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Abstract

Large Language Models (LLMs) have attained001
human-level fluency in text generation, which002
complicates the distinguishing between human-003
written and LLM-generated texts. This in-004
creases the risk of misuse and highlights the005
need for reliable detectors. Yet, existing006
detectors exhibit poor robustness on out-of-007
distribution (OOD) data and attacked data,008
which is critical for real-world scenarios. Also,009
they struggle to provide explainable evidence010
to support their decisions, thus undermining011
the reliability. In light of these challenges,012
we propose IPAD (Inverse Prompt for AI013
Detection), a novel framework consisting of014
a Prompt Inverter that identifies predicted015
prompts that could have generated the input016
text, and a Distinguisher that examines how017
well the input texts align with the predicted018
prompts. We develop and examine two ver-019
sions of Distinguishers. Empirical evalua-020
tions demonstrate that both Distinguishers per-021
form significantly better than the baseline meth-022
ods, with version2 outperforming baselines by023
9.73% on in-distribution data (F1-score) and024
12.65% on OOD data (AUROC). Furthermore,025
a user study is conducted to illustrate that IPAD026
enhances the AI detection trustworthiness by027
allowing users to directly examine the decision-028
making evidence which provide interpretable029
support for its state-of-the-art detection results.030

1 Introduction031

Large Language Models (LLMs), characterized032

by their massive scale and extensive training data033

(Chen et al., 2024), have achieved significant034

advances in natural language processing (NLP)035

(Ouyang et al., 2022; Veselovsky et al., 2023; Wu036

et al., 2025). However, with the advanced capa-037

bilities of LLMs, they are subject to frequent mis-038

used in various domains, including academic fraud,039

the creation of deceptive material, and the gen-040

eration of fabricated information (Ji et al., 2023;041

Pagnoni et al., 2022; Mirsky et al., 2023), which un- 042

derscores the critical need to distinguish between 043

human-written text (HWT) and LLM-generated 044

text (LGT) (Pagnoni et al., 2022; Yu et al., 2025; 045

Kirchenbauer et al., 2023). 046

However, due to their sophisticated function- 047

ality, LLMs pose significant challenges in the 048

robustness of current AI detection systems (Wu 049

et al., 2025). The existing detection systems, 050

including commercial ones, frequently misclas- 051

sify texts as HWT (Price and Sakellarios, 2023; 052

Walters, 2023) and generate inconsistent results 053

when analyzing the same text using different de- 054

tectors (Chaka, 2023; Weber-Wulff et al., 2023). 055

Studies show false positive rates reaching up to 056

50% and false negative rates as high as 100% in 057

different tools (Weber-Wulff et al., 2023) when 058

dealing with out-of-distribution (OOD) datasets. 059

Another critical issue with the existing AI detec- 060

tion systems is their lack of verifiable evidence (Ha- 061

laweh and Refae, 2024), as these tools typically 062

provide only simple outputs like "likely written by 063

AI" or percentage-based predictions (Weber-Wulff 064

et al., 2023). The lack of evidence prevents users 065

from defending themselves against false accusa- 066

tions (Chaka, 2023) and hinders organizations from 067

making judgments based solely on the detection 068

results without convincing evidences (Weber-Wulff 069

et al., 2023). This problem is particularly trouble- 070

some not only because the low accuracy of such 071

systems as mentioned before, but also due to the 072

consequent inadequate response to LLM misuse, 073

which can lead to significant societal harm (Stokel- 074

Walker and Van Noorden, 2023; Porsdam Mann 075

et al., 2023; Shevlane et al., 2023; Wu et al., 2025). 076

These limitations highlight the pressing need for 077

more reliable, explainable and robust detectors. 078

In this paper, we propose IPAD (Inverse Prompt 079

for AI Detection), a novel framework compris- 080

ing two key components as shown in Figure 1: a 081

Prompt Inverter that reconstructs prompts from 082
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Figure 1: The overall workflow of our proposed IPAD framework

input text, and a Distinguisher that classifies text083

as HWT or LGT. We consider and examine two dis-084

tinct approaches for the Distinguisher: the Prompt-085

Text Consistency Verifier evaluates direct alignment086

between predicted prompts and input text, while the087

Regeneration Comparator examines contents simi-088

larity by comparing input texts with the correspond-089

ing regenerated texts. Our framework introduces090

a paradigm shift in AI text detection by establish-091

ing an interpretable pipeline that reveals the un-092

derlying step-by-step reasoning process, therefore093

it enhances both detection robustness and explain-094

ability. Through comprehensive experiments com-095

paring these two Distinguishers, we demonstrate096

their respective strengths and limitations, providing097

new insights into how different text characteristics098

affect detection performance.099

Empirical evaluations demonstrate that both Dis-100

tinguishers significantly surpass baseline methods,101

with the Regeneration Comparator outperforming102

baselines by 9.73% (F1-score) on in-distribution103

data and 12.65% (AUROC) on out-of-distribution104

(OOD) data. Additionally, the Regeneration105

Comparator exhibits better performance than the106

Prompt-Text Consistency Verifier on attacked data107

with 3.78% (F1-score), and slightly better on OOD108

data with 0.13% (F1-score). Furthermore, a user109

study indicates that IPAD enhances the AI detec-110

tion experience and trustworthiness by allowing111

users to directly examine its decision-making evi-112

dence, which includes the predicted prompts and113

regenerated texts, and hence provide transparent114

and interpretable support for its state-of-the-art de-115

tection results. Code is anonymously available 1. 116

2 Methodology 117

In this section, we illustrate our method step by 118

step. First, we introduce the overall workflow. Af- 119

ter that, we demonstrate the details of supervised 120

fine-tuning (SFT) the Prompt Inverter and Distin- 121

guisher . 122

2.1 Workflow 123

IPAD consists of a Prompt Inverter and a Dis- 124

tinguisher, both fine-tuned on Microsoft’s open 125

model Phi3-medium-128k-instruct, which together 126

form a complete detection workflow as illustrated 127

in Figure 1. For the Distinguisher, we develop two 128

models and examine them in Section 3. 129

The Input Text (T ) is either human-written 130

(HWT) or LLM-generated (LGT), and it is pro- 131

cessed by the Prompt Inverter to predict the most 132

likely prompt that could have generated it. This 133

Predicted Prompt (P ) is assumed to be the input 134

that an LLM would have used to produce the text. 135

P = finv(T ) 136

where finv stands for Prompt Inverter. 137

For the next step, the Predicted Prompt (P ) is 138

fed into an LLM (we use ChatGPT, i.e. gpt-3.5- 139

turbo by default, and other LLMs for evaluations), 140

to generate a corresponding Regenerated Text (T ′). 141

T ′ = fLLM(P ) 142

1https://anonymous.4open.science/r/IPAD-Inver-Prompt-
for-AI-Detection–65B6/
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After that, we consider two Distinguishers. The143

first one is Prompt-Text Consistency Verifier, in144

which the Input Text (T ) and the Predicted Prompt145

(P ) are passed to the model.146

The Prompt-Text Consistency Verifier deter-147

mines whether the Predicted Prompt (P ) can rea-148

sonably generate the given Input Text (T ) using an149

LLM. The model outputs either a "yes" or "no"150

response. If the Predicted Prompt (P ) is likely to151

produce the Input Text (T ) when fed into the LLM,152

the model is expected to output "yes", indicating153

that the Input Text (T ) is likely LGT. Conversely,154

if the Predicted Prompt (P ) does not align well155

with the Input Text (T ), the model outputs "no",156

suggesting that the Input Text (T ) is less likely to157

have been generated by the LLM with the Pre-158

dicted Prompt (P ), and is therefore more likely to159

be HWT.160

S = fPTCV(T, P )161

where fPTCV stands for Prompt-Text Consistency162

Verifier in the Distinguisher.163

The second Distinguisher is Regeneration Com-164

parator, which considers both the Input Text (T )165

and the Regenerated Text (T ′).166

The Regeneration Comparator determines167

whether the Input Text (T ) aligns with the Regener-168

ated Text (T ′), and then outputs either a "yes" or169

"no" response. If the Input Text (T ) is LGT, the170

model is expected to output "yes," which indicates171

that both the Input Text (T ) and the Regenerated172

Text (T ′) were generated by an LLM from similar173

prompts. Conversely, if the Input Text (T ) is HWT,174

the model is expected to output "no," which signi-175

fies that the Input Text (T ) is meaningfully distinct176

from the Regenerated Text (T ′) and thus unlikely177

to have been generated by an LLM.178

S = fRC(T, T
′)179

where fRC stands for Regeneration Comparator in180

the Distinguisher.181

Finally, for both Distinguishers,182

Ŷ =

{
LGT, if S = Yes
HWT, if S = No

183

where Ŷ is the final decision of the Input Text (T ).184

2.2 Datasets185

2.2.1 Prompt Inverter186

The datasets used to fine-tune the Prompt Inverter187

include several widely adopted resources in the188

field. These are: 189

• Instructions-2M (Morris et al., 2024), a col- 190

lection of 2 million user and system prompts, 191

from which we used 30,000 prompts. 192

• ShareGPT (Zhang et al., 2024b), an open plat- 193

form where users share ChatGPT prompts and 194

responses, from which we used 500 samples. 195

• Unnatural Instructions (Zhang et al., 2024b), 196

a dataset of diverse, creative instructions gen- 197

erated by OpenAI’s text-davinci-002, from 198

which we used 500 samples. 199

• OUTFOX dataset (Koike et al., 2024), which 200

contains 15,400 essay problem statements, 201

student-written essays, and LLM-generated 202

essays. 203

The first three datasets aims to enhance the gen- 204

eral querying capability of the Prompt Inverter, 205

and are all released under the MIT license. All 206

the samples we used are the same to the samples 207

randomly selected in (Zhang et al., 2024a). The 208

last dataset aims to enhance the familiarity of the 209

Prompt Inverter with the data of the essay to de- 210

tect the LLM-generated essays, and are created and 211

examined by Koike et al. (2024), We specifically 212

used the LLM-generated essays and problem state- 213

ments for this supervised fine-tuning (SFT). 214

For all 45,400 training pairs, the format is stan- 215

dardized as follows: Instruction: "Predict the 216

prompt of the Input Text." Input: {LGT} or {HWT} 217

Output: {Corresponding prompt}. 218

2.2.2 Distinguishers 219

Given that essay data are diverse, we utilize 220

only the OUTFOX dataset (Koike et al., 2024). 221

To adapt this dataset for training our Distin- 222

guisher, we enhance it to align with the model’s 223

requirements. The original dataset consists of 224

14,400 training triplets of essay problem state- 225

ments, student-written essays, and LLM-generated 226

essays. To further process the data, we apply the 227

Prompt Inverter to both student-written and LLM- 228

generated essays, generating corresponding Pre- 229

dicted Prompts. These Predicted Prompts are then 230

used to regenerate texts via ChatGPT, i.e. gpt-3.5- 231

turbo. 232

The final dataset is structured as follows: 233

Distinguisher version1 - Prompt-Text Consis- 234

tency verifier: Instruction:"Can LLM generate 235

text2 through the prompt text1? " Input: text 1: 236

{Predicted Prompt}; text 2: {LGT} (or {HWT}) 237

Output: yes (or no) 238
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Distinguisher version2 - Regeneration Compara-239

tor: Instruction: "Text 1 is generated by an LLM.240

Determine whether Text 2 is also generated by an241

LLM with a similar prompt." Input: text 1: {Regen-242

erated Text}; text 2: {LGT} (or {HWT}) Output:243

yes (or no)244

Following this procedure, we construct a total of245

28,800 training samples, with an equal distribution246

of positive and negative examples (14,400 each).247

2.3 Training248

The supervised fine-tuning (SFT) (Wei et al.,249

2022) process is performed on a dataset compris-250

ing the above-mentioned 45,400 pairs for Prompt251

Inverter and 28,800 pairs for both Distinguish-252

ers. We utilize Microsoft’s open model, phi3-253

medium-128k-instruct, and we use low-rank adap-254

tation (LoRA) method (Hu et al., 2022) on the255

LLaMA-Factory framework2 (Zheng et al., 2024).256

We train it using six A800 GPUs for 20 hours for257

Prompt Inverter, 7 hours for Distinguisher ver-258

sion1, and 4 hours for Distinguisher version2.259

3 Experiments260

We investigate the following questions through our261

experiments:262

• Assess the robustness of IPAD (using various263

LLMs as generators, comparing with other de-264

tectors, and evaluating on out-of-distribution265

(OOD) datasets).266

• Independently analyze the necessity and ef-267

fectiveness of the Prompt Inverter and the268

Distinguishers.269

• Explore the explainability of IPAD (through270

a user study and analysis of linguistic differ-271

ences between prompts generated by HWT272

and LGT).273

3.1 Robustness of IPAD274

3.1.1 Evaluation Baselines and Metrics275

The in-distribution experiments refer to the testing276

results presented in (Koike et al., 2024), where277

the data aligns with the training data used for the278

IPAD Distinguishers, thereby serving as our base-279

line. The OOD experiments refer to the DetectRL280

baseline (Wu et al., 2024), which is a comprehen-281

sive benchmark consisting of academic abstracts282

from the arXiv Archive (covering the years 2002283

2https://huggingface.co/papers/2403.13372

to 2017)3, news articles from the XSum dataset 284

(Narayan et al., 2018), creative stories from Writ- 285

ing Prompts (Fan et al., 2018), and social reviews 286

from Yelp Reviews (?). It also employs three attack 287

methods to simulate complex real-world detection 288

scenarios, which includes the prompt attacks, para- 289

phrase attacks, and perturbation attacks (Wu et al., 290

2024). All the testing sets have 1,000 samples in 291

our experiments. 292

The Area Under Receiver Operating Charac- 293

teristic curve (AUROC) is widely used for assess- 294

ing detection method (Mitchell et al., 2023) be- 295

cause it considers the True Positive Rate (TPR) and 296

False Positive Rate (FPR) across different classifi- 297

cation thresholds. Since our models predicts binary 298

labels, we follow the Wilcoxon-Mann-Whitney 299

statistic (Calders and Jaroszewicz, 2007), and the 300

formula is shown in appendix A. The AvgRec is 301

the average of HumanRec and MachineRec. In 302

our evaluation, HumanRec is the recall for detect- 303

ing Human-written texts, and MachineRec is the 304

recall for detecting LLM-generated texts (Li et al., 305

2024). The F1 Score provides a comprehensive 306

evaluation of detector capabilities by balancing the 307

model’s Precision and Recall. We use AvgRec and 308

F1 on in-distribution data, and we use AUROC 309

for OOD data to align the test benchmarks for the 310

same dataset. 311

3.1.2 Robustness across different LLMs 312

The results of IPAD for detecting the dataset OUT- 313

FOX (Koike et al., 2024) across LLMs are pre- 314

sented in Table 1 and Table 2, respectively. They 315

show that both versions are highly robust across 316

various LLMs, while Regeneration Comparator is 317

a bit more efficient. 318

As for Regeneration Comparator, when the orig- 319

inal generator and re-generator are the same model, 320

the performance is optimal. However, even when 321

the re-generator is different from the original gen- 322

erator, the results remain impressive with ChatGPT 323

used as the re-generator. These results imply that, 324

in practical applications, it is possible to use a com- 325

mon set of LLMs as re-generators. If one or more 326

correponding Distinguishers from different LLMs 327

classify the results as ’yes’, it can be inferred that 328

the text is likely to be LGT, whereas if all Dis- 329

tinguishers classify the results as ’no’, the text is 330

more likely to be HWT. Furthermore, for applica- 331

tions aiming to save computational resources and 332

3http://kaggle.com/datasets/spsayakpaul/arxiv-paper-
abstracts/data
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improve efficiency, using ChatGPT as the sole re-333

generator still yields robust performance across all334

tested models.335

Original Generator Metrics (%)
HumanRec MachineRec AvgRec F1

ChatGPT 98.00% 99.80% 98.90% 98.89%
GPT-3.5 97.20% 99.90% 98.55% 98.53%

Qwen-turbo 98.00% 98.10% 98.05% 98.05%
Llama-3-70B 98.00% 100.00% 99.00% 98.99%

Table 1: IPAD with Prompt-Text Consistency Verifier
performance on different LLMs

Original Generator Re-Generator Metrics (%)
HumanRec MachineRec AvgRec F1

ChatGPT ChatGPT 99.70% 100.00% 99.85% 99.85%
GPT-3.5 GPT-3.5 98.00% 100.00% 99.00% 99.00%

ChatGPT 97.00% 100.00% 98.50% 98.50%
Qwen-turbo Qwen-turbo 98.00% 98.40% 98.20% 98.20%

ChatGPT 99.70% 94.40% 97.05% 97.13%
Llama-3-70B Llama-3-70B 96.60% 100.00% 98.30% 98.30%

ChatGPT 99.70% 99.40% 99.55% 99.55%

Table 2: IPAD with Regeneration Comparator perfor-
mance on different LLMs

3.1.3 Comparison of IPAD with other336

detectors in and out of distribution337

Table 3 compares the performance of two versions338

of IPAD with other detection methods in the OUT-339

FOX dataset with and without attacks (Koike et al.,340

2024). The results show that both versions of IPAD341

generally outperform other detectors, while that342

IPAD with Prompt-Text Consistency Verifier for343

detecting ChatGPT with DIPPER attack performs344

worse. These results imply that IPAD with Regen-345

eration Comparator demonstrates superior robust-346

ness compared to alternative detection methods in347

the OUTFOX dataset with and without attacks.348

Table 4 presents the performance of various de-349

tection methods on OOD datasets to assess their350

generalizability, where the baseline data refer to351

DetectRL (Wu et al., 2024). The results demon-352

strate that IPAD with Regeneration Comparator353

consistently outperforms all other baselines in all354

OOD datasets with and without attacks. In contrast,355

IPAD with Prompt-Text Consistency Verifier ex-356

hibits strong performance on OOD datasets without357

attacks but shows a noticeable drop in effectiveness358

when subjected to attacks. For instance, while it359

achieves competitive results on datasets like XSum360

(99.90%) and Writing (99.20%), its performance361

against attacks, such as Prompt Attack (86.90%)362

and Paraphrase Attack (82.72%), is significantly363

lower than IPAD with Regeneration Comparator.364

This suggests that IPAD with Regeneration Com-365

Original Generator Detection Methods Metrics (%)
HumanRec MachineRec AvgRec F1

ChatGPT RoBERTa-base 93.80% 92.20% 93.00% 92.90%
RoBERTa-large 91.60% 90.00% 90.80% 90.70%
HC3 detector 79.20% 70.60% 74.90% 73.80%

OUTFOX 97.80% 92.40% 95.10% 95.00%
IPAD version1 98.00% 99.80% 98.90% 98.89%
IPAD version2 99.70% 100.00% 99.85% 99.85%

GPT-3.5 RoBERTa-base 93.80% 92.00% 92.90% 92.80%
RoBERTa-large 92.60% 92.00% 92.30% 92.30%
HC3 detector 79.20% 85.00% 82.10% 82.60%

OUTFOX 97.60% 96.20% 96.90% 96.90%
IPAD version1 97.20% 99.90% 98.55% 98.53%
IPAD version2 97.00% 100.00% 98.50% 98.50%

ChatGPT with DIPPER Attack RoBERTa-base 93.80% 89.20% 91.50% 91.30%
RoBERTa-large 91.60% 97.00% 94.30% 94.40%
HC3 detector 79.20% 3.40% 41.30% 5.50%

OUTFOX 98.60% 66.20% 82.40% 79.00%
IPAD version1 98.00% 75.10% 86.55% 87.93%
IPAD version2 99.70% 95.40% 97.55% 97.60%

ChatGPT with OUTFOX Attack RoBERTa-base 93.80% 69.20% 81.50% 78.90%
RoBERTa-large 91.60% 56.20% 73.90% 68.30%
HC3 detector 79.20% 0.40% 39.80% 0.70%

OUTFOX 98.80% 24.80% 61.80% 39.40%
IPAD version1 98.00% 95.40% 96.70% 96.74%
IPAD version2 99.70% 98.00% 98.85% 98.86%

Table 3: Comparison of IPAD with other detectors
on in-distribution data, where IPAD version1 stands
for IPAD with Prompt-Text Consistency Verifier and
IPAD version2 stands for IPAD with Regeneration
Comparator

parator demonstrates better generalizability and 366

robustness. 367

OOD Datasets or attack type Detection Methods
LRR Fast-DetectGPT Rob-Base IPAD with version1 IPAD version2

Arxiv 48.17% 42.00% 81.06% 84.47% 98.60%
XSum 48.41% 45.72% 76.81% 99.90% 98.90%

Writing 58.70% 51.13% 86.29% 99.20% 95.80%
Review 58.21% 54.55% 87.84% 98.50% 89.30%

Avg. for non-attacked datasets 53.37% 48.35% 83.00% 95.52% 95.65%
Prompt Attack 54.97% 43.89% 92.81% 86.90% 93.05%

Paraphrase Attack 49.23% 41.15% 90.02% 82.72% 95.89%
Perturbation Attack 53.62% 44.38% 92.12% 94.96% 95.32%

Avg. for attacked datasets 52.61% 43.14% 91.65% 88.26% 94.75%
Avg. 53.04% 46.12% 86.70% 92.41% 95.26%

Table 4: The performance of IPAD in generalization
assessment (AUROC). The selected detectors are evalu-
ated on OOD data, all sourced from and processed using
the DetectRL baseline, where IPAD version1 stands
for IPAD with Prompt-Text Consistency Verifier and
IPAD version2 stands for IPAD with Regeneration
Comparator.

3.1.4 Robustness conclusion 368

Our experimental results demonstrate that both 369

IPAD versions exhibit strong performance across 370

different LLMs, outperforming existing detection 371

methods and maintaining robustness on OOD 372

datasets. The IPAD with Regeneration Compara- 373

tor outperforming baselines by 9.73% (F1-score) 374

on in-distribution data and 12.65% (AUROC) OOD 375

data. Notably, IPAD with Regeneration Compara- 376

tor achieves significantly better performance than 377

IPAD with Prompt-Text Consistency Verifier in 378

attack scenarios of 3.78% (F1-score). While IPAD 379

with Prompt-Text Consistency Verifier performs 380

robustly in standard settings, its performance de- 381

clines when facing attacks. The calculation of these 382

statistics are shown in Appendix B. 383
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Figure 2: Ablation Study Results. The IPAD ver-
sion1 stands for IPAD with Prompt-Text Consistency
Verifier and IPAD version2 stands for IPAD with
Regeneration Comparator.

3.2 Necessity and Effectiveness of Prompt384

Inverter and Distinguishers385

3.2.1 Necissity of the Prompt Inverter and386

Distinguishers387

To prove that it is necessary to fine-tune on IPAD388

with IPAD with Prompt-Text Consistency Verifier389

and Regeneration Comparator, we conducted abla-390

tion study to use the same finetune method on only391

input texts and only predicted prompts. The in-392

structions are "Is this text generated by LLM?", and393

"Prompt Inverter predicts prompt that could have394

generated the input texts. Is this prompt predicted395

by an input texts written by LLM?", respectively.396

The results shown in Figure 2 from the ablation397

study show that fine-tuning on either only the input398

text or only the predicted prompt leads to poor399

performance. This underscores the importance of400

fine-tuning on a combination of both the input text401

and predicted prompt, as explored in the Prompt-402

Text Consistency Verifier, or on the input text and403

regenerated text, as examined in the Regeneration404

Comparator, for more effective detection.405

3.2.2 The effectivenss of the IPAD Prompt406

Inverter407

We use DPIC (Yu et al., 2024) and PE (Zhang408

et al., 2024c) as baseline methods for prompt ex-409

traction. DPIC employs a zero-shot approach using410

the prompt states in Appendix C, while PE uses411

adversarial attacks to recover system prompts.412

In our evaluation, we tested 1000 LGT and413

1000 HWT samples. We use only in-distribution414

data for testing since only these datasets include415

original prompts. The metrics are all tested on416

comparing the similarity of the original prompts417

and the predicted prompts. The results shown418

in Table 5 illustrate that IPAD consistently out-419

performs both DPIC and PE across all four met-420

rics (BartScore (Yuan et al., 2021), Sentence-Bert 421

Cosine Similarity (Reimers and Gurevych, 2019), 422

BLEU (Papineni et al., 2002), and ROUGE-1 (Lin, 423

2004)), which highlight the effectiveness of the 424

IPAD Prompt Inverter. 425

Evaluation Bart-large-cnn Sentence-Bert BLEU ROUGE-1
LGT

DPIC -2.12 0.46 5.61E-05 0.04
PE -2.23 0.58 3.21E-04 0.25
IPAD -1.84 0.69 0.24 0.51

HWT
DPIC -2.47 0.42 8.75E-06 0.06
PE -2.39 0.53 2.56E-08 0.13
IPAD -2.22 0.57 1.30E-01 0.39

Table 5: Comparison of the IPAD Prompt Inverter
with other prompt extractors

3.2.3 The Effectiveness of the IPAD 426

Distinguishers 427

To examine the effectiveness of the IPAD Distin- 428

guishers, we conducted a comparison study us- 429

ing the same dataset but different distinguishing 430

methods. The first and second methods employed 431

Sentence-Bert (Reimers and Gurevych, 2019) and 432

Bart-large-cnn (Yuan et al., 2021) to compute the 433

similarity score between the input texts and the 434

regenerated texts. We selected thresholds that max- 435

imized AvgRec, which were 0.67 for Sentence-Bert 436

and -2.52 for Bart-large-cnn. The classification rule 437

is that the texts with scores greater than the thresh- 438

old will be classified as LGT, while the texts with 439

scores less than or equal to the threshold will be 440

classified as HWT. 441

The third and fourth methods involved directly 442

prompting ChatGPT as follows: 443

Instruction: "Text 1 is generated by an LLM. 444

Determine whether Text 2 is also generated by an 445

LLM with a similar prompt. Answer with only YES 446

or NO." Input: "Text 1: {Regenerated Text}; Text 447

2: {LGT} or {HWT}". 448

and Instruction: "Can LLM generate text2 449

through the prompt text1? Answer with only YES 450

or NO." with Input: "Text 1: {Predicted Prompt}; 451

Text 2: {Input text}". 452

The final results demonstrated that the other dis- 453

tinguishing methods performed worse than the two 454

IPAD Distinguishers, highlighting the superior 455

effectiveness of the IPAD Distinguishers. 456

3.3 Explanability Assessment of IPAD 457

3.3.1 Different Linguistic Features of HWT 458

prompts and LGT prompts 459

This subsection of the evaluation aims to explore 460

the linguistic features of prompts generated by 461

6



Distinguish Method HumanRec MachineRec AvgRec F1
Sentence-Bert (Threshold 0.67) 61.20% 95.20% 78.20% 63.51%
Bart-large-cnn (Threshold -2.52) 42.60% 97.20% 69.90% 43.96%
Prompt to ChatGPT version 1 33.20% 64.50% 48.85% 44.77%
Prompt to ChatGPT version 2 12.50% 100% 56.25% 12.50%
IPAD version 1 98.00% 99.80% 98.90% 98.10%
IPAD version 2 99.70% 100% 99.85% 99.70%

Table 6: Comparison of Different Distinguishers, where
IPAD version1 stands for IPAD with Prompt-Text
Consistency Verifier and IPAD version2 stands for
IPAD with Regeneration Comparator.

HWT and LGT through the Prompt Inverter. We462

analyzed 1000 samples generated by HWT and463

1000 samples generated by LGT, which are ran-464

domy selected from both in-distribution data and465

OOD.466

The analysis is first conducted using the Lin-467

guistic Feature Toolkik (lftk)4, a commonly used468

general-purpose tool for linguistic features extrac-469

tion, which provides a total of 220 features for text470

analysis. Upon applying this toolkit, we identified471

20 features with significant differences in average472

values between the two groups, out of which 3473

features showed statistically significant differences474

with p-values less than 0.05. These 3 differences475

can be summarized as one main aspects: syn-476

tactic complexity. Beyond these, we referred to477

the LIWC framework 5, which defines 7 function478

words variables and 4 summary variables. By com-479

paring the difference, two of these 11 features is480

significantly distinguishable: the pronoun usage481

and the level of analytical thinking.482

One of the primary distinctions between the483

HWT prompts and the LGT prompts is sentence484

complexity. LGT prompts are typically more com-485

plex, characterized by longer sentence lengths486

(mean value of 1.514 and 1.794), higher syllable487

counts (mean values of total syllabus three are488

1.572 and 3.042), and more stop-words (mean489

values of 9.88 and 10.045). HWT prompts, on490

the other hand, are characterized by shorter, less491

complex sentences that are easier to process and492

understand, as examples shown in Appendix D Fig-493

ure 3.494

Beyond the differences in syntactic complexity,495

we also explored variables in LIWC. We did the496

difference comparison by using HWT and LGT497

prompts as inputs for ChatGPT, for example, in-498

structing with the prompts ’determine the pronoun499

usage of this sentence, answer first person, second500

person, or third person’ and ’determine the level501

4https://lftk.readthedocs.io/en/latest/
5https://www.liwc.app/

of analytical thinking of these sentences, answer a 502

number from 1 to 5’. The results show that there are 503

distinguish difference in pronoun usage and analyt- 504

ical thinking level. The HWT prompts frequently 505

use second-person pronouns (e.g., ’you’) - 75 oc- 506

currences per 1,000 prompts - due to the subjective 507

tone often employed in HWT. In contrast, LGT 508

prompts primarily feature first- and third-person 509

pronouns, with second-person pronouns appearing 510

only 2 per 1,000 prompts. LGT prompts typically 511

present instructions and questions in a more objec- 512

tive manner. As shown in Appendix D Figure 4, 513

LGT prompts show higher analytical thinking lev- 514

els than HWT prompts. With level 1 as the lowest 515

and level 5 as the highest, LGT has 68.9% of level 516

4 and 24.3% of level 5, but HWT has only 48.0% 517

of level 4, and 0.8% of level 5. It suggests that LGT 518

prompts encourage more analytical thinking, while 519

HWT prompts tend to focus more on concrete ex- 520

amples, with less emphasis on critical analysis, as 521

examples shown in Appendix D Figure 5. 522

3.4 User Study 523

To assess the explainability improvement of IPAD, 524

we designed an IRB-approved user study with ten 525

participants evaluating one HWT and one LGT 526

article. We used IPAD version 2 due to its su- 527

perior OOD performance and attack resistance. 528

Participants compared three online detection plat- 529

forms with screenshots shown in Appendix E678 530

with IPAD’s process (which displayed input texts, 531

predicted prompts, regenerated texts, and final 532

judgments). After evaluation, users rated IPAD 533

on four key explainability dimensions. Trans- 534

parency received strong ratings (40%:5, 60%:4), 535

with users appreciating the visibility of interme- 536

diate processes. Trust scores were more varied 537

(10%:3, 70%:4, 20%:5), but IPAD was generally 538

considered more convincing than single-score de- 539

tectors. Satisfaction was mixed (30%:3, 30%:4, 540

40%:5), with users acknowledging better detection 541

but raising concerns about energy efficiency since 542

IPAD runs three LLMs. Debugging received unani- 543

mous 5s, as users could easily analyze the predicted 544

prompt and regenerated text to verify the decision- 545

making process. If needed, users could refine the 546

generated content by adjusting instructions, such 547

as specifying a word count, making IPAD a more 548

effective and user-friendly tool compared to black- 549

6https://www.scribbr.com/ai-detector/
7https://quillbot.com/ai-content-detector
8https://app.gptzero.me/
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box detectors.550

4 Related Work551

4.1 AI detectors Methods and challenges552

AI text detection methods can be broadly catego-553

rized into four approaches (Wu et al., 2025): wa-554

termarking, statistics-based methods, neural-based555

methods, and human-assisted methods.556

Watermarking technology inserts specific pat-557

terns into training datasets (Shevlane et al., 2023;558

Gu et al., 2022) or manipulates the model output559

during inference to embed a watermark (Lucas and560

Havens, 2023). However, watermarking needs to561

access of the LLM deployment and can face attacks,562

such as identifying and erasing the watermark (Hou563

et al., 2024). Statistics-based methods analyze564

inherent textual features to identify language pat-565

terns (Kalinichenko et al., 2003; Hamed, 2023),566

but their effectiveness depends on corpus size and567

model diversity (Wu et al., 2025). Some other568

statistical methods use n-gram probability diver-569

gence (Yang et al., 2024b) or similarity between570

original and revised texts (Mao et al., 2024; Zhu571

et al., 2023) while still face robustness challenges572

under adversarial attacks (Wu et al., 2025). Neural-573

based methods such as RoBERTa (Liu et al.,574

2020), Bert (Devlin et al., 2019), and XLNet (Yang575

et al., 2019) have been robust in domain-specific576

tasks. Adversarial learning techniques are increas-577

ingly being used (Yang et al., 2024a) to increase578

effectiveness in attacked datasets.579

In addition to automated methods, human in-580

volvement plays a key role in detecting AI-581

generated text (Wu et al., 2025). Human-assisted582

detection leverages human intuition and expertise583

to identify inconsistencies such as semantic errors584

and logical flaws that may not be easily caught585

by algorithms (Uchendu et al., 2023; Dugan et al.,586

2023). Moreover, given the challenges of current587

AI detection tools, which often lack verifiable evi-588

dence (Chaka, 2023), human involvement becomes589

even more critical to ensure the reliable and ex-590

plainable detection.591

4.2 Prompt Inverter techniques and592

applications593

Prompt extraction techniques aim to reverse-594

engineer the prompts that generate specific out-595

puts from LLMs. Approaches include black-box596

methods like output2prompt (Zhang et al., 2024a),597

which extracts prompts based on model outputs598

without access to internal data, and logit-based 599

methods like logit2prompt (Mitka, 2024), which 600

rely on next-token probabilities but are constrained 601

by access to logits. Adversarial methods can by- 602

pass some defenses but are model-specific and frag- 603

ile (Zhang et al., 2024d). Despite the success of 604

some zero-shot LLM-inversion based methods (Li 605

and Klabjan, 2024; Yu et al., 2024), they are mostly 606

naive usage of prompting LLMs, which makes 607

them poor in prompt extraction accuracy and ro- 608

bustness. 609

5 Conclusion 610

This paper introduces IPAD (Inverse Prompt 611

for AI Detection), a framework consisting of a 612

Prompt Inverter that identifies predicted prompts 613

that could have generated the input text, and a Dis- 614

tinguisher that examines how well the input texts 615

align with the predicted prompts. This design en- 616

ables explainable evidence chains tracing unavail- 617

able in existing black-box detectors. Empirical 618

results show that IPAD surpasses the baselines on 619

all in-distribution, OOD, and attacked data. Fur- 620

thermore, the Distinguisher (version2) - Regener- 621

ation Comparator outperforms the Distinguisher 622

(version1) - Prompt-Text Consistency Verifier, es- 623

pecially on OOD and attacked data. While the 624

local alignment in veresion1 approach provides 625

explicit interpretability, it is more sensitive to ad- 626

versarial attacks. In contrast, the global distri- 627

bution in veresion2 matching approach implicitly 628

learns generative LLM’s distributional properties, 629

which offers more robustness while maintaining 630

explainability. This insight suggests that combin- 631

ing self-consistency checks of generative models 632

with multi-step reasoning for evidential explainabil- 633

ity holds promise for future AI detection systems 634

in real-world scenarios. A user study reveals that 635

IPAD enhances trust and transparency by allowing 636

users to examine decision-making evidence. Over- 637

all, IPAD establishes a new paradigm for more 638

robust, reliable, and interpretable AI detection sys- 639

tems to combat the misuse of LLMs. 640

6 Limitations 641

While IPAD demonstrates SOTA performance, two 642

limitations warrant discussion: (1) The Prompt 643

Inverter may not fully reconstruct prompts con- 644

taining explicit in-context learning examples (e.g., 645

formatted demonstrations), as it prioritizes seman- 646

tic alignment over precise syntactic replication. 647
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(2) Since IPAD achieves satisfactory OOD perfor-648

mance (12.65% improvement over baselines) by649

only adopting essay writing datasets for the fine-650

tuning of Distinguishers, we strategically deferred651

the exploration of more datasets. We will incor-652

porate a wider and more diverse range of data in653

future works to explore if it can enhance robustness654

even further, including: creative/news domains,655

and triplet data formats (i.e., "Can this {predicted656

prompt} generate the {Input text} using an LLM?657

One example generated by the predicted prompt is:658

{regenerated text}")659
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A AUROC formula 931

Since our model predicts binary labels, we follow 932

the Wilcoxon-Mann-Whitney statistic (Calders and 933

Jaroszewicz, 2007) to calculate the Area Under Re- 934

ceiver Operating Characteristtic curve (AUROC): 935

AUC(f) =

∑
t0∈D0

∑
t1∈D1 1[f(t0) < f(t1)]

|D0| · |D1|
936

where 1[f(t0) < f(t1)] denotes an indicator 937

function which returns 1 if f(t0) < f(t1) and 0 938

otherwise. D0 is the set of negative examples, and 939

D1 is the set of positive examples. 940

B Calculation of Summary Statistics 941

• IPAD with Regeneration Comparator out- 942

performs the baselines by 9.73% on in- 943

distribution data. As shown in Table 3, 944

RoBERTa-base has the best average F1 score 945

of (92.9% + 92.8% + 91.3% + 78.9%) / 4. In 946

comparison, the average F1 score for IPAD 947

version 2 is (99.85% + 98.5% + 97.6% + 948

98.86%) / 4, showing an improvement of 949

9.73%. 950

• IPAD with Regeneration Comparator out- 951

performs the baselines by 12.65% on in- 952

distribution data. As shown in Table 4, 953

RoBERTa-base achieves the highest average 954

AUROC score, but since the F1-score is not 955

available for the baseline, we use the AU- 956

ROC difference to calculate the improvement, 957

which is (95.65% - 83%) = 12.65%. 958

• IPAD with Regeneration Comparator out- 959

performs IPAD with Prompt-Text Consis- 960

tency Verifier by 0.13% on out-of-distribution 961

(OOD) data. As shown in Table 4, IPAD ver- 962

sion 2 has the highest AUROC of 95.65%, 963

while IPAD version 1 has an AUROC of 964

95.52%, resulting in a 0.13% difference. 965
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Figure 3: Sentence Complexity Examples, where HWT
Prompt stands for prompt generated by the Prompt In-
verter from HWT, and LGT Prompt stands for prompt
generated by the Prompt Inverter from LGT. The HWT
Prompts have longer sentence lengths, more words with
more than three syllabus (as shown in bold), and more
stop-words (as shown with underline).

• IPAD with Regeneration Comparator outper-966

forms IPAD with Prompt-Text Consistency967

Verifier by 3.78% on attacked data. As shown968

in Table 3 (rows 3-4) and Table 4 (rows 6-8),969

IPAD version 2 achieves the best F1 score970

and AUROC scores. To calculate the over-971

all attacked dataset score, we calculate the F1972

scores for Table 4: 94.82%, 95.35%, 95.31%973

for IPAD version 2, and 83.58%, 88.34%, and974

94.70% for IPAD version 1. The average F1975

score difference is thus (94.82% + 95.35%976

+ 95.31% - 83.58% - 88.34% - 94.70% +977

97.60% + 98.86% - 97.55% - 98.85%) / 5978

= 3.78%.979

C DPIC (decouple prompt and intrinsic980

characteristics) Prompt Extraction981

Zero-shot Prompts982

"I want you to play the role of the questioner. I983

will type an answer in English, and you will ask984

me a question based on the answer in the same985

language. Don’t write any explanations or other986

text, just give me the question. <TEXT>.".987

D Linguistic Difference Examples988

Figure 3 shows examples where HWT and LGT989

prompts with different sentence complexity. Fig-990

ure 4 shows the results of analytical thinking level991

statistics. Figure 5 shows examples of using dif-992

ferent personas and different analytical thinking993

levels.994

Figure 4: Comparison of different analytical thinking
levels, with LGT has higher percentage of level 4 and
level 5.

Figure 5: Examples that use different persona usage
(above), and different analytical thinking levels (below
left has level 2, and below right has level 5, they are
prompts generated by the same problem statements).

E User Study 995

Figure 6 7 and 8 shows the screenshots of online 996

AI detectors. Figure 9 shows the questionnaire 997

questions. Figure 10 shows the user guide. 998

E.1 Online AI Detectors Screenshots 999

E.2 Questionnaire questions 1000

12



Figure 6: GPTZero Online Detector Screenshot

Figure 7: Quillbot Online Detector Screenshot

Figure 8: Scribbr Online Detector Screenshot

Figure 9: Questionnaire questions

Figure 10: User Study User guide
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