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Abstract

While the reasoning abilities of large language models (LLMs) continue to advance,
it remains unclear how such ability varies across languages in multilingual LLMs
and whether different languages produce reasoning paths that complement each
other. To investigate this question, we train a reward model to rank generated
responses for a given question across languages. Our results show that our cross-
lingual reward model substantially improves mathematical reasoning performance
compared to using reward modeling within a single language, benefiting even
high-resource languages. While English often exhibits the highest performance
in multilingual models, we find that cross-lingual sampling particularly benefits
English under low sampling budgets. Our findings reveal new opportunities to
improve multilingual reasoning by leveraging the complementary strengths of
diverse languages.

1 Introduction

Recently, many studies have focused on improving reasoning ability [Ranaldi and Freitas|[2024]], Byun
et al.|[2024] or discovering major factors contributing to this skill Ko et al.| [2024]]. Yet, reasoning
research has largely centered on English models, with multilingual models receiving comparatively
little attention. Among the few, [Shi et al.|[2023]] have shown that multilingual large language models
(LLMs) have strong reasoning capabilities, even for underrepresented languages. Recent work has
further improved the multilingual math reasoning ability of LLMs through self-consistency [Lai et al.
[2025]], multilingual instruction-tuning, Chen et al.[[2024]], Lai and Nissim|[2024]], and preference
optimization methods She et al.|[2024], Dang et al. [2024a]], [Yang et al.|[2025]. Following the
proposed studies in using reward modeling to improve the performance of math reasoning in English
LLMs (Cobbe et al.| [2021]], |[Shen et al.| [2021]], [Hosseini et al.| [2024]], Zhang et al.| [2024]], |Setlur
et al.|[2025]], Hong et al.|[2025]] have studied the transferability of English reward models to other
languages. While Wang et al.|[2025]] are the first to shift attention to multilingual models, they still
focus on generating and scoring in-language candidate solutions, which they refer to as multilingual
reward modeling. In this paper, we instead explore the potential to generate and combine solutions in
multiple different languages (see Figure[T), thereby fully exploiting the multilingual capabilities of
LLMs.

To this end, we first study to what extent languages could potentially complement each other’s
mathematical reasoning skills. Interestingly, we find that even low-resource languages sometimes
succeed where high-resource languages fail, suggesting that their reasoning signals could provide
valuable complementary information (Figure [).

Motivated by the above finding, we develop a cross-lingual outcome reward modeling (ORM)
framework to harness the Best-of-Languages performance, for which we train a verifier to score
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Figure 1: An illustration of multilingual outcome reward modeling (ORM) on the top, where the
verifier ranks every language’s responses, and cross-lingual ORM (our framework), where the verifier
ranks responses across languages for a given question.

multilingual reasoning across languages. To the best of our knowledge, we are the first to propose a
cross-lingual reward model that takes advantage of complementary reasoning skills across languages.
Our experimental results demonstrate that our framework improves performance by over 10% and
15% compared to the average performance of the naive multilingual RMs and the self-consistency
baseline, respectively. Our analysis shows that increasing the number of languages improves the
performance of our cross-lingual ORM.

Through an ablation study, we find that cross-language sampling even benefits English, especially
under low-budget settings. Our analysis verifies that, while having English in the language pool of the
cross-lingual ORM positively affects the performance, some selection of non-English pools outper-
forms other pools containing English, supporting our argument that languages have complementary
reasoning skills in multilingual models.

2 Methodology

A popular approach in math reasoning tasks is utilizing reward models (also known as verifiers) to
evaluate the correctness of a given answer. Based on the evaluation setup, reward models can be
process-based, where the model assesses the reasoning step by step (called PRMs
[2024]), Cuo et al.|[2024]. while outcome reward models (ORMs) evaluate the entire reasoning Cobbe]
let al|[2021],, [Shen et al.| [2021]], [Hosseini et al.| [2024], Zhang et al.| [2024], [Setlur et al] [2025]]. In this
work, we focus on the latter and propose a novel cross-lingual outcome reward modeling framework
that leverages complementary reasoning signals across languages.

2.1 Cross-lingual Reward Modeling

Our framework is the cross-lingual version of the Best-of-N |Lightman et al.|[[2024], ranking the
generated answers for a given question across a set of languages and selecting the highest-scored one.

Given a math question ¢ and a generated candidate answer a, we train a discriminative verifier to
predict whether the generated reasoning is correct. More specifically, we train an LLM as the verifier
using binary cross-entropy loss: Lory = — [y - log(9) + (1 — y) - log(1 — §)]. At inference, we
use the verifier scores to rank a set of candidate answers in different languages for a given question



using the probability that the model put on the correct class, and then, we select the answer with the
highest probability.

Training set generation. We use the GSMS8K training set, including around 7.5k examples of high-
quality grade school math problems created by human writers,|(Cobbe et al.|[2021]], to generate our ver-
ifier training set|Lai and Nissim|[2024]]. We use Google Translate version of GSM8K in 8 languages—
English(en), Spanish(es), French(fr), German(de), Russian(ru), Chinese(zh), Japanese(ja), and
Thai(th)—. We then prompt 3 models—the instruction-tuned version of Aya-Expanse 8B |Dang
et al.|[2024bf], Llama3.1 8B |Grattafiori et al.| [2024], and Qwen2.5 7B [Team| [2024]]—using the
GSMSK training set in our 8 languages to generate responses with step-by-step reasoning. We
automatically labeled the generated reasoning paths as correct or incorrect based on the correctness of
the final answer. Using generations from multiple models allows us to increase the size and diversity
of the training set. To make a balanced dataset, we use the same number of correct and incorrect
samples for each language, resulting in a set of around 88k samples for training.

Cross-lingual-ORM We use the multilingual Qwen2.5-Instruct 3B model [Team| [2024]] as our
reward model (verifier) because it has the widest officially supported language coverage among recent
multilingual models. We fine-tune the verifier using the aforementioned training set for 5 epochs, with
AdamW, a learning rate of 2e-4, and a batch size of 96. Since the main task is binary classification
and to make fine-tuning efficient, we fine-tune with LoRA |Hu et al.| [2022] with a rank of 16 and
scaling factor of 32. We use this as our cross-lingual outcome reward model for all experiments.

3 Experiments

3.1 Experimental setups

To study the chain-of-thought math reasoning ability of LLMs, we employ the MGSM (Multilin-
gual Grade School Math) dataset |Shi et al.|[2023]], covering 11 languages, including English(en),
Spanish(es), French(fr), German(de), Russian(ru), Chinese(zh), Japanese(ja), and Thai(th) with 250
examples for each. We exclude Swahili, Telugu, and Bengali, as multilingual LLMs, including our
verifier model, perform poorly on these languages. Nevertheless, our selection includes languages
from diverse language families and writing scripts |Lai et al.| [2025]]. Following the original recipe of
using MGSM [Shi et al.|[2023]], we prompt multilingual LLMs under the Native-CoT setting using
8-shots for all experiments’|

Models. We have carried out our analysis and experiments using a wide range of instruction-tuned
multilingual models, including Aya-Expanse 8B |Dang et al.|[2024b]], Llama3.1 8B |Grattafiori et al.
[2024], Qwen2.5 7B Team|[2024]], Ministral 8 phi-3 7B |Abdin et al.|[2024]], and Llama 3.2 Skﬂ

3.1.1 Baselines.

We evaluate our cross-lingual ORM against the following baselines:

Self-consistency. A simple, yet effective approach in chain-of-thought (CoT) prompting is self-
consistency [Wang et al.,[2023| |Yao et al., 2023| |[Kojima et al., 2022]]. This widely used baseline does
the majority voting across a batch of sampled answers (N = 8) for each language.

Multilingual-ORM (Multi-ORM). Also known as Best-of-N technique, where the multilingual
verifier scores N different samples within a language and selects the one with the highest score Wang
et al.[[2025]. We use N = 8, generated with a temperature sampling of 7' = 0.7, and truncated at the
top-p (p = 0.95) for all experiments (including the self-consistency baseline).

3.2 Results and Findings

LLMs exhibit complementary mathematical reasoning skills across languages. To investigate
the similarity of reasoning knowledge across languages, we employ pass @k, a well-established

We have used the evaluation harness framework for our experiments and reported exact-match scores|Gao
et al.| [2024].

*https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
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| En. Avg. | SC | Multi-ORM Cross-ORM | Pass@8-Multi  Pass@8-Cross

Aya-Expanse-8b | 79.6 634 | 583 | 733 832 | 824 93.2
Llama3.1-8b | 80.4 64.0 | 71.6 |  76.2 840 | 869 92.4
Ministral-8b | 820 65.1 | 703 |  76.4 876 | 843 93.4
Qwen25-7b | 852 722 | 744 | 813 924 | 872 96.4

Phi3-7h | 90.0 693 | 742 | 795 928 | 853 96.8
Llama3.2-3b | 724 560 | 63.0 | 703 772 | 803 88.8

Table 1: Summary of the results across models and baselines. The leftmost columns represent
the English performance and the average performance of all the languages. SC denotes average
self-consistency accuracy. Pass@8-cross outperforms the average pass@8-multi, indicating the
complementary math reasoning skills across languages. Our proposed framework, Cross-ORM, also
exceeds the average Multi-ORM accuracy by a large margin.

metric used to approximate the upper-bound performance of LLMs when generating multiple an-
swers |[Hosseini et al.| [2024], [Li et al.|[2025]. This allows us to measure the degree of potential
complementarity between languages in multilingual LLMs as it considers a question solved if at
least one of the answers in different languages is correct. In Table[I] we report pass@8 scores across
languages (pass@8-Cross) and the average pass @8 scores across different samples within languages
(pass@8—Mu1ti)E| Interestingly, we observe that Pass@8-Cross outperforms the performances of
individual languages, suggesting that even high-resource languages can potentially benefit from other
languages.

Sampling across languages is superior to sam-
pling within a language. Building on our analy- = Aya-Expanse * Llama3.1 ® Qwen2.5
sis, we employ the cross-lingual verifier described 10
in Sec. [2.1]to see how languages benefit each other
in practice. The middle part of Table [T] summa-
rizes the accuracy of our cross-lingual ORM under
within- and across-language settings. As shown,
Cross-ORM clearly outperforms the average per-
formance of ORM-Multi, with the largest benefits
for non-English languages. These results suggest
that leveraging cross-lingual signals is more effec- # # # #
tive than relying solely on monolingual reasoning, Num. Languages

especially for underrepresented languages.

Accuracy

Figure 2: The mean and standard deviation cross-
Increasing the pool of languages enhances the lingual ORM accuracy using different numbers
cross-lingual ORM performance. To understand of languages.

the impact of language pool size, we show the

average performance for all possible language combinations at different pool sizes in Figure 2]
As expected, the results demonstrate that adding more languages improves cross-lingual ORM
performance up to a certain point, after which the additional gains become negligible.

Sampling across languages benefits English as well. While our earlier analysis shows that cross-
lingual ORM exceeds the average performance of multilingual ORM, its accuracy still lags behind
that of English ORM. To better understand under what conditions other languages might benefit
English, we compare the performance of English ORM (i.e., generating multiple answers in English)
and cross-lingual ORM under different sampling budgets in Figure 3a Based on the results, we
observe that cross-lingual ORM outperforms English ORM at low sampling budgets. However, this
advantage fades as the number of samples increases. We suspect that additional sampling from other
languages becomes redundant once English samples already cover a wide range of reasoning paths.

Including English in language pools is generally helpful, yet it does not always lead to superior
performance. To examine the effect of including English in the language pools for the cross-lingual
ORM setup, we report the mean and standard deviation of accuracy across all possible language

The performance of individual languages can be found in the Appendix.
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Figure 3: (a) Comparing the accuracy of cross-lingual ORM and multilingual ORM (M-ORM)
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pools with a size of 2 to 7 with and without English in Figure [3b] As expected, including English
generally improves cross-lingual ORM performance. However, this is not always the case; some
language pools without English perform better than certain groups that include English, as reflected
in the standard deviation of the non-English groups.

4 Conclusion

In this paper, we present a cross-lingual reward modeling framework that effectively leverages com-
plementary mathematical reasoning skills across languages in multilingual LLMs. Our experiments
show that cross-lingual reward modeling benefits even high-resource languages like English under
low-budget inference settings. Furthermore, our findings show that languages mutually enhance
each other’s reasoning abilities. Our results pave the way for future research into the similarities and
differences of reasoning patterns across languages to improve multilingual reasoning models.
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Question:

Melanie is a door-to-door saleswoman. She sold a third of her vacuum cleaners at the green house,
2 more to the red house, and half of what was left at the orange house. If Melanie has 5 vacuum
cleaners left, how many did she start with?

English Response:

Melanie sold a third of her vacuum cleaners at the green house. That means she sold 1/3 of her
vacuum cleaners. 1/3 of 8 is 5/3, which is 1.67. Melanie sold 1.67 vacuum cleaners at the green
house. She had 5 left, so she had 5§ + 1.67 = 6.67 vacuum cleaners before the green house. She sold
2 more at the red house, so she had 6.67 - 2 = 4.67 vacuum cleaners before the red house. She sold
half of what was left at the orange house. Half of 4.67 is 2.335. Melanie had 4.67 - 2.335 = 2.335
vacuum cleaners left. Melanie had 5 vacuum cleaners left, so she must have had 5 + 2.335 = 7.335
vacuum cleaners before the orange house. Melanie had 7.335 vacuum cleaners before the orange
house. The answer is 7.335.

Japanese Response:

BOKTINDIDREBRME T - 7455, /1*3=0BDORBRE LT LICHRY T, RORT2H%E

ToT=DT, BEIO+2=11B%T 72 LICAYET, ALV VORTEY 0DEREFT-T-HH. &Y
DF3E 1/2%8=28 LY, FLVYYORT2ABRET I LILBY ET, BT, X721
11+2.5=13.8 ADBHEEATY £ L7, BREEEHTATNIER LRV, FXit 13 A DRERE
7Y ELT, Bz BORBREEFITICEL 70, KLl 13+5=18 ADREMEF->TLWE L
-, BAILI8TT,

Google translation of Japanese Response:

If she sells one-third of the vacuums at the green house, she has sold 3/1*3=9 vacuums. She sells

two at the red house, so she has sold a total of 9+2=11 vacuums. If she sells the other half at the

orange house, the remaining half is 1/2*5=2.5, so she has sold 2.5 at the orange house. In total,

Melanie has sold 11+2.5=13.5 vacuums. Because vacuums must be whole numbers, she has sold

13 vacuums. She has 5 vacuums left, so she has 13+5=18 vacuums. The answer is 18.

Figure 4: A cherry-picked example of Llama 3.1’s responses to the same question in English and
Japanese, where the English answer is incorrect but the Japanese response is correct, illustrating the
complementary reasoning skills across languages.

| en fr es de ru zh ja th | avg.

Aya-Expanse-8b

CoT | 76.6 +1.1  65.1 420 73.0 18 68.8 +1.9 67.6 +25 63.7+08 57.7+12 19.7+18 | 61.5

SC | 84.0 70.8 76.8 76.8 73.6 71.2 67.2 23.2 58.3
Llama3.1-8b

CoT | 75.0+17  60.4+14 66.8+19 59.6+38 61.1+28 57.5+23 469+26 47.4+11 | 594

SC | 84.8 72.4 80.0 74.0 74.0 69.6 58.8 59.2 71.6

Ministral-8b
COT‘77.4:{:1.5 65.1+07 71.4+13  649+18 654+08 58.8+17 43.8+19 44.5+11 ‘61.4

SC | 87.2 72.0 80.0 74.0 75.2 67.6 55.2 54.0 70.3
Qwen2.5-7b

CoT | 84.3+10 70.2+18 76.3+23 63.8+12 69.0+17 67.8+17 63.7+14 51.8413 | 68.4

SC | 89.2 73.6 82.8 70.8 73.6 75.6 70.0 59.6 74.4

Phi3-7b

CoT | 87.6+18 77.0+23 83.7+17 773+09 71.6+18 69.2+23 58.0+14 18.2+13 | 67.8

SC | 92.8 84.4 88.4 83.6 82.8 74.4 65.6 23.6 74.2
Llama3.2-3b

CoT | 65.6+1.1  51.0+27 564410 524+11  53.1+24 48.8+21  32.0+17 44.1+19 | 504

SC | 79.2 60.4 70.8 67.2 65.6 62.8 44.4 55.6 63.0

Table 2: Vanilla Chain-of-thought(CoT) performance and self-consistency (SC) on MGSM.
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| en fr es de ru zh ja th | avg.

Aya-Expanse-8b | 944 856 90.8 89.2 87.6 844 824 444823
Llama3.1-8b | 94.8 852 924 892 92.0 86.8 74.8 80.0 | 869
Ministral-8b | 944 856 91.6 852 864 864 732 71.6 | 843
Qwen2.5-7b | 95.6 840 944 852 876 912 84.0 756 | 813

phi3-3b | 964 92.0 956 90.8 92.0 884 848 42.0 | 853
Llama3.2-3b | 91.6 78.8 85.6 832 828 808 660 73.6| 80.3

Table 3: Comparison of Pass@8-Multi across different languages on the MGSM task.

| en fr €s de ru zh ja th | avg.

Aya-Expanse-8b | 87.2 764 832 76.8 784 760 712 372|733
Llama3.1-8b | 90.0 77.6 84.0 604 80.0 788 684 70.0 | 76.2
Ministral-8b | 91.2 76.0 87.6 77.6 772 780 604 628|764
Qwen2.5-7b | 92.8 80.0 864 748 824 852 760 724|813

Phi3-7b | 94.0 86.8 91.2 86.0 84.0 832 756 352|795
Llama3.2-3b | 83.2 70.0 764 624 752 708 56.8 67.2| 703

Table 4: Comparison of Multi-ORM across different languages on the MGSM task.

® Ministral Phi3 ® Llama3.2
100

90 I
80

70

Accuracy

60

50

#2 #4 #6 #8
Num. Languages

Figure 5: The average and standard deviation cross-lingual ORM performance using different
numbers of languages.
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Figure 6: Comparing the accuracy of cross-lingual ORM and multilingual ORM of English using the
same number of languages and samples.
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Figure 7: Comparing the role of English on the performance.
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