
SALoM: Structure Aware Temporal Graph Networks
with Long-Short Memory Updater

Hanwen Liu
Zhejiang University
Hangzhou,Zhejiang

22451315@zju.edu.cn

Longjiao Zhang
Zhejiang University
Hangzhou,Zhejiang

zhljJoan@zju.edu.cn

Rui Wang∗
Zhejiang University

High-Tech Zone (Binjiang) Institute
of Blockchain and Data Security

Hangzhou,Zhejiang
rwang21@zju.edu.cn

Tongya Zheng
Zhejiang Provincial Engineering Research Center

for Real-Time SmartTech in Urban Security Governance,
School of Computer and Computing Science,

Hangzhou City University
doujiang_zheng@163.com

Sai Wu
Zhejiang University
Hangzhou,Zhejiang
wusai@zju.edu.cn

Chang Yao
Zhejiang University
Hangzhou,Zhejiang
changy@zju.edu.cn

Mingli Song
Zhejiang University
Hangzhou,Zhejiang

brooksong@zju.edu.cn

Abstract

Dynamic graph learning is crucial for accurately modeling complex systems by
integrating topological structure and temporal information within graphs. While
memory-based methods are commonly used and excel at capturing short-range
temporal correlations, they struggle with modeling long-range dependencies, har-
monizing long-range and short-range correlations, and integrating structural in-
formation effectively. To address these challenges, we present SALoM: Structure
Aware Temporal Graph Networks with Long-Short Memory Updater. SALoM
features a memory module that addresses gradient vanishing and information
forgetting, enabling the capture of long-term dependencies across various time
scales. Additionally, SALoM utilizes a long-short memory updater (LSMU) to
dynamically balance long-range and short-range temporal correlations, preventing
over-generalization. By integrating co-occurrence encoding and LSMU through
information bottleneck-based fusion, SALoM effectively captures both the struc-
tural and temporal information within graphs. Experimental results across various
graph datasets demonstrate SALoM’s superior performance, achieving state-of-
the-art results in dynamic graph link prediction. Our code is openly accessible at
https://github.com/wave5418/SALoM.

1 Introduction

Dynamic graphs [35] are essential for modeling intricate systems such as traffic planning [33], ge-
nomics [15], financial analysis [22], and environmental science [2]. Continuous-time dynamic graph
learning networks [6, 17, 25] operate in a continuous stream of events, enabling the understanding of
entity interactions. These networks excel in analyzing and predicting data patterns by incorporating

∗Rui Wang is the corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/wave5418/SALoM

temporal information and topological structure [9, 31], making them valuable in social network
analysis [26], fraud detection, recommendation systems [10], and predictive maintenance [19], etc.

To capture temporal correlation information between nodes over time, two common approaches
are used: memory-based methods and neighbor-based sequence methods. Memory-based methods,
like JODIE [17], DyRep [28], and TGN [25], assign vector-based memory data to each node to
represent historical interaction sequences. These memory data are continuously updated by new
events using RNN architectures, preserving temporal information related to all events associated with
the respective nodes. On the other hand, neighbor-based sequence methods like DyGFromer [34] and
CNEN [7] leverage sequential models such as attention mechanisms and transformer encoders. These
methods integrate historical event lists with features from neighboring nodes and time intervals to
effectively capture temporal correlations from neighbor sequences.

To characterize topological structural features of a subgraph formed by each node and its historical
neighbors, various approaches are commonly used, including message passing, random walk, and
specialized structural encodings. Message passing, a traditional method in graph neural networks
like TGN [25], encodes the topological structure of the graph into node representations by iteratively
aggregating information from neighboring nodes at each layer. Random walk-based methods, such as
CAWN [31], generate random paths in the graph to extract information and contextual relationships
from neighboring nodes. Specialized structural encodings like path counting [27] and co-occurrence
neighbor encoding [34] enhance structural features and tackle issues like oversmoothing [18] and
over-squashing [1]. In particular, co-occurrence neighbor encoding computes the co-occurrence of
historical neighbors, providing notable advantages in various tasks.

Despite progress in the field, current methods still faces challenges in effectively capturing both long
sequence temporal information and graph structure features, hindering model performance. Memory-
based techniques struggle with capturing complete long-range neighborhood temporal correlations,
due to issues like vanishing gradient and information forgetting in RNN architectures [8]. Neighbor-
based sequential methods, on the other hand, face difficulties in efficiently balancing long-term
and short-term neighborhood features. Moreover, integrating long-term temporal and topological
structural features poses a challenge, given the issues of over-squashing and difficulty in node
differentiation [7]. While co-occurrence neighbor encoding offers a potential solution, directly
integrating it with temporal features may lead to conflicts and reduced performance.

To address the above challenges, we introduce Structure Aware temporal graph networks with Long-
Short Memory updater(SALoM), a dynamic graph learning framework aimed at capture long-range
temporal features, harmonize long-range and short-range dependencies, and integrating structural
features within graphs. SALoM enables the model to discern subtle differences among isomorphic
nodes and preserve critical temporal patterns. Our contributions can be summarized as follows:

• To address the challenge of capturing complete long-range neighborhood temporal correla-
tions, we introduce a memory module that mitigates the gradient vanishing and information
forgetting issues and effectively captures dynamic features across various time scales.

• Expanding on this memory module, we propose Long-Short Memory Updater (LSMU) to
balance long-range and short-range temporal dependencies. LSMU utilizes a sparse mixture-
of-experts module to integrate memory and encoded interactions for gate calculations,
effectively adapting both influences and mitigating over-generalization issue.

• To tackle the lack of structure information, we propose to incorporate co-occurrence encod-
ing into LSMU via information bottleneck-based fusion, effectively capturing and adaptively
balancing the impact of temporal and structure encoding.

• We implement the prototype of SALoM and conduct extensive experiments to demonstrate
its effectiveness. Our results show that SALoM outperforms the state-of-the-art dynamic
graph learning methods on most benchmark datasets for link prediction. In particular,
SALoM demonstrates significant improvements in prediction accuracy on the USLegis,
UNtrade, and UNvote datasets where previous methods fell short, with enhancements of
14.18%, 15.89%, and 32.48% over its closest competitors, respectively.

2

2 Background and Related Works

2.1 Temporal Correlation Encoding in Dynamic Graph

Memory-based Methods. Memory-based methods use specialized memory modules to update
evolving node representations through sequential interactions, theoretically preserving complete
historical patterns. Jodie [17] pioneered this with RNNs and t-Batch, excelling in recommendation
systems but lacking generalizability on other tasks. DyRep [28] extended memory-based methods
to general dynamic graphs, emphasizing the interaction between graph structure and temporal
dynamics. Innovations like TGAT’s [32] attention mechanisms and Temporal Graph Networks
(TGN)[25] combine memory modules with Multi-Head Attention, achieving early state-of-the-
art results. However, memory updated iteratively based on RNN face practical limitations, such
as gradient vanishing and information forgetting, which hinder long-range dependencies. And
implementing discrete models on irregularly-sampled events will cause intra-batch information loss.

Neighbor-Based Sequential Methods. Some recent studies[7, 34] abandon iterative memory updates
and directly process long historical neighbor feature sequences through sequential models, such
as linear layers and transformer layers, to extract temporal correlations and structural features.
While circumventing RNN-related gradient issues, information forgetting, and intra-batch loss, this
approach imposes theoretical constraints on long-range dependency modeling through finite neighbor
sampling and incurs memory overheads that scale quadratically with sequence length (e.g., O(L2)
for attention-based models), posing computational bottlenecks in practical applications.

2.2 Structural Encoding in Dynamic Graphs

Message Passing Methods. These methods leverage neighborhood aggregation without explicit
structural encoding, implicitly capturing local topology through aggregating information from neigh-
bors and propagating it layer by layer[25, 32]. These methods are often combined with memory-based
techniques, such as GCN [16] and MHA [29], which exemplifies the application of this approach.

Random Walk-Based Methods. Inspired by static GNNs, early efforts to explicitly capture structure
encoding in continuous-time dynamic graphs explored methods based on random walks. For instance,
CAWN[31] extracts multiple causal anonymous walks for each node and employs RNNs to encode
these walks and aggregates them to form the final node representation, with a particular emphasis on
capturing causality in dynamic graphs.

Specialized Structural Encodings. As research advanced, various explicit structure encoding
methods were developed[27, 31, 34], with co-occurrence neighbor encoding proving to be the most
expressive and generalized. This approach, serving as a relative structure encoding, measures the
frequency of common neighbors in the historical neighbor lists of two nodes. When integrated with
temporal and node-specific features and processed by sequential models such as Transformers, it
demonstrates significant improvements on continuous-time dynamic graph tasks, showing robust
expressiveness and generalizability across diverse datasets.

2.3 Limitations of Existing Methods

Although some achievements have been made, the existing methods still have limitations in capturing
long sequence information and graph structure information.

Limitation#1: Difficulty capturing complete long-range neighborhood temporal correlations.
Memory-based methods, although theoretically capable of storing information from all historical
interactions in memory data, struggle to effectively handle long-term dependencies in practice.
This is because RNN architectures used for capturing temporal correlations and updating memory
are susceptible to issues like vanishing gradient [8, 11, 14] and information forgetting [8, 11, 14].
Neighbor-based sequential methods, on the other hand, can capture long-range temporal correlations
of historical interactions by sampling a long neighbor list. However, this approach leads to redundant
computational overhead due to duplicated interactions related to the same node in the long neighbor
lists, and it faces limitations on the interaction history due to constraints on neighbor list length. For
a detailed motivation study of long-range temporal correlations capture, refer to Appendix B.1.

Limitation#2: Challenge in balancing long-range and short-range temporal neighborhood
features. In dynamic graph learning, it is crucial to capture both long-term trends and short-term

3

Figure 1: Model overview of SALoM

changes in neighborhood feature data, because long-term memory helps identify evolving trends and
persistent patterns, while short-term events reflect local dynamics and immediate changes[12, 36].
However, existing memory-based methods struggle to adaptively balance the influence of different
historical interactions across different time periods. Although neighbor-based sequence methods can
assign uniform weights for historical events with different time periods[23], their complexity grows
quadratically with the neighbor list length. They also struggle to adaptively determine the importance
of short-range versus long-range correlations. Detailed motivation study of short-range temporal
correlations capture and long-short term temporal correlation fusion refer to Appendix B.2 and B.3.

Limitation#3: Hard to integrate long-term temporal and topological structural features. For
topological structural features, traditional message passing methods struggle to effectively handle
long-term neighbors, often resulting in over-squashing and the inability to differentiate between
homogeneous nodes. This is due to the over compression of distant node information, leading
to a loss of crucial structural features[3, 24]. As a result, these methods primarily focus on local
neighborhoods. While random walk-based methods can capture long-range dependencies, they
can be time-consuming or limited by cached historical neighbors, hindering the utilization of long-
range information. Co-occurrence neighbor coding offers a solution but is restricted by the reliance
on neighbor lists, limiting its ability to incorporate long-term information. Additionally, directly
fusing temporal and topological structural features may result in conflicts and ultimately degrade
performance. For details on structure encoding and feature fusion, see Appendix B.4 and B.5.

3 Methodology

The SALoM framework is a cutting-edge approach designed to tackle key challenges within memory-
based architectures, achieving three primary objectives that distinguish it from existing methods.
An overview of SALoM is provided in Figure 1. SALoM excels at capturing long-range temporal
dependencies through its Continuous-Time Memory Module, which uses ordinary differential
equations to model continuous memory. The module effectively identifies long-term patterns in
highly connected nodes, avoiding the discontinuity issues typical of batch-updated memory units.
Additionally, SALoM features the Long-Short Memory Updater(LSMU), which combines long-
range dependencies from the Continuous-Time Memory Module with short-range dependencies from
RNNs. By adjusting its focus based on input characteristics, the model becomes more responsive
to changes, improving prediction accuracy. SALoM also enhances structural information using
HashMap Memory and Co-occurrence Encoder. It integrates temporal dependencies and structural
features through the IB Encoder and Decoder, resolving potential coding conflicts and reducing the
over-squeezing problem found in traditional methods. This allows for better differentiation between
similar nodes, boosting the model’s representational power and understanding of data relationships.

3.1 Continuous-Time Memory Module

Memory Update Based on Neural Ordinary Differential Equations. We propose a continuous-
time memory module based on Neural Ordinary Differential Equations (ODEs) to capture long-range
temporal dependencies in nodes with extensive neighborhoods. Unlike discrete models, Neural ODEs

4

describe the dynamics of hidden states using differential equations, allowing for continuous memory
evolution that aligns with irregular temporal interactions in real-world graphs.

The continuous time graph, which is modeled as a sequence of time-stamped events, is denoted as
G = {(u1, v1, t1), (u2, v2, t2), · · · , (un, vn, tn)}, representing the addition or change of a node or
interaction between a pair of nodes at times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. An interaction event between
nodes u and v at timestamp t is associated with temporal edge feature etuv ∈ RdE . Each node u ∈ N
at timestamp t is associated with raw feature xt

u ∈ RdN . Temporal memory of node i at time t before
update, denoted as M t−

tem(i), is updated with message msgti with dimension dmsg to M t
tem(i). We

treat node memory updates as a continuous flow, expressed as:

dM t
tem(i)

dt
= J(M t

tem(i), t, θ), (1)

where θ represents the training parameters. The function J(·) captures both the node’s dynamics
and the influence of neighboring nodes over time, mitigating the loss of temporal continuity from
long-range batched updates. This approach effectively captures long-range dependencies in complex
graphs by modeling the derivative of the target function rather than a direct input-output mapping,
making it ideal for understanding temporal relationships.

Efficient ODE Solvers. However, the high computational overhead of ODE solvers presents a
significant barrier [4, 13]. To address this issue, we explored a closed-form solution variant of Neural
ODEs [13] for memory updates, which is quoted as CFC Cell in the rest of the paper. The memory
update can be formulated as:

M t
tem(i) =σ(−f(M t−

tem(i),msgti , θf) · t)⊙ g(M t−
tem(i),msgti , θg)

+[1− σ(−f(M t−
tem(i),msgti , θf) · t)]⊙ h(M t−

tem(i),msgti , θh),
(2)

Here, σ is the sigmoid activation function. The θf , θg , and θh are trainable model parameters. Denote
M t−

tem(i) and msgti as the memory of node i before timestamp t and the aggregated message of
node i at time t, respectively. The function f(M t−

tem(i),msgti , θf) serves as the liquid time constant
for the sigmoidal time gates, while g(M t−

tem(i),msgti , θg) and h(M t−
tem(i),msgti , θh) construct the

potential memory of node i at time t. These functions are instances of neural networks, such as
multilayer perceptrons(MLPs). ⊙ represents the Hadamard product. This formulation allows for
efficient memory updates while maintaining the advantages of continuous-time modeling.

3.2 Long-Short Memory Updater as Temporal Memory Updater

Bottleneck in only long-range dependencies. While continuous-time memory modules effectively
capture long-range temporal evolution, they can underperform on certain datasets, as illustrated
in Figure 3. For instance, replacing the memory updater with a continuous-time module on the
USLegis dataset led to decreased performance. This decline arises because interactions in USLegis
are more influenced by recent discrete events than by long-term patterns. Overemphasizing long-
range dependencies can cause node representations to overly generalize, neglecting recent events.
Thus, we incorporate methods for both long- and short-range dependencies to balance long-range
correlations with short-term influences.

Adaptive Memory Backbone Selection. The optimal balance between long-range and short-range
temporal dependencies exhibits dataset-specific and entity-specific characteristics in continuous-time
dynamic graphs. To address this heterogeneity, we implement a Sparse Mixture-of-Experts (MoE)
framework [5] with adaptive expert selection based on temporal interaction patterns. As shown in
Figure 1, our architecture integrates three complementary components - CFC Cells for full-capacity
long-term dependency modeling, GRU Cells for robust short-term pattern capture, and Sparse MoE
Controller for context-aware backbone selection. SALoM dynamically routes input samples using
both temporal messages and node memory states. For each interaction event (u, v, t), we generate
time-aware messages through:

msgtu = Lineardsmg
(concat(M t−

tem(u),M t−
tem(v),TE(∆t), etuv)), (3)

where TE(·) denotes the temporal encoder [25] and etuv is the raw edge feature. The message
msgtv follows symmetric generation. Let Uq(·) denote the q-th expert network. The memory update

5

combines expert outputs through gated aggregation:

M t
tem(u) =

Q∑
q=1

wt
u(q) · Uq

(
msgtu,M

t−
tem(u)

)
. (4)

Here, Q is the total number of experts. Assume that r experts are activated for learning. The routing
weights wt

u are determined by:
Scoretu = MLP

(
concat(msgtu,M

t−
tem(u))

)
·A, (5)

Scoretu(q) =

{
Scoretu(q) if q ∈ top-r(Scoretu) ∧ Scoretu(q) > 0,

0 otherwise,
(6)

wt
u = Softmax(Scoretu). (7)

where A is a trainable matrix that computes raw scores for each expert based on mixed messages.
The top-r selects the r experts with the highest scores. Then, we use a one-layer multi-head attention
mechanism to aggregate neighbor memory, forming the temporal encoding of node u. The neighbors
of u are represented by (u, u′, t′) ∈ G for t′ < t, with xt

u as the feature of node u at time t and ϕ(·)
as the time encoding [32]. The temporal encoding can be formulated as follows:

zttem(u) = Lineard(MHA(Q = (xt
u +M t

tem(u))||ϕ(0),K = Kt
u, V = V t

u)), (8)

Kt
u = V t

u = stack({M t−
tem(u′)||et

′

uu′ ||ϕ(t− t′) | (u, u′, t′) ∈ G}, dim = 0). (9)

3.3 Combining Structural and Temporal Insights in Feature Fusion

To improve topological structural features while preserving long-term temporal characteristics, we
present a new learning architecture that combines long-term temporal memory with specific structural
encoding, known as the Co-occurrence Neighbor Encoder.

Co-occurrence Neighbor Encoder as Structure Enhance Encoder. We discuss how to capture
structure features with co-occurrence neighbor encoding. Let the k-hop neighbors of node u before
timestamp t be denoted as St

k(u) = {u′ | (u, u′, t′) ∈ G, t′ < t}. We maintain two structural memory
arrays for each node u, M l

struc[u, ·] and Ms
struc[u, ·], which are used to store long-range and short-range

historical neighbor hash tables, respectively. The lengths of these units correspond to the dimensions
of the long-term memory unit ds,l and the short-term memory unit ds,s, where ds,l = 4 · ds,s. The
long-range co-occurrence neighbor count of node u with respect to i can be formulated as:

Ot
k,l(u, i) =

ds,l−1∑
j=0

I(M l
struc[u, j] = M l

struc[i, j]), (10)

which quantifies the number of common nodes between u and i in their hash memory. Similarly, the
short-range co-occurrence neighbor count of node u with respect to i can be estimated using a similar
approach. The structural encoding of node u is derived from the structure memory as:

Ct
k(u) = {Ot

k,l(u, u
′), Ot

k,l(v, u
′), Ot

k,s(u, u
′), Ot

k,s(v, u
′) | u′ ∈ St

k(u)}, (11)

ztstruc(u) = FFN(Ct
k(u)), (12)

where FFN(·) is a Feed-Forward Network. Appendix C.1 details structure memory updating process.

Information Bottleneck Based Feature Fusion. We employ an information bottleneck-based
feature fusion approach to integrate temporal and structural encodings, as simple concatenation fails
to address modality conflicts. Figure 3 highlights the performance decline from direct concatenation.
This fusion is achieved using the IB Encoder and IB Decoder architectures.

Denote the unified node embedding of node u at time t as ztu. Temporal and structure encoding are
denoted as zttem(u) and ztstruc(u) respectively. The label of node u at timestamp t is denoted as ytu.

IB Encoder obtains a hybrid encoding of structural and temporal information through a linear
layer, and then applies variational approximation with a standard normal distribution to derive the
representation of the unified node embedding ztu. The specific computation proceeds as follows.

z̃tu = Lineard(concat(z
t
tem(u), ztstruc(u))), (13)

µt
u = Lineard(z̃tu), (14)

σt
u = log(1 + e(µ

t
u−5)). (15)

6

The IB Decoder generates the final representation of the unified node embedding based on the
approximate distribution, denoted as ztu ∼ N (µt

u, σ
t
u).

ztu = randn(µ = µt
u, σ = σt

u). (16)

The optimization objective and loss function are designed to maximize the information corresponding
to ytu within concat(zttem(u), ztstruc(u)), also denoted as ztconcat(u). We opt to minimize the mutual
information between ztconcat(u) and ztu, which can measure the correlation between two variables.

argmin
zt
u

−I(ztu, ytu) + β · I(ztu, ztconcat(u)). (17)

In this expression, −I(ztu, ytu) represents the mutual information between the intermediate repre-
sentation ztu and the labels ytu, while I(ztu, z

t
concat(u)) represents the mutual information between

the intermediate representation and the original representation. The former is aimed at maintaining
representation relevant to the labels, the latter is aimed at denoising the representation. This leads
to intermediate features that are easily distinguishable, preserving the original information while
enhancing predictive power.

As mutual information is difficult to calculate, by employing variational approximation, we scale the
target function to derive the mathematical form of its upper bound. This upper bound can then be
transformed into a form combining Binary Cross-Entropy (BCE) loss and KL divergence. Due to
space constraints, the detailed mathematical derivation for solving the upper bound of the optimization
objective is provided in the appendix C.2.

−I(ztu, ytu)+β ·I(ztu, ztconcat(u)) ≤ y · log(p(ytu))+(1−ytu) · log(1−p(ytu))+β ·KL[ztu,N (0, 1)].
(18)

Based on the upper bond of the original optimization objective, the loss function for each node
exemplified by node u is as follows, where ŷ is the model prediction.

loss = BCE(ŷtu, y
t
u) + β ·KL(ztu,N (0, 1)). (19)

4 Experiments

4.1 Experiment Settings
Datasets and Baselines. We evaluate on thirteen datasets (Wikipedia, Reddit, MOOC, LastFM,
Enron, Social Evo., UCI, Flights, Can. Parl., US Legis., UN Trade, UN Vote, and Contact) obtained
from Edgebank [21]. Following DyGLib [34], we compare SALoM against ten popular dynamic
graph learning methods, including JODIE [17], DyRep [28], TGAT [32], TGN [25], CAWN [31],
EdgeBank [21], TCL [30], GraphMixer [9], DyGFormer [34], and CNE-N [7]. The details of the
above datasets and baselines are elaborated in Appendix A.1 and Appendix A.2, respectively.

Evaluation Metrics. We evaluate the performance on the dynamic link prediction task, which
involves predicting the presence of a link at a given time. This task includes two settings: the
transductive setting predicts future links among nodes observed during training, while the inductive
setting assesses link prediction for unseen nodes. We measure performance using Average Precision
(AP) and Area Under the Receiver Operating Characteristic Curve (AUC-ROC) as evaluation metrics.

Model Configuration. Our SALoM is built upon the classic memory-based model TGN. We set
structure memory dimension as ds,l = 64, ds,l = 16 and temporal memory dimension as dt = 172.
We choose 2 experts from a total of 3 GRU units and 3 CFC units. For IB fusion, we set β = 1e−3.

Implementation Details. To ensure a fair comparison, we evaluate the baseline model TGN, the
state-of-the-art model CNE-N, and our SALoM on the same machine with identical settings. We
conduct the evaluation on an Ubuntu machine featuring an Intel(R) Xeon(R) Platinum 8352V CPU @
2.10GHz and an NVIDIA GeForce RTX 4090 GPU with 24 GB memory. The models are trained for
100 epochs with early stopping using a patience of 20. The model exhibiting the best performance on
the validation set is chosen for testing. A uniform learning rate of 0.0001 is applied to all methods
across all datasets. Batch sizes are set to 10 for memory-based methods and 200 for neighbor-based
sequence methods. Each dataset is divided into training/validation/testing sets in a 70%/15%/15%
ratio. We conduct five runs of each method with seeds ranging from 0 to 4 and report the average
performance. For the remaining baselines, we refer to the reported best performance in DyGFormer
to maintain consistency, following a similar approach as in CNE-N [7].

7

Table 1: AP&AUC-ROC (%) for transductive and inductive link prediction.

Metrics Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer NAT DyGFormer CNE-N SALoM

Trans-AP

Wikipedia 96.50 94.86 96.94 98.28 98.76 90.37 96.47 97.25 97.50 99.03 98.61 99.03
Reddit 98.31 98.22 98.52 98.47 99.11 94.86 97.53 97.31 99.10 99.22 99.26 99.27
MOOC 80.23 81.97 85.84 93.21 80.15 57.97 82.38 82.78 87.21 87.52 90.16 92.42
LastFM 70.85 71.92 73.42 84.36 86.99 79.29 67.27 75.61 88.57 93.00 92.60 93.14
Enron 84.77 82.38 71.12 91.51 89.56 83.53 79.70 82.25 90.81 92.47 92.13 94.08

Social Evo. 89.89 88.87 93.16 89.83 84.96 74.95 93.13 93.37 91.23 94.73 94.50 94.73
UCI 89.43 65.14 79.63 92.94 95.18 76.20 89.57 93.25 94.26 95.79 95.64 96.36

Flights 95.60 95.29 94.03 97.94 98.51 89.35 91.23 90.99 97.66 98.91 98.73 98.94
Can. Parl. 69.26 66.54 70.73 96.29 69.82 64.55 68.67 77.04 83.83 97.36 81.84 99.11
US Legis. 75.05 75.34 68.52 78.09 70.58 58.39 69.59 70.74 77.56 71.11 72.58 92.27
UN Trade 64.94 63.21 61.47 68.3 65.39 60.41 62.21 62.61 72.32 66.46 77.97 93.86
UN Vote 63.91 62.81 52.21 64.13 52.84 58.49 51.90 52.11 69.70 55.55 58.10 86.81
Contact 95.31 95.98 96.28 95.00 90.26 92.58 92.44 91.92 97.25 98.29 98.28 98.53

Avg. Rank 7.76 8.61 8.38 4.92 7.07 10.53 9.76 8.38 4.53 3.15 3.61 1.07

Trans-AUC

Wikipedia 96.33 94.37 96.67 98.01 98.54 90.78 95.84 96.92 96.72 98.91 98.4 98.87
Reddit 98.31 98.17 98.47 98.32 99.01 95.37 97.42 97.17 99.02 99.15 99.19 99.2
MOOC 83.81 85.03 87.11 93.56 80.38 60.86 83.12 84.01 88.38 87.91 91.42 92.52
LastFM 70.49 71.16 71.59 82.66 85.92 83.77 64.06 73.53 86.94 93.05 92.21 92.32
Enron 87.96 84.89 68.89 90.99 90.45 87.05 75.74 84.38 92.02 93.33 92.77 95.11

Social Evo. 92.05 90.76 94.76 90.36 87.34 81.60 94.84 95.23 93.22 96.3 96.20 96.36
UCI 90.44 68.77 78.53 92.17 93.87 77.30 87.82 91.81 93.02 94.49 94.32 95.53

Flights 96.21 95.95 94.13 97.99 98.45 90.23 91.21 91.13 97.32 98.93 98.74 98.99
Can. Parl. 78.21 73.35 75.69 97.17 75.7 64.14 72.46 83.17 87.70 97.76 84.49 99.18
US Legis. 82.85 82.28 75.84 84.63 77.16 62.57 76.27 76.96 84.68 77.90 79.38 93.75
UN Trade 69.62 67.44 64.01 69.41 68.54 66.75 64.72 65.52 76.76 70.20 79.64 93.23
UN Vote 68.53 67.18 52.83 62.76 53.09 62.97 51.88 52.46 74.44 57.12 60.67 87.87
Contact 96.66 96.48 96.95 95.37 89.99 94.34 94.15 93.94 97.64 98.53 98.62 98.69

Avg. Rank 7.07 8.38 8.69 5.53 7.15 10.15 10.07 8.61 4.30 3.23 3.53 1.23

Ind-AP

Wikipedia 94.82 92.43 96.22 97.49 98.24 - 96.22 96.65 95.40 98.59 97.76 98.49
Reddit 96.5 96.09 97.09 97.26 98.62 - 94.09 95.26 98.56 98.84 98.82 98.93
MOOC 79.63 81.07 85.50 91.86 81.42 - 80.60 81.41 83.59 86.96 88.71 90.53
LastFM 81.61 83.02 78.63 87.18 89.42 - 73.53 82.11 86.87 94.23 94.00 94.56
Enron 80.72 74.55 67.05 84.53 86.35 - 76.14 75.88 89.03 89.76 87.59 91.67

Social Evo. 91.96 90.04 91.41 82.85 79.94 - 91.55 91.86 91.22 93.14 92.70 92.84
UCI 79.86 57.48 79.54 82.04 92.73 - 87.36 91.19 87.30 94.54 93.58 94.36

Flights 94.74 92.88 88.73 95.03 97.06 - 83.41 83.03 96.59 97.79 97.34 97.85
Can. Parl. 53.92 54.02 55.18 78.75 55.80 - 54.30 55.91 60.62 87.74 65.01 96.20
US Legis. 54.93 57.28 51.00 55.74 53.17 - 52.59 50.71 57.54 54.28 59.54 68.38
UN Trade 59.65 57.02 61.03 77.86 65.24 - 62.21 62.17 69.29 64.55 69.84 85.46
UN Vote 56.64 54.62 52.24 65.67 49.94 - 51.6 50.68 66.35 55.93 57.57 62.37
Contact 94.34 92.18 95.87 88.56 89.55 - 91.11 90.59 96.79 98.03 97.58 97.79

Avg. Rank 7.92 8.69 8.15 5.38 6.38 - 8.53 8.15 5.07 2.84 3.23 1.53

Ind-AUC

Wikipedia 94.33 91.49 95.9 97.08 98.03 - 95.57 96.30 94.74 98.48 97.45 98.26
Reddit 96.52 96.05 96.98 96.94 98.42 - 93.8 94.97 97.99 98.71 98.69 98.85
MOOC 83.16 84.03 86.84 92.02 81.86 - 81.43 82.77 86.13 87.62 89.94 90.09
LastFM 81.13 82.24 76.99 85.58 87.82 - 70.84 80.37 83.07 94.08 93.62 93.77
Enron 81.96 76.34 64.63 83.58 87.02 - 72.33 76.51 89.92 90.69 88.24 92.57

Social Evo. 93.70 91.18 93.41 82.04 84.73 - 93.71 94.09 92.11 95.29 94.99 95.03
UCI 78.80 58.08 77.64 86.48 90.40 - 84.49 89.30 83.81 92.63 91.31 92.17

Flights 95.21 93.56 88.64 95.92 96.86 - 82.48 82.27 96.36 97.80 97.20 97.95
Can. Parl. 53.81 55.27 56.51 80.21 58.83 - 55.83 58.32 61.62 89.33 66.51 96.07
US Legis. 58.12 61.07 48.27 58.87 51.49 - 50.43 47.20 62.85 53.21 60.10 65.56
UN Trade 62.28 58.82 62.72 75.70 67.05 - 63.76 63.48 72.56 67.25 71.40 83.04
UN Vote 58.13 55.13 51.83 61.64 48.34 - 50.51 50.04 66.26 56.73 58.85 62.44
Contact 95.37 91.89 96.53 88.87 89.07 - 93.05 92.83 96.67 98.30 97.91 97.98

Avg. Rank 7.76 8.53 8.07 5.46 6.53 - 8.76 8.15 5.00 2.69 3.46 1.53

4.2 Performance Study on Model Accuracy

In this section, we analyze the model accuracy in terms of the AP & AUC-ROC metrics for the ten
baseline models and our SALoM in transductive and inductive dynamic link prediction tasks. The
results are presented in Table 1, highlighting the best and second-best performances using bold and
underlined fonts. Note that EdgeBank is evaluated only in the transductive setting and its results for
the inductive setting are not included. Our SALoM consistently achieves top performance across most
datasets, with average rankings ranging from 1.07 to 1.46 for different metrics. Specifically, notable
improvements are observed in the USLegis, UNtrade, and UNvote datasets, with enhancements of
14.18%, 15.89%, and 32.48% over its closest competitors, respectively. This superior performance
can be attributed to SALoM’s ability to effectively capture both long-range and short-range tempo-
ral dependencies using LSMU, enabling adaptive retention or forgetting of temporal correlations.
Additionally, the information bottleneck-based fusion in SALoM allows for structural and temporal
awareness without conflict, enabling nuanced node distinctions from multiple perspectives. We
provide the version with standard deviates in Appendix D.1.

4.3 Ablation Study

Effectiveness of LSMU. In this section, we evaluate SALoM using various temporal memory updaters,
including the traditional GRU from TGN, CFC (§3.1), MoE-GRU (GRUs in MoE architecture),

8

and LSMU (§3.2). Results on tested AP are shown in Figure 2. LSMU consistently outperforms
other updaters, with an improvement of 3-5% in AP compared to GRU. This superiority is due to
GRU’s limitations in capturing long-range temporal features due to vanishing gradients and forgetting
information issues. CFC captures long-range features but struggles with short-range ones and over-
generalization issue. Simply using the MoE method does not solve these issues. LSMU excels by
dynamically determining retention or forgetting of long-range and short-range temporal correlations
using a sparse MoE module. This adaptive approach effectively balances influences, mitigating
over-generalization for superior performance. We further experimented the training expense and
universality of LSMU in Appendix D.2 and D.3.

Effectiveness of Feature Fusion. In this section, we evaluate SALoM using various fusion methods
for temporal and structural embedding, including w/o SE (without structure encoding), Concat, Linear,
and our proposed IB method (§3.3), and show the results in Figure 3. Simple Concat and Linear fusion
methods offer advantages for UCI, Can.Parl, and UNtrade datasets, but struggle with the USLegis
dataset due to potential conflicts between temporal and structural embeddings. This highlights the
need for effective fusion methods. On the other hand, our IB fusion method effectively balances the
influence of temporal and structure encoding, consistently delivering superior performance.

4.4 Performance under different numbers of historical neighbors.

In this section, we analyze SALoM’s performance with varying numbers of sampled historical
neighbors aggregated per iteration, as shown in Figure 4. Since SALoM builds on memory-based
methods that update node memory iteratively, it does not require processing a large number of
historical neighbors each iteration. Having 10 historical neighbors per iteration is sufficient for
SALoM to perform well. This is because our proposed LSMU effectively retains valuable long-range
features in memory data and dynamically balances temporal dependencies across different time.
Performance declines when the number of neighbors aggregated each iteration exceeds 100, likely
due to over-smoothing. Excessive neighbor sampling increases similarity between node embeddings
during aggregation, reducing their distinctiveness. Moreover, since the iterative memory update
mechanism already preserves long-term information, excessive sampling of historical neighbors
disproportionately weights long-term dependencies and may dilute crucial short-term patterns.

4.5 Trade-off Between Accuracy and Efficiency

In this section, we compare the time per epoch and AP of SALoM with baseline methods, as shown
in Figure 5. SALoM is evaluated with different batch sizes, while baseline methods maintain their
default settings from their respective papers. Larger batch sizes in SALoM allow for more parallel
event computations, enhancing computational efficiency. However, this efficiency gain comes at the
cost of intra-batch information loss, impacting training accuracy. This trade-off is consistent with
other memory-based methods. Our results suggest that SALoM can outperform existing methods with
a slight edge in performance at comparable computational costs. When computational constraints
are relaxed, setting a small batch size significantly boosts SALoM’s performance, largely surpassing
existing approaches in dynamic graph learning. We further study the impact of varying batch sizes on
accuracy in Appendix D.4.

Figure 2: Ablation study on different memory updaters.

Figure 3: Ablation study on different fusion methods for structural and temporal embedding.

9

Figure 4: Ablation study on different numbers of historical neighbors aggregated each iteration.

Figure 5: The trade-off between efficiency and performance under different settings of batch sizes.
Table 2: Leakage-free performance evaluation.

Metrics Methods MOOC UCI Enron Can. Parl. US Legis. UN Trade UN Vote Avg. Rank

Trans-AP

CAWN 80.15 95.18 89.56 69.82 70.58 65.39 52.84 3.57
TCL 82.38 89.57 79.7 68.67 69.59 62.21 51.9 4.86

GraphMixer 82.78 93.25 82.25 77.04 70.74 62.61 52.11 3.57
DyGFormer 87.52 95.79 92.47 97.36 71.11 66.46 55.55 2

SALoM 91.39 96.39 93.19 98.79 75.79 92.52 68.52 1

4.6 Leakage-Free Evaluation

This section clarifies the information leakage issue in TGNN evaluation and presents our solution.
The problem arises because: during batch training, edges sharing identical timestamps might be split
across consecutive batches. When processing the second batch, the model’s memory has already
been updated by edges from the first batch that have the same timestamp, thus gaining access to
information that should be chronologically unavailable, constituting an information leakage problem.

To ensure a rigorous leakage-free evaluation, we implement a time-aware dual memory management
system. This approach maintains two separate memory states: one storing the final node state from
the previous timestamp, and another for accumulating updates within the current timestamp. During
inference for a given edge, the model strictly uses the memory state from timestamps prior to the
current edge’s time to form node representations. Only when advancing to the next distinct timestamp
are the accumulated updates synchronized, preventing any leakage within the same timestamp.

As shown in Table 2, SALoM maintains state-of-the-art performance under these strict leakage-free
conditions. While the impact of leakage is minimal on most datasets, performance variations are
observed in USLegis (90%→75%) and UNvote (80%→68%). Crucially, SALoM still outperforms
its best competitors by significant margins (4.68%and 12.97%in average precision, respectively),
confirming its robust SOTA status through a fair and rigorous comparison. Further detailed examples
and more experimental results are provided in Appendix C.3

5 Conclusion and Future Work
This paper introduces a continuous-time dynamic graph learning framework that emphasizes capturing
temporal correlations and structural relations in graphs. We propose the Long-Short Memory Updater
(LSMU) to extract both long-range and short-range temporal dependencies and balance their influence
to mitigate over-globalization. By integrating o-occurrence encoding into LSMU through information
bottleneck-based fusion, we unify temporal and structural information, improving model performance
and achieving state-of-the-art results on benchmark datasets. Our experiments adhere to the DyGLib
framework, enabling reproducibility and comparison with other methods. In the future, potential areas
for improvement in our framework include exploring automatic feature extraction methods, enhancing
neighbor aggregation efficiency, and improving strategies for mitigating intra-batch information loss.

10

Acknowledgments

This research is supported by the “Pioneer" R&D Program of Zhejiang (No.2024C01019), the
Zhejiang Province "Jianbing" Key R&D Project of China (No.2025C01010), the Hangzhou Joint
Fund of the Zhejiang Provincial Natural Science Foundation of China (No.LHZSD24F020001), the
Zhejiang Province High-Level Talents Special Support Program "Leading Talent of Technological
Innovation of Ten-Thousands Talents Program" (No.2022R52046), and the Fundamental Research
Funds for the Central Universities (No.2021FZZX001-23 and 226-2025-00067). The author gratefully
acknowledges the support of Zhejiang University Education Foundation Qizhen Scholar Foundation.

References
[1] ALON, U., AND YAHAV, E. On the bottleneck of graph neural networks and its practical

implications. arXiv preprint arXiv:2006.05205 (2020).

[2] CHANG, Y.-T., HU, Z., LI, X., YANG, S., JIANG, J., AND SUN, N. Dihan: A novel dynamic
hierarchical graph attention network for fake news detection. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management (2024), pp. 197–206.

[3] CHEN, D., O’BRAY, L., AND BORGWARDT, K. M. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA (2022), K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári,
G. Niu, and S. Sabato, Eds., vol. 162 of Proceedings of Machine Learning Research, PMLR,
pp. 3469–3489.

[4] CHEN, R. T., RUBANOVA, Y., BETTENCOURT, J., AND DUVENAUD, D. K. Neural ordinary
differential equations. Advances in neural information processing systems 31 (2018).

[5] CHEN, Z., DENG, Y., WU, Y., GU, Q., AND LI, Y. Towards understanding the mixture-
of-experts layer in deep learning. In Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022 (2022), S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, Eds.

[6] CHEN, Z., ZHENG, T., AND SONG, M. Curriculum negative mining for temporal networks.
Neural Networks (2025), 107858.

[7] CHENG, K., LINZHI, P., YE, J., SUN, L., AND DU, B. Co-neighbor encoding schema: A
light-cost structure encoding method for dynamic link prediction. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2024), pp. 421–432.

[8] CHO, K., VAN MERRIENBOER, B., GÜLÇEHRE, Ç., BAHDANAU, D., BOUGARES, F.,
SCHWENK, H., AND BENGIO, Y. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL (2014), A. Moschitti, B. Pang, and W. Daelemans,
Eds., ACL, pp. 1724–1734.

[9] CONG, W., ZHANG, S., KANG, J., YUAN, B., WU, H., ZHOU, X., TONG, H., AND
MAHDAVI, M. Do we really need complicated model architectures for temporal networks?
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023 (2023), OpenReview.net.

[10] DING, D., YI, J., XIE, J., AND CHEN, Z. Meta-path aware dynamic graph learning for friend
recommendation with user mobility. Inf. Sci. 666 (2024), 120448.

[11] FENG, L., TUNG, F., AHMED, M. O., BENGIO, Y., AND HAJIMIRSADEGHI, H. Were rnns
all we needed? arXiv preprint arXiv:2410.01201 (2024).

[12] GU, A., DAO, T., ERMON, S., RUDRA, A., AND RÉ, C. Hippo: Recurrent memory with
optimal polynomial projections. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020), H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.

11

[13] HASANI, R., LECHNER, M., AMINI, A., LIEBENWEIN, L., RAY, A., TSCHAIKOWSKI, M.,
TESCHL, G., AND RUS, D. Closed-form continuous-time neural networks. Nature Machine
Intelligence 4, 11 (2022), 992–1003.

[14] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural computation 9, 8
(1997), 1735–1780.

[15] JING, X., ZHOU, Y., AND SHI, M. Dynamic graph neural network learning for temporal omics
data prediction. IEEE Access 10 (2022), 116241–116252.

[16] KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings (2017), OpenReview.net.

[17] KUMAR, S., ZHANG, X., AND LESKOVEC, J. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019 (2019), A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, and G. Karypis, Eds.,
ACM, pp. 1269–1278.

[18] LI, Q., HAN, Z., AND WU, X.-M. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence
(2018), vol. 32.

[19] LI, X., XIE, L., DENG, B., LU, H., ZHU, Y., YIN, M., YIN, G., AND GAO, W. Deep
dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic
mechanical seal. Reliab. Eng. Syst. Saf. 247 (2024), 110117.

[20] LUO, Y., AND LI, P. Neighborhood-aware scalable temporal network representation learning.
In Learning on Graphs Conference (2022), PMLR, pp. 1–1.

[21] POURSAFAEI, F., HUANG, S., PELRINE, K., AND RABBANY, R. Towards better evaluation
for dynamic link prediction. Advances in Neural Information Processing Systems 35 (2022),
32928–32941.

[22] QIAN, H., ZHOU, H., ZHAO, Q., CHEN, H., YAO, H., WANG, J., LIU, Z., YU, F., ZHANG,
Z., AND ZHOU, J. MDGNN: multi-relational dynamic graph neural network for comprehensive
and dynamic stock investment prediction. In Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2014, February 20-27, 2024, Vancouver, Canada (2024), M. J. Wooldridge, J. G. Dy, and
S. Natarajan, Eds., AAAI Press, pp. 14642–14650.

[23] QU, L., ZHU, H., DUAN, Q., AND SHI, Y. Continuous-time link prediction via temporal
dependent graph neural network. In Proceedings of the web conference 2020 (2020), pp. 3026–
3032.

[24] RAMPÁSEK, L., GALKIN, M., DWIVEDI, V. P., LUU, A. T., WOLF, G., AND BEAINI, D.
Recipe for a general, powerful, scalable graph transformer. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022 (2022), S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds.

[25] ROSSI, E., CHAMBERLAIN, B., FRASCA, F., EYNARD, D., MONTI, F., AND BRONSTEIN, M.
Temporal graph networks for deep learning on dynamic graphs. In ICML 2020 Workshop on
Graph Representation Learning (2020).

[26] SONG, W., XIAO, Z., WANG, Y., CHARLIN, L., ZHANG, M., AND TANG, J. Session-based
social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, WSDM 2019, Melbourne,
VIC, Australia, February 11-15, 2019 (2019), J. S. Culpepper, A. Moffat, P. N. Bennett, and
K. Lerman, Eds., ACM, pp. 555–563.

12

[27] SOUZA, A., MESQUITA, D., KASKI, S., AND GARG, V. Provably expressive temporal graph
networks. Advances in neural information processing systems 35 (2022), 32257–32269.

[28] TRIVEDI, R., FARAJTABAR, M., BISWAL, P., AND ZHA, H. Dyrep: Learning representations
over dynamic graphs. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019 (2019), OpenReview.net.

[29] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N.,
KAISER, L., AND POLOSUKHIN, I. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA (2017), I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., pp. 5998–6008.

[30] WANG, L., CHANG, X., LI, S., CHU, Y., LI, H., ZHANG, W., HE, X., SONG, L., ZHOU,
J., AND YANG, H. Tcl: Transformer-based dynamic graph modelling via contrastive learning.
arXiv preprint arXiv:2105.07944 (2021).

[31] WANG, Y., CHANG, Y., LIU, Y., LESKOVEC, J., AND LI, P. Inductive representation learning
in temporal networks via causal anonymous walks. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021), OpenReview.net.

[32] XU, D., RUAN, C., KÖRPEOGLU, E., KUMAR, S., AND ACHAN, K. Inductive representation
learning on temporal graphs. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020 (2020), OpenReview.net.

[33] YU, B., YIN, H., AND ZHU, Z. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden
(2018), J. Lang, Ed., ijcai.org, pp. 3634–3640.

[34] YU, L., SUN, L., DU, B., AND LV, W. Towards better dynamic graph learning: New
architecture and unified library. In Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023 (2023), A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, Eds.

[35] ZHANG, T., ZHENG, T., XIAO, Z., CHEN, Z., LI, L., FENG, Z., ZHANG, D., AND SONG, M.
Language models-enhanced semantic topology representation learning for temporal knowledge
graph extrapolation. In Proceedings of the 33rd ACM International Conference on Informa-
tion and Knowledge Management (New York, NY, USA, 2024), CIKM ’24, Association for
Computing Machinery, p. 3227–3236.

[36] ZOU, T., MAO, Y., YE, J., AND DU, B. Repeat-aware neighbor sampling for dynamic graph
learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (2024), pp. 4722–4733.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have faithfully describe the contributions and scope of this work in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the potential limitation in conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: Due to space limitation, we provide the theoretical proof in Section C.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed experimental information to ensure the high repro-
ducibility of this work in Section 4.1 and A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: The experimental datasets are publicly available and are referenced with an
accessible link. Our code is provided through an anonymous link.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.1 and A describe the training and test details necessary for under-
standing the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The standard deviations of each method are provided in Section D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The utilized computer resources of this work are described in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work adheres fully to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed broader impacts of this work in Section E-.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not involve risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have carefully referenced the original owners of the assets used in this
work, all of which are publicly available for academic use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided with detailed instructions of our code via an anonymous
link.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve Crowdsourcing or research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work utilizes LLM soley for writing, editing, or formatting purposes
and it does not impact the core methodology, scientific rigorousness, or originality of the
research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Datasets and Baselines

A.1 Datasets Details

• Wikipedia: This dataset captures edits on Wikipedia pages over a one-month period. Nodes
represent editors and wiki pages, while edges denote timestamped edit requests. Each edge
is associated with LIWC feature vector derived from the edit text, encoding linguistic and
psychological attributes.

• Reddit: Spanning one month, this dataset models interactions within Reddit subreddits.
Nodes represent users or posts, and edges indicate timestamped posting requests. Similar to
the Wikipedia dataset, edges are annotated with LIWC feature vectors based on the text of
the posts.

• MOOC: This dataset represents a student interaction network within an online course.
Nodes are students or content units (e.g., problem sets, videos), and edges reflect students
accessing content units. Each edge has four features, capturing interaction-specific attributes.

• LastFM: This interaction network tracks 1,000 users listening to the 1,000 most popular
songs over one month. Nodes represent users and songs, and edges indicate user-listens-to-
song relationships. The dataset contains no additional edge or node attributes.

• Enron: This dataset comprises approximately 50,000 emails exchanged among Enron
employees over three years. Nodes represent employees, and edges denote email correspon-
dences. No attributes are included in this dataset.

• Social Evo.: This mobile phone proximity network tracks interactions in an undergraduate
dormitory from October 2008 to May 2009. Nodes represent individuals, and edges indicate
physical proximity, with each edge having two features describing the interaction.

• UCI: This dataset models a Facebook-like communication network among University of
California, Irvine students. Edges represent timestamped interactions with second-level
temporal granularity. The dataset includes no additional attributes.

• Flights: A directed dynamic network illustrating air traffic evolution during the COVID-19
pandemic. Nodes represent airports, and edges denote tracked flights, with edge weights
indicating the number of flights between two airports per day. The dataset was specifically
extracted and cleaned for this study.

• Can. Parl.: This dynamic political network documents interactions among Canadian
Members of Parliament (MPs) from 2006 to 2019. Nodes represent MPs, and edges are
formed when two MPs vote ‘yes’ on the same bill. Edge weights reflect the number of
shared ‘yes’ votes in a year.

• USLegis.: This dataset captures co-sponsorship interactions among US Senate legislators.
Nodes represent senators, and edge weights indicate the number of times two senators
co-sponsored a bill in a given congressional session.

• UN Trade: A weighted, directed network of food and agriculture trade among 181 nations
over 30 years. Nodes represent countries, and edge weights denote the normalized total
value of agricultural imports or exports between pairs of countries.

• UN Vote: This dataset records roll-call votes in the United Nations General Assembly from
1946 to 2020. Nodes represent nations, and edges are formed when two nations vote ‘yes’
on the same item, with edge weights incremented by one per shared vote.

• Contact: This dataset tracks physical proximity among approximately 700 university
students over four weeks. Nodes represent students with unique IDs, and edges indicate
close physical proximity, with edge weights reflecting the strength of proximity.

A.2 Baseline Details

• JODIE[17] targets bipartite networks with instantaneous user-item interactions. It utilizes
two coupled recurrent neural networks (RNNs) to recursively update user and item represen-
tations. A projection operation is employed to predict the future representation trajectory of
each user or item, enabling the model to capture evolving interaction patterns.

21

• DyRep[28] features a custom RNN to update node representations upon the observation of
new edges. It incorporates a temporal attention mechanism, parameterized by the recurrent
architecture, to assign weights to neighbors at each timestamp, effectively modeling temporal
dependencies in node interactions.

• TGAT[32] aggregates features from a node’s temporal-topological neighbors using a self-
attention mechanism to compute node representations. It includes a time-encoding function
to capture temporal patterns, enhancing its ability to model dynamic network structures.

• TGN[25] maintains evolving memory for each node, updating it through a message function,
aggregator, and memory updater when a node participates in an interaction. An embedding
module generates temporal node representations, balancing efficiency and expressiveness in
dynamic settings.

• CAWN[31] extracts multiple causal anonymous walks for each node to explore network
dynamics and generate relative node identities. It employs RNNs to encode these walks and
aggregates them to form the final node representation, emphasizing causality in dynamic
graphs.

• EdgeBank[21] is a memory-based approach for transductive dynamic link prediction. It
stores observed interactions in a memory unit and updates it using various strategies. An
interaction is predicted as positive if retained in memory and negative otherwise, offering a
lightweight solution.

• TCL[30] generates node interaction sequences via a breadth-first search on temporal depen-
dency interaction sub-graphs. It employs a graph transformer that integrates graph topology
and temporal information, using cross-attention to model interdependencies between inter-
acting nodes.

• GraphMixer[9] leverages a fixed-time encoding function, which outperforms trainable
versions. It integrates this function into an MLP-Mixer-based link encoder to learn from
temporal links, while a node encoder with neighbor mean-pooling summarizes node features.

• NAT[20] uses a dictionary-type neighborhood representation to aggregate temporal neigh-
bors. It employs a recurrent process with random Fourier feature (RFF)-based time embed-
ding to learn node representations, constructing query-induced subgraphs without neighbor
sampling to reduce computational costs.

• DyGFormer[34] is a Transformer-based model that focuses on first-hop interactions be-
tween nodes. It introduces a neighbor co-occurrence encoding scheme via a patching
method, feeding these into a Transformer to capture long-term correlations between source
and destination node sequences.

• CNE-N[7] stores historical neighbor in hash-like tables, efficiently calculates co-occurrence
encoding and combines other features to form node embeddings.

B Individual motivations

B.1 Motivation of Continuous Models for Long-Term Temporal Correlation Capture

Traditional sequential methods (RNNs/GRUs) treat dynamic graphs as discrete events, struggling
with temporal continuity and long-term dependencies due to gradient issues. In contrast, ODE-based
methods preserve continuity and avoid gradient issues through second-order derivative integration,
demonstrating superior long-term dependency capture with minimal information loss. However,
our ablation studies in §4.3 show that over-emphasizing long-term dependencies can cause over-
globalization. We therefore propose LSMU, an MoE-based approach that dynamically balances
long/short-term dependencies, adaptively selecting the optimal processing.

B.2 Motivation of GRU for Short-Term Temporal Correlation Capture

In dynamic graphs, recent neighbor interactions typically provide the most valuable information.
While simple RNNs and K-neighbor aggregation fail to effectively capture these patterns (due to
vanishing gradients and limited neighbor hops respectively), GRU’s gating mechanism enables robust
short-term dependency learning while complementing our ODE-based long-term capture.

22

Table 3: Motivation for short-term temporal correlation capture.

CanParl USLegis UCI Untrade
RNN 98.81 89.90 96.00 92.82

AggerateNeighbor 98.77 77.31 96.22 92.83
GRU 99.11 92.27 96.36 93.86

Table 4: Motivation for sparse MoE as long-short term temporal correlation fuser.

CanParl USLegis UCI Untrade
Concat 96.90 76.93 96.02 92.00

Avg-Voting 98.65 76.06 96.23 92.99
MoE 99.11 92.27 96.36 93.86

Our extended experiments confirm that simple RNN suffers from gradient vanishing, leading to
performance degradation (mitigated by GRU’s gating mechanism). Besides, K-neighbor aggregation
is limited to 1–2 hops, as wider aggregation blurs node representations.

B.3 Motivation of Sparse MoE for Long-Short Term Temporal Correlation Fusion

We propose MoE to fuse long-short term temporal correlations while adaptively selecting optimal
backbones and weights per input. In temporal graphs, events exhibit mixed dependencies, but naive
fusion methods (e.g., concatenation, voting) treat edges uniformly, ignoring their distinct evolutionary
patterns. MoE addresses this by dynamically routing events to specialized experts based on node/edge
features, achieving superior performance (see Table). For instance, on USLegis, MoE improves
Trans.AP by 15.3% over concatenation and 16.2% over voting, demonstrating its ability to capture
varied temporal scales.

This advantage stems from MoE’s capability of adaptively fusing long-short term correlations. And
learnable weights for feature fusion.

B.4 Motivation for Co-Occurrence Encoding as Structure Encoding

We evaluated model performance with different structure encoding methods, comparing the expres-
sivity of co-occurrence encoding and traditional methods, such as message passing and random-walk
based methods.

As shown in Table 5 and Figure 5, co-occurrence encoding shows better expressivity compared with
traditional methods. Improving model accuracy, especially 63.44%->93.86% on UNtrade.

Our co-occurrence encoder efficiently captures structural patterns while maintaining computational
feasibility. Unlike traditional methods that trade off expressiveness for efficiency, it encodes neighbor
co-occurrence frequencies as relative structural features, enhanced by a hash-based memory system
for accelerated processing. Experiments demonstrate its superiority over basic message passing and
random walk approaches, with significantly better performance at manageable computational cost.

B.5 Motivation of Information Bottleneck for Temporal and Structure Feature Fusion

Temporal graphs require effective fusion of temporal and structural features, which often conflict
when combined naively. Our solution adapts the Information Bottleneck method to: (1) create unified
node representations, (2) perform data-aware dimensionality reduction, and (3) filter noise while
preserving critical temporal-structural information. This approach outperforms naive fusion methods
by resolving feature conflicts and optimizing representation quality as shown in 3.

Table 5: Motivation for co-occurrence encoding as structure encoding

CanParl USLegis UCI Untrade
MassgePassing 97.70 86.97 94.08 62.17
RandomWalk 97.95 85.56 96.27 63.44
Co-occurrence 99.11 92.27 96.36 93.86

23

Table 6: Trans.AP with different historical neighbor storage.

CanParl USLegis UCI Untrade
Single Hash 98.57 77.87 96.21 67.19
Dual Hash 99.11 92.27 96.36 93.86

Algorithm 1: Structure Memory Update
Data: Link (u, v, t), hash table size H , constants q, b, p, sets St

1(u), S
t
1(v), memory M∗

struc
Result: Updated M∗

struc
1 Function Hash(a):
2 return ((a · q + b) mod p) mod H;
3 M∗

struc[u, Hash(v)]← v ; // Link u to v
4 M∗

struc[v, Hash(u)]← u ; // Link v to u
5 for j ∈ St

1(v) do
6 M∗

struc[u,Hash(j)]← j ; // Link u to v’s neighbors
7 M∗

struc[j,Hash(u)]← u ; // Link v’s neighbors to u
8 end
9 for i ∈ St

1(u) do
10 M∗

struc[v,Hash(i)]← i ; // Link v to u’s neighbors
11 M∗

struc[i,Hash(v)]← v ; // Link u’s neighbors to v
12 end

C Complementary Explanation

C.1 Structure Memory Update

Hash function for a hash table with length H is denoted as Hash(a) = ((a ·q+b) mod p) mod H ,
where q and b are constants, p is a large enough constant. When a new link (u, v, t) occurs, the
structure memory of u and v with each other M∗

struc[u,Hash(v)]← v, M∗
struc[v,Hash(u)]← u

and their neighbors M∗
struc[u,Hash(j)] ← j, j ∈ St

1(v), M
∗
struc[v,Hash(i)] ← i, i ∈ St

1(u).
And we update the structure memory of neighbor nodes M∗

struc(j,Hash(u)) ← u, j ∈ St
1(v),

M∗
struc(i,Hash(v)) ← v, i ∈ St

1(u), where M l
struc and Ms

struc indicate two hash tables. We
elaborate pseudocode of the structure memory update procedure in Algorithm 1.

For clarity, we further explain why we implement a dual-hash strategy. The dual-memory structure
(long-term and short-term) effectively captures both historical and recent neighbor records while
reducing hash collision effects. A single hash table would degrade feature extraction, worsen collision
impacts, and produce less distinguishable embeddings, ultimately harming performance. To verify,
we evaluated Trans.AP of SALoM using a different design for structure memory, including dual-hash
and single-hash. Results are shown in Table 6. Using a dual-hash design for structure memory
consistently outperforms a single hash design. Verifying the advantage of using a dual-hash structure.

C.2 Proof of Upper Bound of Information Bottleneck Loss Function

In this section, we provide proof of the upper bound of the information bottleneck loss function. For
clarity, we assume feature denoted as X , label denoted as Y , and the intermediate variable denoted
Z. We assume the joint distribution p(X,Y, Z) as follows:

p(X,Y, Z) = p(Z|X,Y)p(Y |X)p(X) = p(Z|X)p(Y |X)p(X) (20)
The IB objective has the form I(Z, Y) − βI(Z,X), we examine two terms individually. First for
I(Z, Y), writing it in full:

I(Z, Y) =

∫
dydz p(y, z)log

p(y, z)

p(y)p(z)
=

∫
dydz p(y, z)log

p(y|z)
p(z)

(21)

where p(y|z) is defined by IB Encoder:

p(y|z) =
∫

dx p(x, y|z) =
∫

dx p(y|x)p(x|z) =
∫

dx
p(y|x)p(z|x)p(x)

p(z)
(22)

24

Let q(y|z) be a variational approximation to p(y|z), as the IB Decoder. Using the fact that the
Kullback-Leibler divergence is always positive, we have:

KL[p(Y |Z), q(Y |Z)] ≥ 0⇒
∫

dy p(y|z)logp(y|z) ≥
∫

dy p(y|z)logq(y|z) (23)

and hence

I(Z, Y) ≥
∫

dydz p(y, z)log
q(y|z)
p(y)

=

∫
dydz p(y, z)logq(y|z)−

∫
dy p(y)logp(y)

=

∫
dydz p(y, z)logq(y|z) +H(Y)

(24)

Note that the entropy of labels H(Y) is independent of optimization objective, so can be ignored. We
can rewrite p(y, z) =

∫
dx p(x, y, z) =

∫
dx p(x)p(y|x)p(z|x), therefore:

I(Z, Y) ≥
∫

dxdydz p(x)p(y|x)p(z|x)logq(y|z) (25)

Then consider βI(Z,X)

I(Z,X) =

∫
dzdx p(x, z)log

p(z|x)
p(z)

=

∫
dzdx p(x, z)logp(z|x)−

∫
dz p(z)logp(z) (26)

As the marginal distribution of Z is difficult to compute, let r(z) be a variational approximation
to the marginal distribution with N (0, 1). Since KL[p(Z), r(Z)] ≥ 0 ⇒

∫
dz p(z)logp(z) ≥∫

dz p(z)logr(z), we can summarize the following upper bound:

I(Z,X) ≤
∫

dxdz p(x)p(z|x)logp(z|x)
r(z)

(27)

Combining both upper bounds we have:

I(Z, Y)− βI(Z,X) ≥
∫

dxdydz p(x)p(y|x)p(z|x)logq(y|z)

− β

∫
dxdz p(x)p(z|x)logp(z|x)

r(z)
= L

(28)

In practice, we approximate p(x, y) = p(y)p(y|x) with the empirical data distribution p(x, y) =
1
N

∑N
n=1 δxn(x)δyn(y), and hence we have:

L ≈ 1

N

N∑
n=1

[∫
dz p(z|xn)logq(yn|z)− βp(z|xn)log

p(z|xn)

r(z)

]
(29)

The encoder is of form p(z|x) = N (z|fµ
e (x), f

Σ
e (x)), where fe is an MLP which outputs both

K-dimensional mean and the K ×K covariance matrix. Then with reparameterization, p(z|x)dz =
p(ϵ)dϵ, where z = f(x, ϵ) is a deterministic function of x and the Gaussian random variable.
Assuming our choice of p(z|x) and r(z) allows computation of an analytic Kullback-Leibler divergence,
we can have optimization objective:

JIB =
1

N

N∑
n=1

Eϵ∼p(ϵ) [−logq(yn|f(xn, ϵ))] + βKL [p(Z|xn), r(Z)] (30)

C.3 Leakage-Free TGNNs details

In this section, we give a concrete example. Consider that we maintain two memory units and
associated mailboxes, ensuring that the timestamps t1 and t2 of the two memory units satisfy the
condition t1 < t2. In this context, t1 represents the data information that can be observed in real
scenarios, while t2 stores the memory unit corresponding to the current prediction time frame. This
setup allows us to effectively update t1 for future predictions.

25

Table 7: Evaluation on leakage-free terms on a subset of datasets.

Metrics Datasets CAWN TCL GraphMixer DyGFormer SALoM

Trans-AP

MOOC 80.15 82.38 82.78 87.52 91.39
UCI 95.18 89.57 93.25 95.79 96.39

Enron 89.56 79.70 82.25 92.47 93.19
Can. Parl. 69.82 68.67 77.04 97.36 98.79
US Legis. 70.58 69.59 70.74 71.11 75.79
UN Trade 65.39 62.21 62.61 66.46 92.52
UN Vote 52.84 51.90 52.11 55.55 68.52

Avg. Rank 3.57 4.86 3.57 2.00 1.00

Trans-AUC

MOOC 80.38 83.12 84.01 87.91 91.69
UCI 93.87 87.82 91.81 94.49 95.46

Enron 90.45 75.74 84.38 93.33 94.62
Can. Parl. 75.70 72.46 83.17 97.76 98.75
US Legis. 77.16 76.27 76.96 77.90 78.84
UN Trade 68.54 64.72 65.52 70.20 91.59
UN Vote 53.09 51.88 52.46 57.12 65.60

Avg. Rank 3.43 4.86 3.71 2.00 1.00

Ind-AP

MOOC 81.42 80.60 81.41 86.96 90.37
UCI 92.73 87.36 91.19 94.54 94.68

Enron 86.35 76.14 75.88 89.76 90.42
Can. Parl. 55.80 54.30 55.91 87.74 95.98
US Legis. 53.17 52.59 50.71 54.28 62.39
UN Trade 65.24 62.21 62.17 64.55 82.07
UN Vote 49.94 51.60 50.68 55.93 70.74

Avg. Rank 3.29 4.29 4.29 2.14 1.00

Ind-AUC

MOOC 81.86 81.43 82.77 87.62 90.34
UCI 90.40 84.49 89.30 92.63 92.82

Enron 86.35 76.14 75.88 89.76 91.61
Can. Parl. 58.83 55.83 58.32 89.33 95.65
US Legis. 51.49 50.43 47.20 53.21 55.38
UN Trade 67.05 63.76 63.48 67.25 79.20
UN Vote 48.34 50.51 50.04 56.73 67.28

Avg. Rank 3.43 4.29 4.29 2.00 1.00

If for the subsequent event to be predicted (u, v, t3), we have t1 < t3 = t2, then we will use the state
recorded at t1 to calculate the memory updater and merge the last event into the memory unit at t2. If
t1 < t2 < t3, we will use the memory at t2 for model calculations. In this case, the timestamps of
subsequent events will be greater than or equal to t3, allowing the memory recorded at t2 to replace
that of t1.

This ensures that there is always a memory unit state that is strictly less than the current timestamp
and corresponds to the last interaction involved in the calculation. This approach not only avoids the
common data leakage issues of traditional TGN but also eliminates the memory and computational
overhead of searching for updated states in historical memory records. Additional experimental
results validating the effectiveness of this approach are presented in Table 7.

D Complementary Experiments

D.1 Performance Study With Standard Deviates

As for space constraints, the accuracy of model performance with display of standard deviates is
shown in Table 8.

We observe that SALoM shows improved stability compared with TGN, which stems from LSMU
and Information Bottleneck generating more stable node representations.

D.2 Training Expense of LSMU

While LSMU does incur higher computational overhead than GRU due to its enhanced capabilities, it
maintains reasonable efficiency overall. The GPU memory requirement doubles due to its two-expert
selection, but we argue this trade-off is justified by the substantial accuracy improvements achieved.

26

Table 8: AP&AUC-ROC for transductive and inductive link prediction.
Metrics Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer NAT DyGFormer CNE-N SALoM

Trans\\AP

Wikipedia 96.50 ± 0.14 94.86 ± 0.06 96.94 ± 0.06 98.28 ± 0.06 98.76 ± 0.03 90.37 ± 0.00 96.47 ± 0.16 97.25 ± 0.03 97.50 ± 0.04 99.03 ± 0.02 98.61 ± 0.04 99.03 ± 0.02
Reddit 98.31 ± 0.14 98.22 ± 0.04 98.52 ± 0.02 98.47 ± 0.06 99.11 ± 0.01 94.86 ± 0.00 97.53 ± 0.02 97.31 ± 0.01 99.10 ± 0.21 99.22 ± 0.01 99.26 ± 0.01 99.27 ± 0.03
MOOC 80.23 ± 2.44 81.97 ± 0.49 85.84 ± 0.15 93.21 ± 1.51 80.15 ± 0.25 57.97 ± 0.00 82.38 ± 0.24 82.78 ± 0.15 87.21 ± 0.63 87.52 ± 0.49 90.16 ± 0.07 92.42 ± 0.96
LastFM 70.85 ± 2.13 71.92 ± 2.21 73.42 ± 0.21 84.36 ± 3.97 86.99 ± 0.06 79.29 ± 0.00 67.27 ± 2.16 75.61 ± 0.24 88.57 ± 1.76 93.00 ± 0.12 92.60 ± 0.03 93.14 ± 0.35
Enron 84.77 ± 0.30 82.38 ± 3.36 71.12 ± 0.97 91.51 ± 1.11 89.56 ± 0.09 83.53 ± 0.00 79.70 ± 0.71 82.25 ± 0.16 90.81 ± 0.31 92.47 ± 0.12 92.13 ± 0.06 94.08 ± 0.40

Social Evo. 89.89 ± 0.55 88.87 ± 0.30 93.16 ± 0.17 89.83 ± 0.17 84.96 ± 0.09 74.95 ± 0.00 93.13 ± 0.16 93.37 ± 0.07 91.23 ± 0.37 94.73 ± 0.01 94.50± 0.04 94.73 ± 0.07
UCI 89.43 ± 1.09 65.14 ± 2.30 79.63 ± 0.70 92.94 ± 1.04 95.18 ± 0.06 76.20 ± 0.00 89.57 ± 1.63 93.25 ± 0.57 94.26 ± 0.37 95.79 ± 0.17 95.64 ± 0.11 96.36 ± 0.05

Flights 95.60 ± 1.73 95.29 ± 0.72 94.03 ± 0.18 97.94 ± 0.14 98.51 ± 0.01 89.35 ± 0.00 91.23 ± 0.02 90.99 ± 0.05 97.66 ± 0.80 98.91 ± 0.01 98.73 ± 0.01 98.94 ± 0.09
Can. Parl. 69.26 ± 0.31 66.54 ± 2.76 70.73 ± 0.72 96.29 ± 2.34 69.82 ± 2.34 64.55 ± 0.00 68.67 ± 2.67 77.04 ± 0.46 83.83 ± 1.20 97.36 ± 0.45 81.84 ± 2.27 99.11 ± 1.52
US Legis. 75.05 ± 1.52 75.34 ± 0.39 68.52 ± 3.16 78.09 ± 0.58 70.58 ± 0.48 58.39 ± 0.00 69.59 ± 0.48 70.74 ± 1.02 77.56 ± 0.21 71.11 ± 0.59 72.58 ± 0.32 92.27 ± 0.63
UN Trade 64.94 ± 0.31 63.21 ± 0.93 61.47 ± 0.18 68.30 ± 1.37 65.39 ± 0.12 60.41 ± 0.00 62.21 ± 0.03 62.61 ± 0.27 72.32 ± 0.69 66.46 ± 1.29 77.97 ± 0.20 93.86 ± 0.55
UN Vote 63.91 ± 0.81 62.81 ± 0.80 52.21 ± 0.98 64.13 ± 2.17 52.84 ± 0.10 58.49 ± 0.00 51.90 ± 0.30 52.11 ± 0.16 69.70 ± 0.49 55.55 ± 0.42 58.10 ± 0.15 86.81 ± 1.43
Contact 95.31 ± 1.33 95.98 ± 0.15 96.28 ± 0.09 95.00 ± 0.56 90.26 ± 0.28 92.58 ± 0.00 92.44 ± 0.12 91.92 ± 0.03 97.25 ± 0.33 98.29 ± 0.01 98.28± 0.01 98.53 ± 0.41

Avg. Rank 7.76 8.61 8.38 4.92 7.07 10.53 9.76 8.38 4.53 3.15 3.61 1.076923

Trans\\AUC

Wikipedia 96.33 ± 0.07 94.37 ± 0.09 96.67 ± 0.07 98.01 ± 0.07 98.54 ± 0.04 90.78 ± 0.00 95.84 ± 0.18 96.92 ± 0.03 96.72 ± 0.21 98.91 ± 0.02 98.40 ± 0.06 98.87 ± 0.03
Reddit 98.31 ± 0.05 98.17 ± 0.05 98.47 ± 0.02 98.32 ± 0.06 99.01 ± 0.01 95.37 ± 0.00 97.42 ± 0.02 97.17 ± 0.02 99.02 ± 0.10 99.15 ± 0.01 99.19 ± 0.01 99.20 ± 0.03
MOOC 83.81 ± 2.09 85.03 ± 0.58 87.11 ± 0.19 93.56 ± 1.01 80.38 ± 0.26 60.86 ± 0.00 83.12 ± 0.18 84.01 ± 0.17 88.38 ± 0.71 87.91 ± 0.58 91.42 ± 0.09 92.52 ± 0.93
LastFM 70.49 ± 1.66 71.16 ± 1.89 71.59 ± 0.18 82.66 ± 2.94 85.92 ± 0.10 83.77 ± 0.00 64.06 ± 1.16 73.53 ± 0.12 86.94 ± 2.29 93.05 ± 0.10 92.21 ± 0.03 92.32 ± 0.29
Enron 87.96 ± 0.52 84.89 ± 3.00 68.89 ± 1.10 90.99 ± 0.99 90.45 ± 0.14 87.05 ± 0.00 75.74 ± 0.72 84.38 ± 0.21 92.02 ± 0.32 93.33 ± 0.13 92.77 ± 0.10 95.11 ± 0.08

Social Evo. 92.05 ± 0.46 90.76 ± 0.21 94.76 ± 0.16 90.36 ± 0.17 87.34 ± 0.08 81.60 ± 0.00 94.84 ± 0.17 95.23 ± 0.07 93.22 ± 0.13 96.30 ± 0.01 96.20 ± 0.03 96.36 ± 0.08
UCI 90.44 ± 0.49 68.77 ± 2.34 78.53 ± 0.74 92.17 ± 1.13 93.87 ± 0.08 77.30 ± 0.00 87.82 ± 1.36 91.81 ± 0.67 93.02 ± 0.48 94.49 ± 0.26 94.32 ± 0.16 95.53 ± 0.07

Flights 96.21 ± 1.42 95.95 ± 0.62 94.13 ± 0.17 97.99 ± 0.13 98.45 ± 0.01 90.23 ± 0.00 91.21 ± 0.02 91.13 ± 0.01 97.32 ± 0.34 98.93 ± 0.01 98.74 ± 0.01 98.99 ± 0.11
Can. Parl. 78.21 ± 0.23 73.35 ± 3.67 75.69 ± 0.78 97.17 ± 1.80 75.70 ± 3.27 64.14 ± 0.00 72.46 ± 3.23 83.17 ± 0.53 87.70 ± 1.37 97.76 ± 0.41 84.49 ± 2.47 99.18 ± 1.88
US Legis. 82.85 ± 1.07 82.28 ± 0.32 75.84 ± 1.99 84.63 ± 0.43 77.16 ± 0.39 62.57 ± 0.00 76.27 ± 0.63 76.96 ± 0.79 84.68 ± 0.35 77.90 ± 0.58 79.38 ± 0.29 93.75 ± 0.45
UN Trade 69.62 ± 0.44 67.44 ± 0.83 64.01 ± 0.12 69.41 ± 1.67 68.54 ± 0.18 66.75 ± 0.00 64.72 ± 0.05 65.52 ± 0.51 76.76 ± 0.81 70.20 ± 1.44 79.64 ± 0.14 93.23 ± 0.55
UN Vote 68.53 ± 0.95 67.18 ± 1.04 52.83 ± 1.12 62.76 ± 2.65 53.09 ± 0.22 62.97 ± 0.00 51.88 ± 0.36 52.46 ± 0.27 74.44 ± 2.01 57.12 ± 0.62 60.67 ± 0.14 87.87 ± 1.72
Contact 96.66 ± 0.89 96.48 ± 0.14 96.95 ± 0.08 95.37 ± 0.35 89.99 ± 0.34 94.34 ± 0.00 94.15 ± 0.09 93.94 ± 0.02 97.64 ± 0.58 98.53 ± 0.01 98.62± 0.01 98.69 ± 0.27

Avg. Rank 7.07 8.38 8.69 5.53 7.15 10.15 10.07 8.61 4.3 3.23 3.53 1.23

Ind\\AP

Wikipedia 94.82 ± 0.20 92.43 ± 0.37 96.22 ± 0.07 97.49 ± 0.04 98.24 ± 0.03 - 96.22 ± 0.17 96.65 ± 0.02 95.40 ± 0.04 98.59 ± 0.03 97.76 ± 0.06 98.49 ± 0.05
Reddit 96.50 ± 0.13 96.09 ± 0.11 97.09 ± 0.04 97.26 ± 0.07 98.62 ± 0.01 - 94.09 ± 0.07 95.26 ± 0.02 98.56 ± 0.21 98.84 ± 0.02 98.82 ± 0.03 98.93 ± 0.09
MOOC 79.63 ± 1.92 81.07 ± 0.44 85.50 ± 0.19 91.86 ± 1.05 81.42 ± 0.24 - 80.60 ± 0.22 81.41 ± 0.21 83.59 ± 1.58 86.96 ± 0.43 88.71 ± 0.04 90.53 ± 1.06
LastFM 81.61 ± 3.82 83.02 ± 1.48 78.63 ± 0.31 87.18 ± 4.29 89.42 ± 0.07 - 73.53 ± 1.66 82.11 ± 0.42 86.87 ± 1.95 94.23 ± 0.09 94.00 ± 0.05 94.56 ± 0.38
Enron 80.72 ± 1.39 74.55 ± 3.95 67.05 ± 1.51 84.53 ± 1.02 86.35 ± 0.51 - 76.14 ± 0.79 75.88 ± 0.48 89.03 ± 0.83 89.76 ± 0.34 87.59 ± 0.07 91.67 ± 0.08

Social Evo. 91.96 ± 0.48 90.04 ± 0.47 91.41 ± 0.16 82.85 ± 0.86 79.94 ± 0.18 - 91.55 ± 0.09 91.86 ± 0.06 91.22 ± 0.32 93.14 ± 0.04 92.70 ± 0.07 92.84 ± 0.36
UCI 79.86 ± 1.48 57.48 ± 1.87 79.54 ± 0.48 82.04 ± 2.05 92.73 ± 0.06 - 87.36 ± 2.03 91.19 ± 0.42 87.30 ± 0.15 94.54 ± 0.12 93.58 ± 0.03 94.36 ± 0.14

Flights 94.74 ± 0.37 92.88 ± 0.73 88.73 ± 0.33 95.03 ± 0.60 97.06 ± 0.02 - 83.41 ± 0.07 83.03 ± 0.05 96.59 ± 1.67 97.79 ± 0.02 97.34 ± 0.01 97.85 ± 0.12
Can. Parl. 53.92 ± 0.94 54.02 ± 0.76 55.18 ± 0.79 78.75 ± 0.93 55.80 ± 0.69 - 54.30 ± 0.66 55.91 ± 0.82 60.62 ± 2.06 87.74 ± 0.71 65.01 ± 1.91 96.20 ± 1.25
US Legis. 54.93 ± 2.29 57.28 ± 0.71 51.00 ± 3.11 55.74 ± 0.37 53.17 ± 1.20 - 52.59 ± 0.97 50.71 ± 0.76 57.54 ± 0.80 54.28 ± 2.87 59.54 ± 0.33 68.38 ± 0.13
UN Trade 59.65 ± 0.77 57.02 ± 0.69 61.03 ± 0.18 77.86 ± 3.15 65.24 ± 0.21 - 62.21 ± 0.12 62.17 ± 0.31 69.29 ± 1.59 64.55 ± 0.62 69.84 ± 0.20 85.46 ± 0.48
UN Vote 56.64 ± 0.96 54.62 ± 2.22 52.24 ± 1.46 65.67 ± 2.51 49.94 ± 0.45 - 51.60 ± 0.97 50.68 ± 0.44 66.35 ± 4.06 55.93 ± 0.39 57.57 ± 0.19 62.37 ± 1.74
Contact 94.34 ± 1.45 92.18 ± 0.41 95.87 ± 0.11 88.56 ± 0.99 89.55 ± 0.30 - 91.11 ± 0.12 90.59 ± 0.05 96.79 ± 0.37 98.03 ± 0.02 97.58± 0.01 97.79 ± 0.83

Avg. Rank 7.92 8.69 8.15 5.38 6.38 - 8.53 8.15 5.07 2.84 3.23 1.53

Ind\\AUC

Wikipedia 94.33 ± 0.27 91.49 ± 0.45 95.90 ± 0.09 97.08 ± 0.03 98.03 ± 0.04 - 95.57 ± 0.20 96.30 ± 0.04 94.74 ± 0.44 98.48 ± 0.03 97.45 ± 0.11 98.26 ± 0.05
Reddit 96.52 ± 0.13 96.05 ± 0.12 96.98 ± 0.04 96.94 ± 0.07 98.42 ± 0.02 - 93.80 ± 0.07 94.97 ± 0.05 97.99 ± 0.52 98.71 ± 0.01 98.69 ± 0.03 98.85 ± 0.09
MOOC 83.16 ± 1.30 84.03 ± 0.49 86.84 ± 0.17 92.02 ± 0.91 81.86 ± 0.25 - 81.43 ± 0.19 82.77 ± 0.24 86.13 ± 3.55 87.62 ± 0.51 89.94 ± 0.04 90.09 ± 0.99
LastFM 81.13 ± 3.39 82.24 ± 1.51 76.99 ± 0.29 85.58 ± 3.15 87.82 ± 0.12 - 70.84 ± 0.85 80.37 ± 0.18 83.07 ± 2.32 94.08 ± 0.08 93.62 ± 0.04 93.77 ± 0.38
Enron 81.96 ± 1.34 76.34 ± 4.20 64.63 ± 1.74 83.58 ± 1.11 87.02 ± 0.50 - 72.33 ± 0.99 76.51 ± 0.71 89.92 ± 0.72 90.69 ± 0.26 88.24 ± 0.07 92.57 ± 0.18

Social Evo. 93.70 ± 0.29 91.18 ± 0.49 93.41 ± 0.19 82.04 ± 0.59 84.73 ± 0.27 - 93.71 ± 0.18 94.09 ± 0.07 92.11 ± 0.07 95.29 ± 0.03 94.99 ± 0.03 95.03 ± 0.17
UCI 78.80 ± 0.94 58.08 ± 1.81 77.64 ± 0.38 86.48 ± 2.29 90.40 ± 0.11 - 84.49 ± 1.82 89.30 ± 0.57 83.81 ± 1.28 92.63 ± 0.13 91.31 ± 0.11 92.17 ± 0.17

Flights 95.21 ± 0.32 93.56 ± 0.70 88.64 ± 0.35 95.92 ± 0.43 96.86 ± 0.02 - 82.48 ± 0.01 82.27 ± 0.06 96.36 ± 1.51 97.80 ± 0.02 97.20 ± 0.01 97.95 ± 0.27
Can. Parl. 53.81 ± 1.14 55.27 ± 0.49 56.51 ± 0.75 80.21 ± 0.75 58.83 ± 1.13 - 55.83 ± 1.07 58.32 ± 1.08 61.62 ± 2.50 89.33 ± 0.48 66.51 ± 2.25 96.07 ± 1.65
US Legis. 58.12 ± 2.35 61.07 ± 0.56 48.27 ± 3.50 58.87 ± 0.48 51.49 ± 1.13 - 50.43 ± 1.48 47.20 ± 0.89 62.85 ± 0.84 53.21 ± 3.04 60.10 ± 0.43 65.56 ± 0.15
UN Trade 62.28 ± 0.50 58.82 ± 0.98 62.72 ± 0.12 75.70 ± 3.50 67.05 ± 0.21 - 63.76 ± 0.07 63.48 ± 0.37 72.56 ± 1.47 67.25 ± 1.05 71.40 ± 0.20 83.04 ± 0.23
UN Vote 58.13 ± 1.43 55.13 ± 3.46 51.83 ± 1.35 61.64 ± 2.71 48.34 ± 0.76 - 50.51 ± 1.05 50.04 ± 0.86 66.26 ± 5.48 56.73 ± 0.69 58.85 ± 0.24 62.44 ± 1.92
Contact 95.37 ± 0.92 91.89 ± 0.38 96.53 ± 0.10 88.87 ± 0.75 89.07 ± 0.34 - 93.05 ± 0.09 92.83 ± 0.05 96.67 ± 0.45 98.30 ± 0.02 97.91± 0.01 97.98 ± 0.67

Avg. Rank 7.76 8.53 8.07 5.46 6.53 - 8.76 8.15 5.00 2.69 3.46 1.53

Table 9: Evaluation of the implantation of LSMU on TGN.

LSMU GRU

CanParl

routing 31.95s -
update 23.54s 20.49s

combine 1.01s -
total 56.5s 20.49s

USLegis

routing 24.55s -
update 12.13s 13.95s

combine 0.81s -
total 37.49s 13.95s

UCI

routing 24.64s -
update 19.08s 20.09s

combine 0.81s -
total 44.53s 20.09s

Untrade

routing 198.09s -
update 136.79s 161.78s

combine 6.60s -
total 341.48s 161.78s

GPU Memory 18.67M 9.25M

27

Table 10: Evaluation of the implantation of LSMU on TGN.
CanParl USLegis Untrade

Trans.AP Trans.AUC Ind.AP Ind.AUC Trans.AP Trans.AUC Ind.AP Ind.AUC Trans.AP Trans.AUC Ind.AP Ind.AUC
GRU 61.13 69.61 52.7 53.98 74.89 82.38 61.87 64.47 60.15 63.69 58.34 58.11

LSMU 66.16 74.52 53.51 54.22 75.85 83.69 62.07 65.03 65.4 68.93 58.42 60.54

Table 11: The impact of batch size on model performance.

CanParl USLegis Untrade
TGN SALoM TGN SALoM TGN SALoM

bs=10 98.25 99.11 89.8 93.75 69.41 93.86
bs=20 80.95 97.79 85.32 87.99 65.24 90.57

bs=100 68.02 89.76 76.08 77.1 64.21 79.5
bs=200 61.13 80.13 74.89 75.91 60.15 72.84
bs=1000 61.87 72.76 70.4 71.36 62.88 65.57

D.3 LSMU as a Universal Memory Updater

Since LSMU is designed for the memory update process, it serves as a universal memory updater for
all memory-based methods. Notably, LSMU was initially developed on TGN; therefore can allow
straightforward adaptation to other memory-based methods for accuracy improvements. We also
extended our experiments on TGN with the default setting and only alteration of the memory updater
to support this view as follows.

D.4 The Impact of Batch Size on Model Performance

We evaluated the transductive AP of SALoM and TGN with different batch sizes to verify the impact
of batch size on model performance.

As shown in Table 11, model performance degrades as batch size increases. Predict accuracy peaks at
batch size 10.

This stems from the inner-batch information loss issue shared by memory-based methods. While
training optimizations could mitigate this, our focus remains on model design.

D.5 Configurations of SALoM Hyper-Parameters

• Number of sampled neighbors: 10

• Dimension of encoder time interval: 100

• Dimension of node temporal memory: 172

• Dimension of node structure memory: 64

• Dimension of output representation: 172

• Number of experts in LSMU: 6

• Number of selected experts in LSMU: 2

• β of information bottleneck loss: 1e−3

E Broader Impacts

Our research on optimizing continuous-time dynamic graph models for edge prediction has significant
potential to impact various domains where temporal network dynamics are critical. By improving the
accuracy and efficiency of predicting evolving connections in graphs, this work can enhance applica-
tions in social network analysis, recommendation systems, epidemiological modeling, and financial
network forecasting. For instance, better edge prediction could enable more precise identification of
emerging social trends, improve personalized content delivery, or enhance the tracking of disease
spread in real time. In financial systems, it could aid in detecting fraudulent transactions by modeling
dynamic interaction patterns.

28

By advancing the state-of-the-art in dynamic graph modeling, our research contributes to a deeper
understanding of temporal network structures, fostering innovations that are both socially beneficial
and ethically responsible.

29

	Introduction
	Background and Related Works
	Temporal Correlation Encoding in Dynamic Graph
	Structural Encoding in Dynamic Graphs
	Limitations of Existing Methods

	Methodology
	blackContinuous-Time Memory Module
	Long-Short Memory Updater as Temporal Memory Updater
	Combining Structural and Temporal Insights in Feature Fusion

	Experiments
	Experiment Settings
	Performance Study on Model Accuracy
	Ablation Study
	Performance under different numbers of historical neighbors.
	Trade-off Between Accuracy and Efficiency
	Leakage-Free Evaluation

	Conclusion and Future Work
	Datasets and Baselines
	Datasets Details
	Baseline Details

	Individual motivations
	Motivation of Continuous Models for Long-Term Temporal Correlation Capture
	Motivation of GRU for Short-Term Temporal Correlation Capture
	Motivation of Sparse MoE for Long-Short Term Temporal Correlation Fusion
	Motivation for Co-Occurrence Encoding as Structure Encoding
	Motivation of Information Bottleneck for Temporal and Structure Feature Fusion

	Complementary Explanation
	Structure Memory Update
	Proof of Upper Bound of Information Bottleneck Loss Function
	Leakage-Free TGNNs details

	Complementary Experiments
	Performance Study With Standard Deviates
	Training Expense of LSMU
	LSMU as a Universal Memory Updater
	The Impact of Batch Size on Model Performance
	Configurations of SALoM Hyper-Parameters

	Broader Impacts

