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ABSTRACT

Learning cooperative multi-agent policy from offline multi-task data that can gen-
eralize to unseen tasks with varying numbers of agents and targets is an attrac-
tive problem in many scenarios. Although aggregating general behavior patterns
among multiple tasks as skills to improve policy transfer is a promising approach,
two primary challenges hinder the further advancement of skill learning in offline
multi-task MARL. Firstly, extracting general cooperative behaviors from various
action sequences as common skills lack bringing cooperative temporal knowl-
edge into them. Secondly, existing works only involve common skills and can
not adaptively choose independent knowledge as task-specific skills in each task
for fine-grained action execution. To address these challenges, we propose an
approach named Hierarchical and Separate Skill Discovering (HiSSD) for gen-
eralizable offline multi-task MARL through skill learning. HiSSD leverages a
hierarchical framework that jointly learns common and task-specific skills. The
common skills learn cooperative temporal knowledge and enable in-sample explo-
ration for offline multi-task MARL. The task-specific skills represent the priors of
each task and achieve a task-guided fine-grained action execution. To verify the
advancement of our method, we conduct experiments on multi-agent MuJoCo and
SMAC benchmarks. After training policy using HiSSD on offline multi-task data,
the empirical results show that HiSSD assigns effective cooperative behaviors and
obtains superior performance in unseen tasks.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has drawn great attention to many attrac-
tive problems such as games, intelligent warehouses, automated driving, and social science (Vinyals
et al., 2019; Yun et al., 2022; Gronauer & Diepold, 2022). When it comes to large-scale tasks, the
MARL method yields superior performance compared to the traditional control techniques. In most
real-world applications, however, building high-fidelity simulators or deploying online interaction
can be rather costly or even infeasible. Meanwhile, multi-agent systems are expected to perform
flexibility among tasks with varying numbers of agents and targets. To address these issues, training
multi-agent policies that can transfer across tasks with various numbers of agents under limited ex-
perience has become an attractive direction to tackle real-world multi-agent applications (Wu et al.,
2019; Kumar et al., 2019).

Although training the multi-agent policy on a single task and fine-tuning on the target task is a
simple way for policy transfer, it has the following drawbacks (Wen et al., 2022; Hu et al., 2020;
Yang et al., 2022; Long et al., 2019a): (i) the fine-tuning stage still requires costly interaction. (ii)
it lacks the capacity to handle tasks with various numbers of agents and targets. To overcome these
issues, existing works leverage Transformer (Vaswani et al., 2017) to enable a flexible population-
invariant framework (Long et al., 2019a; Wang et al., 2019). They also learn general cooperative
behaviors as common skills from offline multi-task data to improve multi-agent policy transfer.
ODIS (Zhang et al., 2022) conducts a two-stage offline multi-task MARL to discover generalizable
multi-agent common skills. They pre-train the common skills from a global view and then optimize
the policy by discovering the value-maximized skills on the multi-task data. HyGen (Zhang et al.,
2024) integrates online and offline learning to ensure both multi-task generalization and training-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

efficiency. These methods obtained convincing improvement by learning generalizable common
skills and reduced interaction costs during policy transfer.

However, existing works only learn general and reusable cooperation behaviors by aggregating co-
operative actions from multi-task data. Equipping offline multi-task MARL with skill learning to
improve policy transfer remains an issue. Firstly, extracting general cooperative behaviors from var-
ious cooperative actions as common skills lack bringing cooperative temporal knowledge into them.
Existing works have demonstrated the significance of learning temporal knowledge in multi-agent
cooperation (Xu et al., 2022b; Song et al., 2023). Secondly, existing works in literature mainly focus
on discovering task-irrelevant common knowledge. Yet, few of them consider learning task-specific
knowledge which is also beneficial for policy transfer in offline multi-task MARL (Yang et al., 2023;
Xu et al., 2022a; Bose et al., 2024).

In light of these issues, we propose a framework called Hierarchical and Separate Skill Discovering
(HiSSD) for generalizable offline multi-task MARL through skill learning. HiSSD separates the
knowledge from multi-task data into common and task-specific skills and leverages a hierarchical
framework that jointly learns two of them. Concretely, the common skill represents the general
cooperation patterns that involve cooperative temporal knowledge and enable in-sample dynamics
exploration for offline multi-task MARL. The task-specific skill represents the unique knowledge of
action execution in different tasks and achieves a task-guided fine-grained action execution. There-
fore, HiSSD effectively bridges offline multi-agent policy improvement and adaptive multi-task ac-
tion execution with common and task-specific skills learning.

Overall, our contributions can be summarized as following points: (i) We present HiSSD, an offline
multi-task MARL method that leverages the hierarchical framework and jointly learns common and
task-specific skills. (ii) HiSSD is proposed to learn common skills representing cooperative be-
haviors among multiple tasks for offline multi-agent policy exploration and action guidance. (iii)
Meanwhile, HiSSD adaptively abstracts task-specific skills for each task to achieve a task-guided
fine-grained imitation. (iv) We conduct experiments on the SMAC and multi-agent MuJoCo bench-
marks. After training policy using HiSSD on offline multi-task data, the empirical results show that
HiSSD assigns effective cooperative behaviors and obtains superior performance in unseen tasks.

2 PRELIMINARIES

2.1 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Cooperative multi-agent reinforcement learning is formulated as a decentralized partially observable
Markov decision process (Dec-POMDP) (Oliehoek et al., 2016), as the problem is defined by a tuple
G = ⟨K,S,Ω,A,P, O,R, γ⟩. Here, K = {1, ..., k} is the set of agents. The global observation
s ∈ S is unobservable to each agent in the centralized training and decentralized execution (CTDE)
pipeline. Cooperative agent k use local observation ok ∈ Ω drawn from the observation function
O(s, k) to sample actions ak from the actions space A. During interaction, the joint action u =
{a1, a2, ..., ak} leads to a next state s′ ∼ P(s′|s,u) and a global reward r. The training goal is
to learn a cooperative multi-agent system to maximize the cumulative reward R. We use τ =
{τ1, τ2, ..., τk} to denote the trajectory of each agent, and the policy evaluation used to estimate the
performance of the joint policy π(u|τ ) is normally defined by rewards in infinite-horizon tasks,

E [R] = E

[ ∞∑
t=0

γtrt(st,ut, st+1|π)

]
, (1)

where γ ∈ [0, 1) is the discount factor, rt denotes the reward at time t.

2.2 LEARNING GENERALIZABLE POLICY FROM OFFLINE MULTI-TASK DATA

While cooperative multi-agent reinforcement learning has achieved advancement in many scenarios,
it is still hard to transfer the policy to unseen tasks without additional interaction (Hu et al., 2020;
Iqbal et al., 2021b). An effective solution is leveraging multi-task learning, extracting generalizable
knowledge across tasks to improve policy transfer. During multi-task learning, tasks in the same
task set share the same type of units but have different distributions, e.g., the number of agents and
targets may change among the tasks. DenoteM as overall tasks, the whole data DM are divided
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into source task dataDSource (orDT ) and target task dataDTarget, where the target tasks are unseen
during training. The goal is to train the multi-agent policy on the source task data that can be
transferred to unseen tasks in the same task set without additional interaction.

3 METHOD

In this section, we propose our Hierarchical and Separable Skill Discovering (HiSSD) for offline
multi-task MARL. Our main solution is leveraging the hierarchical skill learning framework and
jointly learning common and task-specific skills among multiple cooperation tasks. We begin by
illustrating the overall framework of our offline multi-task MARL. We then detail the high-level
planner with common skills and the low-level controller with task-specific skills. Finally, we de-
scribe the overall objective and training pipeline.

3.1 OFFLINE MULTI-TASK MARL WITH COOPERATIVE SKILL LEARNING

Skill is a series of latent variables representing general and reusable knowledge among tasks to guide
action execution (Zhang et al., 2022; 2024). Besides the solution proposed by existing works, we
give two insights into multi-task skill learning for further advancement in policy transfer. Firstly,
integrating cooperative temporal knowledge into common skills helps decision-making. It gives both
dynamics transition information and a global perspective into multi-agent policy. Secondly, learning
task-specific skills to guide action execution is beneficial to transfer policy adaptively. It brings each
task’s unique knowledge into the controller and adjusts the output action distribution. In this way,
we propose an offline multi-task MARL method that jointly learns common and task-specific skills
to improve policy transfer. Figure 1 gives a brief illustration of our framework.

Specifically, our method can be divided into two parts: (a) The high-level planner and (b) The low-
level controller. The high-level planner contains a common skills encoder πθh , a forward predictor
fϕ, and a value net V tot

ξ . We feed local observation o1:Kt into πθh to extract common skills c1:Kt .
fϕ receives common skills to output the predicted next global state s′t+1 and local information l1:Kt+1 .
The local information can be seen as the local observation’s embedding. The value net receives
o1:Kt and l1:Kt to approximate the accumulated reward

∑
γrt. The low-level controller includes a

task-specific skills encoder gω and an action decoder πθl . The task-specific skills encoder infers
task-specific skills z1:Kt using local observation o1:Kt . The action decoder utilizes local observation,
common skills, and task-specific skills to generate the real actions {a′kt ∼ πθl(·|okt , ckt , zkt )}Kk=0.

Integrating cooperative temporal knowledge into common skills indicates that these skills must be
perceivable to the global dynamics transition. The transition falls into two parts, the global state
transition and the value estimation. Therefore, the common skill is trained to minimize the predic-
tion error to the real next global state st+1 and maximize the accumulated reward. This training
objective enables an offline exploration and integrates the cooperation-related temporal knowledge
into common skills by the local-to-global forward transition prediction. As for achieving an adap-
tive policy transfer, the major request is to distinguish each task’s specific knowledge. We learn
task-specific skills by matching them with each task’s prior distribution so that it acquires the ability
to guide the action execution in different tasks adaptively. Moreover, our method does not require
global information during execution, which differs from previous work (Liu et al., 2021). We will
describe the details of the proposed skill learning in sections 3.2 and 3.3.

3.2 LEARNING HIGH-LEVEL PLANNER WITH COMMON SKILLS

In this subsection, we present the high-level planner to learn common skills from offline multi-task
MARL data. We start with the probabilistic inference in MARL and construct a training objective
to integrate cooperative temporal knowledge into common skills.

Inspired by Levine (2018), we define the problem of discovering the optimal high-level planner with
its common skill encoder π⋆

h as match the trajectory p(τ) given by Eq. 2. Here, p(τ) indicates to
maximize K agents’ accumulated reward

∑
γrt in each transition p(st+1|o1:Kt , c⋆1:Kt ),

p(τ) =

[
p(s1)

T∏
t=1

p(st+1|o1:Kt , c1:Kt )

]
exp

(
T∑

t=1

r(st, c
1:K
t )

)
. (2)
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Figure 1: Overall framework of Hi-SSD. HiSSD utilizes a hierarchical framework that jointly learns
common and task-specific skills from offline multi-task data to improve multi-agent policy transfer.
(a) The high-level planner with common skills. HiSSD integrates cooperative temporal knowledge
into common skills and enables an offline exploration. (b) The low-level controller with task-specific
skills. The task-specific knowledge can guide the action execution adaptively among tasks. HiSSD
uses an implicit Q-learning objective to train the value network.

where st denotes the global state at time step t, o1:Kt indicate all agents’ local observation, and
c1:Kt represent common skills generated by the encoder c1:Kt ∼ π⋆

h. Matching p(τ) means that the
common skill encoder πθh in our learned planner needs to generate common skills c1:Kt and roll
out trajectories p̂(τ) that minimize the KL-divergence DKL(p̂(τ)∥p(τ)). Meanwhile, learning from
offline data requires the planner to be constrained and conservative. The common skill generated
by the planner must lead to the next state close to the offline dataset’s distribution. Therefore we
conduct the learned planner as a one-step predictor and formulate p̂(τ) by,

p̂(τ) =

[
p(s1)

T∏
t=1

p(st+1|o1:Kt , c1:Kt )

]
T∏

t=1

q(s′t+1|c1:Kt ), (3)

where c1:Kt ∼ πθh(o
1:K
t ) is the common skill inferred by the learned planner. st+1 represent the

ground-truth global next state and q(s′t+1|c1:Kt ) indicates that we use a forward predictor q to predict
the next global state using all agents’ common skills In this way, we could derive the KL-divergence
and formulate our objective as below,

L(θh, ϕ) = −DKL(p̂(τ)∥p(τ)) = E(o1:Kt ,st+1)∼DT ,

c1:Kt ∼πθh
(o1:Kt )

 T∑
t=1

r(st, c
1:K
t )︸ ︷︷ ︸

Exploration

− log q(s′t+1|c1:Kt )︸ ︷︷ ︸
Prediction

 , (4)

where θh denote the parameters of the common skill encoder πh in the planner, DT represents the
multi-task dataset. The full derivation can be found in Appendix A.1. Eq. 4 is deployed on all source
tasks and aims to extract reusable cooperation knowledge as common skills c1:Kt among tasks. This
objective divides the trajectory matching into a trade-off between exploration and prediction which
fulfills the requirement of integrating cooperative temporal knowledge into common skills. The
Exploration term guarantees a value-maximization perspective in common skills to guide the action
execution. The Prediction term not only achieves a conservative planner in offline learning but also
brings the global state information into common skills, which is different from existing works.

To approximate each term in Eq. 4, we introduce a forward predictor fϕ for one-step global state
prediction and a value net V tot

ξ for reward estimation. fϕ receives common skills c1:Kt to predict
the next global state s′t+1 and next local information l1:Kt+1 . The local information can be seen as
the local observation’s embedding. V tot

ξ uses the current observation o1:Kt or the local information
l1:K to estimate the accumulated reward. The goal of Eq. 4 is to maximize the estimated reward
and minimize the prediction error. To train the value net from offline dataset, we utilize the Implicit
Q-learning objective (Kostrikov et al., 2021) given by,

LIQL(ξ) = EDT

[
Lϵ
2

(
rt + γV̄ tot

ξ̄ (o1:kt+1)− V tot
ξ (o1:kt )

)]
,where Lϵ

2(n) = |ϵ− 1(n < 0)|n2, (5)

where ϵ ∈ (0, 1) and the target value function V̄ tot
ξ̄

is the momentum version of V tot
ξ , DT is the

multi-task dataset. This objective downweights the contributions of the TD-residual smaller than 0

4
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while giving more weight to larger values. By substituting fϕ and V tot
ξ into Eq. 4, we could rewrite

the empirical objective for learning high-level planner with common skills as below,
LPlanner(θh, ϕ) = E(o1:Kt ,st+1)∼DT ,

c1:Kt ∼πθh
(o1:Kt )

[
V tot
ξ (l1:Kt+1)− α log fϕ(s

′
t+1|c1:Kt )

]
, (6)

where l1:Kt+1 ∼ fϕ(·|c1:Kt ) is the predicted local information. The weight α serves as the trade-off
between guiding to space with high-reward and space that the execution policy ought to have a
correct imitation. Inspired by Xu et al. (2022a), we introduce an alternative objective that implicitly
involves the behavior constraint by using the TD-residual [r+γV̄ tot

t+1−V tot
t ] as the imitation weight,

LPlanner(θh, ϕ) = E(o1:Kt ,st+1)∼DT ,

c1:Kt ∼πθh
(o1:Kt )

[
exp

(
r + γV̄ tot

ξ (l1:Kt+1)− V tot
ξ (o1:Kt )

α

)
log fϕ(s

′
t+1|c1:Kt )

]
,

(7)
Following this objective, the common skill acquires a global cooperative perspective and is more
likely to represent behavior patterns with high rewards from offline multi-task data.

3.3 LEARNING LOW-LEVEL CONTROLLER WITH TASK-SPECIFIC SKILLS

After constructing the objective of common skills, we now turn to the low-level controller with
task-specific skills z1:Ki , where i ∈ T denotes the current task. Here we omit the subscript of
timestep t to simplify the notation. The main function of our proposed controller is to generate
real actions following the skills’ guidance. Meanwhile, the job of the task-specific skill is to rec-
ognize the current task and guide the policy adaptively. To be more specific, we denote the low-
level controller’s components task-specific skills encoder as gω(z1:Ki |o1:Ki ) and the action decoder
πθl(a

1:K
i |z1:Ki , o1:Ki , c1:Ki ). We adopt an objective based on β-VAE (Higgins et al., 2017) to learn

action execution and utilize Self-Supervised Learning to learn task-specific representations for reg-
ularization. This learning objective is given by,
LController(θl, ω) = −E Di∈T

zi∼gω(oi)

[
log πθl(a

1:K
i |o1:Ki , c1:Ki , z1:Ki )− βDKL(z

1:K
i ∥p(Di))

]
, (8)

where the T denotes the task number, i denotes the current task, θl and ω represent the parameters
of action decoder πθl and task-specific skills encoder gω respectively, and β is the regularization
coefficient. The left term requires the action decoder πθl to maximize the likelihood of the real
action a1:Ki from offline data, the right term minimizes the KL-divergence between the task-specific
skills z1:Ki and the task priors p(Di) as a regularization. We show the full derivation in Appendix
A.2. Notably, the task-specific skill z1:Ki is regularized to approach the current task’s unreachable
prior knowledge p(Di). We find that this problem can be formulated as a contrastive learning
objective and present the lower bound in Theorem 3.1. By training the skill encoder to distinguish
different tasks, it acquires the capability to integrate task-specific knowledge into z1:Ki .
Theorem 3.1. Denote a set of N training tasks with their offline data DT , Di is the data of the
sampled task. Let random variables x be some observations sampled from Di, skill z ∼ gω(z|x),
h(x, z) = gω(z|x)

p(z) , p(Di) is the prior distribution of current task i, then we have

−EDi,z,x

[
log

h(z, x)∑
Dj∈DT h(z, xj)

]
≥ −Ex∼Di

[
DKL(g(·|x)∥p(Di)

]
(9)

where xj are observations sampled from task Dj and i ∈ {1, 2, · · · , N}.

We leave the proof of Theorem 3.1 to Appendix A.3. In practice, we utilize the exponential co-
sine similarity exp(z · x) to approximate h(z, x). The sampled x must represent the current task’s
distribution. We find that each agent’s local observation in the same task corresponds to different
perspectives of the same task. Therefore, we randomly sample two agents’ observations {omi , oni }
in the same task as the positive pairs (q, k+) and regard trajectories from other tasks as the negative
samples k−. We introduce gω̄ the momentum version of gω to optimize the contrastive loss,

Lg(ω) = −
∑

Di∈DT

E{q,k+}∼Di,

k−∼DT \i

log exp(gω(q) · gω̄(k+)/σ)
exp(gω(q) · gω̄(k+)/σ) +

∑
T \i

exp(gω(q) · gω̄(k−)/σ)

 ,

(10)
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where DT is overall source tasks, Di and DT \i denote the current task and other tasks in DT ,
respectively. σ denotes the temperature and gω̄ is updated by the exponential moving average ω̄′ ←
ηω + (1 − η)ω̄. This training pipeline empowers the policy to embed task-specific knowledge and
achieve adaptive action execution.

In summary, we integrate Eqs. 9 and 10 into Eq. 8 to obtain the empirical objective of training the
low-level controller. We propose to learn the prior of the current task using Eq. 10 and replace the
DKL term in Eq. 8 with it. The objective is given by,

LController(θl, ω) = −
∑

Di∈DT

E(oi,ai)∼Di

[
log πθl(a

1:K
i |o1:Ki , c1:Ki , z1:Ki )

]
− βLg(ω). (11)

3.4 TRAINING AND EVALUATION

HiSSD is fully trained offline and can be trained end-to-end. During training, each task’s data Di in
the source dataset DT will be chosen for training. In every training step, we sequentially optimize
Eqs. 5, 7, and 11 to train the value net, the planner, and the controller, respectively. At the test
time, we only use local information to perform decentralized execution. The planner πθh infers the
common skill c1:Kt at each time step. The controller πθl first generates task-specific skill z1:Kt and
then feed {(okt , ckt , zkt )}Kk=0 into action decoder to generate the real action. Due to space limitations,
we leave the pseudocode in Algorithm 1 in Appendix B.

4 EXPERIMENTS

4.1 BENCHMARKS AND DATASETS

SMAC The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a popular
MARL benchmark and can evaluate multi-task learning or policy transfer methods. We follow
the experimental settings by Zhang et al. (2022) and use the offline dataset they collected. Similar
to the D4RL benchmark (Fu et al., 2020), there are four dataset qualities labeled as Expert, Medium,
Medium-Expert, and Medium-Replay. We construct task sets Marine-Easy and Marine-Hard. In
each task set, units in different tasks have the same type and various numbers, all algorithms are
trained on offline data from multiple source tasks and evaluated on a wide range of unseen tasks
without additional data. Details are referred to the Appendix C.

MAMuJoCo Multi-Agent MuJoCo (MAMuJoCo) is a benchmark for continuous multi-agent
robotic control, based on the MuJoCo environment. To fulfill the requirement of offline multi-
task learning, we follow Wang et al. (2023) and collect a multi-task dataset in HalfCheetah-v2 using
HAPPO (Kuba et al., 2022a) algorithm. We partition the robotic into six agents and construct the
individual task by disabling each agent. Each task’s name corresponds to the joint controlled by
the disabled agent. Algorithms are trained on multiple source tasks and evaluated on unseen tasks
without additional data. Details of the dataset are presented in Appendix C.

4.2 BASELINES

SMAC To evaluate the capacity of policy transfer using HiSSD, we introduce several comparable
baselines from prior works: (i) ODIS (Zhang et al., 2022), an effective offline multi-task MARL
method for cooperative skill discovery. (ii) UPDeT-m, an offline variant of UPDeT (Hu et al., 2020)
by adopting the transformer-based Q mixing network. (iii) Transformer-based behavior cloning
(BC-t) method and its variants with return-to-go information (BC-r). We average Hi-SSD’s perfor-
mance over 5 random seeds and report the best score for each task.

MAMuJoCo For the continuous robotic control task, we compare HiSSD with four recent offline
MARL algorithms: (i) Behavior cloning (BC) method, the multi-agent version of (ii) IQL Kostrikov
et al. (2021), (iii) TD3-CQL (Kumar et al., 2020), and (iv) TD3-BC (Fujimoto & Gu, 2021). Each
algorithm is evaluated by using 32 independent episodes and runs with 4 seeds for training. Notably,
all algorithms use the same architecture, and the details for the implementations and hyperparame-
ters of algorithms in MAMuJoCo are shown in Appendix D.

6
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Table 1: Average test win rates of the best policies over five random seeds in the task set Marine-
Hard with different data qualities. For simplicity, the asymmetric task names are abbreviated. For
example, the task name ”5m6m” denotes the SMAC map ”5m vs 6m”. Results of BC-best stands
for the best test win rates between BC-t and BC-r.

Tasks Expert Medium
BC-best UPDeT-m ODIS HiSSD (Ours) BC-best UPDeT-m ODIS HiSSD (Ours)

Source Tasks

3m 97.7± 2.6 82.8±16.0 98.4± 2.7 99.5± 0.3 65.4±14.7 51.2± 3.4 85.9±10.5 62.7± 5.7
5m6m 50.4± 2.3 17.2±28.0 53.9± 5.1 66.1± 7.0 21.9± 3.4 6.3± 4.9 22.7± 7.1 26.4± 3.8
9m10m 95.3± 1.6 3.1± 5.4 80.4± 8.7 95.5± 2.7 63.8±10.9 28.5±10.2 78.1± 3.8 73.9± 2.3

Unseen Tasks

4m 92.1± 3.5 33.0±27.1 95.3± 3.5 99.2± 1.2 48.8±21.1 14.1± 5.2 61.7±17.7 77.3±10.2
5m 87.1±10.5 33.6±40.2 89.1±10.0 99.2± 1.2 76.6±14.1 67.2±21.3 85.9±11.8 88.4± 8.4
10m 90.5± 3.8 54.7±44.4 93.8± 2.2 98.4± 0.8 56.2±20.6 32.9±11.3 61.3±11.3 98.0± 0.3
12m 70.8±15.2 17.2±28.0 58.6±11.8 75.5±19.7 24.0±10.5 3.2± 3.8 35.9± 8.1 86.4± 6.0
7m8m 18.8± 3.1 0.0± 0.0 25.0±15.1 35.3± 9.8 1.6± 1.6 0.0± 0.0 28.1±22.0 14.2±10.1
8m9m 15.8± 3.3 0.0± 0.0 19.6± 6.0 47.0± 6.2 3.1± 3.8 2.3± 2.6 4.7± 2.7 15.3± 2.8
10m11m 45.3±11.1 0.0± 0.0 42.4± 7.2 86.3±14.6 19.7± 8.9 4.0± 3.4 29.7±15.4 43.6± 4.6
10m12m 1.0± 1.5 0.0± 0.0 1.6± 1.6 14.5± 9.1 0.0± 0.0 0.0± 0.0 1.6± 1.6 0.6± 0.5
13m15m 0.0± 0.0 0.0± 0.0 2.3± 2.6 1.3± 2.5 0.6± 1.3 0.0± 0.0 1.6± 1.6 1.4± 2.4

Medium-Expert Medium-Replay

Source Tasks

3m 67.7±23.7 85.2±17.9 73.6±22.0 86.6± 3.7 81.1± 8.8 41.4±20.1 83.6±14.0 78.8± 5.3
5m6m 31.3± 6.3 1.6± 1.6 9.4± 2.2 41.9± 9.7 25.0± 3.1 0.8± 1.4 16.6± 4.7 25.3±10.3
9m10m 26.0±13.9 24.3±18.7 31.3±14.5 83.6± 6.9 33.4±13.1 0.8± 1.4 34.4± 8.0 45.8± 3.9

Unseen Tasks

4m 81.3±18.9 43.9±39.0 82.8±13.5 91.1± 6.1 61.5± 9.0 35.9±12.6 55.6±14.5 77.3± 1.9
5m 74.0± 2.9 33.6±40.2 82.8±17.7 98.3± 1.8 75.0±24.2 61.7±20.3 96.1± 4.1 88.1±13.4
10m 78.1± 6.7 32.8±38.1 82.8±16.8 96.4± 2.1 82.4± 8.2 11.0± 7.8 84.4±15.1 94.7± 2.6
12m 64.8±24.3 9.4± 8.6 81.3±20.6 88.4±11.8 83.4± 4.5 2.3± 2.6 84.4± 6.6 90.3± 3.6
7m8m 13.3± 4.5 2.3± 4.1 15.6± 4.4 30.5±10.4 7.3± 6.4 1.6± 2.7 9.4± 2.2 21.7± 4.7
8m9m 10.2± 4.6 9.5± 8.6 10.9± 4.7 35.2±18.3 11.5± 3.9 0.8± 1.4 11.7± 8.7 14.5± 4.0
10m11m 26.6± 4.7 11.8± 8.1 33.6± 8.9 54.7± 6.8 46.8± 6.6 0.8± 1.4 35.9± 5.2 42.5± 4.4
10m12m 0.0± 0.0 0.0± 0.0 1.6± 1.6 2.5± 1.0 1.6± 2.7 0.0± 0.0 2.3± 1.4 0.5± 0.3
13m15m 0.8± 1.4 0.0± 0.0 2.3± 2.6 5.2± 3.7 1.6± 1.6 0.0± 0.0 2.4± 1.4 3.6± 2.1

4.3 MAIN RESULTS

SMAC We evaluate Hi-SSD and baselines on SMAC and present the average test win rates in the
Marine-Hard task set in Table 1. BC-best represents the highest test win rates between BC-t and
BC-r. Below are the key results: (i) HiSSD achieves top performance on over half of the tasks.
This indicates that using skills to guide action execution benefits policy transfer. (ii) Compared to
ODIS, which only discovers common skills from offline multi-task data, our method outperforms
it in medium and near-optimal data qualities, showing advancement in learning task-specific skills.
Due to space limitation, we leave results on other task sets in appendix E.

MAMuJoCo Table 2 shows the mean and standard deviation of average returns for the offline
multi-task learning on our HalfCheetah-v2 task set. The results show that HiSSD outperforms all
baselines and achieves state-of-the-art performance in most tasks. Compared to baselines with only
behavior cloning (BC) or conservative Q-learning (TD3-CQL), HiSSD outperforms in a wide range.
We also find that compared to TD3-BC which only constrains the action execution, HiSSD transfers
to the unseen tasks better. It indicates that learning cooperative temporal knowledge and task-specific
skills is beneficial for learning generalizable multi-agent policy from offline multi-task data.

4.4 ABLATION STUDY

In this section, we present more empirical results for deep analysis of HiSSD. We first show the
effectiveness of our proposed skills learning which integrates cooperative temporal and task-specific
knowledge. We then investigate what is the essential factor of training the task-specific skills. Fi-
nally, we visualize the learned skills for a more clear analysis.
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Table 2: Average scores on HalfCheetah-v2 multi-task datasets in MAMuJoCo.

Tasks BC IQL ITD3-CQL ITD3-BC HiSSD(ours)

Source Tasks

complete 3188.16±566.68 4384.23±198.55 -582.41± 55.23 4365.10± 72.92 4450.57±126.36
back thigh 3324.22± 58.49 3675.91± 18.99 -476.23± 20.83 3685.82± 40.84 3698.38± 13.98
back foot 3079.01±355.66 3989.12±211.42 -487.19± 15.68 4119.48± 61.00 3197.83± 6.99
front thigh 1861.53±415.80 2744.63±329.00 -471.99± 49.16 2700.17±407.46 1948.74± 81.24
front shin 1819.94±273.96 4048.43±363.79 -491.41± 7.21 4155.15±180.99 3468.32±290.72

Unseen Tasks

back shin 1964.55±268.24 1974.62±314.33 -492.87±27.02 1690.40±251.77 3472.12± 91.95
front foot 3468.40±369.40 3948.17±381.80 -463.22±52.85 3683.16±419.42 4175.29±338.96

Table 3: Ablation studies on HiSSD. We report average test win rates of the best policies over five
random seeds in the task set Marine-Hard with different data qualities.

Data Qualities w/o Planning w/o Predicting Half-Negative L2-Loss BC-best HiSSD

Source Tasks

Expert 80.7±22.4 85.9±16.4 87.0±15.3 80.8±21.2 81.1±21.8 84.5±17.1
Medium 52.7±25.5 53.1±20.0 54.3±20.6 42.3±21.8 50.3±20.1 55.9±19.2
Medium-Expert 56.0±22.4 63.5±26.1 70.7±21.3 57.8±27.1 41.7±18.5 64.2±23.5
Medium-Replay 51.1±28.2 47.7±25.1 50.0±22.9 44.7±28.1 46.5±26.7 51.9±24.0

Target Tasks

Expert 45.8±39.0 55.0±37.4 60.9±37.1 53.2±38.9 46.8±36.8 61.2±37.4
Medium 38.4±37.5 37.6±34.2 46.7±38.0 42.4±38.6 25.6±26.8 48.6±40.1
Medium-Expert 47.2±36.9 51.2±34.3 55.8±37.6 51.0±38.9 38.8±33.0 57.6±37.5
Medium-Replay 45.0±37.8 42.8±36.2 48.1±37.6 47.9±40.3 41.2±33.7 48.7±39.0

Common Skills Analysis We conduct experiments on SMAC’s Marine-Hard task set to demon-
strate the effects of our proposed skills learning paradigm in HiSSD and present results in Table 3.
We implement two variants of HiSSD to show the impact of three factors on HiSSD’s skills learn-
ing, respectively: (i) w/o Planning. HiSSD only learns task-specific skills among tasks. (ii) w/o
Prediction. HiSSD trains the planner without the next global state prediction. The results indicate
that learning common skills improves policy transfer, and learning to predict the next global state
acquires further advancement.

Task-Specific Skills Analysis To investigate what is the essential factor of learning task-specific
skills, we conduct experiments on SMAC’s Marine-Hard task set with three variants of HiSSD: (i)
Half-Negative. We reduce to half of the negative samples during contrastive learning. (ii) L2-Loss.
The objective is replaced with one similar to Grill et al. (2020) which does not require negative
samples. According to the results in 3, learning to distinguish the difference between tasks plays
a key role in learning task-specific skills. Meanwhile, increasing the number of negative samples
further improves the capacity of multi-agent policy transfer.

4.5 VISUALIZATION OF LEARNED SKILLS

To investigate the effectiveness of our proposed method more clearly, we evaluate HiSSD on multi-
ple tasks in SMAC and visualize the learned skills using t-SNE (Hinton & Roweis, 2002).

Common Skills In Figure 2, we collect trajectories in multiple tasks and visualize the learned
common skills. Neighboring points in the same distribution represent similar common skills. We
partition these trajectories into four sub-parts by timestep to show the skill flow. According to the
plots, common skills are mapped into several clusters, and each cluster contains skills from different
tasks. Points with the same color in each distribution represent the collaboration between agents in
the corresponding task. The results demonstrate that HiSSD acquires the capability to learn task-
irrelevant common skills.

Task-Specific Skills Figure 3 represented the chosen task-specific skills during evaluation. We
collect trajectories on multiple tasks in SMAC using HiSSD and partition these trajectories into
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Figure 2: Visualization of learned common skills. We use HiSSD to collect trajectories on five tasks
in SMAC and partition these trajectories into four time windows. Plots in each figure represent the
distribution of chosen common skills. We use multiple time windows to indicate the task flow.

Figure 3: Visualization of learned task-specific skills. We use HiSSD to collect trajectories on
five tasks in SMAC and partition these trajectories into four time windows. Plots represent the
distribution of chosen task-specific skills. We use multiple time windows to indicate the task flow.

four sub-parts by timestep. From the plots, task-specific skills chosen in small-scale tasks (i.e.,
3m, 4m, and 5m) are mapped into different distributions. Large-scale tasks (i.e., 10m and 12m) will
overlap with each other. For the small-scale tasks that are similar to the source tasks, the discrepancy
between these tasks can be learned more efficiently, and policy can be easily generalized to the
small-scale target tasks. As for the large-scale tasks (i.e., 10m and 12m), the policy is unable to
capture significant discrepancies and can only infer knowledge related to the source tasks, therefore
causing the distribution overlap. Moreover, with steps going on, the distribution distance is getting
closer, indicating that our method can adaptively capture the dynamic transitions in different tasks.
As timestep goes on, points from different tasks will become closer. This is because agents will

be killed as the timestep goes on, tasks with numerous agents will degrade to various sub-tasks at
the mid-term of each episode. The results indicate that our task-specific skills effectively integrate
task-related knowledge, and the policy trained by HiSSD can adaptively distinguish different tasks.

5 RELATED WORK

5.1 OFFLINE MARL

Training policies from offline experience without interaction effectively reduce the trial and error
costs when implementing RL in real-world scenarios (Levine et al., 2020; Zhang et al., 2021). Due to
the distribution shift in offline learning (Fujimoto et al., 2019), training a policy from static datasets
faces unexpected extrapolation errors when estimating unseen data (Wu et al., 2019; Kumar et al.,
2019). Therefore, previous works consider learning behavior-constrained policies (Kumar et al.,
2020; Kostrikov et al., 2021), which can be extended to the MARL paradigm. They aim at adopting
sufficient conservatism to current online MARL methods (Yang et al., 2021; Jiang & Lu, 2021;
Pan et al., 2022), training policies by value function decomposition (Sunehag et al., 2018; Rashid
et al., 2020; Yang et al., 2020b; Wang et al., 2020), or multi-agent policy gradient algorithms (Lowe
et al., 2017; Foerster et al., 2018; Iqbal & Sha, 2019; Yu et al., 2022; Kuba et al., 2022b). Another
effective way for offline learning is leveraging the powerful transformer-based model (Chen et al.,
2021; Lee et al., 2022; Meng et al., 2023; Liu et al., 2023) or diffusion model (Janner et al., 2022;
Pearce et al., 2022; He et al., 2024). Yet the problem of combining generative models with the policy
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improvement paradigm of reinforcement learning remains unsolved (Zheng et al., 2022; Wang et al.,
2022; Kang et al., 2024).

5.2 MULTI-TASK MARL

Multi-task learning plays a key role in improving data-efficiency and generalization in MARL. It
highlights knowledge reuse (Da Silva & Costa, 2016; Shen et al., 2021; Sodhani et al., 2021),
which is beneficial for transferable multi-agent collaboration. This paradigm requires the policy to
hold a flexible structure for deploying agents across tasks with varying input dimensions (Agarwal
et al., 2020; Wang et al., 2019; Hu et al., 2020; Zhou et al., 2021). Recent works consider mul-
tiple ways to realize multi-task adaptations such as policy representations learning (Grover et al.,
2018), evolutionary-based curriculum learning (Long et al., 2019b), randomized entity-wise factor-
ization (Iqbal et al., 2021a), high-level cooperation strategy reusing (Liu et al., 2021), and training
transformer-based population-invariant policies (Hu et al., 2020; Wen et al., 2022; Liu et al., 2023).
Although these methods relieve the need for learning from scratch during transferrin, generalizing
policies without simultaneous learning or fine-tuning remains challenging Zhang et al. (2022).

5.3 MARL WITH SKILL LEARNING

Hierarchical MARL with skill learning is a practical way to solve complex decision-making tasks.
This paradigm embeds behavior patterns in a skill space, promoting the exploration of cooperative
multi-agents with state empowerment from information theory (Barto & Mahadevan, 2003; Eysen-
bach et al., 2019; Yang et al., 2024; He et al., 2020; Liu et al., 2022). MASD (He et al., 2020)
introduces an information bottleneck for cooperation patterns discovery. HSD (Yang et al., 2020a)
and HSL (Liu et al., 2022) utilize hierarchical architectures to discover diverse behaviors. HMASD
(Yang et al., 2024) treats skill discrimination as a sequential modeling problem. However, their
framework requires global information during execution. VO-MASD (Chen et al., 2024) discov-
ers hierarchy-like cooperation skills in a pre-training stage to speed up the online learning. ODIS
(Zhang et al., 2022) combines offline multi-task learning with hierarchical MARL to learn a general-
izable multi-agent policy. Although they discover skills following the value function decomposition,
they only consider the common skill among tasks and ignore the tasks-specific knowledge. HyGen
(Zhang et al., 2024) follows ODIS and integrates online exploration to further improve transfer ca-
pability, especially in middle data qualities. In this article, we propose a hierarchical policy that
jointly learns common and task-specific skills from offline multi-task data, further enhancing the
capacity of multi-agent policy’s generalization.

6 CONCLUSION

In this paper, we propose a new hierarchical multi-agent policy that jointly learns common and task-
specific skills from offline multi-task data, further improving the capacity of policy transfer in offline
multi-task MARL. We analyze the primary challenges in current offline multi-task MARL methods
and propose novel objectives to overcome these challenges. We compare HiSSD to SOTA methods
on popular MARL benchmarks and certify that it acquires promising improvement. One limitation
of Hi-SSD is its training stability, and we consider it as our future work. Hopefully, our proposed
skill learning pipeline can lead to a new branch for offline multi-task learning in MARL.

7 REPRODUCIBILITY STATEMENT

The source code of our method is provided in the supplementary materials. The full derivation of
our proposed objective and theorem is presented in Appendix A. The pseudocode is presented in
Appendix B. We leave the detailed description of the used benchmarks and datasets in Appendix C
and present the implementation details in Appendix D.
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A ADDITIONAL DERIVATION

A.1 OBJECTIVE FOR HIGH-LEVEL PLANNER

In this section, we adopt the probabilistic inference to formulate our objective based on the Levine
(2018). We assume that the training goal for behavior cloning is to minimize the distance between
the optimal trajectory p(τ) formulated in Eq. 2 and the rollout trajectory p̂(τ). p̂(τ) is required
to predict the next global state s′t+1 that is not far from the offline dataset. Therefore, we could
formulate p̂(τ) as below,

p̂(τ) =

[
p(s1)

T∏
t=1

p(st+1|o1:Kt , c1:Kt )

]
T∏

t=1

q(s′t+1|c1:Kt ), (12)

where q(·) is a predefined predictor, c1:Kt is the learned common skill. A practical way to match
this objective is by adopting an optimization-based approximate inference approach. In this article,
we minimize the KL-divergence between the approximated trajectory and the optimal trajectory to
achieve this objective,

DKL(p̂(τ)∥p(τ)) = −Eτ∼p̂(τ) [log p(τ)− log p̂(τ)] . (13)
In this way, we derive Eq. 13 and obtain the planner’s objective,
−DKL(p̂(τ)∥p(τ)) = Eτ∼D [log p(τ)− log p̂(τ)]

= Eτ∼D

[
log p(s1) +

T∑
t=1

(log p(st+1|o1:Kt , c1:Kt ) + r(st, c
1:K
t ))−

log p(s1)−
T∑

t=1

(log p(st+1|o1:Kt , c1:Kt ) + log q(s′t+1|o1:Kt , c1:Kt ))

]

= Eτ∼D

[
T∑

t=1

r(st, c
1:K
t )− log q(s′t+1|o1:Kt , c1:Kt )

]

=

T∑
t=1

Eτ∼D
[
r(st, c

1:K
t )− log q(s′t+1|o1:Kt , c1:Kt )

]
.

(14)

A.2 OBJECTIVE FOR LOW-LEVEL CONTROLLER

To formulate the objective for our fine-grained action controller, we perform the controller as a
generative model and introduce the variational inference. With the help of Jensen’s inequality, we
formulate the ELBO as below,

log p(a) = log

∫
z

p(a, z)
q(z|o)
q(z|o)

= logEq(z|o)

[
p(a, z)

q(z|o)

]
≥ Eq(z|o) [log p(a, z)]− Eq(z|o) [log q(z|o)]
= Eq(z|o) [p(a|z) · p(z)]− Eq(z|o) [log q(z|o)]→ ELBO,

(15)

where q(·) is a predefined encoder, o denotes the local observation of each agent, and z denotes
the task embedding. Practically, we introduce a task-guided controller πθl as p(a|z) and a task
discriminator gω as q(z|o). The prior distribution p(z) is unreachable to each task during training
and we use p(Di) to represent the prior distribution of skill z in each task. We also embed the
common skill ct and local observation ot into πθl . Thus, we rewrite Eq. 15 and formulate the
objective of our low-level controller in a decentralized manner,
LController(θc, ω) = −LELBO

= −EDi∼D

[
Egω(zi

t|oit)
[
log πθl(a

i
t|zit, oit, cit)

]
+ Egω(zi

t|oit)

[
log

p(Di)

gω(zit|oit)

]]
= −EDi∼D

[
Egω(zi

t|oit)
[
log πθl(a

i
t|zit, oit, cit)

]
−DKL(z

i
t∥p(Di)))

]
,

(16)
where i denotes the current task and D indecates the offline d ataset.
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A.3 BRIDGING KL-DIVERGENCE AND CONTRASTIVE LEARNING

In this section, we illustrate how to bridge the contrastive loss to approximate the KL-divergence in
Eq. 8 We first introduce a lemma. Then we give a proof of Theorem 3.1.

Lemma A.1. Given Di ∼ DT as the the current task’s data distribution. Denote x as the local
observations sampled from the offline data x ∼ Di, gω is the task-specific skill encoder, skill z ∼
gω(z|x). Then we have,

p(z|Di)

p(z)
=

∫
p(x|Di)p(z|x,Di)

p(z)
dx =

∫
p(x)gω(z|x)

p(z)
dx = Ex

[
gω(z|x)
p(z)

]
. (17)

Theorem 3.1. Denote a set of N training tasks with their offline data DT , Di is the data of the
sampled task. Let random variables x be some observations sampled from Di, skill z ∼ gω(z|x),
h(x, z) = gω(z|x)

p(z) , p(Di) is the prior distribution of current task i, then we have

−EDi,z,x

[
log

h(z, x)∑
Dj∈DT h(z, xj)

]
≥ −Ex∼Di

[
DKL(g(·|x)∥p(Di)

]
(9)

where xj are observations sampled from task Dj and i ∈ {1, 2, · · · , N}.

Proof. We introduce the mutual information I(z,Di) between the learned skill z and the current
task’s data distribution Di, and rewrite the inequality as below,

−EDi,z,x

[
log

h(z, x)∑
D∗∈DT h(z, x∗)

]
≥ I(z;Di) ≥ −Ex∼Di

[
DKL(g(·|x)∥p(Di)

]
(18)

For the left side:

I(z;Di) = EDi,z

[
log

p(z|Di)

p(z)

]
(a)
= EDi,z

[
logEx

[
gω(z|x)
p(z)

]]
≥ EDi,z,x

[
log

gω(z|x)
p(z)

]
= −EDi,z,x

[
log

(
p(z)

gω(z|x)
N

)]
+ logN

≥ −EDi,z,x

[
log

(
1 +

p(z)

gω(z|x)
(N − 1)

)]
+ logN

≥ −EDi,z,x

[
log

(
1 +

p(z)

gω(z|x)
(N − 1) E

D∗∈DT \i

gω(z|x∗)

p(z)

)]
+ logN

= −EDi,z,x

log
1 +

p(z)

gω(z|x)
∑

D∗∈DT \i

gω(z|x∗)

p(z)

+ logN

= EDi,z,x

log
 gω(z|x)

p(z)

gω(z|x)
p(x) +

∑
D∗∈DT \i

gω(z|x∗)
p(z)

+ logN

≥ EDi,z,x

log
 gω(z|x)

p(z)∑
D∗∈DT

gω(z|x∗)
p(z)


= EDi,z,x

[
log

h(z, x)∑
D∗∈DT h(z, x∗)

]
,

(19)

where N is the number of the task set DT . Here, (a) is derived from Lemma A.1.
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For the right side:

I(z;Di) =

∫ ∫
gω(z, x) log

gω(z|x)
gω(z)

dzdx

=

∫ ∫
gω(z, x) log gω(z|x)dzdx−

∫
gω(z) log gω(z)dz

(b)

≤
∫ ∫

gω(z, x) log gω(z|a)dzdx−
∫

gω(z) log p(Di)dz

=

∫ ∫
gω(x)gω(z|x) log

gω(z|x)
p(Di)

dzdx

= Ex∼Di

[∫
gω(z|x) log

gω(z|x)
p(Di)

dz

]
= Ex∼Di

[
DKL(gω(·|x)∥p(Di))

]

(20)

The inequality at (b) is derived from DKL(gω(·)∥p(Di) ≥ 0.

B PSEUDOCODE FOR HISSD

Algorithm 1 HiSSD for Offline Multi-Task MARL
1: Inputs:
2: High-Level Planner πθh , Low-Level Controller πθl , Value Net V tot

ξ and V̄ tot
ξ̄ , Forward Predictor fϕ, Task-

Specifc Skill Encoder gω , Training Steps T , Task Numbers N , Offline Multi-Task Dataset DT , Current
Training Task i and its data Di ∼ DT , Agent Numbers {Ki}Ti=1, Batch Size B, learning rate δ, target
update rate τ .

3: Training:
4: for each timestep n in 1..N do
5: Di ∼ DT # Sample one task data from the offline dataset.
6: {st, rt, {ot, at, ot+1}Kk=1}Bj=1 ∼ Di

7: c1:kt ← πθh(o
1:k
t ) # Infer common skills.

8: Compute V tot
ξ (o1:kt ), V̄ tot

ξ̄ (o1:kt+1), and V̄ tot
ξ̄ (fϕ(c

1:k
t )) with st

9: s′t+1 ← fϕ(c
1:k
t )

10: z1:kt ← gω(o
1:k
t ) # Infer task-specific skills.

11: a′1:k
t ← πθl(z

1:k
t , o1:kt , c1:kt )

12: Optimizing Eq. 5 with V tot
ξ (o1:kt ), V̄ tot

ξ̄ (o1:kt+1), and rt

13: Optimizing Eq. 7 with V tot
ξ (o1:kt ), V̄ tot

ξ̄ (fϕ(c
1:k
t )), rt, and s′t+1

14: Optimizing Eq. 11 with c1:kt , z1:kt , a′1:k
t , and samples from other tasks

15: end for
16: Execution:
17: for each timestep t in current environment do
18: c1:kt ← πθh(o

1:k
t ) # Infer common skills.

19: zt ← gω(o
1:k
t ) # Infer task-specific skills.

20: a1:k
t ← πθl(z

1:k
t , o1:kt , c1:kt )

21: end for

C BENCHMARKS AND DATASETS

C.1 SMAC

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a widely used cooperative
multi-agent testbed that contains diverse StarCraft micromanagement scenarios. In this paper, we
utilize three distinct SMAC task sets defined by Zhang et al. (2022): Marine-Hard and Marine-Easy
to evaluate the capacity of transferring policy to unseen tasks. The Marine-Hard and Marine-Easy
task sets include various marine battle scenarios, and the trained multi-agent policy needs to control
groups of allied marines to confront equivalent or superior numbers of built-in-AI enemy marines.
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It aims to test the capacity of policy transfer in heterogeneous scenarios. Detailed attributes of these
task sets are enumerated in Tables 4 and 5.

Table 4: Descriptions of tasks in the Marine-Easy task set.

Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric
10m 10 Marines 10 Marines homogeneous & symmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
6m 6 Marines 6 Marines homogeneous & symmetric
7m 7 Marines 7 Marines homogeneous & symmetric
8m 8 Marines 8 Marines homogeneous & symmetric
9m 9 Marines 9 Marines homogeneous & symmetric
11m 11 Marines 11 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

Table 5: Descriptions of tasks in the Marine-Hard task set.

Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric

5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
9m_vs_10m 9 Marines 10 Marines homogeneous & asymmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric

10m 10 Marines 10 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

7m_vs_8m 7 Marines 8 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

10m_vs_11m 10 Marines 11 Marines homogeneous & asymmetric
10m_vs_12m 10 Marines 12 Marines homogeneous & asymmetric
13m_vs_15m 13 Marines 15 Marines homogeneous & asymmetric

As stated in the experiments section, we utilize the same offline multi-task dataset as Zhang et al.
(2022) to maintain a fair comparison. Definitions of these four qualities are listed below:

• The expert dataset contains trajectory data collected by a QMIX policy trained with
2, 000, 000 steps of environment interactions. The test win rate of the trained QMIX policy
(as the expert policy) is recorded for constructing medium datasets.

• The medium dataset contains trajectory data collected by a QMIX policy (as the medium
policy) whose test win rate is half of the expert QMIX policy.

• The medium-expert dataset mixes data from the expert dataset and the medium dataset to
acquire a more diverse dataset.

• The medium-replay dataset is the replay buffer of the medium policy, containing trajectory
data with lower qualities.

The Properties of offline datasets with different qualities are detailed in Table 6.

C.2 MAMUJOCO

Multi-Agent MuJoCo (Peng et al., 2021) is a benchmark developed for assessing and comparing
the effectiveness of algorithms in continuous multi-agent robotic control. In MAMuJoCo, a robotic
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Table 6: Properties of offline datasets in SMAC with different qualities.

Tasks Quality Trajectories Average Return Average Win Rate

3m

expert 2000 19.8929 0.9910
medium 2000 13.9869 0.5402
medium-expert 4000 16.9399 0.7656
medium-replay 3603 N/A N/A

5m

expert 2000 19.9380 0.9937
medium 2000 17.3288 0.7411
medium-expert 4000 18.6334 0.8674
medium-replay 711 N/A N/A

10m

expert 2000 19.9438 0.9922
medium 2000 16.6297 0.5413
medium-expert 4000 18.2595 0.7626
medium-replay 571 N/A N/A

5m_vs_6m

expert 2000 17.3424 0.7185
medium 2000 12.6408 0.2751
medium-expert 4000 14.9916 0.4968
medium-replay 32607 N/A N/A

9m_vs_10m

expert 2000 19.6140 0.9431
medium 2000 15.5049 0.4146
medium-expert 4000 17.5594 0.6789
medium-replay 13731 N/A N/A

system is partitioned into independent agents, each tasked with controlling a specific set of joints
to accomplish shared objectives. To conduct offline multi-task learning, we choose HalfCheetah-
v2 as our base scenarios and partition the robotic system into six agents. Besides the complete
HalfCheetah robot, we design six new tasks by disabling each agent. Therefore, our MAMuJoCo
multi-task data comprises seven tasks. Each task’s name corresponds to the joint controlled by the
disabled agent. We follow Wang et al. (2023) and generate offline data using the policy trained by
HAPPO (Kuba et al., 2022a). The hyperparameter env_args.agent_obsk (determines up to
which connection distance agents will be able to form observations) is set to 1. We list the average
return of our datasets in Table 7.

Table 7: Properties of offline datasets on HalfCheetah-v2 in MAMuJoCo.

Tasks Trajectories Average Return
complete 100 2881.63

back thigh 100 2764.65
back foot 100 2880.78

front thigh 100 2011.00
front shin 100 3048.01

D IMPLEMENTATION DETAILS

D.1 DETAILS OF HISSD IN SMAC

We follow prior works and decompose the observation to process the varying observation sizes
among tasks. The local observation oi is decomposed into several portions, the one including agent
i’s own information oown

i , and the other contains other entities’ information {oentityi,j }. To embed
these portions, we utilize the transformer model which can parallel process multiple tensors. Each
portion is embedded by a separate fully connected layer with an output dimension of 64, and the
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Figure 4: Overall framework of Hi-SSD in SMAC. HiSSD utilizes a hierarchical framework that
jointly learns common and task-specific skills from offline multi-task data to improve multi-agent
policy transfer. (a) The high-level planner with common skills. HiSSD integrates cooperative tem-
poral knowledge into common skills and enables an offline exploration. (b) The low-level controller
with task-specific skills. The task-specific knowledge can guide the action execution adaptively
among tasks. (c) HiSSD uses an implicit Q-learning objective to train the value network.

transformer processes these embedding according to the attention mechanism,

Q = WQ([oown
i , oentity

i,1 , . . . ]),K = WK([oown
i , oentity

i,1 , . . . ]), V = WV ([oown
i , oentity

i,1 , . . . ]),

[eown
i , eentity

i,1 , . . . ] = softmax
(
QKT
√
dK

)
V,

where [oown
i , oentity

i,1 , . . . ] = Decompose(oi), dK = dim(K).

(21)

The common skill encoder, the task-specific skill encoder, the individual value network, and the
action decoder are represented by a 1-layer transformer with 64 units’ hidden layer to process the
decomposed observation. The mixing value network is represented by the attention block following
Zhang et al. (2022). The forward predictor is represented by two 1-layer transformers. To tackle the
partial observability, we append the history hidden state hi

t−1 in each agent’s common skill encoder,
value net, and action decoder when applying self-attention and thus get the output of hi

t.

The common skills are inferred by the common skill encoder and then fed into the forward pre-
dictor and action decoder for predicting the next global state and executing real action. We use a
transformer to merge other enemies’ information and then utilize another transformer to process
all allies’ and enemies’ information to predict the next global state. We concatenate the decom-
posed information outputted by the action decoder with the task-specific skills and feed them into
an MLP to get the real actions. Figure 4 illustrates the overall framework of HiSSD in SMAC. The
hyperparameters used in SMAC are listed in Table 8.
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Table 8: Hyperparameters of HiSSD for offline multi-task SMAC.

Hyperparameter Setting
Hidden layer dimension 64
Hidden units in MLP 128
Attention dimension 64
Skill dimension per token 64
Discount factor γ 0.99
α 10
β 0.05
ϵ 0.9
Trajectories per batch 32
Training steps 30000
Optimizer Adam
Learning rate 0.0001
Weight decay 0.0001

D.2 DETAILS OF HISSD IN MAMUJOCO

The observation shapes are consistent among tasks and we do not apply the observation decom-
position deployed in SMAC. The common skill encoder, the task-specific skill encoder, the value
network, the forward predictor, and the action decoder are represented by a 1-layer transformer with
64 units’ hidden layer to process the decomposed observation. The common skills are inferred by
the common skill encoder and then fed into the forward predictor and action decoder for predicting
the next global state and executing real action. We concatenate the decomposed information out-
putted by the action decoder with the task-specific skills and feed them into an MLP to get the real
actions. The hyperparameters used in MAMuJoCo are listed in Table 9.

Table 9: Hyperparameters of HiSSD for offline multi-task MAMuJoCo.

Hyperparameter Setting
Hidden layer dimension 256
Hidden units in MLP 256
Attention dimension 256
Skill dimension per token 256
Discount factor γ 0.99
Target update rate 0.005
α 10.0
β 2.0
ϵ 0.9
Batch size 128
Training steps 1000000
Optimizer Adam
Learning rate 0.0005

D.3 TRAINING COSTS

The training process of HiSSD with an NVIDIA GeForce RTX 3090 GPU and a 32-core CPU costs
12-14 hours typically. Our released implementation of HiSSD follows Apache License 2.0, the same
as the PyMARL framework.
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E ADDITIONAL RESULTS

E.1 RESULTS ON OTHER TASK SET IN SMAC.

We conduct experiments in two offline multi-task task sets: Marine-Easy and Marine-Hard. In
addition to the results in the Marine-Hard task set presented in Table 1, we report the results in the
Marine-Easy in Table 10. HiSSD gains convincing performance in most source and unseen tasks
compared to other baselines. Despite all that, HiSSD still obtains a similar performance compared
to other baselines, indicating the validity of the Hi-SSD algorithm.

Table 10: Average test win rates in the Marine-Easy task set with different data qualities. Results of
BC-best stands for the best test win rates between BC-t and BC-r.

Tasks Expert Medium
BC-best UPDeT-m ODIS Hi-SSD (Ours) BC-best UPDeT-m ODIS Hi-SSD (Ours)

Source Tasks

3m 94.5± 4.6 83.6±12.6 97.7± 2.6 99.5± 8.1 67.2± 4.7 60.2±29.9 57.8± 9.2 74.7±14.6
5m 94.4± 7.6 74.8±22.9 95.3± 5.2 99.9± 0.0 79.2± 5.9 67.8± 5.9 82.8± 5.2 81.6±10.8
10m 86.1±22.7 83.6±19.2 88.3±20.3 95.2± 8.4 63.1± 7.2 48.8± 7.9 71.9± 6.6 84.8± 8.6

Unseen Tasks

4m 91.2± 1.6 53.0±32.3 90.6± 7.0 94.4± 2.9 62.5±11.6 41.7±17.4 63.3±16.1 74.5±15.5
6m 75.3±22.6 37.9± 8.6 79.7±17.5 99.7± 0.3 86.0± 4.7 75.8±22.7 89.8±17.6 88.0±10.0
7m 70.3±11.0 44.2±13.2 72.7±16.9 99.1± 0.7 99.9± 0.0 65.2±25.2 96.1± 1.4 97.3± 2.3
8m 74.7±16.5 51.7±26.2 80.9±14.4 99.8± 0.3 96.9± 2.2 88.4±13.7 97.7± 2.6 93.8± 5.2
9m 97.7± 2.6 76.3±13.4 99.2± 1.4 99.9± 0.0 78.9±11.8 64.8±35.6 87.5± 2.2 75.2±15.5
11m 83.3±11.8 53.6±22.4 83.6±12.4 99.2± 0.8 42.2± 4.7 23.4±11.8 64.7± 3.1 62.0±21.8
12m 56.7±30.0 44.3±22.8 70.3±30.2 99.7± 1.1 29.7±23.4 13.5±11.7 41.4± 6.0 55.5±25.7

Medium-Expert Medium-Replay

Source Tasks

3m 81.3±18.8 48.4±36.8 89.8± 9.7 90.9± 5.9 77.8± 3.2 29.7±10.0 79.7± 4.7 87.7± 2.9
5m 74.0± 2.9 64.1±17.9 83.7±16.0 79.4± 6.9 5.5± 5.6 6.2±10.8 3.1± 5.4 87.5± 2.9
10m 90.6± 3.1 68.8±23.8 93.8± 4.4 60.2±21.1 0.0± 0.0 0.0± 0.0 0.0± 0.0 84.2±4.9

Unseen Tasks

4m 35.2±38.0 43.7±25.0 57.8±18.8 70.9± 9.1 67.2± 4.7 25.0±22.6 25.0± 5.4 71.6± 4.1
6m 42.2± 1.6 47.7±30.0 76.0± 6.0 70.6± 6.1 7.8±10.2 0.0± 0.0 3.1± 5.4 99.8± 0.3
7m 65.6±16.4 57.8±32.9 66.4±14.6 85.0±11.7 0.8± 1.4 0.0± 0.0 0.0± 0.0 99.8± 0.3
8m 40.3±42.6 40.6±19.3 43.8±11.5 72.8± 9.5 0.8± 1.4 0.0± 0.0 1.6± 1.6 96.7± 0.3
9m 70.8±16.6 47.7±24.8 73.4±16.2 80.0±14.6 0.8± 1.4 0.0± 0.0 0.0± 0.0 88.8± 1.3
11m 55.5±12.4 85.9±14.2 68.8±20.3 70.9± 5.9 0.0± 0.0 0.0± 0.0 0.0± 0.0 45.6± 4.5
12m 29.7±29.8 46.1±15.5 62.5± 8.0 62.7± 7.8 0.0± 0.0 0.0± 0.0 0.0± 0.0 38.0± 3.7

E.2 SENSITIVITY ANALYSIS OF HYPER-PARAMETERS.

To investigate the model’s sensitivity analysis to β in Eq. 11, we conduct experiments on Marine-
Hard task set in SMAC with expert data qualities. We list the results in Table 11. An appropriate
β can ensure that the task-specific skills achieve a fair trade-off between distinguishing different
tasks and extracting useful information for action execution. Empirical results indicate that HiSSD
is quite robust to different value of β. When β is very small, the performance of the HiSSD becomes
poor due to the lack of task-informed regularization.

F ADDITIONAL RESULTS FOR REBUTTAL

F.1 COMPARED TO HYGEN

HyGen (Zhang et al., 2024) is a recent work that focuses on integrating offline pertaining and online
exploration to speed up multi-task MARL for policy transfer. HyGen first pre-trains the skill space
with an action decoder using the global information, then implements online exploration to maintain
a hybrid replay buffer using offline and online data, improving the high-level policy and refining the
action decoder simultaneously. Compared to HyGen, our method requires no online exploration
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Table 11: Average test win rates on Marine-Hard task set in SMAC with expert data qualities for
the model’s sensitivity analysis to β. β controls the margin of regularization in Eq. (14).

Tasks Expert
β = 0.001 β = 0.01 β = 0.1 β = 1 β = 0.05 (Ours)

Source Tasks

3m 99.8± 0.3 99.9± 0.0 96.8± 4.5 99.5± 0.2 99.5± 0.3
5m6m 65.3± 1.1 64.7± 2.4 64.5± 4.9 65.9± 2.7 66.1± 7.0
9m10m 95.4± 2.6 95.3± 0.3 94.3± 0.6 92.0± 2.4 95.5± 2.7

Unseen Tasks

4m 98.3± 1.9 97.7± 0.6 97.5± 2.2 98.8± 0.3 99.2± 1.2
5m 99.0± 0.8 98.8± 0.3 99.0± 0.9 99.1± 0.8 99.2± 1.2
10m 97.5± 1.4 98.6± 0.3 96.7± 3.4 97.3± 1.3 98.4± 0.8
12m 64.8±14.9 66.9±22.0 68.1±30.3 75.2±20.3 75.5±17.9
7m8m 34.0± 5.5 35.4±12.0 36.5±13.0 40.6± 5.3 35.3± 9.8
8m9m 50.8±13.3 40.2± 2.8 58.1±13.0 41.3± 7.2 47.0± 6.2
10m11m 79.4± 2.3 79.6± 7.4 80.6±17.4 76.7±15.8 86.3±14.6
10m12m 7.7± 1.6 11.2±10.6 7.9± 3.1 14.4± 8.5 14.5± 9.1
13m15m 1.0± 0.8 1.7± 1.6 1.0± 1.1 2.1± 1.8 1.3± 2.5

and pretraining steps. HyGen only conducts common skills learning while our method leverages
task-specific skills to complement the common skills discovery. We compare our method to HyGen
in the SMAC’s Marine hard task set and propose the empirical results in Table 12. When the data
quality is near-optimal (i.e., Expert), HiSSD outperforms HyGen on most tasks, and when the data
quality is medium, HyGen benefits from online exploration and further improves policy.

Table 12: Average test win rates of the best policies over five random seeds in the task set Marine-
Hard with Expert and Medium data qualities. Results of BC-best stands for the best test win rates
between BC-t and BC-r.

Tasks Expert Medium
BC-best HyGen HiSSD (Ours) BC-best HyGen HiSSD (Ours)

Source Tasks

3m 97.7± 2.6 99.1± 1.0 99.5± 0.3 65.4±14.7 91.5±11.0 62.7± 5.7
5m6m 50.4± 2.3 61.2± 8.0 66.1± 7.0 21.9± 3.4 31.6± 7.0 26.4± 3.8
9m10m 95.3± 1.6 96.4± 3.0 95.5± 2.7 63.8±10.9 79.2± 4.0 73.9± 2.3

Unseen Tasks

4m 92.1± 3.5 95.8± 4.0 99.2± 1.2 48.8±21.1 91.4± 8.0 77.3±10.2
5m 87.1±10.5 99.5± 1.0 99.2± 1.2 76.6±14.1 96.5± 6.0 88.4± 8.4
10m 90.5± 3.8 93.5± 5.0 98.4± 0.8 56.2±20.6 96.4± 3.0 98.0± 0.3
12m 70.8±15.2 85.2± 6.0 75.5±19.7 24.0±10.5 81.5±14.0 86.4± 6.0
7m8m 18.8± 3.1 28.9±12.0 35.3± 9.8 1.6± 1.6 24.5± 9.0 14.2±10.1
8m9m 15.8± 3.3 25.7± 9.0 47.0± 6.2 3.1± 3.8 24.5± 9.0 15.3± 2.8
10m11m 45.3±11.1 57.2±13.0 86.3±14.6 19.7± 8.9 47.2±13.0 43.6± 4.6
10m12m 1.0± 1.5 13.8± 4.0 14.5± 9.1 0.0± 0.0 5.2± 2.0 0.6± 0.5
13m15m 0.0± 0.0 9.5± 5.0 1.3± 2.5 0.6± 1.3 9.3± 6.0 1.4± 2.4

F.2 EXTENDED RESULTS IN SMAC

We follow the multi-task learning settings in Zhang et al. (2022) and conduct experiments on Stalker-
Zealot task set. The results are presented in Tables 13 and 14. Compared to ODIS, we find that
HiSSD obtains competitive performance and surpasses ODIS when the dataset is generated by near-
optimal policy (i.e., Expert and Medium-Expert). Moreover, both of the skill-learning-based meth-
ods fail to outperform BC-based methods in some tasks. We suspect this is due to the different
task properties between Marine and Stalker-Zealot task set. The controlled items in Marine task set
are homogeneous while in Stalker-Zealot are heterogeneous. Therefore, it is more difficult for the
policy to learn cooperative patterns from the limited dataset in the Stalker-Zealot task set and obtain
convincing performance in unseen tasks.
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Table 13: Average test win rates in the Stalker-Zealot task set with different data qualities.

Data Qualities BC-best UPDeT-m ODIS HiSSD

Source Tasks

Expert 87.9± 5.6 30.2±26.6 82.0± 6.3 89.3± 4.0
Medium 28.6±10.1 26.5±19.2 37.0± 9.1 24.6± 7.3
Medium-Expert 52.9±17.9 48.5±25.1 47.1±13.9 55.9± 9.7
Medium-Replay 13.2± 5.4 15.6±13.2 14.1± 8.8 10.8± 1.6

Target Tasks

Expert 60.9±19.0 13.8±13.2 62.8± 7.5 69.2± 8.7
Medium 19.8±14.1 10.1±11.8 24.7± 8.4 16.6± 7.4
Medium-Expert 37.5±17.4 18.6±14.1 38.2±11.9 40.3±12.8
Medium-Replay 13.6±7.6 10.7±11.8 11.0±10.8 13.6± 4.8

Table 14: Average test win rates in the Stalker-Zealot task set with different data qualities. Bold
represents the best score in each task and red indicates HiSSD performs better than ODIS.

Tasks Expert Medium
BC-best UPDeT-m ODIS Hi-SSD (Ours) BC-best UPDeT-m ODIS Hi-SSD (Ours)

Source Tasks

2s3z 93.1± 4.6 50.0±33.4 97.7± 2.6 95.2± 1.0 48.8± 9.8 35.0±23.0 49.2± 8.4 32.3±11.7
2s4z 78.1± 8.1 23.4±26.6 60.9± 6.8 79.8± 6.0 12.5± 8.1 18.8±10.3 32.8±12.2 17.0± 2.2
3s5z 92.5±4.2 17.2±19.8 87.5± 9.6 92.8± 5.0 24.4±12.4 25.6±24.2 28.9± 6.8 24.4± 7.9

Unseen Tasks

1s3z 45.6±23.8 1.6± 1.6 76.6± 3.5 81.6±15.2 21.9±37.6 3.8± 5.0 41.4±18.8 44.2± 9.9
1s4z 60.0±32.3 26.6±19.3 17.2±10.5 42.0±26.1 6.2± 7.7 2.5± 3.6 50.7± 7.5 18.1±11.0
1s5z 45.6±26.9 29.7±26.4 2.5 ± 2.3 16.7±12.3 3.1± 2.6 5.0± 4.2 14.1± 8.4 2.5± 2.2
2s5z 75.6±11.9 23.4±22.2 27.3± 6.0 79.7± 2.2 14.4± 9.0 16.9±14.1 32.0± 4.6 11.3± 3.7
3s3z 80.6± 9.1 20.3±10.9 89.1± 5.2 88.0± 4.5 45.6±14.6 24.4±28.6 23.4± 9.2 21.9±10.7
3s4z 92.5± 5.1 12.5±19.9 96.9± 2.2 88.1± 9.0 40.0±19.0 28.8±31.6 50.8±15.5 17.2± 4.5
4s3z 67.5±19.8 6.2± 4.4 64.1±13.0 88.6± 4.1 28.8±26.4 11.2±18.0 13.3± 7.5 31.9±23.2
4s4z 53.1±18.4 7.8±13.5 79.7±10.9 73.4± 5.2 20.0±12.0 1.2± 1.5 12.5± 7.0 13.2± 6.5
4s5z 40.6±19.1 5.5± 7.8 86.7±12.6 65.6± 3.7 14.4± 8.5 5.6± 8.5 7.0± 4.1 4.5± 1.3
4s6z 48.1±23.8 4.7± 6.4 88.3± 8.4 68.4± 4.9 3.8± 3.6 1.9± 2.5 1.6± 1.6 0.9± 0.9

Medium-Expert Medium-Replay

Source Tasks

2s3z 57.5±25.1 57.5±27.1 58.6±15.5 68.1± 8.1 3.1± 2.6 14.4±13.2 15.6±18.2 9.0± 1.5
2s4z 37.5±15.3 53.1±24.6 41.4± 7.8 41.9±10.2 5.2± 7.4 12.5± 9.7 7.8± 5.2 6.0± 1.2
3s5z 63.1±13.3 35.0±23.5 41.4±18.5 57.8±10.7 31.3± 6.3 20.0±16.6 18.8± 3.1 17.5± 2.0

Unseen Tasks

1s3z 55.6±37.7 4.4± 8.8 72.7±12.2 73.0±10.2 24.0±15.4 0.0± 0.0 21.1±20.4 36.3± 7.1
1s4z 25.0±30.7 11.9± 9.8 44.5±20.3 32.3±30.5 2.1± 2.9 7.5±10.0 6.2± 7.7 24.8± 9.1
1s5z 14.4±19.4 3.8± 4.6 42.2±31.4 9.4± 9.5 7.3± 6.4 11.9± 9.6 7.8± 6.4 4.4± 2.2
2s5z 26.9±20.2 37.5±22.5 43.0±10.7 25.6± 7.8 12.5±15.5 20.0±16.8 14.1± 8.1 16.5± 2.8
3s3z 35.6±18.0 33.8±15.0 50.0±13.3 56.6±25.6 35.4±12.1 17.5±12.3 25.0±20.1 9.6± 3.3
3s4z 74.4±16.3 43.1±20.7 52.3± 9.5 71.7± 9.7 20.8± 9.0 15.6±11.2 19.5±16.6 22.5±10.6
4s3z 69.8± 7.8 23.8±21.0 17.2± 7.2 60.5±15.1 17.7± 5.3 11.2±15.0 8.6±14.9 11.0±10.4
4s4z 41.9±14.9 10.6±13.8 20.3± 6.8 37.3± 9.4 15.6± 6.8 5.6± 9.8 4.7± 8.1 9.4± 1.8
4s5z 17.3± 5.3 11.9±16.1 21.9± 2.2 17.0± 4.1 1.0± 1.5 10.6±19.7 0.8± 1.4 0.8± 0.8
4s6z 13.8± 3.2 5.0± 8.5 18.0± 5.1 19.7± 5.9 0.0± 0.0 6.9±13.8 2.3± 4.1 0.4± 0.3

F.3 EXTENDED RESULTS IN MAMUJOCO

It’s worth noting that the official code released by ODIS didn’t conduct experiments on MAMuJoCo
and we didn’t use ODIS as a baseline. Here we reproduce ODIS on MAMuJoCo environment and
report the results in Table 17. We use the same architecture and hyperparameters as HiSSD for a fair
comparison. The results demonstrate that our method outperforms ODIS in discrete and continuous
control tasks when generalized to unseen tasks.
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Table 15: Average test win rates on Marine-Hard task set in SMAC with expert data qualities for the
model’s sensitivity analysis to ϵ. ϵ balances the imitation and exploration in offline value estimation.

Tasks Expert
ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.7 ϵ = 0.9 (Ours)

Source Tasks

3m 99.6± 0.6 99.9± 0.0 99.4± 0.5 99.4± 0.5 99.5± 0.3
5m6m 73.5± 5.1 71.3± 3.3 70.8± 2.4 74.4± 1.5 66.1± 7.0
9m10m 98.3± 0.3 97.1± 0.3 99.0± 0.3 96.7± 0.6 95.5± 2.7

Unseen Tasks

4m 97.7± 1.6 99.0± 0.3 99.0± 0.8 98.4± 0.5 99.2± 1.2
5m 99.8± 0.3 99.8± 0.3 99.2± 0.3 99.1± 1.2 99.2± 1.2
10m 99.2± 0.8 98.5± 1.6 99.2± 0.3 99.2± 0.3 98.4± 0.8
12m 69.0±33.7 67.9±17.0 71.0±26.0 87.5± 7.6 75.5±17.9
7m8m 29.2± 2.8 23.1± 4.9 32.7± 3.8 25.4± 2.9 35.3± 9.8
8m9m 46.0±16.6 47.5± 9.2 45.4±14.8 44.6±11.4 47.0± 6.2
10m11m 82.1± 4.3 81.4± 9.7 80.4± 3.1 72.3±13.8 86.3±14.6
10m12m 11.5± 6.9 9.4± 5.9 8.1± 2.2 7.3± 5.5 14.5± 9.1
13m15m 0.2± 0.3 0.4± 0.6 0.6± 0.5 0.4± 0.6 1.3± 2.5

Table 16: Average test win rates on Marine-Hard task set in SMAC with expert data qualities for
the model’s sensitivity analysis to α. α weights the TD-residual Eq. 7.

Tasks Expert
α = 1 α = 5 α = 20 α = 10 (Ours)

Source Tasks

3m 99.2± 0.6 99.9± 0.0 99.8± 0.3 99.5± 0.3
5m6m 70.8± 4.7 71.0± 2.9 66.5± 1.1 66.1± 7.0
9m10m 97.1± 1.8 97.9± 2.1 93.4± 1.6 95.5± 2.7

Unseen Tasks

4m 98.4± 0.0 98.1± 0.5 99.0± 0.6 99.2± 1.2
5m 99.8± 0.3 99.8± 0.3 98.8± 1.8 99.2± 1.2
10m 99.4± 0.5 99.4± 0.9 99.0± 0.3 98.4± 0.8
12m 59.2±36.2 63.8±33.6 66.5±26.5 75.5±17.9
7m8m 34.5± 5.0 34.8±10.3 34.6± 2.8 35.3± 9.8
8m9m 46.3± 2.5 59.2±13.3 53.3± 3.6 47.0± 6.2
10m11m 83.3± 8.2 77.9±13.7 77.3± 6.8 86.3±14.6
10m12m 10.2± 4.1 8.3± 8.3 11.9± 6.7 14.5± 9.1
13m15m 2.5± 3.5 0.2± 0.3 1.3± 1.8 1.3± 2.5

Table 17: Average scores on HalfCheetah-v2 multi-task datasets in MAMuJoCo. The ODIS method
is reproduced by ourselves.

Tasks BC ODIS HiSSD(ours)

Source Tasks

complete 3188.16±566.68 3677.66±174.82 4450.57±126.36
back thigh 3324.22± 58.49 2381.62±198.59 3698.38± 13.98
back foot 3079.01±355.66 2713.40±195.63 3197.83± 6.99
front thigh 1861.53±415.80 2684.99±249.70 1948.74± 81.24
front shin 1819.94±273.96 3944.78±219.72 3468.32±290.72

Unseen Tasks

back shin 1964.55±268.24 3217.59±184.15 3472.12± 91.95
front foot 3468.40±369.40 3930.82±342.16 4165.29±338.96

F.4 ADDITIONAL ABLATION STUDY

We conduct experiments to analyze the model’s sensitivity of ϵ in Eq. 5 and α in Eq. 7. The
results are presented in Tables 15 and 16, respectively. Although our method leverages additional
components and objectives compared to previous methods, the empirical results indicate that our
method is quite robust under different hyperparameter settings.
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Figure 5: Visualization of learned common and task-specific skills. We use HiSSD to collect trajec-
tories on five tasks in SMAC and partition these trajectories into four time windows. Plots in each
figure represent the distribution of skills. We use multiple time windows to indicate the skill flow.

To demonstrate the effectiveness of learning task-specific skills, we conduct a variant of HiSSD
named w/o Specific and present the empirical results in Table 18. We find that policy with only
common skills significantly outperforms the BC-based method, learning both skills further improves
the transfer capability of the policy.

Table 18: Additional ablation studies on HiSSD. We report average test win rates of the best policies
over five random seeds in the task set Marine-Hard with different data qualities.

Data Qualities w/o Specific BC-best HiSSD

Source Tasks

Expert 85.9±16.4 81.1±21.8 84.5±17.1
Medium 53.1±20.0 50.3±20.1 55.9±19.2
Medium-Expert 63.5±26.1 41.7±18.5 64.2±23.5
Medium-Replay 47.7±25.1 46.5±26.7 51.9±24.0

Target Tasks

Expert 55.0±37.4 46.8±36.8 61.2±37.4
Medium 37.6±34.2 25.6±26.8 48.6±40.1
Medium-Expert 51.2±34.3 38.8±33.0 57.6±37.5
Medium-Replay 42.8±36.2 41.2±33.7 48.7±39.0

To verify the distinction between common and task-specific skills, we visualize both skills and plot
the results in Figure 5. The empirical results indicate that the learned policy can distinguish different
kinds of skills at each stage of the episode, and no obvious overlap between these skills is observed.
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