
Gaussian Process Surrogate Models for Neural Networks

Michael Y. Li1 Erin Grant2 Thomas L. Griffiths3

1Department of Computer Science, Stanford University, Stanford, California, USA
2Gatsby Computational Neuroscience Unit, University College London, London, UK

3Departments of Psychology and Computer Science, Princeton, NJ, USA

Abstract

Not being able to understand and predict the be-
havior of deep learning systems makes it hard to
decide what architecture and algorithm to use for
a given problem. In science and engineering, mod-
eling is a methodology used to understand com-
plex systems whose internal processes are opaque.
Modeling replaces a complex system with a sim-
pler, more interpretable surrogate. Drawing inspi-
ration from this, we construct a class of surrogate
models for neural networks using Gaussian pro-
cesses. Rather than deriving kernels for infinite
neural networks, we learn kernels empirically from
the naturalistic behavior of finite neural networks.
We demonstrate our approach captures existing
phenomena related to the spectral bias of neural
networks, and then show that our surrogate mod-
els can be used to solve practical problems such
as identifying which points most influence the be-
havior of specific neural networks and predicting
which architectures and algorithms will generalize
well for specific datasets.

1 INTRODUCTION

Deep learning systems are ubiquitous in machine learning
but sometimes exhibit unpredictable and undesirable behav-
ior when deployed in real-world applications [Geirhos et al.,
2020, D’Amour et al., 2020]. This gap between idealized
and real-world performance has driven calls for explainabil-
ity, transparency, and interpretability of deep learning sys-
tems [Lipton, 2016, Doshi-Velez and Kim, 2017, Samek
et al., 2017], especially as these systems are more widely
applied [Bommasani et al., 2021].

Machine learning is not unique in seeking to understand a
complex system whose inputs and outputs are observable
but whose internal processes are opaque—this challenge

occurs across the empirical sciences and engineering. An
explanatory tool that is foundational across these disciplines
is that of modeling, that is, representing a complex and
opaque system with a simpler one that is more amenable to
interpretation.1 Modeling makes precise assumptions about
how a system may operate while abstracting away details
that are irrelevant for a given level of understanding or a
given downstream use case. These properties are valuable
for a framework for understanding deep learning as they are
in other scientific and engineering disciplines.

As the popularity of deep learning has grown, a number of
proposals have been made for modeling these systems. Nu-
merous mathematical models of deep learning have been de-
veloped [Roberts et al., 2022], and some surprising phenom-
ena, such as adversarial examples [Szegedy et al., 2014],
have been captured with a mathematical analysis [Ilyas et al.,
2019]. However, existing mathematical models are unable
to capture the properties of machine learning systems as
applied in practice [Nakkiran, 2021]. Beyond mathemati-
cal models, specific models have aimed to explain the pre-
dictions of machine learning systems on a per-example ba-
sis [Ribeiro et al., 2016, Koh and Liang, 2017, Zhou et al.,
2022, Ilyas et al., 2022], but these approaches are, by con-
struction, only partial explanations of the end-to-end system.

In this paper, we pursue an alternative modeling approach
that draws on two domains for inspiration. In engineering
design, surrogate models [Wang and Shan, 2006] emulate
the input-output behavior of a complex physical system, al-
lowing practitioners to simulate effects that are consequen-
tial for design or analysis without relying on costly or other-
wise prohibitive queries from the system itself. In cognitive
science, cognitive models [Sun, 2008, McClelland, 2009]
describe how unobservable mental processes such as mem-
ory or attention produce the range of people’s observed be-

1Though some architectural components of a deep learning
system are commonly referred to as a model—as in “neural net-
work model”—we use modeling to refer to the methodology of
idealizing a complex system as a simpler one.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<michaelyli@stanford.edu>?Subject=Your UAI 2023 paper


haviors. Both domains abstract away internal details, such
as real-world constraints on a physical system or neural cir-
cuitry in the brain, instead treating the target process or sys-
tem as a black box. At the same time, both surrogate and
cognitive models are constructed to replicate the end-to-end
behavior of the target system and thus are complete where
localized explanations are not.

We explore an analogous approach to investigate deep learn-
ing systems by constructing Gaussian process surrogate
models for neural networks. Gaussian processes (GPs) are a
natural choice, with appealing theoretical properties specific
to the study of neural networks (NNs); namely, certain lim-
iting cases of NN architectures are realizable as GPs [Neal,
1996, Li and Liang, 2018, Jacot et al., 2018, Allen-Zhu et al.,
2019, Du et al., 2019]. However, in contrast to these theoreti-
cal approaches, we explore the scientific and practical utility
of idealizing NNs with GPs using a data-driven approach to
estimating the kernel functions of finite NNs. With this ap-
proach, we capture a number of known phenomena, includ-
ing a bias towards low frequencies and pathological behavior
at initialization, in a cohesive framework. Finally, we demon-
strate the practical benefits of this framework by identifying
points that strongly influence NN predictions and predicting
the generalization behavior of models in a NN family.

2 BACKGROUND

In surrogate modeling, we approximate a complex func-
tion with a simpler surrogate model that emulates its input-
output behavior. Surrogate models have many applications:
In optimization, they are often used to approximate queries
from expensive-to-evaluate functions [Snoek et al., 2012,
Shahriari et al., 2016]; in other applications, surrogate mod-
els have been used to gain insight into large physical sys-
tems [Camps-Valls et al., 2015].

Cognitive models have been used by cognitive scientists
since the 1950s to gain insight into the human mind [Newell
et al., 1958]. Bayesian models of cognition offer a way to
describe the inductive biases of learning systems as a prior
distribution [Griffiths et al., 2010]. As deep NNs have be-
come more prevalent, researchers have used methodologies
from cognitive science to interrogate opaque models [Ritter
et al., 2017, Geirhos et al., 2019, Hawkins et al., 2020]. The
success of these efforts suggests that other methods from
cognitive science—namely, cognitive modeling—may be
applicable to machine learning systems.

Gaussian processes [GPs; Rasmussen and Williams, 2006]
are probabilistic models that specify a distribution over func-
tions. A GP models any finite set of N observations as a
multivariate Gaussian distribution on RN , where the nth
point is interpreted as the function value, f(xn), at the input
point xn. GPs are fully characterized by a mean function
m(x), usually taken to be degenerate as m(x) = 0,∀x, and

a positive-definite kernel function k(x, x′) that gives the co-
variance between f(x) and f(x′) as a function of x and x′.

Formally, let X be a matrix of inputs and y be a vector
of output responses. Due to the marginalization proper-
ties of the Gaussian distribution, the posterior predictive
distribution of a GP for a new input x∗, conditioned on
dataset D = {X,y} and assuming centered Gaussian obser-
vation noise with variance σ2, is Gaussian with closed-form
expressions for the mean and variance:

E[f(x∗) | D] = m(x∗) + k∗
T (K+ σ2I)−1(y −m(x))

(1)

V[f(x∗) | D] = k(x∗,x∗)− k∗
T (K+ σ2I)−1k∗ (2)

where K is the N ×N Gram matrix of pairwise covari-
ances, k(xi,xj), and k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]

T .

The kernel function k specifies the prior on what kind of
functions might be represented in observed data, for exam-
ple, expressing expected smoothness or periodicity. Para-
metric kernels have hyperparameters θ that affect this prior
and thus the posterior predictive. These kernel hyperparame-
ters can be adapted to the properties of a dataset, thus defin-
ing a prior over functions that is appropriate for that con-
text. GP kernel hyperparameters are typically learned via
gradient-based optimization to maximize the GP marginal
likelihood, p(y | X). Again due to properties of the GP, this
marginal likelihood has the closed-form expression:

log p(y | X) =− 1

2
yT

(
Kθ + σ2

nI
)−1

y

− 1

2
log |Kθ + σ2

nI| −
n

2
log 2π . (3)

We write the Gram matrix as Kθ to indicate that it depends
on kernel hyperparameters via a particular parameterization.
In this work, we make use of two kernel parameterizations:
the Matérn kernel [MK; Matérn, 1960] and the spectral
mixture kernel [SMK; Wilson and Adams, 2013]. Specifi-
cally, following Snoek et al. [2012], we use the automatic
relevance determination (ARD) 5/2 MK, given by:

k(x,x′) = θ0

(
1 +

√
5r2(x,x′) + 5

3r
2(x,x′)

)
exp

{
−5

√
5r2(x,x′)

}
(4)

where r2(x,x′) =
∑D

d=1(xd − x′
d)

2/θ2d and each θd is a
lengthscale parameter capturing smoothness along dimen-
sion d. The SMK is derived by modeling the spectral den-
sity associated with a kernel as a scale-location mixture of
Gaussians [Wilson and Adams, 2013], giving:

k(τ) =

Q∑
q=1

wq cos
(
2π2τTµq

) P∏
p=1

exp
{
−2π2τ2p v

(p)
q

}
.

(5)



Here, k(τ) gives the covariance between function values
f(x) and f(x′) whose corresponding P - dimensional input
values x and x′ are a distance τ apart. For a Q-component
spectral mixture, w = {wi}Qi=1 are scalar mixture weights,
the q-th component has mean vector µq = (µ

(1)
q , . . . , µ

(P )
q )

and covariance matrix diag(v(1)q , . . . , v
(P )
q ). See Section

A.4 of the supplement for details on how the hyperparame-
ters of the MK and the SMK control the priors on functions.

3 LEARNING A GP SURROGATE MODEL
FROM NN PREDICTIONS

In this section, we detail the goals and approach of the sur-
rogate modeling framework. In brief, our approach involves
collecting neural network predictions across a set of initial-
izations and datasets and estimating GP kernel hyperparam-
eters from these predictions by maximizing the marginal
likelihood across network-dataset pairs; see Fig. (1).

3.1 FORMAL FRAMEWORK

Our goal is to capture shared properties among a family of
neural network models F as applied to a family of datasets
D; untrained neural networks are the special case where D
is empty. Here, a model family F is a set of neural networks
{g0, . . . ,gR} that share in design choices (e.g., architec-
ture, training procedure, random initialization scheme) but
differ in quantities that are randomized prior to or during
training (e.g., parameter initializations). Similarly, a dataset
family D is a set of datasets {D0, . . . ,DS} that share some
underlying structure as in multi-task and meta-learning set-
tings [Caruana, 1997, Hospedales et al., 2020]. We consider
supervised learning, in which each dataset consists of in-
puts and targets, D = (X,y). Importantly, we fit surrogate
model parameters θ to a behavioral dataset of the model
family evaluated on the dataset family, and not the ground
truth datasets themselves. By behavioral dataset, we mean a
dataset of neural network predictions at some test inputs.

Data. We construct a component of the surrogate model
training dataset as follows: We sample a model index r
and a dataset index s. The corresponding dataset is split
into a training set and an evaluation set, Ds = Dtrain

s ∪
Deval

s . The corresponding model gr is fit the training set
Dtrain

s = (Xtrain
s ,ytrain

s ) according to the training proce-
dure specified by the choice of model family F, producing
gfit
r . We then collect the predictions of the trained model

on the evaluation set, gfit
r (X

eval
s ), to produce the compo-

nent (Xeval
s ,gfit

r (X
eval
s )) consisting of the ground truth in-

puts paired with the neural network behavioral targets
(i.e., neural network predictions on ground truth inputs)
from the evaluation set. We aggregate the ground truth
inputs and the neural network behavioral targets across
pairs to produce the surrogate model training dataset,

X1 → → g1(X
1)

...

XS → → gR(X
S)

Step 1: Collect predictions across mod-
els gr and across target functions
(datasets) Xs.

θ*

Step 2: Fit Gaussian process hyper-
parameters θ to the aggregate pre-
dictions via Objective (6).

−1 0 1

Input X

−2

−1

0

1

2

O
ut

pu
tY

NN predictions

0 2 4 6

Distance τ

0.0

0.2

0.4

0.6

0.8

C
ov

ar
ia

nc
e

Learned kernel

Step 3: Analyze the kernel learned from the aggregate predictions. Here, the learned
surrogate kernel reveals the quickly varying behavior of particular neural networks.

Figure 1: Outline of the surrogate modeling approach. We learn a Gaus-
sian process surrogate model for a neural network family applied to a task
family by learning kernel hyperparameters from neural network predictions
across datasets. The learned kernel provides insight into the properties of
the neural network family; e.g., biases towards particular frequencies (Sec-
tion (4.1)), or expected generalization behavior (Section (4.4)).

(
(Xeval

s1 ,gfit
r1(X

eval
s1 )), . . . , (Xeval

sT ,gfit
rT (X

eval
sT ))

)
.

Surrogate model. We fit the GP using type-II maximum
likelihood. Let Pθ(g

fit(Xeval) | Xeval) be the GP marginal
likelihood of the dataset component

(
Xeval,gfit(Xeval)

)
un-

der a GP with kernel hyperparameters θ, as given in Eq. (3).
We fit the surrogate model jointly across model-and-task
pairs in the surrogate model training dataset by maximizing
the marginal likelihood with respect to θ:

max
θ

∏
(r,s)

Pθ(g
fit
r (X

eval
s )|Xeval

s ) . (6)

By optimizing Objective (6), we encourage the kernel hy-
perparameters θ to capture the implicit posterior distribution
over functions induced by the models in the family F as ap-
plied to the datasets in the family D. Algorithm (1) gives the
complete surrogate model training and evaluation process.

Motivating the framework. By estimating a posterior
over functions for a neural network family, we aim to cap-
ture shared properties that determine the model family’s be-
havior on data, i.e., the model family’s inductive biases.
The inductive biases of neural networks (e.g., invariances
and equivariances, Markovian assumptions, compositional-
ity) play an important role in their performance by determin-
ing their extrapolation behavior [Mitchell, 1980].

GPs, in particular, offer several advantages as surrogate mod-
els of NNs. Firstly, GPs are flexible models that are also
often interpretable in the sense that the learned hyperpa-
rameters can provide insights into properties of the datasets
on which they are trained [Wilson and Adams, 2013]. Sec-
ondly, the use of GP surrogate models is also motivated



Algorithm 1: Training and evaluation of a GP surrogate.
hyperparameters : model family F,

dataset family D,
model-dataset count N ,
GP parameterization θ

// Step 1 in Fig. (1)
for n ∈ 1 . . . N do

Sample a model, grn ∼ Unif(F)
Sample a dataset, Dsn ∼ Unif(D)
Train the model, gfit

rn ← train(grn ,Dtrain
sn )

Evaluate gfit
rn(Deval

sn )

end
// Step 2 in Fig. (1)
Optimize Objective (6) for θ∗

// Step 3 in Fig. (1)
Analyze θ∗ via Pθ∗

by the theoretical connections between GPs and NNs.
Neal [1996] showed that a prior over functions, implied
by a prior over the weights of certain single-layer multi-
layer perceptrons (MLPs), converges to a GP as the MLP’s
width approaches infinity, and recent works [Lee et al., 2017,
Matthews et al., 2018, Novak et al., 2019, Garriga-Alonso
et al., 2019, Yang, 2019] have extended this correspondence
to deep MLPs and more modern NN architectures. The con-
nections between GPs and NNs can provide insight because
they transform the priors implicit in NNs designs into ex-
plicit priors expressed through a GP. However, our strategy
differs from this prior theoretical work that derives analytic
kernels for limiting cases of NNs—we instead take an em-
pirical approach by learning GP kernels from the predic-
tions of arbitrary classes of finite NNs. Lastly, GPs have an-
alytic marginal likelihoods and leave-one-out predictive dis-
tributions, a property that we will exploit in Sections (4.3)
and (4.4) to reduce costly computations.

3.2 DEMONSTRATION: COMPARING LEARNED
GP PRIORS WITH NN PRIORS

We briefly demonstrate the framework of Section (3.1) by
verifying that GP surrogates learned from different NN fam-
ilies exhibit meaningful variation in behavior.

NN hyperparameters. We consider ensembles of 50 ran-
domly initialized (about zero with weight variance σ2

w = 1.5
and bias variance σ2

b = 0.05) fully connected NNs with rec-
tified linear unit (ReLU) or sine (sin) activations and 16 or
32 hidden layers of 128 hidden units each.

GP surrogate. For each ensemble, we learn the hyperpa-
rameters of a randomly initialized SMK with Q = 10 mix-
ture components by optimizing Objective (6) for 350 itera-
tions with batch gradient descent and the adaptive momen-

−2

0

2

O
ut

pu
tY

ReLU, Depth=16 ReLU, Depth=32

−1 0 1

Input X

−2

0

2

O
ut

pu
tY

sin, Depth=16

−1 0 1

Input X

sin, Depth=32

NN samples

−2

0

2

O
ut

pu
tY

ReLU, Depth=16 ReLU, Depth=32

−1 0 1

Input X

−2

0

2

O
ut

pu
tY

sin, Depth=16

−1 0 1

Input X

sin, Depth=32

GP samples

Figure 2: Demonstration: Comparing learned GP priors with NN pri-
ors. Samples from GP prior (right) with kernel hyperparameters inferred
from the predictions of NN families (left). GPs are flexible enough to
capture properties of each NN family; for example, the samples from the
learned GP prior reflect the quickly varying behavior of the 32-layer sinu-
soidal NNs and the increasing-decreasing behavior of rectifier NNs.

tum (Adam) optimizer [Kingma and Ba, 2015] with learning
rate η = 0.1. We choose the kernel hyperparameters with
highest objective value across three random initializations.

Results. We plot NN predictions and samples from the
learned GP priors in Fig. (2). The learned GP captures the pe-
riodicity of the sinusoidal neural networks (sinusoidal NNs),
and partially captures the increasing-decreasing behavior
of rectifier neural networks (rectifier NNs) about a cusp;
though, due to the SMK parameterization, it cannot capture
the cusp. The GP also captures differences in depths for the
sinusoidal NNs: The GP prior samples for the 32-layer net-
works are quickly varying, indicating shorter learned length-
scales. Taken together, the results of this demonstration
show that GP surrogates can capture certain NN behavior.

4 EXPERIMENTS

We provide a series of demonstrations of the value of the
approach of Section (3). Each experiment aims to investi-
gate the properties of one or more neural network families,
specified by neural network (NN) hyperparameters, as
evaluated on one or more dataset families, parameterized as
target functions, by analyzing the corresponding Gaussian
process (GP) surrogate model. In Section (4.1) and Sec-
tion (4.2), we capture previously established NN phenom-
ena, in Section (4.3), we identify influential points for NNs,
and in Section (4.4), we predict NN generalization behavior.

4.1 REPRODUCTION: SPECTRAL BIAS

Rahaman et al. [2019] demonstrated that deep rectifier NNs
exhibit spectral bias, the preference to learn lower frequen-
cies in the target function before higher frequencies. To
demonstrate this, the authors studied the Fourier spectrum
of rectifier NNs fit to a sum of sinusoidal functions of vary-
ing frequencies. We take an alternative approach, learning
kernels from NN predictions at various stages of training.
We show that these learned kernels capture the spectral bias.



−1 0 1

−3

−1

1

3

O
ut

pu
tY

Iteration 0

Data
NN

−1 0 1

Iteration 100

−1 0 1
Input X

Iteration 1000

−1 0 1

Iteration 10000

−1 0 1

Iteration 14999

0 1 2 3−2

0

2

4

C
ov

ar
ia

nc
e Learned kernel

0 1 2 3 0 1 2 3
Distance between points τ

0 1 2 3 0 1 2 3

100 1020.00

0.25

D
en

si
ty

Spectral density

100 102 100 102

Frequency
100 102 100 102

Figure 3: Capturing spectral bias in neural networks. (Top) Neural net-
work predictions as training progresses on the sum-of-sines target function
described in Section (4.1). (Middle) Spectral mixture kernel fit to neural
network predictions as training progresses and (Bottom) corresponding
spectral density. The kernel reveals a spectral bias for this neural network
family: the range of spectral frequencies expressed in the kernel increases
with the number of iterations of training.

NN hyperparameters. As in Rahaman et al. [2019], we
train an ensemble of 20 NNs with 6 hidden layers of 256
units and ReLU activations using full-batch gradient descent
with Adam and a learning rate of η = 3× 10−4.

Target function. We consider 20 target functions
which are sums of sine functions with frequencies in
(5, 10, . . . , 45, 50) and phases drawn from U(0, 2π), evalu-
ated at 200 points evenly spaced between [0, 1], as in Ra-
haman et al. [2019].

GP surrogate. We learn the parameters of a spectral mix-
ture kernel (SMK) with Q = 10 mixture components by
optimizing Objective (6) with Adam for 350 iterations with
a learning rate of η = 0.1 [Kingma and Ba, 2015]. Since
the marginal likelihood of the SMK is multi-modal in its
frequency parameters, we repeat this optimization for three
different random initializations of the kernel parameters and
choose the hyperparameters with the largest marginal like-
lihood value (the value of Objective (6)). Following GPy-
Torch’s initialization strategy, we draw the inverse length-
scale vi from a truncated Gaussian distribution with vari-
ance set to the maximum distance between two points in the
dataset and truncation value set to the maximum distance
between points [Gardner et al., 2018]. We set the signal vari-
ances w to the variance of the target function values divided
by the number of mixture components. The frequency hy-
perparameters of the SMK are sometimes initialized by sam-
pling from a uniform distribution whose upper limit is the
Nyquist frequency [Wilson and Adams, 2013]; since this tar-
get function’s largest frequency is smaller than the Nyquist
frequency, we instead set a smaller frequency.

Results. Fig. (3) displays the average NN prediction
across the ensemble, the average learned kernel and stan-
dard error at different iterations of NN training computed
across the ensemble and ten random initializations of the
SMK, and the corresponding average spectral density.

The kernel function, which is given in Eq. (5), reflects
how the similarity between function values varies with the
distance between their input points.2 The structure of the
learned kernel reflects the properties of the NN family: Ini-
tially, the learned kernel only captures low frequencies in
the NN’s predictions—seen in the long period of the kernel—
consistent with the spectral bias of Rahaman et al. [2019].
However, with more training, the periodicity of the surro-
gate kernel reflects both low and high frequencies. Consis-
tent with this, the spectral density exhibits a wider range of
frequencies.

4.2 REPRODUCTION: DEPTH PATHOLOGIES IN
RANDOMLY INITIALIZED NN

Hyperparameter selection in NNs is not always theoretically
grounded. Many recent studies thus characterize how hyper-
parameter choices affect the properties of NNs at random ini-
tialization [Schoenholz et al., 2017, Yang, 2019, Xiao et al.,
2018]. Towards that end, recent work showed that increas-
ing depth can actually induce pathologies in randomly ini-
tialized NNs [Labatie, 2019, Duvenaud et al., 2014]. For ex-
ample, Duvenaud et al. [2014] proved that increasing depth
in a certain class of infinitely wide NNs produces functions
with ill-behaved derivatives.

We empirically study a similar pathology—quick variation
in input space—that emerges in randomly initialized, finite-
width, finite-depth NNs. To do this, we fit GP surrogates
to randomly initialized NN ensembles with varying depths
and activations. If NNs exhibit this pathology, the learned
covariance will decay sharply with distance.

NN hyperparameters. We consider families of NNs with
sin or ReLU activations and depths ranging from 16 to
512 layers. From each family, we randomly initialize an
ensemble of 50 NNs, with 128 hidden units in each layer.
We randomly initialize NN weights about zero with weight
variance σ2

w = 1.0 and bias variance σ2
b = 0.05.

GP surrogate. We learn an SMK kernel by optimizing
Objective (6) separately for each ensemble, running Adam
for 750 iterations with η = 0.1. We choose the kernel hy-
perparameters with the highest mean marginal likelihood
among three random initializations. To ensure our results
are robust across an neural network ensemble, we consider
the averaged learned kernel. That is, if we have n kernels,
k1(·), . . . , kn(·), learned from n different ensembles, we
consider the average learned kernel k̄(τ) = 1

n

∑N
i=1 ki(τ).

Results. Fig. (4) plots the average learned kernels for NN
families with varying activation functions and depths, and
the corresponding neural network predictions. Across both

2Since the SMK is a stationary covariance function, we graph
against the distance between input points



−2.5

0.0

2.5
O

ut
pu

tY
sin, Depth=16 sin, Depth=32 sin, Depth=256 sin, Depth=512

−1 0 1

Input X

−2.5

0.0

2.5

O
ut

pu
tY

ReLU, Depth=16

−1 0 1

Input X

ReLU, Depth=32

−1 0 1

Input X

ReLU, Depth=256

−1 0 1

Input X

ReLU, Depth=512

0

1

C
ov

ar
ia

nc
e

sin, Depth=16

sin kernel

sin, Depth=32 sin, Depth=256 sin, Depth=512

0 5
Distance τ

0

1

C
ov

ar
ia

nc
e

ReLU, Depth=16

ReLU kernel

0 5
Distance τ

ReLU, Depth=32

0 5
Distance τ

ReLU, Depth=256

0 5
Distance τ

ReLU, Depth=512

Figure 4: Depth pathologies in randomly initialized neural networks.
Predictions of neural networks (top) with varying activations (rows) and
depths (columns); mean and standard error of the covariance of learned
kernels (bottom). Greater depth results in kernels with shorter lengthscales,
and this pathology emerges earlier in rectifier NNs.

activation functions, the learned kernels reveal a pathology:
For large depths, the covariance (Fig. (4), bottom) decays
sharply towards zero with distance. The NN predictions
(Fig. (4), top) explain this property: At large depths, the
NNs vary quickly in the input domain, which leads the SMK
to learn short lengthscales. Interestingly, this pathology
emerges at different depths for different activation functions.
We see rectifier NNs exhibit this pathology with 256 layers
while sinusoidal NNs exhibit this pathology with 512 layers.

4.3 AMORTIZED INFLUENCE ESTIMATION

The primary computational bottleneck of fitting a GP is the
O(N3) cost of Gram matrix inversion. However, once this
matrix is inverted, certain computations that seem costly
can actually be performed cheaply. For example, the leave-
one-out predictive (LOO) distributions can be computed an-
alytically given the inverted Gram matrix and the training
data [Rasmussen and Williams, 2006]. The LOO distribu-
tions characterize how GP predictions change after remov-
ing a training point. In this section, we leverage this property
of GPs to perform influence function analysis in the spirit
of Koh and Liang [2017]. In particular, we use the LOO
predictive distributions of a surrogate GP to detect influen-
tial points for NNs with Fourier feature layers [Tancik et al.,
2020], which enable NNs to learn higher frequencies. Simi-
lar architectures have achieved state-of-art performance in a
number of important tasks in computer vision and computer
graphics [Mildenhall et al., 2020]. We show that the surro-
gate LOO predictions are consistent with NN LOO predic-
tions obtained from costly retraining.

y

NN LOO

held-out point

x

y

GP LOO

x x x

0.3 0.4

-LOO log prob

0.0

0.2

0.4

L
O

O
 e

rr
or

ρ= 0.70
jitter = 0.2

−0.1 0.0 0.1

-LOO log prob

ρ= 0.62
jitter = 0.1

−1.0 −0.5

-LOO log prob

ρ= 0.58
jitter = 0.01

−1.5 −1.0 −0.5

-LOO log prob

ρ= 0.54
jitter = 0.005

Figure 5: NN and GP surrogate leave-one-out predictions compared.
(Top) Neural network predictions obtained from re-training on target func-
tion with influential (red) training points removed. (Middle) GP predictions
on same datasets with kernel learned from trained NN predictions. Columns
correspond to different held-out training points. (Bottom) Correlation be-
tween LOO error and (negative) GP LOO predictive probability of held-out
points; a lower negative LOO predictive probability means a less influen-
tial point. The GP and NN LOO predictions are consistent, and the LOO
error positively correlates with the negative LOO predictive probability.

NN hyperparameters. We train 10 NNs with 4 hidden
layers of 1024 units, ReLU activations [Tancik et al., 2020].
The inputs to the NNs are passed through a single Fourier
feature layer with parameter p that controls the spectral
bias of the NN. For details see Tancik et al. [2020]. We set
p = 1 and choose Fourier feature mappings with frequencies
ranging from 1 to 4. We train the network using full-batch
gradient descent with stochastic gradient descent (SGD) and
a learning rate of η = 10−3 for 2000 iterations.

Target functions. We consider a target function inspired
by one used in the leave-one-out GP literature [Ginsbourger
and Scharer, 2021]. The functional form is given by f(x) =
sin(30(x− 0.95)4) cos(2(x− 0.95)) + (x− 0.95)/2. This
target function is non-stationary, with higher frequency be-
havior in the left half of its input domain and lower fre-
quency behavior in the right.

GP surrogate. We fit a SMK with Q = 10 mixture com-
ponents to trained neural network predictions at 300 input
points evenly spaced between (0, 3). We initialize frequency
hyperparameters by sampling uniformly from 0 to 20.

We briefly overview leave-one-out cross-validation (LOO-
CV) in the context of GPs. The GP LOO predictive proba-
bility when leaving out training example i is

log p(yi|X−i,y−i) = −
1

2
log σ2

i −
(yi − µi)

2

2σ2
i

− 1

2
log 2π

(7)

The notation y−i indicates all training targets besides the
ith target. The LOO-CV predictive mean µi and variance



σ2
i can be computed from the inverse of the Gram matrix:

µi = yi −
[K−1y]i
[K−1]ii

, and σ2
i =

1

[K−1]ii
(8)

Importantly, to compute these predictive means and vari-
ances, we can reuse the inverse of the Gram matrix com-
puted to perform GP inference (Eqs. (1) and (3)). In our
analysis, we will quantify the influence of a point (xi, yi)
using the predictive log probability log p(yi|X−i,y−i). We
can interpret points with lower log probability as more “in-
fluential” under the assumptions of a kernel.

Results In the first two rows of Figure 4, we compare the
surrogate GP LOO and NN LOO predictions for some of
the most influential points. Indeed, the GP LOO predictions
at the influential points are consistent with the NN LOO pre-
diction. In the last row of Figure 4, we plot the (negative)
LOO log probability at each input point against the actual
LOO error at the training input. Each plot in the last row
contains the data across all 10 NNs. The LOO error is com-
puted as the difference between the NN LOO predictions
and the predictions of the NN trained on the full dataset. We
validate this result across different levels of jitter added to
the Gram matrix. The Spearman’s rank correlation coeffi-
cient ρ shows a positive relationship between the negative
LOO log probability at an input point and the LOO error
at the training input. Interestingly, the outliers on the right
region of each subplot always correspond to the leftmost
points in the training data. This is consistent with previous
work showing that the GP LOO can overestimate the influ-
ence of a boundary point [Ginsbourger and Scharer, 2021].

4.4 PREDICTING THE GENERALIZATION GAP

In these sections, we predict generalization using kernels
learned from trained NNs. To do this, we characterize
trained NN properties on the validation set and compare
these properties to the training data. We focus on the valida-
tion set because it is more informative of extrapolation. If
the NN extrapolates well, its predictions on the validation
set should be “similar” in some sense to the dataset. On the
other hand, significant discrepancies could indicate poor ex-
trapolation. This intuition motivates us to compare a kernel
from the training data with a surrogate kernel fit to NN pre-
dictions on a validation set. We find that lower similarity be-
tween these kernels correlates with a larger generalization
gap (i.e., poorer extrapolation), defined as the difference be-
tween test error and training error [e.g., Jiang et al., 2020].

4.4.1 Initial demonstration

NN hyperparameters. We train ensembles of ran-
domly initialized NNs with sigmoid-weighted linear unit
(SiLU) [Elfwing et al., 2018], Gaussian error linear unit

fe
at

ur
e

0
fe

at
ur

e
1

fe
at

ur
e

2
fe

at
ur

e
3

fe
at

ur
e

4
fe

at
ur

e
5

fe
at

ur
e

6
fe

at
ur

e
7

fe
at

ur
e

8
fe

at
ur

e
9

fe
at

ur
e

10

0.0

0.5

1.0

1.5

2.0

L
en

gt
hs

ca
le

s Surrogate lengthscales

fe
at

ur
e

0
fe

at
ur

e
1

fe
at

ur
e

2
fe

at
ur

e
3

fe
at

ur
e

4
fe

at
ur

e
5

fe
at

ur
e

6
fe

at
ur

e
7

fe
at

ur
e

8
fe

at
ur

e
9

fe
at

ur
e

10

Data lengthscales

wine dataset, generalization gap = 0.219

fe
at

ur
e

0

fe
at

ur
e

1

fe
at

ur
e

2

fe
at

ur
e

3

fe
at

ur
e

4

0

1

2

L
en

gt
hs

ca
le

s Surrogate lengthscales

fe
at

ur
e

0

fe
at

ur
e

1

fe
at

ur
e

2

fe
at

ur
e

3

fe
at

ur
e

4

Data lengthscales

airfoil dataset, generalization gap = 0.0177

Figure 6: Qualitative connection between lengthscale profile discrep-
ancy and generalization gap. Each subfigure compares normalized length-
scales learned from neural network predictions on validation set (i.e., surro-
gate lengthscales) after training and normalized lengthscales learned from
training data (i.e., data lengthscales). A lengthscale greater than 1 indicates
an “unimportant” feature. The title indicates the UCI dataset and general-
ization gap defined in Fig. (7). Data and surrogate lengthscales for some
features are different (e.g., features 1, 4, 6), reflected in a high general-
ization gap (top). Data and surrogate lengthscales for the same features
are generally similar, reflected in a low generalization gap (bottom). This
suggests a connection between the generalization gap and discrepancy be-
tween surrogate and data lengthscales.

(GELU) [Hendrycks and Gimpel, 2016], ReLU [Fukushima,
1975, Nair and Hinton, 2010], or hyperbolic tangent (tanh)
activations, and two layers of 128 hidden units. We use the
LeCun normal initialization with a scale of 1.5 [LeCun et al.,
2012]. We train 25 NNs with full-batch gradient descent us-
ing Adam with a learning rate of η = 0.003. We want to as-
sess if our approach can distinguish between NNs with simi-
lar training behavior but varying generalization performance,
so we train NNs either for a maximum number of iterations,
a hyperparameter, or until training error reaches zero.

Target functions. We consider a set of naturalistic regres-
sion tasks from the UC Irvine Machine Learning Reposi-
tory (UCI) dataset [Dua and Graff, 2017], spanning a range
of dataset sizes and input dimensions. We split each of the
datasets into a 72/8/20 train/validation/test split. Both the
data input and output are standardized by mean-centering
and dividing by the standard deviation dimension-wise so
that the target values and each dimension of the data input
have near zero mean and unit variance. We subsample 2,000
datapoints for datasets with more than 2,000 datapoints, as
in Simpson et al. [2021] and Liu et al. [2020].

GP surrogate. We learn a data kernel directly from the
training dataset. We also learn a surrogate kernel from NN
predictions on the validation set. In both cases, we use the
Matérn kernel (MK) since the SMK can struggle for higher-
dimensional inputs. We learn a separate lengthscale for each
input dimension (i.e., feature) of the data. We denote the
lengthscales for a kernel as its lengthscale profile. We call



0.0

0.5

1.0 ρ =−0.814
r =−0.758

GELU, 1500 steps

ρ =−0.819
r =−0.816

ReLU, 1500 steps

ρ =−0.858
r =−0.842

SiLU, 1500 steps

ρ =−0.752
r =−0.636

tanh, 1500 steps

0.0

0.5

1.0 ρ =−0.811
r =−0.802

GELU, 200 steps

ρ =−0.843
r =−0.787

ReLU, 200 steps

ρ =−0.782
r =−0.856

SiLU, 200 steps

ρ =−0.770
r =−0.608

tanh, 200 steps

0.0 0.5 1.0
0.0

0.5

1.0 ρ =−0.819
r =−0.763

GELU, 100 steps

0.0 0.5 1.0

ρ =−0.868
r =−0.768

ReLU, 100 steps

0.0 0.5 1.0

ρ =−0.794
r =−0.831

SiLU, 100 steps

0.0 0.5 1.0

ρ =−0.716
r =−0.528

tanh, 100 steps

airfoil
autompg
breastcancer
concrete
energy
fertility
housing
kin40k
pendulum
power plant
protein
pumadyn32nm
solar
song
stock
wine
yacht

0.0 0.2 0.4 0.6 0.8 1.0

Lengthscale correlation
0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

ga
p

Figure 7: Inverse relationship between generalization error and length-
scale correlation on UCI datasets. Each point represents the lengthscale
correlation (between surrogate and data lengthscales) and the average gen-
eralization gap for a neural network ensemble to which the surrogate model
is fit, on a single UCI dataset; we also report the standard error of the gen-
eralization gap. Each panel corresponds to a particular neural family; see
Section (4.4) for details about hyperparameters of these families, including
architectures. Colors correspond to UCI datasets. Across datasets and ar-
chitectures, a larger lengthscale correlation (i.e., higher similarity between
the data and surrogate representations) corresponds to a lower generaliza-
tion gap (i.e., better extrapolation).

the data kernel’s lengthscales the data lengthscales and the
surrogate kernel’s lengthscales the surrogate lengthscales.
To quantify the mismatch between NN validation predic-
tions and the training data, we consider the correlation in
lengthscale profiles across features. This is the correlation
between the data and surrogate lengthscales.

Results. Fig. (6) gives intuition for our more general re-
sult in Fig. (7). For two UCI datasets, we compare the data
lengthscales and the surrogate lengthscales for a two-layer
GELU NN. The vertical axis corresponds to (normalized)
learned lengthscales for each input dimension.3 When the
generalization gap is small, the data kernel and surrogate
kernel are similar; the same features have similar length-
scales (Fig. (6), bottom). When the generalization gap is
large, the data kernel and surrogate kernel have discrepan-
cies. For example, the surrogate lengthscales for features 1
and 6 are larger than 1, but the data lengthscales for feature
1 and 6 are smaller than 1 (Fig. (6), top).

In Fig. (7), we summarize our results across different archi-
tectures, datasets, and maximum training iterations. We dis-
play the generalization gap against the correlation in length-
scale profiles across features. We report the mean gener-
alization gap along with its standard error. The similarity

3For this visualization, we divide the learned lengthscale for
each dimension by the difference between the maximum feature
value and minimum feature value for each dimension. Therefore,
a lengthscale that is much greater than 1 suggests that the NN
predictions do not vary much along that dimension.

in lengthscale profiles negatively correlates with general-
ization gap across a range of architectures and max itera-
tions. The Pearson correlation coefficients (r) range from
−0.856 to −0.528. The Spearman correlation coefficients (ρ)
range from −0.868 to −0.716. In Section A.3, we demon-
strate these results are insensitive to outlier datasets.

4.4.2 Larger-scale demonstration

We now extend the analysis in the previous section to a larger
hyperparameter sweep, more closely emulating the analysis
a practitioner would use in selecting a model for a dataset.

NN hyperparameters. We train ensembles of randomly
initialized NNs with four activations (SiLU, GELU, ReLU,
or tanh), two depths (2, 4), two widths (32, 64), and two
learning rates with Adam (0.03, 0.003), generating 32 hy-
perparameter combinations. We use the LeCun normal ini-
tialization with a scale of 1.5. We train 50 NNs for 500 iter-
ations with full-batch gradient descent using Adam.

Target functions. We consider a subset of UCI datasets
that satisfy two criteria: more than 2 unique feature values
for each dimension, and a range in lengthscale correlations
between neural network and datasets greater than 0.025;
the first condition ensures that we can learn sensible length-
scales for the dataset, while the second ensures that there is
meaningful variation in NN behavior within a dataset. As in
Section (4.4.1), we split each of the datasets into a 72/8/20
train/validation/test split, subsample 2,000 datapoints if nec-
essary, and standardize data inputs and outputs.

GP surrogate. In addition to the correlation in lengthscale
profiles across features from Section (4.4.1), we consider
the marginal likelihood of the training dataset under the
kernel learned for each neural network family.

Results. Figure (8) plots the average generalization gap
and standard error against the correlation in lengthscale pro-
files across features. In contrast to Fig. (7), each panel cor-
responds to a particular dataset and each data point corre-
sponds to a particular neural network family with a set of
hyperparameters described above. The majority of datasets
exhibit a negative relationship between correlation in length-
scale profiles and generalization gap. There are two excep-
tions: pendulum and protein. For the pendulum dataset, the
positive relationship is driven by neural networks with tanh
activations (the dots in different shades of red). The Matern
kernel may struggle to model the tanh networks, consistent
with Fig. (7) where the correlations were consistently lower
for the tanh networks. For the protein dataset, the positive
relationship may be due to challenges in fitting GPs to this
dataset; recent work showed that exact GP regression on a
training dataset (without any subsampling) from the protein
dataset attains high test RMSE [Wang et al., 2019].



0.93 0.94 0.95 0.96 0.97
0.04

0.06

0.08

0.10

0.12

0.14

G
en

er
al

iz
at

io
n

ga
p ρ =−0.39

r =−0.34

autompg

0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5
ρ = 0.54
r = 0.50

protein

0.4 0.5 0.6 0.7 0.8

0.30

0.35

0.40

0.45 ρ =−0.05
r = 0.19

pendulum

0.5 0.6 0.7

0.6

0.8

1.0

1.2 ρ =−0.84
r =−0.88

song

0.2 0.4 0.6 0.8 1.0

Lengthscale correlation

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

ga
p ρ =−0.72

r =−0.71

pumadyn32nm

0.86 0.88 0.90 0.92

Lengthscale correlation

0.05

0.10

0.15

0.20
ρ =−0.36
r =−0.44

kin40k

0.94 0.96 0.98

Lengthscale correlation

0.01

0.02

0.03

0.04 ρ =−0.30
r =−0.50

airfoil

Figure 8: Inverse relationship between generalization error and length-
scale correlation on UCI datasets across hyperparameter sweep of neu-
ral networks. Each point represents the lengthscale correlation (between
surrogate and data lengthscales) and the generalization gap for a neural net-
work ensemble to which the surrogate model is fit. Each panel corresponds
to a particular UCI dataset; see Section (4.4.2) for details about hyperpa-
rameters and architectures. In 5/7 datasets, a larger lengthscale correlation
(i.e., higher similarity between the data and surrogate representations) cor-
responds to a lower generalization gap (i.e., better extrapolation).

−195 −194

MLL

0.08

0.10

0.12

0.14

Te
st

er
ro

r

ρ =−0.72
r =−0.72

autompg

−2000 −1500 −1000

0.6

0.8

1.0

ρ =−0.55
r =−0.27

pumadyn32nm

−1620 −1600 −1580

0.4

0.5

0.6 ρ = 0.67
r = 0.62

protein

−1290 −1285 −1280

0.05

0.10

0.15

0.20
ρ =−0.39
r =−0.48

kin40k

−455 −450 −445

LML

0.30

0.35

0.40

0.45

Te
st

er
ro

r

ρ =−0.10
r =−0.22

pendulum

−836 −834 −832

LML

0.02

0.03

0.04

0.05

Te
st

er
ro

r

ρ = 0.30
r = 0.41

airfoil

−1610 −1600 −1590

LML

0.6

0.8

1.0

1.2

Te
st

er
ro

r

ρ =−0.52
r =−0.81

song

Figure 9: Inverse relationship between test error and marginal likeli-
hood on UCI datasets Each point represents the marginal likelihood of the
training data (using the surrogate kernel for a neural network family) and
the test error for a neural network ensemble to which the surrogate model is
fit. Each panel corresponds to a particular UCI dataset; see Section (4.4.2)
for details about hyperparameters of these families, including architectures.
Each color corresponds to a particular neural network ensemble. In 5/7
datasets, a larger marginal likelihood correlates with lower test error.

In Fig. (9), we plot the test error against the marginal like-
lihood of the training data under the various surrogate ker-
nels for each neural network ensemble. That is, each point
corresponds to the marginal likelihood of the training data
using the surrogate kernel learned from each neural network
family. We find the marginal likelihood correlates with test
error on several of the datasets (each dataset is indicated by
the subplot title). Consistent with previous work [Lotfi et al.,
2022], we find that this result is sensitive to the jitter (which
we set to 0.5). In Section A.2 of the supplement, we sanity
check this analysis on synthetic datasets.

5 DISCUSSION

In this work, we illustrated the potential of empirically char-
acterizing neural networks with Gaussian process surrogates.
We captured the spectral bias of deep rectifier networks by

examining how the surrogate kernel evolves during train-
ing (Section (4.1)). We captured pathologies that emerge
in randomly initialized neural networks by examining the
learned kernels of neural networks with varying depths (Sec-
tion (4.2)). We further demonstrated that Gaussian process
surrogates can be used to identify influential datapoints (Sec-
tion (4.3)) and predict neural network generalization (Sec-
tion (4.4)). Taken together, these results suggest that Gaus-
sian process surrogates may be a valuable empirical tool for
investigating deep learning, and future work could aim to
use this framework to complement existing approaches to
interpretability [e.g., Ribeiro et al., 2016] and examining
extrapolation behavior [e.g., Xu et al., 2021].

We note some limitations. First, though the framework is,
in principle, applicable to broader settings, we restricted
this first exploration to regression tasks and feed-forward
neural network architectures. A broader study of more ar-
chitectures and tasks would be challenging due to the need
to scale Gaussian processes but potentially rewarding, as
characterizing properties of neural networks is a open prob-
lem with far-reaching implications [Sejnowski, 2020]. To
tackle this, we could leverage techniques such as inducing
points [e.g., Titsias, 2009]. Another limitation is that the
data generation process involves training many networks.
We could leverage recent work on fast neural network train-
ing [Leclerc et al., 2022].

Second, we learn point estimates of kernel hyperparame-
ters [type II maximum likelihood; Gelman et al., 2013]. Al-
though this is standard, we could infer the posterior over hy-
perparameters using Markov chain Monte Carlo (MCMC)
or variational inference [Lalchand and Rasmussen, 2020,
Murray and Adams, 2010] to perform a fully Bayesian anal-
ysis. We could also explore a richer set of kernels [Duvenaud
et al., 2013]. These are exciting avenues for future work.

Acknowledgements

We thank Jake Snell for helpful discussions. This work was
supported by ONR grant number N00014-18-1-2873.

References

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for
deep learning via over-parameterization. In Proc. ICML,
2019.

R. Bommasani et al. On the opportunities and risks of
foundation models. 2021.

G. Camps-Valls et al. Ranking drivers of global carbon and
energy fluxes over land. In Proc. Int. Geosci. Remote. Se.,
2015.

R. Caruana. Multitask learning. Machine Learning, 28:41–
75, 1997.



A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Ali-
panahi, A. Beutel, C. Chen, J. Deaton, J. Eisenstein, M. D.
Hoffman, et al. Underspecification presents challenges
for credibility in modern machine learning. 2020.

F. Doshi-Velez and B. Kim. Towards a rigorous science of
interpretable machine learning. 2017.

S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent
provably optimizes over-parameterized neural networks.
In Proc. ICLR, 2019.

D. Dua and C. Graff. UCI Machine Learning Repository,
2017.

D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, and
G. Zoubin. Structure discovery in nonparametric regres-
sion through compositional kernel search. In Proc. ICML,
2013.

D. Duvenaud, O. Rippel, R. P. Adams, and Z. Ghahramani.
Avoiding pathologies in very deep networks. In Proc.
AISTATS, 2014.

S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, 107:3–11,
2018.

K. Fukushima. Cognitron: A self-organizing multilayered
neural network. Biological Cybernetics, 20:121–136,
1975.

J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G.
Wilson. GPyTorch: Blackbox Matrix-Matrix Gaussian
Process Inference with GPU acceleration. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Adv. NeurIPS, 2018.

A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison.
Deep convolutional networks as shallow Gaussian pro-
cesses. In Proc. ICLR, 2019.

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wich-
mann, and W. Brendel. ImageNet-trained CNNs are bi-
ased towards texture; Increasing shape bias improves ac-
curacy and robustness. In Proc. ICLR, 2019.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Bren-
del, M. Bethge, and F. A. Wichmann. Shortcut learning
in deep neural networks. Nat. Mach. Intell., 2:665–673,
2020.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Ve-
htari, and D. B. Rubin. Bayesian data analysis. 2013.

D. Ginsbourger and C. Scharer. Fast calculation of Gaussian
Process multiple-fold cross-validation residuals and their
covariances. 2021.

T. L. Griffiths, N. Chater, C. Kemp, A. Perfors, and J. B.
Tenenbaum. Probabilistic models of cognition: Exploring
representations and inductive biases. Trends in cognitive
sciences, 14(8):357–364, 2010.

R. Hawkins, T. Yamakoshi, T. L. Griffiths, and A. Goldberg.
Investigating representations of verb bias in neural lan-
guage models. In Proc. EMNLP, 2020.

D. Hendrycks and K. Gimpel. Gaussian error linear units
(GELUs). 2016.

T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J.
Storkey. Meta-learning in neural networks: A survey.
Trans. PAMI, 2020.

A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and
A. Madry. Adversarial examples are not bugs, they are
features. Adv. NeurIPS, 2019.

A. Ilyas, S. M. Park, L. Engstrom, G. Leclerc, and A. Madry.
Datamodels: Understanding predictions with data and
data with predictions. In Proc. ICML, 2022.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel:
Convergence and generalization in neural networks. In
Adv. NeurIPS, volume 31, 2018.

Y. Jiang, P. Foret, S. Yak, D. M. Roy, H. Mobahi, G. K.
Dziugaite, S. Bengio, S. Gunasekar, I. Guyon, and
B. Neyshabur. NeurIPS 2020 Competition: Predicting
generalization in deep learning, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In Proc. ICLR, 2015.

P. W. Koh and P. Liang. Understanding black-box predic-
tions via influence functions. In Proc. ICML, 2017.

A. Labatie. Characterizing well-behaved vs. pathological
deep neural networks. In Proc. ICML, 2019.

V. Lalchand and C. E. Rasmussen. Approximate inference
for fully Bayesian Gaussian process regression. In Proc.
AABI, 2020.

G. Leclerc, A. Ilyas, L. Engstrom, S. M. Park, H. Salman,
and A. Madry. FFCV: Accelerating training by re-
moving data bottlenecks. https://github.com/
libffcv/ffcv/, 2022.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient
backprop. In Neural Networks: Tricks of the Trade, 2012.

J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington,
and J. Sohl-Dickstein. Deep neural networks as Gaussian
processes. In Proc. ICLR, 2017.

Y. Li and Y. Liang. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Adv. NeurIPS, 2018.

https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/


Z. C. Lipton. The mythos of model interpretability. 2016.

S. Liu, X. Sun, P. J. Ramadge, and R. P. Adams. Task-
agnostic amortized inference of Gaussian process hyper-
parameters. In Adv. NeurIPS, 2020.

S. Lotfi, P. Izmailov, G. Benton, M. Goldblum, and A. G.
Wilson. Bayesian model selection, the marginal likeli-
hood, and generalization. 2022.

B. Matérn. Spatial variation, volume 36. Springer Science
& Business Media, 1960.

A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner,
and Z. Ghahramani. Gaussian process behaviour in wide
deep neural networks. In Proc. ICLR, 2018.

J. L. McClelland. The place of modeling in cognitive sci-
ence. Topics in Cognitive Science, 1(1):11–38, 2009.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. NeRF: Representing scenes
as neural radiance fields for view synthesis. In ECCV,
2020.

T. M. Mitchell. The need for biases in learning generaliza-
tions. Technical report, 1980.

I. Murray and R. P. Adams. Slice sampling covariance hyper-
parameters of latent Gaussian models. In Adv. NeurIPS,
2010.

V. Nair and G. E. Hinton. Rectified linear units improve
restricted Boltzmann machines. In Proc. ICML, 2010.

P. Nakkiran. Towards an empirical theory of deep learning.
PhD thesis, Harvard University, 2021.

R. M. Neal. Priors for infinite networks. In Bayesian Learn-
ing for Neural Networks, pages 29–53. Springer, 1996.

A. Newell, J. C. Shaw, and H. A. Simon. Elements of a
theory of human problem solving. Psych. Rev., 65(3):151,
1958.

R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, D. A. Abo-
lafia, J. Pennington, and J. Sohl-dickstein. Bayesian deep
convolutional networks with many channels are Gaussian
processes. In Proc. ICLR, 2019.

N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin,
F. Hamprecht, Y. Bengio, and A. Courville. On the spec-
tral bias of neural networks. In Proc. ICML, 2019.

C. E. Rasmussen and C. K. Williams. Gaussian processes
for machine learning. Jan. 2006.

M. T. Ribeiro, S. Singh, and C. Guestrin. “Why should I
trust you?”: Explaining the predictions of any classifier.
In Proc. KDD, 2016.

S. Ritter, D. G. T. Barrett, A. Santoro, and M. M. Botvinick.
Cognitive psychology for deep neural networks: A shape
bias case study. In Proc. ICML, 2017.

D. A. Roberts, S. Yaida, and B. Hanin. The principles of
deep learning theory. Cambridge University Press, 2022.

W. Samek, T. Wiegand, and K.-R. Müller. Explainable arti-
ficial intelligence: Understanding, visualizing and inter-
preting deep learning models. 2017.

S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-
Dickstein. Deep information propagation. In Proc. ICLR,
2017.

T. J. Sejnowski. The unreasonable effectiveness of deep
learning in artificial intelligence. PNAS, 117, 2020.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and
N. de Freitas. Taking the human out of the loop: A re-
view of Bayesian optimization. Proc. IEEE, 104:148–
175, 2016.

F. Simpson, I. Davies, V. Lalchand, A. Vullo, N. Durrande,
and C. E. Rasmussen. Kernel identification through trans-
formers. In Adv. NeurIPS, 2021.

J. Snoek, H. Larochelle, and R. P. Adams. Practical
Bayesian optimization of machine learning algorithms.
In Adv. NeurIPS, 2012.

R. Sun. The Cambridge handbook of computational psy-
chology. Cambridge University Press, 2008.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. In Proc. ICLR, 2014.

M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil,
N. Raghavan, U. Singhal, R. Ramamoorthi, J. Barron, and
R. Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. In Adv. NeurIPS,
pages 7537–7547, 2020.

M. Titsias. Variational learning of inducing variables in
sparse Gaussian processes. In Proc. AISTATS, 2009.

G. G. Wang and S. Shan. Review of metamodeling tech-
niques in support of engineering design optimization.
Journal of Mechanical Design, 129(4):370–380, 05 2006.

K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree, K. Q. Wein-
berger, and A. G. Wilson. Exact Gaussian processes on a
million data points. In Adv. NeurIPS, 2019.

A. G. Wilson and R. P. Adams. Gaussian process kernels for
pattern discovery and extrapolation. In Proc. ICML, 2013.

L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. S. Schoenholz, and
J. Pennington. Dynamical isometry and a mean field the-
ory of CNNs: How to train 10,000-layer vanilla convolu-
tional neural networks. In Proc. ICML, 2018.



K. Xu, M. Zhang, J. Li, S. S. Du, K.-I. Kawarabayashi,
and S. Jegelka. How neural networks extrapolate: From
feedforward to graph neural networks. In Proc. ICLR,
2021.

G. Yang. Scaling limits of wide neural networks with weight
sharing: Gaussian process behavior, gradient indepen-
dence, and neural tangent kernel derivation. 2019.

Y. Zhou, M. T. Ribeiro, and J. Shah. ExSum: From local
explanations to model understanding. In Proc. NAACL,
2022.


	Introduction
	Background
	Learning a GP surrogate model from NN predictions
	Formal framework
	Demonstration: Comparing learned GP priors with NN priors

	Experiments
	Reproduction: Spectral bias
	Reproduction: Depth pathologies in randomly initialized NN
	Amortized influence estimation
	Predicting the generalization gap
	Initial demonstration
	Larger-scale demonstration


	Discussion

