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ABSTRACT

Machine unlearning, an emerging issue of privacy concern in the deep learning
era, is practically motivated by the data removal from training or knowledge sup-
pression of utility on that data. Unfortunately, retraining via data removal, which
has been understood as the gold standard, does not elucidate how much we sup-
press the model’s knowledge on the target. The existing definition well covers an
exact or approximate unlearning only with a removal perspective, yet failing to
encompass knowledge suppression incurred via unlearning. Moreover, suppres-
sion is tightly entangled with removal in a way that more knowledge suppression
obviously leads to significant divergence from exact and approximate unlearning,
thus motivating us to rethink the definition of machine unlearning. We formally
introduce a novel definition of Suppressive Machine Unlearning, encompassing
how far the unlearned model is from retraining, i.e., (ε, δ)-approximate unlearn-
ing, and how much the model’s utility becomes suppressed, i.e., κ. To illuminate
the formal dynamics between removal and suppression, we reveal the trade-off be-
tween the removal guarantees (ε, δ), which quantifies how much it deviates from
an idealized retraining and κ∗, which is the requested level of suppression.

1 INTRODUCTION

Modern machine learning systems are trained on vast, heterogeneous corpora—spanning text, im-
ages, code, and audio—that blend proprietary datasets with data scraped from the open web. As
these systems become pervasive across consumers and enterprises, they encounter diverse gover-
nance demands (Cloud Security Alliance, AI Governance & Compliance Working Group, 2024;
European Data Protection Supervisor, 2025): organizations face requests to remove the influence of
certain examples, individuals seek to retract personal data, and model owners aim to align content
with evolving policies or prevent the exposure of certain capabilities in high-risk contexts (Bai et al.,
2022; Yao et al., 2024). In short, what should be removed and what should be suppressed are now
first-class operational questions, no longer afterthoughts. Machine unlearning (Cao & Yang, 2015;
Liu et al., 2025) has emerged as a promising solution to address these demands, aiming to modify a
trained model so that it behaves as if certain examples had never been included during training.

These diverse unlearning demands fundamentally align with two distinct, yet often interconnected,
objectives: Data Removal and Knowledge Suppression. Requirements stemming from privacy and
consent concerns (e.g., the “right-to-be-forgotten” (Dang, 2021)) clearly necessitate data removal,
expunging specific user-contributed examples that were validly collected but later withdrawn. On
the other hand, evolving intellectual property and licensing agreements, alongside dynamic product
and platform policies, introduce category-level restrictions that cannot be straightforwardly reduced
to merely removing a “list of training records” (Jia et al., 2021). This scenario primarily demands
knowledge suppression, where the model is required to diminish specific capabilities, biases, or
information related to certain concepts or content categories, even if the individual data remains.

From an engineering standpoint, these demands surface under tight constraints. Full retraining on
a “retain-only” dataset is often computationally infeasible for large models and incompatible with
rapid release cadences. Even when retraining is possible, the goal behind many requests is not sim-
ply to match a retrained parameter distribution. More fundamentally, there is no agreed-upon
definition of what and how constitutes such unlearning requests, especially when distinguish-
ing between data removal and knowledge suppression.
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This complexity is compounded by stochastic optimization: differences induced by data removal can
be masked by run-to-run variability, batch order, and optimizer noise, making the unlearned model
hard to distinguish from the original on distributional tests that look only at parameters (Thudi et al.,
2022b). This tension has motivated rigorous notions of unlearning that target retraining equiva-
lence—exactly or approximately matching the distribution of model parameters produced by train-
ing on the retain-only dataset (Guo et al., 2019; Bourtoule et al., 2021; Nguyen et al., 2025). While
such definitions provide crisp, auditable guarantees, they can not directly relate the broader intent
of knowledge suppression, i.e., ensuring a model will stop answering certain questions or expos-
ing specific internal features. In parallel, the field has seen the emergence of two complementary
research lines: one focused on erasing internal knowledge (Thudi et al., 2022a; Jang et al., 2022;
Gandikota et al., 2023; Fan et al., 2023), and the other on suppressing exposure on forget data while
preserving capability elsewhere (Chen et al., 2023; Li et al., 2024b; Takashiro et al., 2024).

This state of affairs motivates a conceptual and formal re-examination of what it means to “unlearn,”
specifically through the lens of data removal and knowledge suppression. In a nutshell, we argue that
unlearning mechanisms should satisfy two qualitatively distinct requirements, either individually or
simultaneously: (i) Data Removal (the erasure of a forget set from the model), and (ii) Knowledge
Suppression (a reduction in the model’s utility on a forget-target distribution relative to an unrelated
reference). In this paper, we propose a novel definition of machine unlearning–Suppressive Machine
Unlearning, a unified theoretical framework that reconciles the tension between data removal and
knowledge suppression in machine unlearning. We make the following key contributions:

• Conceptual Framework for Unlearning Demands. We formalize the distinction between
Data Removal and Knowledge Suppression, and propose a taxonomy of three types of
unlearning requests that capture the spectrum of real-world demands.

• Unified Definition of (ε, δ, κ)-Suppressive Machine Unlearning. We introduce a novel
definition that simultaneously guarantees (ε, δ)-approximate data removal at the mech-
anism level and κ-suppression at the operational level. This bridges the gap between
deletion/suppression-centric approaches under a single framework.

• Characterization of the Removal-Suppression Relationship. Through both theoretical
analysis and empirical validation, we prove that data removal parameters (ε, δ) directly
bound the achievable suppression level κ, and empirically validate these theoretical predic-
tions across multiple unlearning methods.

2 PRELIMINARIES

Early work to define machine unlearning intuitively focused on the outcome that “an unlearned
model should be indistinguishable from a model retrained without the forget data.” However, this
notion soon revealed several limitations: (i) indistinguishability is ambiguous at the single-model
level, (ii) it was overly permissive in practice, and (iii) it proved practically unverifiable. Thus,
recent studies have evolved into a mechanism-perspective definition of unlearning that deals with
probabilistic guarantees of unlearning mechanisms, rather than the resulting model itself.

Let X be the input space and X ∗ be the set of all possible training datasets. For a dataset D ∈ X ∗

and a forget set Df ⊆ D. Let H be the model hypothesis space. A learning algorithm is a mapping
A : X ∗ → H. An unlearning mechanism is U that, given (D,Df , A(D)), outputs a (possibly
randomized) model in H. For a random model M , we denote Pr(M ∈ T ) as the probability that M
falls in a measurable set T ⊆ H. Based on this setup, we recall the definition of exact unlearning:
Definition 2.1 (Exact Unlearning (Nguyen et al., 2025)). Given a learning algorithm A, a dataset
D, and a forget set Df ⊆ D, the unlearning U achieves exact unlearning if and only if (iff)

∀T ⊆ H : Pr
(
A(D \Df ) ∈ T

)
= Pr

(
U(D,Df , A(D)) ∈ T

)
. (1)

Equivalently, the output, i.e., unlearned model, distribution of U(D,Df , A(D)) is identical to that
of retraining model via A on D \Df .

Remark. The indistinguishability condition of exact unlearning can be applied either in the model’s
parameter space or, alternatively, in the output space. When applied to the output space, it requires
the distributions of model outputs to be identical.
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Intuitively, exact unlearning guarantees that the unlearned model behaves as if the forget data had
never been used for model training, thereby eliminating any residual effect of the removed samples.
However, achieving such a strong guarantee is often infeasible in practice due to extreme computa-
tional, storage, and auditability constraints (Xu et al., 2024). This practical challenge has motivated
the development of approximate unlearning, which relaxes the strict equality requirement of exact
unlearning by providing guarantees for the probabilistic indistinguishability (Guo et al., 2019). This
notion is inspired by the framework of differential privacy (DP) (Dwork et al., 2006; 2014).

DP (Dwork et al., 2006) provides formal guarantees that the outputs of randomized mechanisms are
probabilistically indistinguishable whether or not a single individual’s data is included in the input
datasets. By adapting this principle, Guo et al. (2019) introduced (ε, δ)-certified removal, which
formalizes approximate unlearning as a tractable relaxation of exact unlearning by bounding the
statistical influence of a forgotten sample on the resulting model distribution.

Definition 2.2 ((ε, δ)-Approximate Unlearning (Neel et al., 2021)). For ε ≥ 0 and δ ∈ [0, 1),
U performs (ε, δ)-certified removal for a learning algorithm A if for all measurable T ⊆ H, all
datasets D ∈ X ∗, and any sample z ∈ D, we satsify:

Pr
(
U(D, z,A(D)) ∈ T

)
≤ eε Pr

(
A(D \ {z}) ∈ T

)
+ δ,

and
Pr

(
A(D \ {z}) ∈ T

)
≤ eε Pr

(
U(D, z,A(D)) ∈ T

)
+ δ. (2)

Both exact and approximate unlearning are typically defined over the parameter space, but weaker
notions have been proposed in the output space (Baumhauer et al., 2022), where the objective is
to bound the influence of the forget data on the model’s predictions rather than its parameters.
However, when unlearning is defined only in the output space, the guarantee can become indis-
tinguishable from mere obfuscation (Hu et al., 2024); it is not empirically distinguishable whether
the forget information is truly erased or simply masked with obfuscated outputs at decision time. To
address this limitation, we separate the unlearning requirements by formalizing Data Removal and
Knowledge Suppression as distinct conditions.

3 RETHINKING UNLEARNING: FROM DATA REMOVAL TO KNOWLEDGE
SUPPRESSION

Consider the following unlearning request: Alice (Data Owner) asks Bob (Model Owner) to “Erase
my data (or knowledge about me) from the model.” The canonical goal of machine unlearning is
for the unlearned model to be statistically indistinguishable from a model retrained from scratch
without Alice’s data. We formalize this as the (ε, δ)-Data Removal Condition, which requires an
unlearning mechanism U to satisfy the definition of (ε, δ)-Approximate Unlearning (Eq. 2).

However, this formulation, while crucial for ensuring the removal of data’s influence, faces several
frictions in practice. First, the formulation of (ε, δ)-Approximate Unlearning is not sufficient for
Knowledge Suppression Condition, where knowledge in a model typically arises as a generalized
pattern or an emergent capability learned from a distribution of training data, not a property of a
single data point. A model can satisfy the Data Removal Condition by eliminating the statistical
influence of a specific input, yet still retain the broader knowledge that Alice wants suppressed.
Second, in modern large-scale (pre-training) regimes, full retraining is often operationally infeasible,
and even retrained models can preserve broad generalizations that still enable inference about the
forget target. For example, Thudi et al. (2022b) formalize the notion of data forgeability, showing
how minibatch SGD and data-order variability can render the unlearned model indistinguishable
from the original, diluting the practical value of the guarantee. Thus, some recent approaches (Ji
et al., 2024; Li et al., 2024a; Zhang et al., 2025; Li et al., 2025) focus on the practical behavior
change rather than data-centric guarantees by enforcing refusals or degrading responses to target
knowledge. These challenges highlight the need for an additional formulation that captures the
unlearned model at the level of Knowledge Suppression Condition. We define this condition
directly on the properties of a single (post-unlearning). We will establish its connection to unlearning
mechanisms in the following section.

Definition 3.1 (Knowledge Suppression Condition (single-model)). Let X be the input space and Y
the response space. Given two distributions over inputs: (i) a forget-target distribution Qf , and (ii)
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a reference distribution Q0. Let Pθu(· | x) denote the output distribution of an unlearned model θu
on Y for a given x, and s : X × Y → [0, 1] be a score function. A model θu satisfies κ-suppression
for a level κ ≥ 0 if:

Ex0∼Q0
Ey0∼Pθu (·|x0) [s(x0, y0)] − Exf∼Qf

Eyf∼Pθu (·|xf ) [s(xf , yf )] ≥ κ. (3)

The suppression level κ quantifies how much worse the model must perform on the forget-target
distribution Qf relative to the reference distribution Q0. A larger κ enforces a stronger suppres-
sion of the targeted knowledge (greater performance drop on Qf ), while κ = 0 corresponds to no
guaranteed suppression beyond parity with Q0. The definition of κ-suppression for an unlearned
model θu ensures that suppression is targeted and prevents the trivial solution of indiscriminately
degrading the model’s overall performance. For example, in a face-classification task with label
space Y = {1, . . . , C}, if the goal is to suppress knowledge of Alice’s face, then Qf would consist
of her images, and κ-suppression would require the model’s top-1 accuracy as a score function s on
Qf to be at least κ lower than its accuracy on general images from Q0. for LLM question answering,
Qf could contain prompts on a harmful topic, with κ-suppression requiring performance for a score
function s (e.g., ASR/ROUGE) on Qf to be at least κ lower than on benign QA prompts from Q0.

Remark. The response space Y is intentionally abstract: it may represent final outputs (e.g., tokens,
labels, actions) or intermediate features (e.g., embeddings, logits). This allows suppression to be
formalized either at the output level or in internal representations, enabling the notion to generalize
across tasks and model architectures. The score function s is initiated to match the operational target,
such as accuracy or refusal probability for classification, precision or a token-level log-likelihood
for generation, or a distance between hidden embeddings for representation-level. Since s ∈ [0, 1],
any bounded monotone transform is admissible.

Leveraging two conditions for unlearning, Data Removal and Knowledge Suppression, we can
categorize unlearning requests into three types:

1. Type I Request: “Just erase it.” This is exactly what the Data Removal Condition formal-
izes: the probability distribution of the unlearned model must be (exactly or approximately)
indistinguishable from the probability distribution of the model retraining on D \Df .

2. Type II Request: Sometimes Alice demands more: the model must suppress knowledge
about Alice’s data beyond a given threshold κ (as evaluated by the criterion s), and simul-
taneously guarantee that it has forgotten that data. This, in turn, requires satisfying both the
Data Removal Condition and the Knowledge Suppression Condition.

3. Type III Request: Unlike Types I–II, no Data Removal Condition is claimed here. The
goal is purely operational: enforce the Knowledge Suppression Condition at a κ∗ for a
policy-defined target, while preserving general capability on non-target inputs. This setting
also covers cases where Alice does not provide a concrete forget set Df (i.e. Zero-shot
Machine Unlearning (Chundawat et al., 2023)).

4 SUPPRESSIVE MACHINE UNLEARNING

The definitions of machine unlearning (Eq. 1, 2) provide a rigorous, mechanism-level formulation
of the Data Removal Condition. However, the growing body of work on practical suppression and
refusal techniques cannot be fully subsumed by this formulation. The field currently lacks a single,
comprehensive definition capable of representing the diverse unlearning requests we outlined in
Section 3. In this section, we bridge this gap by unifying these two fundamental goals of unlearning-
the Data Removal and Knowledge Suppression conditions-into a definition from a mechanistic
perspective: Suppressive Machine Unlearning.

Definition 4.1 ((ε, δ, κ)-Suppressive Machine Unlearning). An unlearning mechanism U is a ran-
domized algorithm that maps (D, z,A(D)) to a distribution over models in the hypothesis space H.
Let θu ∼ U(D, z,A(D)) denote an unlearned model, and let θr ∼ A(D \ {z}) denote a retrained
model obtained by the dataset D with z removed.

The mechanism U satisfies (ε, δ, κ)-Suppressive Machine Unlearning if for a given dataset D and
any z ∈ D, the following conditions hold:

4
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1. (ε, δ)-Data Removal Condition. For any measurable set T ⊆ H,

Pr
(
U(D, z,A(D)) ∈ T

)
≤ eε Pr

(
A(D \ {z}) ∈ T

)
+ δ,

and
Pr

(
A(D \ {z}) ∈ T

)
≤ eε Pr

(
U(D, z,A(D)) ∈ T

)
+ δ. (4)

2. Knowledge Suppression Condition (κ-Suppression). Let Qf denote the forget-target dis-
tribution and Q0 a reference distribution. For a given score function s : X × Y → [0, 1],
the suppression functional gs(θ) for a model θ is defined as

gs(θ) := Ex0∼Q0, y0∼Pθ(·|x0)s(x0, y0) − Exf∼Qf , yf∼Pθ(·|xf )s(xf , yf ). (5)

Then, U satisfies κ-Suppression if

Eθu∼U(D,z,A(D))

[
gs(θu)

]
≥ κ. (6)

Our (ε, δ, κ)-Suppressive Machine Unlearning couples a mechanism-level guarantee for deletion and
an operational target for suppression. The first condition, (ε, δ)-data removal, provides the formal
deletion guarantee ensuring that the unlearned model distribution is statistically indistinguishable
from that of a model retrained on D \ {z}. The second, κ-Suppression, specifies the operational tar-
get, requiring the (possibly randomized) unlearning mechanism U to produce a model that exhibits
an expected performance gap of at least κ between a reference distribution Q0 and the forget-target
distribution Qf , as measured by a score function s. Consequently, these conditions jointly regulate
the underlying statistical properties of the model after unlearning and its functional behavior with
respect to the target knowledge.

4.1 THEORETICAL ANALYSIS

This section provides the theoretical analysis for Suppressive Machine Unlearning. We aim to
analyze the relationship between the mechanism-level guarantee of (ε, δ)-Data Removal and the
operational objective of κ-Suppresion. The analysis proceeds by first extending the data removal
guarantee to a batch/sequential setting involving the removal of multiple data points, establishing a
composition theorem (Lemma 4.2). Then, we demonstrate that this group-level distributional guar-
antee implies bounds on the operational objective of κ-Suppression (Theorem 4.4). All proofs are
deferred to Appendix A.

To facilitate the analysis, we define probability measures µ, ν on H by

µ(T ) := Pr
(
U(D, z,A(D)) ∈ T

)
, ν(T ) := Pr

(
A(D \ {z}) ∈ T

)
, (7)

for all measurable T ⊆ H. The (ε, δ)-Data Removal Condition (Eq. 4) holds iff for all measurable
T ⊆ H, µ(T ) ≤ eεν(T ) + δ and ν(T ) ≤ eεµ(T ) + δ.
Lemma 4.2 (Group-Data Removal for Df ). Assume an unlearning mechanism U satisfies the
(ε, δ)-Data Removal Condition (Definition 2.2) for any dataset D and any z ∈ D. Let Df =
{z1, . . . , zk} ⊆ D be a forget set of k ≥ 1 points.

Define a sequence of datasets S0 := D and Si := D \ {z1, . . . , zi} for i = 1, . . . , k. Consider a
sequence of random models generated by the following process:

1. Let Θ0 ∼ A(D) be the initial model trained on D.

2. For i = 1 . . . , k, let Θi ∼ U(Si−1, zi,Θi−1) be the model obtained after unlearning zi.

Let µi and νi denote the probability measures on H induced by Θi and A(Si), respectively, i.e.,

µi(T ) := Pr(Θi ∈ T ) and νi(T ) := Pr
(
A(Si) ∈ T

)
for T ⊆ H.

Then, for every measurable T ⊆ H, the following holds:

µk(T ) ≤ ekε νk(T ) + δ

k−1∑
j=0

ejε and νk(T ) ≤ ekε µk(T ) + δ

k−1∑
j=0

ejε. (8)
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Figure 1: Illustration of Lemma 4.2 (Group-Data Removal). Starting from an initial model trained
on dataset D, each unlearning step U removes an element zi ∈ Df . The process yield the cumulative
removal parameters between the distribution of unlearned models and that of retraining on D \Df .

Lemma 4.2 shows that the data removal guarantee composes over a sequence of unlearning opera-
tions. We formally define that an unlearning mechanism U satisfies (εk, δk)-Group-Data Removal
for a forget set Df if the final distributions µk and νk are (εk, δk)-indistinguishable. In particu-
lar, Lemma 4.2 implies (kε, δ

∑k−1
j=0 e

jε)-group data removal. This result extends to the adaptive
setting, where the parameters (ε(i), δ(i)) may vary across steps. Fig. 1 illustrates this lemma.
Corollary 4.3 (Adaptive Group-Data Removal). Under Lemma 4.2, suppose that at step i the guar-
antee of unlearning mechanism holds with parameters (ε(i), δ(i)), possibly depending on (Si−1, zi).
Then, for all T ⊆ H,

µk(T ) ≤ e
∑k

i=1 ε(i) νk(T ) +

k∑
i=1

e
∑ i−1

t=1 ε(t) δ(i), (9)

and

νk(T ) ≤ e
∑k

i=1 ε(i) µk(T ) +

k∑
i=1

e
∑ k

t=i+1 ε(t) δ(i). (10)

In the adaptive case, ε adds linearly, while the δ accumulates with exponential weights, making the
final guarantee dependent on the removal order. Note that when (ε(i), δ(i)) ≡ (ε, δ) for all i, these
bounds reduce to the non-adaptive case in Eq. 8 that is order-independent.

Lemma 4.2 and Corollary 4.3 establish a composition theorem for unlearning, which is directly anal-
ogous to the group privacy principle in differential privacy (Dwork et al., 2014). An approximate
removal per item implies distributional closeness after forgetting any set of items, with parameters
ε and δ accumulated similarly as in the group privacy. This connection helps us to leverage privacy
accounting intuitions for unlearning sequences. Lemma 4.2 formalizes unlearning requests that
arrive sequentially in a stream, a general case that inherently covers batched requests. If an imple-
mentation chooses (ε(i), δ(i)) adaptively depending on zi, then the sequential composition becomes
order-dependent with (εk, δk) = (

∑k
i=1 ε

(i),
∑k

i=1 e
∑ i−1

t=1 ε(t) δ(i)) (Eq. 9).

Building on this composition, we now translate distributional closeness into guarantees on the oper-
ational suppression. We show that Group-Data Removal with parameters (εk, δk) yields the bounds
relating the unlearned model’s suppression κu to the retrained baseline κr.
Theorem 4.4 (Suppression Transfer under Group-Data Removal). Let an unlearning mechanism
satisfy (εk, δk)-Group Data Removal for the forget set Df of size k ≥ 1. Consider the suppression
functional gs(θ) derived from a bounded score function s : X × Y → [0, 1].

Let κu and κr be the suppression metrics for the unlearned and retrained models, respectively:

κu := Eθu∼U(D,Df ,A(D))[gs(θu)], κr := Eθr∼A(D\Df )[gs(θr)].

Then,
|κu − κr| ≤ 2

(
eεk − 1

)
+ 2δk (11)

and, more sharply (one–sided),

κu ≤ eεkκr + 2δk + eεk − 1 = O(eεkκr) (12)
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(a)

𝜅!

𝑘

(b)

Figure 2: (a) Impact of ε on suppression bounds κu. This plot shows the upper bounds of the
suppression level κu as a function of the removal parameter ε at each k. Shaded bands mark the
feasible range of κu. (b) Heatmap of the width of the feasible interval for κu over the (ε, k) grid.
For each data removal level ε, we compose group-data removal guarantees for a deletion set of size
k to obtain (εk, δk). These are plugged into the one-sided bounds to compute upper bounds on |κu|.
For both figures, κr (retrain baseline) is fixed to 0 and δ is fixed to 10−5.

Theorem 4.4 establishes that the suppression level κu achieved by an unlearned model remains cou-
pled to the retraining baseline κr, with deviations bounded by (εk, δk). This validates Definition 4.1:
a mechanism that both (i) satisfies group-level deletion guarantees and (ii) enforces κ-suppression
behaves, on the operational metric gs, almost indistinguishably from full retraining on D \Df . This
result connects the two primary desiderata in unlearning—a mechanism-level deletion guarantee
and a behavior-level obligation-within one auditable notion. Moreover, these guarantees compose
across multiple unlearning requests (via Lemma 4.2), making the framework applicable to practical
streaming or batched unlearning.

The one-sided bound (Eq. 12) provides a key insight into the behavior of approximate unlearning
algorithms: as the deletion guarantee is relaxed (i.e., larger εk) or the forget set size (k) increases, the
allowable deviation between κu and κr necessarily increases, meaning a much room for suppression.
Figure 2-(b) illustrates how the feasible interval for κu expands with ε and the group size k, offering
intuition for the empirical observation that most unlearning methods can exhibit a high level of
suppression on the forget data when forgetting a large number of samples. Moreover, in the case of
exact unlearning, the result coincides perfectly with the prevailing intuition.
Corollary 4.5 (Suppression Parity of Exact Unlearning). If U satisfies (ε, δ) = (0, 0), for all s,

Eθu [gs(θu)] = Eθr [gs(θr)], κu = κr. (13)

Consequently, for any κ ≥ 0, U is κ-suppressive iff retraining on D \Df is κ-suppressive.

Through our theoretical analysis, we obtain a comprehensive understanding of existing unlearn-
ing approaches with a consistent definition that couples deletion-level guarantees with behav-
ioral suppression targets. This joint perspective enables us to reinterpret diverse practical un-
learning demands—ranging from strict data-deletion requests to task-specific suppression require-
ments—within a common taxonomy.

4.2 CONNECTION TO UNLEARNING REQUESTS

Recall. Alice (Data Owner) asks Bob (Model Owner) to “Erase my data from the model.” Using our
notation, Alice may specify a policy target κ∗ ≥ 0 (“suppress at least this much on my data relative
to the model’s general behavior”). Three request types, now fully instantiated:

1. Type I Request: Require the (ε, δ)-Data Removal Condition only; no extra suppression
target beyond whatever the retrain achieves. Exact unlearning (Corollary 4.5) will be the
gold-standard of this request. With small (ε, δ), Theorem 4.4 implies |κu − κr| is tightly
bounded, so U tracks the retrain on the operational metric. This explains the conventional
evaluation framework for producing an unlearning model whose performance is as close as
possible to that of a retrained model.

7
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(a) (b)

𝜅!, 𝑘 = 2000

𝜅!, 𝑘 = 100

Figure 3: (a) Suppression level across unlearning methods. Point size encodes the number of forget
data k, and color-dotted lines denote per-method trend lines. Retrained models’ suppression κr was
represented by gray-dotted lines (only representative figures are provided). (b) Indistinguishability
(shown by AUC) vs. forget-set size via heatmap-style scatter. Point color encodes the achieved
suppression level κu.

2. Type II Request: Impose both conditions in Definition 4.1: the (ε, δ)-Data Removal Con-
dition and the κ∗-suppression constraint. The maximum achievable κu consistent with
(εk, δk) is upper-bounded by Eq. 12. Hence a necessary feasibility condition for any target
κ∗ is κ∗ ≤ eεkκr + 2δk + eεk − 1 (immediate from the one-sided bound). Equivalently,
the minimum deletion budget that can support κu is

εk ≥ log
κu + 1− 2δk

κr + 1
. (14)

Thus, stronger suppression targets force looser approximate unlearning guarantees.
3. Type III Request: No claim about deletion; only require κu ≥ κ∗ with capability pre-

served on Q0. This aligns with recent suppression–centric methods: it lives on the be-
havioral axis without constraining parameter-level deletion. This request falls outside the
typical definition of unlearning: these notions do not provide a connection between removal
and suppression. Our definition does—by directly enforcing auditable κ-suppression.

In conclusion, our framework is request-complete: it uniformly covers Type I–III requests, by
specifying behavioral targets on outputs. Taken together, these results position our definition as both
principled and practical for real-world unlearning deployments.

4.3 EMPIRICAL ANALYSIS

We introduced (ε, δ, κ)-Suppressive Machine Unlearning, which couples data removal guarantees
with performance suppression, and show that the suppression level κu is controlled by (εk, δk) and
κr. We now examine how these theoretical constraints manifest in practical unlearning pipelines.
Our core idea is to jointly observe the indistinguishability among retrained models and unlearned
models along with their suppression level κu. In typical unlearning pipelines, it is practically in-
feasible to estimate the removal parameters (ε, δ): unlearning operators are not standardized DP
mechanisms, any (ε, δ) accounting would be highly method-specific. Motivated by (Ghazi & Issa,
2024), to obtain a method-agnostic, observable surrogate for “how distinguishable” an unlearned
model is from its retrain counterpart, we therefore employ a logistic discriminator trained on soft
logits to compute the ROC–AUC; lower AUC indicates reduced distinguishability—operationally
aligning with a smaller ε—while higher AUC indicates the opposite.

Setting. We utilize CIFAR-10 and a ResNet-18 backbone. The forget dataset Df comprises k ∈
{50, 100, 500, 1000, 2000} training samples from class 0. The retrain baselines for each case train
from scratch on D \Df . We perform unlearning with 10 different random seeds under exactly the
same conditions and unlearning mechanisms across all unlearning methods, regardless of k. We
test four unlearning pipelines to remove/suppress Df : (1) Random Labeling (GA) (Golatkar et al.,

8
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2020), (2) Gradient Ascent (GA) (Thudi et al., 2022a), (3) Boundary Unlearning (BU) (Chen et al.,
2023), and (4) Saliency Unlearning (SalUn) (Fan et al., 2023). The reference distribution Q0 is the
entire test set excluding class 0 and the forget-target distribution Qf is the class 0-only test set. The
score function s is a classification accuracy, so the suppression level κ is Acc(Q0)−Acc(Qf ).

Results. We scatter various unlearned models with varying k on AUC-κu space, intended to sur-
rogate ε-κ space from Fig. 2-(a). As shown in Fig. 3-(a), the curves follow an exponential trend
consistent with the one-sided bound established in Eq. 12 (κu ≤ O(eεkκr)). For intuition, note that
enlarging either the deletion budget εk widens the feasible gap between κu and κr. However, in the
case of Boundary Unlearning (BU), it only behaves in the right-upper part of the trend. Because it
operates by collapsing the decision boundary of a specific class irrespective of the unlearning setting,
it consistently achieves a high level of suppression. In Fig. 3-(b), we scatter each unlearned model
on AUC-k space, which corresponds to ε-k space in its theoretical counterpart, with a color map
for representing the suppression level κu. Our result exhibits a trend consistent with the heatmap
in Fig. 2-(b), where dark blue-colored points locate the left or lower region, while yellow-colored
points scatter on the right-upper area. We also observe a structural trade-off implied by the com-
position of group-data removal: unlearning accumulates (ε, δ) in a way that mirrors group privacy,
which explains the joint movement of indistinguishability and suppression as k increases.

Taken together—(i) the composition-driven accumulation of (ε, δ), (ii) the suppression transfer
bound of Theorem 4.4, and (iii) the AUC-based indistinguishability surrogate—our results sub-
stantiate that (ε, δ, κ)-Suppressive Machine Unlearning coherently couples verifiable deletion with
operational suppression in practical pipelines.

5 DISCUSSION

Challenges in Empirical Validation for LLMs. Unlearning in the LLMs is the most active area of
discussion on the suppression-perspective. While our definitions and theorems are model-agnostic,
its empirical validation on LLMs raises practical challenges. First, our evaluation requires multiple
independent retraining runs to estimate the distribution of the retrained models. Full retraining of
such models is prohibitive due to their computational cost and restricted access to large-scale training
corpora. Second, measuring how deletion/suppression varies with a forget set size k is impractical
for LLMs because clear trends may only emerge at an exponential scale, a requirement compounded
by the difficulty of accessing such vast datasets. Second, measuring how deletion/suppression vary
with a forget set size k is not auditable in the same way as our setting.

Suppression (Type III) as Pragmatic Unlearning. We argue that suppression-only requests
(Type III) can be recognized as a legitimate form of unlearning, particularly in scenarios where
curated forget sets and multiple retrains are infeasible. In such cases, auditable and policy-defined
κ-suppression on a target distribution offers an guarantee of reduced capability, complementing
data-removal baselines rather than replacing them. We do not claim that suppression certifies dele-
tion; rather, it establishes a measurable behavioral contract when data provenance is uncontrollable,
making our (ϵ, δ, κ) definition operationally meaningful for large models. Nevertheless, the scope
of “unlearning” under output-level criteria remains an active area of debate. For instance, relearning
attacks (Hu et al., 2024; Fan et al., 2025) reveal that naı̈ve refusal/suppression can be reversible.

6 CONCLUSION

Machine unlearning has emerged as a critical capability for modern AI systems, yet existing defi-
nitions have been insufficient to capture the full spectrum of real-world unlearning demands. This
work addresses a fundamental gap in the field by introducing Suppressive Machine Unlearning, a
unified framework that encompasses both data removal and knowledge suppression objectives under
a single, theoretically grounded definition. The implications of this work extend beyond theoretical
interest. As AI systems become more pervasive and face increasing scrutiny regarding their training
data and capabilities, the ability to audit both what has been removed and what has been suppressed
becomes essential. Our (ε, δ, κ) framework provides the mathematical foundation for such audit-
ing, enabling organizations to make principled decisions about unlearning trade-offs while meeting
diverse stakeholder demands.
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A PROOFS OF THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA 4.2.

We prove the forward inequality; the reverse direction is identical by symmetry.

Setup and notation H denotes the model (parameter) space; we view it as a standard Borel space.
Its σ-algebra of measurable sets is B(H). We write T ∈ B(H) for measurable “events” about
models. A is a (possibly randomized) learner. For a dataset S, the random model A(S) ∈ H induces
the distribution νS(T ) := Pr(A(S) ∈ T ) on H. U is a randomized update that takes a dataset S
containing z, a current model h ∈ H, and internal randomness, and outputs a new model in H. Given
S and z, the mapping h 7→ U(S, z, h) is measurable and randomized. As in the lemma, S0 := D
and Si := D \ {z1, . . . , zi}. We set Θ0 ∼ A(D) and for i ≥ 1 sample Θi ∼ U(Si−1, zi,Θi−1). Let
µi(T ) := Pr(Θi ∈ T ) and νi(T ) := Pr(A(Si) ∈ T ).

Why we may treat U as a “Markov kernel.” Fix (Si−1, zi). Because U is a randomized algo-
rithm that is measurable in its inputs, there exists a setwise mapping

Ki : H× B(H) → [0, 1], Ki(h, T ) := Pr
(
U(Si−1, zi, h) ∈ T

)
,

such that: (i) for each h, T 7→ Ki(h, T ) is a probability measure on B(H); (ii) for each measurable
T , h 7→ Ki(h, T ) is measurable. These two properties are exactly what is needed to apply standard
post-processing inequalities; With this notation we have

µi = (µi−1Ki)(T ) :=

∫
Ki(h, T )µi−1(dh) and (νi−1Ki)(T ) :=

∫
Ki(h, T ) νi−1(dh).

One-step guarantee. Applying the single-point approximate unlearning guarantee at (Si−1, zi)
gives, for all measurable T ,

(νi−1Ki)(T ) ≤ eε νi(T ) + δ. (15)

Post-processing fact (used repeatedly). If measures α, β on H satisfy α(T ) ≤ eρβ(T ) + η for
all T ∈ B(H), then for any kernel K and all measurable T ,

(αK)(T ) ≤ eρ (βK)(T ) + η.

Reason. The premise is equivalent (by layer-cake / indicator approximation) to
∫
g dα ≤ eρ

∫
g dβ+

η for all measurable g : H → [0, 1]. Taking g(h) = K(h, T ) yields the claim.

Inductive invariant. We prove by induction on i that for all measurable T ,

µi(T ) ≤ eiε νi(T ) + δ

i−1∑
j=0

ejε (∗i) (16)

Base case i = 1. By Definition 2.2 at (S0, z1) and the fact µ1 = ν0K1,
µ1(T ) = (ν0K1)(T ) ≤ eε ν1(T ) + δ,

which is (∗1).
Inductive step. Assume (∗i−1). Applying the same kernel Ki to both sides and using the post-
processing fact,

µi(T ) = (µi−1Ki)(T ) ≤ e(i−1)ε (νi−1Ki)(T ) + δ

i−2∑
j=0

ejε.

Combine this with the one-step bound Eq. 15 to get

µi(T ) ≤ e(i−1)ε
(
eενi(T ) + δ

)
+ δ

i−2∑
j=0

ejε = eiενi(T ) + δ

i−1∑
j=0

ejε,

which is (∗i). Taking i = k yields the forward inequality of the lemma. The reverse inequality
follows by applying the symmetric direction in Definition 2.2 at each step (swap the roles of µ and
ν).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 PROOF OF THEOREM 4.4.

Proof. Since s ∈ [0, 1], it follows that gs ∈ [−1, 1], hence |κu| ≤ 1 and |κr| ≤ 1. For simplicity,
set ε := εk and δ := δk.

Step 1 (from setwise bounds to bounds on integrals). Fix any measurable f : H → [0, 1]. For
t ∈ [0, 1] let Tt := {θ ∈ H : f(θ) ≥ t}. By the layer-cake representation and Tonelli’s theorem,∫

f dµ =

∫ 1

0

µ(Tt) dt,

∫
f dν =

∫ 1

0

ν(Tt) dt. (17)

Applying µ(Tt) ≤ eεν(Tt) + δ pointwise in t and integrating over t ∈ [0, 1] yields∫
f dµ ≤ eε

∫
f dν +

∫ 1

0

δ dt = eε
∫

f dν + δ. (18)

Similarly, from ν(Tt) ≤ eεµ(Tt) + δ we obtain∫
f dν ≤ eε

∫
f dµ+ δ. (19)

Step 2 (one–sided bounds). Let f := (gs + 1)/2, which maps H into [0, 1]. Then

κu =

∫
gs dµ = 2

∫
f dµ− 1, κr =

∫
gs dν = 2

∫
f dν − 1. (20)

Using
∫
f dµ ≤ eε

∫
f dν + δ gives

κu = 2

∫
f dµ−1 ≤ 2

(
eε
∫

f dν+δ
)
−1 = eε(κr+1)+2δ−1 = eεκr+(eε−1)+2δ. (21)

From
∫
f dν ≤ eε

∫
f dµ+ δ we obtain∫

f dµ ≥ e−ε

∫
f dν − e−εδ, (22)

hence
κu = 2

∫
f dµ− 1 ≥ 2e−ε

∫
f dν − 2e−εδ − 1

= e−ε(κr + 1)− 2e−εδ − 1 = e−εκr − e−ε
(
2δ + eε − 1

)
. (23)

The inequalities Eq. 21 and Eq. 23 are the claimed one–sided bounds.

Step 3 (symmetric bound on |κu − κr|). From Eq. 21,
κu − κr ≤ (eε − 1)κr + (eε − 1) + 2δ ≤ 2(eε − 1) + 2δ, (24)

since |κr| ≤ 1.

Exchanging the roles of µ and ν in Eq. 21 gives κr ≤ eεκu + (eε − 1) + 2δ, hence

κu−κr ≥ κu−
(
eεκu+(eε−1)+2δ

)
= (1−eε)κu−(eε−1)−2δ ≥ − 2(eε−1)−2δ, (25)

since |κu| ≤ 1.

Combining the two displays yields |κu − κr| ≤ 2(eε − 1) + 2δ.

B EXPERIMENTAL DETAILS

B.1 ALGORITHM DESCRIPTIONS

Here we present the detailed description of each unlearning pipeline. (1) Random Labeling (RL)
(Golatkar et al., 2020): Replace the forget-set labels with random ones and briefly retrain so their
learning signal becomes noise, eroding memorization. (2) Gradient Ascent (GA) (Thudi et al.,
2022a): Fine-tune on the forget data by ascending the loss, actively pushing parameters away from
fitting those examples. (3) Boundary Unlearning (BU) (Chen et al., 2023): Shrink the margin around
forget samples to retract the decision boundary and lower confidence in that region. (4) Saliency Un-
learning (SalUn) (Fan et al., 2023): Identify parameters salient to the forget set via gradient/saliency
scores, selectively reset or weaken them, then briefly fine-tune on the retain data to restore overall
performance.
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B.2 CONFIGURATION

All experiments performed unlearning with fixed hyperparameters according to each unlearning
method on 10 random seeds.

For orginal and retrained models, we trained ResNet-18 classifiers on CIFAR-10 (32×32 resolu-
tion). During training, we applied RandomCrop (padding=4) and RandomHorizontalFlip for data
augmentation. Inputs were normalized using ImageNet statistics. Optimization used SGD with an
initial learning rate of 0.1, momentum 0.9, and weight decay of 0.0005, for a total of 200 epochs. A
MultiStepLR schedule reduced the learning rate by a factor of 0.2 at epochs 60, 120, and 160. The
training batch size was 256; evaluation used a batch size of 100. We used cross-entropy loss and
reported top-1 accuracy.

In Random Labeling scenarios, forget data and randomly selected labels were trained in pairs. Op-
timization used SGD with a learning rate of 0.0002. In Gradient Ascent scenarios, the model was
updated by making the loss calculated for the forget data negative. Optimization used AdamW with
a learning rate of 2× 10−6. In Boundary Unlearning scenarios, adversarial examples are generated
on-the-fly using an FGSM agent configured with an ℓ∞ step bound of 0.3, random initialization en-
abled. And we find adjacent classes for adversarial samples with an original model. We optimize it
with SGD at a small constant learning rate 0.0005. For Saliency Unlearning, we use the unlearning
data to accumulate gradients of the negative cross-entropy −CE(f(x), y), take absolute values, rank
all parameters globally, and keep the top 50% as a binary mask; we then train a fresh copy of the
model for one epoch on the same data using random labels drawn uniformly from the remaining
classes, SGD (lr = 3 × 10−4), and multiply each parameter gradient by the mask so only selected
entries update.
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