts z away from the
authentic-class center, producing a perturbed latent z’. This is decoded via the reverse diffusion pro-
cess Dy to obtain the reconstruction . To differentiate real and fake inputs, We fine-tune the image
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Figure 2: Overview of our proposed CRAFT. The framework comprises a Reconstruction Flow
(bottom, for training) and a Classification Flow (top, for inference). Given an input image, we
perform a (1) latent shift away from the authentic-class center. The resulting off-manifold latent then
undergoes (2) chaotic denoising, where fine-tuning in the final DDIM steps amplifies instability. For
forged samples, this process leads to a (3) generative collapse, producing structured artifact (e.g.,
honeycomb patterns) under the guidance of our Contrastive Reconstruction (CR) Loss. Authentic
samples, by contrast, reconstruct faithfully. This stark asymmetry serves as a strong and interpretable
cue for classification.

encoder, UNet, and VAE decoder specifically at the terminal steps of the DDIM denoising pro-
cess using a contrastive reconstruction loss. This loss enforces stability for authentic inputs while
amplifying collapse in forged ones, resulting in interpretable artifacts. Together, the perturbation
and fine-tuning create an active failure pathway that reveals inauthentic content through generative
failure.

3.1 LATENT INVERSION WITH DIFFUSION MODELS

We adopt DDIM inversion to reconstruct images from their latent representations. The Denoising
Diffusion Implicit Model (DDIM) enables a deterministic reverse diffusion process that maps a
noisy latent representation back to the image domain. The standard DDIM update from z; to ;1
is given by:

—J1= . t
Ti—1 = \/ﬁ. (xt Zt 69(:5,5, )
VAT

where €y is the denoising UNet. For any input image x, we obtain its latent representation z by first
encoding it with the VAE and then applying a fixed number of forward diffusion steps. This latent z

serves as the starting point for our perturbation and reconstruction pipeline, denoted as & = Dy(z).

> + /1 —ay_1-eg(ay, t) (D

3.2 LATENT PERTURBATION FROM REAL-CLASS CENTERS

To induce an initial separation between authentic and synthetic samples, we introduce a latent-space
perturbation mechanism centered around the authentic data manifold. Specifically, We maintain a
dynamic latent center jiy € R, computed as the exponential moving average over latent vectors 2
of authentic training samples:

1
Hreal |R| Z;eRC z 2
R = {z; | #; is authentic} 3)

Given an inverted latent vector z € R%, we apply a perturbation from the real center to obtain the
perturbed latent 2’

Z — Hreal

=N —
|2 = preall| + €

“4)
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Here ) is a hyperparameter controlling the perturbation magnitude, and e is a small constant for
numerical stability. This class-agnostic perturbation has divergent effect: authentic latents, being

close to fireqr, are gently pushed toward the boundary of the data manifold, while forged latents,
which are farther from the real center, are pushed deeper into off-manifold regions, where the model
is more likely to collapse.

3.3 CONTRASTIVE FINE-TUNING FOR DIVERGENT RECONSTRUCTION

The core of our method is the Contrastive Reconstruction Loss (Lo r), which fine-tunes the model
to actively amplify the divergence created by the latent perturbation. The loss enforces two distinct
behaviors based on the authenticity label y (y = 0 for authentic, y = 1 for forged). The overall
objective is to minimize Lo g:

m@in E(z’y) [ECR($7D9(Z/)ay)] )

Let x be the input image and & = Dy(z’) be its reconstruction from the perturbed latent 2’. Let
d = diff (z, &) denote a base distance (e.g., MSE or LPIPS) averaged spatially. The L¢ g is defined
as:

d, ify=0

max(0,m — d) + v - max(0,d — €,), ify=1 ©

Lor(@,2,y) = {

where m is a lower bound that encourages the reconstruction error d of forged samples to exceed a
minimum degradation margin, €,, = m + J defines a soft upper limit for acceptable degradation,
introducing a tolerance window [m, m 4+ §] in which no additional penalty is applied. -y controls
the strength of penalization when d exceeds ¢,,, thereby preventing collapse into overly noisy or
degenerate outputs.

This two-sided design promotes structured degradation for forgeries. The first term enforces separa-
tion from real samples by increasing their reconstruction error, while the second term regularizes the
collapse by steering the model toward a repeatable failure mode (e.g., honeycomb patterns) instead
of trivial noise.

3.4 ARTIFACT-AWARE PERCEPTUAL LOSS AND TOTAL LOSS

To further guide the learning process, we add an auxiliary classification loss. A simple discriminator
feas (e.g., an MLP) takes the scalar LPIPS distance dy prps [Zhang et al.|(2018) as input and pre-
dicts the authenticity label. The classification loss Lo g is the standard cross-entropy loss on these
predictions.

Let x denote the original input image and Z its reconstruction via the fine-tuned diffusion decoder.
The LPIPS-based discrepancy, averaged spatially for each image, is defined as:
drprps = Average(LPIPS 10 (%, %)) @)

where LPIPS,,;, denotes the spatially resolved perceptual distance map, and Average(-) per-
forms a mean operation across its spatial dimensions.

the classification loss L¢ g is defined as:

exp(sy)
Log=-1 P 8)
o o8 <lec_() eXP(Sk>>

where s is the logit vector output by f.;s(dist), and s, is the logit corresponding to the true class y.

Finally, the total objective used for end-to-end training is a weighted combination of the contrastive
and classification losses:

»Ctotal = CCR + )\cls ' LCE' (9)

where ). is a weighting hyperparameter. We jointly fine-tune the parameters 6 of the diffusion
backbone (Image Encoder, UNet, VAE Decoder) and the parameters of the discriminator f.;s by
minimizing Ltq1. As detailed in our implementation, we employ differential learning rates, using
very small rates for the pretrained backbone components while allowing the VAE Decoder and the
discriminator to adapt more quickly, thereby efficiently learning the desired divergent behavior.
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Figure 3: Cross-domain generalization of CRAFT, trained solely on ImageNet. We visualize
reconstructions for authentic (left) and forged (right) samples across three distinct test domains.
CRAFT consistently preserves fine details for authentic inputs while inducing a characteristic col-
lapse for forgeries, regardless of whether the domain is in-distribution or out-of-distribution.

4 THEORETICAL ANALYSIS

The reverse process in DDIM is defined iteratively as ;1 = g¢(2¢; €9(¢, t, 2°)), where the tran-
sition g is a function of the denoising UNet, ¢g. To characterize the stability of this process, we
analyze its local local dynamics via Jacobian J; = dg;/0z;. Our method engineers the behavior of
this system to create a clear distinction between authentic and synthetic inputs.

4.1 CONTROLLED OFF-MANIFOLD PERTURBATION

Given an input latent z, we apply a category-guided perturbation to steer it to a new position z’.
This is achieved by moving z away from the authentic-class center ji,., along a normalized direction
vector:

2 — Hreal

_ 10
|Z - Mreal|2 ( )

2 =z40a Awa, where Apg =
This operation has a divergent effect. For authentic latent near iy, 2’ remains on the latent manifold
M,.cqi- However, a forged latent, already deviating from M., is pushed further into a low-density,
off-manifold region. To ensure a stable process, we constrain the resulting latent:

|22 <7 (11)

This yields a bounded but semantically disruptive initialization z7 := 2’ for the reverse diffusion
process.

4.2 CHAOTIC CASCADE DURING DENOISING

The stability of the denoising trajectory depends on the Jacobian norm ||J¢||. When z; is on-
manifold, |J;| remains bounded, yielding a smooth reconstruction. In contrast, an off-manifold
x; leads to poorly calibrated predictions from ey, especially in later steps as the noise diminishes
and the latent’s underlying structure is exposed.

This causes Jacobian norm to explode ||J;|| > 1, triggering an exponential amplification of error
between any two close trajectories:

-1 = @iy | = ([ el| - [l — 2] (12)

This recursive amplification drives the denoising process into a chaotic cascade. The final latent

x{; ake is thus non-semantic, saturated with incoherent signals, and far from the authentic manifold

Mcar. Ttis precisely this instability ||J¢|] > 1 that our Contrastive Reconstruction Loss trains the
model to exhibit for forged inputs.
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Table 1: Evaluation of cross-domain generalization. Each detection method is trained indepen-
dently on a single source dataset and evaluated by Accuracy(%) across three overall test domains.
Methods marked with * indicate seen (i.e., used during training). We abbreviate StyleGAN as SGAN
and ProjectedGAN as PGAN for brevity.

Training ImageNet CelebA LSUN

Method Dataset

Total ADM* SDv1| Total SDv2* IF | Total SGAN* PGAN iDDPM* SDv2 LDM VQD IF Mid.

ImageNet | 82.67 9828 75.76| 75.22 91.80 63.80| 70.40 9230 43.20 77.80 99.20 86.30 98.60 99.20 98.00

CNN-

Det CelebA 3545 6.540 20.28| 71.00 100.0 50.70| 2490 18.30 1430 1520 84.10 38.10 14.00 24.00 0.000

LSUN 64.15 7534 46.38| 74.72 93.40 33.80| 92.61 99.10 86.10 99.80 98.10 98.00 98.20 100.0 56.00

ImageNet | 81.69 99.60 64.11] 96.44 99.90 97.70| 67.20 70.60 54.60 73.60 98.70 100.0 99.80 100.0 89.00
DIRE | CelebA 32.25 3.540 13.44| 71.92 100.0 52.90| 12.01 5200 1200 0.700 61.10 26.40 4.200 9.800 0.000
LSUN 68.66 65.26 55.68| 96.92 100.0 97.00| 93.12 100.0 97.60 100.0 8490 100.0 99.20 99.70 13.00

AEROB | training-

81.06 66.70 94.41| 91.23 88.50 99.85| 68.65 55.75 59.65 71.05 83.55 99.15 90.15 97.70 12.45
LADE |free

ImageNet | 98.11 99.78 96.81| 98.14 100.0 99.60| 94.59 100.0 100.0 99.90 100.0 100.0 100.0 100.0 100.0

CRAFT

(Ours) CelebA 77.85 80.16 77.63| 94.53 100.0 88.50| 91.57 9430 88.40 81.00 99.60 100.0 100.0 100.0 100.0

LSUN 96.26 99.46 98.28| 95.83 100.0 96.90| 99.23 100.0 99.40 99.90 99.90 100.0 100.0 100.0 98.00

4.3 GENERATIVE COLLAPSE OF THE DECODER

The final stage translates latent-space chaos into a visual artifact. The VAE decoder, D(-), is trained
to map well-behaved latents from M,..,; into natural images. When fed a chaotic z( from a forged
sample, the decoding process collapses. This difficulty is particularly pronounced in its transposed
convolution layers.

These transposed convolution layers, critical for spatial upsampling within diffusion model de-
coders, are known to be sensitive to local spatial distributions and can amplify even minor mis-
alignments in the input latent features. Due to their inherent overlapping kernel design, these layers
introduce periodic interference patterns that culminate in the distinct honeycomb artifacts observed
in the reconstructed forged image (e.g., Figure. [I).

Formally, the process ensures that for a forged input:
xgak:e ¢ M'real = i,fake — D(Zfake) (13)

This transformation of a statistical anomaly into a visually interpretable failure provides a robust
and powerful signal for forgery detection.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Our primary evaluation is conducted on the DiffusionForensics datasetWang et al.|(2023a)), a com-
prehensive benchmark specifically designed for Al-generated imagery. This dataset includes a bal-
anced collection of authentic images sourced from well-established datasets such as CelebA-HQ
Karras et al.|(2018), ImageNet Deng et al.|(2009), and LSUN-Bedroom |Yu et al.[(2015), alongside a
diverse array of forged samples generated by a wide spectrum of generative models. The forged con-
tent spans multiple generation paradigms, including: GAN-bsed methods such as StyleGAN [Karras
et al.[(2021c) and ProjectedGAN [Sauer et al.| (2021)), diffusion models such as ADM Dhariwal &
Nichol (2021), DDPMHo et al.| (2020), iDDPM Nichol & Dhariwal|(2021), PNDM [Li1u et al.| (2022),
Stable Diffusion Rombach et al.|(2021)), LDM, VQ-Diffusion|Gu et al.|(2022), and Vision-Language
Models(VLMs) including IF|Saharia et al.|(2022)), DALLE-2 Ramesh et al.| (2022}, and Midjourney.
The training and testing sets are disjoint at the generator level.
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Table 2: Ablation of Latent Perturbation and Multi-module Fine-tuning. We evaluate the in-
dividual and combined effects of latent perturbation and multi-module fine-tuning. “Baseline” is
trained without adaptation, ’Fine-tune only” applies fine-tuning with different reconstruction losses,
“Perturbation only” applies latent perturbation without fine-tuning, and “Fine-tune & Perturbation”
combines both strategies.

Setting Fine-tune  Perturbation Loss Function  ImageNet / CelebA / LSUN
Baseline X X CE 51.62/33.50/53.24
L1 +CE 96.95/97.17/81.58
Fine-tune only v X L2+ CE 83.70/90.64 / 38.49
CR +CE 96.17 /98.02 / 94.00
Perturbation only X v CE 75.00/72.22/85.32
Fine-tune & Perturbation v v CR +CE 98.11/98.14 / 94.59

We build our method upon the Stable Diffusion Image Variation Pipeline, leveraging its pretrained
model. For DDIM inversion [Mokady et al| (2023)), we setting 50 denoising steps throughout all
experiments. During training, we fine-tune only the final £ = 15 steps of the DDIM process,
including the image encoder, UNet, and VAE decoder, while earlier steps remain frozen. This stage-
wise adaptation allows the model to remain expressive while selectively amplifying off-manifold
instabilities. For all experiments, we use AdamW as optimizer with a learning rate of 1 x 10~° for
decoder, 5 x 1078 for encoder and UNet. We set m to 0.4 and 6 as 0.3. A\ is set to 1. For each
configuration, we run the experiment multiple times and report the mean result.

5.2 COMPARISON TO EXISTING METHODS

We compare our method, CRAFT, with prior representative forgery detection approaches, including
CNN-Det |Wang et al.[(2020a)), DIRE Wang et al.| (2023a), and AEROBLADE Ricker et al.| (2024).
Each method is trained independently on one source dataset and evaluated across all three testing
domains, encompassing a wide spectrum of generation paradigms such as GAN-based, diffusion-
based, and closed-source proprietary models. More detailed experimental results are provided in the
Appendix.

Table [T] summarizes the key accuracy results across domains and generators. CRAFT consistently
achieves the best cross-domain generalization, maintaining high detection performance even when
the training and testing domain differ significantly in semantics or generation characteristics. For
example, when trained on ImageNet, CRAFT reaches 98.11% on ImageNet, 98.14% on CelebA,
and 94.59% on LSUN. In contrast, existing methods show severe drops in unseen domains, even
performing near chance on cross-domain samples.

In addition to quantitative results, Figure [3] provides qualitative evidence of CRAFT’s robustness.
Even trained solely on ImageNet, our model reliably reconstructs authentic samples with high fi-
delity while inducing collapse patterns for forgeries, regardless of the test domain. These structured
artifacts act as transferable signals of inauthenticity. This visual consistency further supports the
claim that CRAFT captures a domain-agnostic notion of authenticity, enabling effective generaliza-
tion without requiring any domain-specific adaptation.

These results underscore the robustness of our framework, particularly its ability to amplify discrim-
inative reconstruction discrepancies through latent perturbation and CR loss.

6 ABLATION STUDIES

We conduct ablation experiments to dissect the mechanisms behind the induced collapse in forged
reconstructions and validate the contributions of each component of our method. Specifically, we
aim to answer the following questions: (1) Does the contrastive reconstruction loss truly enforce
asymmetric behavior? (2) How important is stage-wise fine-tuning in the final DDIM steps? (3) Is
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class-guided latent perturbation necessary? Experiments are conducted on DiffusionForensics with
all other variables held constant.

6.1 CONTRASTIVE RECONSTRUCTION LOSS

We investigate the impact of different reconstruction loss functions on detection performance, as
shown in Table 2] Without fine-tuning, the generator fails to introduce a discriminative signal, re-
sulting in near-random detection accuracy across all domains. Fine-tuning with L1 loss significantly
improves accuracy, but tends to degrade the quality of real sample reconstructions, leading to blur-
ring and compromised generalization. L2 loss performs worse, likely due to its higher sensitivity to
subtle pixel variations that do not align with perceptual differences.

In contrast, our proposed CR Loss consistently achieves superior accuracy, particularly under cross-
domain settings. This validates its effectiveness in preserving authentic content while actively forc-
ing forged reconstructions to collapse. Visual results in Figure [I] further illustrate this behavior,
reconstructions with CR loss retain semantic fidelity for real samples, whereas fake samples exhibit
structured artifacts, thereby facilitating downstream classification. These results confirm the critical
role of the reconstruction objective in shaping discriminative latent-space behavior.

6.2 LATENT PERTURBATION

To isolate the contribution of each core component, we ablate our framework’s two main mech-
anisms: latent perturbation and contrastive fine-tuning. As shown in Table [2] we compare three
configurations: the baseline model without either component, the model with latent perturbation
only (Perturbation only), and our full framework combining both (Fine-tune & Perturbation). The
baseline model performs at near-random chance, confirming that standard reconstruction offers no
discriminative signal. Applying latent perturbation alone provides a significant performance boost,
demonstrating that shifting forged latents off-manifold does create a more separable feature space.
However, without a model trained to exploit this shift, the effect is inconsistent and yields suboptimal
accuracy, failing to induce the desired structural collapse.

In contrast, the full CRAFT framework, which combines perturbation with our contrastive fine-
tuning, achieves the highest performance across all domains. This confirms our core hypothesis:
while latent perturbation creates the conditions for failure, it is the contrastive fine-tuning that ac-
tively engineers the desired failure mode. The model learns to interpret the off-manifold position of
a perturbed forgery as an explicit instruction to collapse its reconstruction. This synergistic relation-
ship is essential for transforming the subtle geometric separation in the latent space into a robust and
visually interpretable signal.

7 CONCLUSION

In this work, we introduced CRAFT, an Al-generated image detection framework that reframes the
problem from passive observation to active interrogation. By weaponizing the internal dynamics
of diffusion models, CRAFT uses a synergy of class-guided latent perturbation and a novel con-
trastive reconstruction loss to achieve a state of asymmetric reconstruction. Our method forces
forged samples into a structured, visually explicit collapse while preserving the fidelity of authentic
inputs. Extensive experiments validate this approach, demonstrating that CRAFT establishes a new
state-of-the-art in both detection accuracy and cross-domain generalization.

Beyond these empirical results, this work introduces a new paradigm for generative model foren-
sics. The "active induced failure” framework moves beyond cataloging static artifacts and provides
a methodology for dynamically probing the latent geometry and learned sensitivities of complex
models. Future work could involve a more precise quantification of the induced collapse, enabling
deeper insights into how different generative models respond to induced instabilities and their re-
lation to the underlying geometry of forged representations. This shift toward active, interrogative
techniques points to a promising direction for more robust and interpretable detection.
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A APPENDIX

A.1 EXTENDED IMPLEMENTATION DETAILS
We detail our training configuration and code structure to facilitate reproducibility:

e Environment: PyTorch 2.7, CUDA 12.4, Python 3.10
e Hardware: 1x NVIDIA L20 (48GB)

* Batch size: 8, and use gradient accumulation over 4 steps, yielding an effective batch size
of 32

¢ Learning rate: 1 x 10~ for decoder, 5 x 10~ for encoder and UNet
¢ Optimizer: AdamW |Loshchilov & Hutter| (2017)

The code for this research will be made publicly available upon the acceptance of this paper.

A.2 COMPARISON TO EXISTING METHODS

In this section, we present a comprehensive comparison of our method (CRAFT) against existing
approaches across multiple testing domains and generative methods. Specifically, we evaluate each
method on three distinct testing domains: ImageNet Deng et al.| (2009), CelebA |Liu et al.| (2015),
and LSUN |Yu et al.| (2015)). For each domain, we report:

* The overall detection performance in terms of Accuracy and Average Precision.

* The per-generator detection accuracy, covering representative generative techniques across
three major paradigms: GAN-based (e.g., StyleGAN |Karras et al.|(2021b))), diffusion-based
(e.g., ADM Dhariwal & Nichol|(2021)), and latent variable models (LVMs) such as DALLE
2 and IF |Saharia et al.[(2022), along with commercial models like Midjourney.

The detailed quantitative results are provided in Table [3] and Table ] Specifically, Table [3| reports
both the overall detection performance (in terms of Accuracy/Average Precision) on the ImageNet
and CelebA testing domains, as well as the per-generator detection accuracy for each generation
technique, including methods based on GANSs, diffusion models, and LVMs. It also includes the
overall performance on LSUN, enabling a clear horizontal comparison across testing domains.

While Table [ presents a fine-grained breakdown of detection accuracy on individual generation
methods within the LSUN domain, providing further insight into the method-wise effectiveness of
each detector under domain shift. Together, these results highlight both the robustness and general-
ization capability of our method under diverse generative paradigms and cross-domain scenarios.

The results reveal significant differences in domain transferability and robustness to generative di-
versity. Compared with prior methods such as CNNDet Wang et al.| (2020b), DIRE Wang et al.
(2023b), UFD |Ojha et al.| (2023b), AEROBLADE Ricker et al.| (2024), and AlignedForensics Rajan
et al.| (2025)), our method achieves consistently superior performance across all settings. Notably,
CRAFT demonstrates strong generalization to unseen domains and high detection accuracy across a
broad spectrum of generative models, including GAN-based, diffusion-based, latent-variable-based,
and commercial models, confirming its robustness and adaptability.

A.3 ABLATION ON FINE-TUNING STRATEGY

We conduct a detailed ablation study to dissect the contribution of each backbone component (Image
Encoder, UNet, VAE Decoder) to our method’s success. We evaluate each configuration’s quantita-
tive detection accuracy in Table[5]and its ability to produce the desired qualitative structured collapse
for forgeries in Figure 4} Our goal is to validate that the synergy between all three adapted compo-
nents is essential for optimal performance.
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Table 5: Ablation of Fine-Tuning Strategies Across Model Components. We evaluate six fine-
tuning configurations, where each backbone component (Encoder, UNet, and Decoder) is either
frozen (X) or trainable (v'). Results are reported on three domains. Fine-tuning the Encoder yields
the most significant gain in accuracy.

Configuration Encoder UNet Decoder ImageNet CelebA LSUN
w/o fine-tine X X X 51.62 33.50 5324
Only Enc. v X X 95.98 91.25  94.57
Only UNet X v X 82.15 7728  86.36
Only Dec. X X v 53.74 74.39 43,50
Enc. + UNet v v X 97.57 96.44  84.57
Enc. + Dec. v X v 98.01 9375  92.65
UNet + Dec. X v v 72.29 81.02  83.05
Enc. + UNet. + Dec. v v v 98.11 98.14  94.59

‘Fake’

Figure 4: Visual Impact of Fine-Tuning Different Components. We visualize the reconstructed
outputs of testing sets under various fine-tuning settings. Fine-tuning the UNet alone introduces grid-
like artifacts, while adjusting only the Decoder leads to high-frequency distortions. The combination
of UNet and Decoder produces a pronounced honeycomb pattern but lacks generalization. Full
adaptation of all modules results in both consistent structured collapse and better reconstruction
robustness across forgery types.

A.3.1 ENCODER AS THE KEY TO DETECTION ACCURACY

The results in Table [5] reveal the primary driver of detection accuracy. The baseline model (w/o
fine-tune), where all components are frozen, performs near chance level across domain, indicating
that adaptation is essential to create a discriminative signal.
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Table 6: Effect of fine-tuning steps under latent perturbation. We report accuracy (%) on test
domains when fine-tuning for k steps. Performance peaks at k& = 15, indicating that moderate
adaptation is optimal for generalization.

Fine-tuning Testing Dataset
Steps (k) ImageNet | CelebA | LSUN
5 92.07 93.78 81.96
10 95.77 95.36 87.96
15 98.11 98.14 94.59
25 97.99 97.31 87.86
50 94.81 98.61 84.82

Among the individual components, fine-tuning the Encoder provides the most significant improve-
ment. For instance, adapting the Encoder alone increases ImageNet accuracy from 51.62% to
95.98%. Furthermore, every configuration involving the adapted Encoder (e.g., Encoder + UNet,
Encoder + Decoder) achieves strong performance, confirming its pivotal role. Conversely, the UNet
+ Decoder configuration, which lacks an adapted encoder, underperforms significantly in terms of
accuracy. This quantitatively demonstrates that adapting the Encoder is essential for learning a dis-
criminative feature space that can reliably separate real from fake inputs based on reconstruction
dynamics.

These results establish the Encoder as the key contributor to the framework’s discriminative power.

A.3.2 UNET-DECODER SYNERGY DRIVES ARTIFACT EMERGENCE

While the Encoder is indispensable for achieving high accuracy, Figure [ highlights the comple-
mentary roles of the UNet and Decoder in generating visually interpretable artifacts that distinguish
forgeries from authentic samples.

Fine-tuning the UNet alone causes forgeries to collapse into structured, grid-like noise patterns,
suggesting that the denoising trajectory becomes unstable. However, these patterns lack the spatial
consistency of the final structured artifact. Fine-tuning the Decoder alone results in a different failure
mode, introducing high-frequency and saturated artifacts in forgery reconstructions. This reveals
the Decoder’s direct control over pixel-level synthesis and its ability to express abnormal latent
distributions through visually distinct outputs. The most interpretable and consistent artifact emerges
when both the UNet and Decoder are jointly fine-tuned. In this configuration, the UNet produces
perturbed latent trajectories, which the adapted Decoder transforms into structured periodic textures.
This synergy confirms that artifact emergence is not purely due to one component, but arises from
the coordinated instability of the denoising path and the Decoder’s learned interpretation of latent
anomalies.

A.3.3 FINE-TUNING STEPS

Table[6| presents detection accuracy across all domains with increasing fine-tuning steps k, under the
condition where latent perturbation is enable. A moderate number of updates (e.g., £ = 15) consis-
tently improves performance across domains, achieving peak accuracy of 98.11% on ImageNet and
94.59% on LSUN. However, overly aggressive fine-tuning deteriorates generalization, especially
on LSUN, where accuracy drops to 84.82%. This suggests that moderate adaptation is critical for
learning the discriminative failure mode, while excessive fine-tuning lead to overfitting on the spirce
domain’s artifacts, harming generalization.

A.3.4 TOWARD HOLISTIC ADAPTATION

These findings validate our holistic design. The ablation results present a clear picture: the adapted
Encoder is the primary source of high detection accuracy, while the UNet-Decoder synergy is the
mechanism for producing the desired generative collapse. Partial adaptations (e.g., Encoder + UNet
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or UNet + Decoder) achieving either high accuracy with weak artifact formation, or strong artifact
formation with poor generalization.

In contrast, our full model, which fine-tunes all three modules, effectively combines both objectives.
The Encoder not only learns a discriminative latent space for robust detection but also preserves re-
construction stability for real samples. Meanwhile, the UNet—-Decoder pathway consistently trans-
lates off-manifold signals into interpretable collapses in fake reconstructions.

A.4 USE OF LARGE LANGUAGE MODELS

ChatGPT-4.0 was used solely for grammar checking and style refinement to improve the readability
of the manuscript.

No large language model was involved in data analysis, experimental design, or the generation of
research ideas or results.
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