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ABSTRACT

With increasingly more data and computation involved in their training, machine
learning models constitute valuable intellectual property. This has spurred inter-
est in model stealing, which is made more practical by advances in learning with
partial, little, or no supervision. Existing defenses focus on inserting unique wa-
termarks in a model’s decision surface, but this is insufficient: the watermarks
are not sampled from the training distribution and thus are not always preserved
during model stealing. In this paper, we make the key observation that knowl-
edge contained in the stolen model’s training set is what is common to all stolen
copies. The adversary’s goal, irrespective of the attack employed, is always to
extract this knowledge or its by-products. This gives the original model’s owner
a strong advantage over the adversary: model owners have access to the origi-
nal training data. We thus introduce dataset inference, the process of identifying
whether a suspected model copy has private knowledge from the original model’s
dataset, as a defense against model stealing. We develop an approach for dataset
inference that combines statistical testing with the ability to estimate the distance
of multiple data points to the decision boundary. Our experiments on CIFAR10,
SVHN, CIFAR100 and ImageNet show that model owners can claim with confi-
dence greater than 99% that their model (or dataset as a matter of fact) was stolen,
despite only exposing 50 of the stolen model’s training points. Dataset inference
defends against state-of-the-art attacks even when the adversary is adaptive. Un-
like prior work, it does not require retraining or overfitting the defended model.1

1 INTRODUCTION

Machine learning models have increasingly many parameters (Brown et al., 2020; Kolesnikov et al.,
2019), requiring larger datasets and significant investment of resources. For example, OpenAI’s
development of GPT-3 is estimated to have cost over USD 4 million (Li, 2020). Yet, models are
often exposed to the public to provide services such as machine translation (Wu et al., 2016) or image
recognition (Wu et al., 2019). This gives adversaries an incentive to steal models via the exposed
interfaces using model extraction. This threat raises a question of ownership resolution: how can
an owner prove that another suspect model stole their intellectual property? Specifically, we aim to
determine whether a potentially stolen model was derived from an owner’s model or dataset.

An adversary may derive and steal intellectual property from a victim in many ways. A prominent
way is (1) model extraction (Tramèr et al., 2016), where the adversary exploits access to a model’s
(1.a) prediction vectors (e.g., through an API) to reproduce a copy of the model at a lower cost than
what is incurred in developing it. Perhaps less directly, (1.b) the adversary could also use the victim
model as a labeling oracle to train their model on an initially unlabeled dataset obtained either from
a public source or collected by the adversary. In a more extreme threat model, (2) the adversary
could also get access to the dataset itself which was used to train the victim model and train their
own model by either (2.a) distilling the victim model, or (2.b) training from scratch altogether.
Finally, adversaries may gain (3) complete access to the victim model, but not the dataset. This may
happen when a victim wishes to open-source their work for academic purposes but disallows its

∗Work done while an intern at the University of Toronto and Vector Institute
1Code and models for reproducing our work can be found at github.com/cleverhans-lab/dataset-inference
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commercialization, or simply via insider-access. The adversary may (3.a) fine-tune over the victim
model, or (3.b) use the victim for data-free distillation (Fang et al., 2019).

Preventing all forms of model stealing is impossible without decreasing model accuracy for legit-
imate users: model extraction adversaries can obfuscate malicious queries as legitimate ones from
the expected distribution. Most prior efforts thus focus on watermarking models before deployment.
Rather than preventing model stealing, they aim to detect theft by allowing the victim to claim own-
ership by verifying that a suspect model responds with the expected outputs on watermarked inputs.
This strategy not only requires re-training and decreases model accuracy, it can also be vulnerable
to adaptive attacks that lessen the impact of watermarks on the decision surface during extraction.
Thus, recent work that has managed to prevail (Yang et al., 2019) despite distillation (Hinton et al.,
2015) or extraction (Jia et al., 2020), has suffered a trade-off in model performance.

In our work, we make the key observation that all stolen models necessarily contain direct or indirect
information from the victim model’s training set. This holds regardless of how the adversary gained
access to the stolen model. This leads us to propose a fundamentally different defense strategy: we
identify stolen models because they possess knowledge contained in the private training set of the
victim. Indeed, a successful model extraction attack will distill the victim’s knowledge of its training
data into the stolen copy. Hence, we propose to identify stolen copies by showing that they were
trained (at least partially and indirectly) on the same dataset as the victim.

We call this process dataset inference (DI). In particular, we find that stolen models are more con-
fident about points in the victim model’s training set than on a random point drawn from the task
distribution. The more an adversary interacts with the victim model to steal it, the easier it will be
to claim ownership by distinguishing the stolen model’s behavior on the victim model’s training set.
We distinguish a model’s behavior on its training data from other subsets of data by measuring the
‘prediction certainty’ of any data point: the margin of a given data point to neighbouring classes.

At its core, DI builds on the premise of input memorization, albeit weak. One might think that DI
succeeds only for models trained on small datasets when overfitting is likely. Surprisingly, in prac-
tice, we find that even models trained on ImageNet end up memorizing training data in some form.

Among related work discussed in § 2, distinguishing a classifier’s behavior on examples from its
train and test sets is closest to membership inference (Shokri et al., 2017). Membership inference
(MI) is an attack predicting whether individual examples were used to train a model or not. Dataset
inference flips this situation and exploits information asymmetry: the potential victim of model theft
is now the one testing for membership and naturally has access to the training data. Whereas MI
typically requires a large train-test gap because such a setting allows a greater distinction between
individual points in and out the training set (Yeom et al., 2018; Choo et al., 2020), dataset inference
succeeds even when the defender has slightly better than random chance of guessing membership
correctly; because the victim aggregates the result of DI over multiple points from the training set.

In summary, our contributions are:

• We introduce dataset inference as a general framework for ownership resolution in machine
learning. Our key observation is that knowledge of the training set leads to information
asymmetry which advantages legitimate model owners when resolving ownership.

• We theoretically show on a linear model that the success of MI decreases with the size of
the training set (as overfitting decreases), whereas DI is independent of the same. Despite
the failure of MI on a binary classification task, DI still succeeds with high probability.

• We propose two different methods to characterize training vs. test behavior: targeted adver-
sarial attacks in the white-box setting, and a novel ‘Blind Walk’ method for the black-box
label-only setting. We then create a concise embedding of each data point that is fed to
a confidence regressor to distinguish between points inside and outside a model’s training
set. Hypothesis testing then returns the final ownership claim.

• Unlike prior efforts, our method not only helps defend ML services against model extrac-
tion attacks, but also in extreme scenarios such as complete theft of the victim’s model or
training data. In § 7, we also introduce and evaluate our approach against adaptive attacks.

• We evaluate our method on the CIFAR10, SVHN, CIFAR100 and ImageNet datasets and
obtain greater than 99% confidence in detecting model or data theft via the threat models
studied in this work, by exposing as low as 50 random samples from our private dataset.
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We remark that dataset inference applies beyond intellectual property issues. For example, Song &
Shmatikov (2019) showed that models trained for gender classification also learn features predictive
of ethnicity. This raises ethical concerns, and dataset inference could assess whether a sensitive
dataset was used by a model developer for different purposes than stated at data collection time.

2 RELATED WORK

Model Extraction. Model extraction (Tramèr et al., 2016; Jagielski et al., 2020; Truong et al.,
2021) is the process where an adversary tries to steal a copy of a machine learning model, that may
have been remotely deployed (such as over a prediction API). Depending on the level of access pro-
vided by the prediction APIs, model extraction may be performed by only using the labels (Chan-
drasekaran et al., 2019; Correia-Silva et al., 2018) or the entire prediction logits of the deployed
service (Orekondy et al., 2018). Model extraction has seen a cycle of attacks and defenses. Once
an adversary has knowledge of the defense strategy adopted by the victim, they adaptively modify
the attack to circumvent that defense (see watermarking). Model extraction can also be a recon-
naissance step used to prepare for further attacks, e.g., finding adversarial examples (Papernot et al.,
2017; Shumailov et al., 2020).

Watermarking. Since Uchida et al. (2017) embedded watermarks into neural networks and Adi
et al. (2018) used them as signatures to claim possession, watermarks have been widely adopted
as a way to resolve ownership claims. The underlying idea is to manipulate the model to learn
information other than that from the true data distribution, and use this knowledge for verification
afterwards. This strategy not only requires new training procedures and decreases the model’s accu-
racy (Jia et al., 2020), but is also vulnerable to adaptive attacks that lessen the impact of watermarks
on the model’s decision surface during extraction (Liu et al., 2018; Chen et al., 2019; Wang et al.,
2019; Shafieinejad et al., 2019).

Membership Inference. Shokri et al. (2017) train a number of shadow classifiers on confidence
scores produced by the target model with labels indicating whether samples came from the training
or testing set. MI attacks are shown to work in white- (Leino & Fredrikson, 2020; Sablayrolles et al.,
2019) as well as black-box scenarios against various target models including generative models
(Hayes et al., 2019). Yeom et al. (2018) explore overfitting as the root cause of MI vulnerability.
Choo et al. (2020) show that MI can succeed even in scenarios when the victim only provides labels.

Out of Distribution Detection. Liang et al. (2017) and Lee et al. (2018) measure model perfor-
mance on modifying an input to find if a sample is in or out-of-distribution. The premise is that
in-distribution samples are easier to manipulate, whereas out-of-distribution samples require more
work. In contrast, our work solves a much more challenging problem: the dataset distribution may
be the same, but can we still identify which of the datasets was used for training?

3 THREAT MODEL AND DEFINITION OF DATASET INFERENCE

Consider a victim V who trains a model fV on their private data SV ⊆ KV , where KV represents
the private knowledge of V . While KV is an abstract concept that can not be concretely defined, the
private dataset SV represents a definite part of the victim’s knowledge that can be formalized. An
adversary A∗ may gain access to a subset of KV and use it to train its own model fA∗ . V suspects
theft, and would like to prove that fA∗ is indeed a copy of fV . Hence, V employs dataset inference
on fA∗ to determine if a subset of their private knowledge K ⊆ KV was used to train fA∗ . We
formally define the victim and their dataset inference experiment below.

Definition 1 (Dataset Inferring Victim V(f, α,m)) Let V : F × [0, 1] × N 7→ {1, ∅} be a victim
with private access to SV ⊆ KV , where F represents the set of all classifiers trained on samples
from a data distribution D. Given classifier f , V can reveal at most m samples from SV to either
conclusively prove that a subset of their private knowledge K ⊂ KV has been used in the training
of f with a Type-I error (FPR) < α, or return an inconclusive result ∅.

Definition 2 (Dataset Inference Experiment ExpDI(V,m, α, SV ,D)) Let F be as in Definition
1, and assume FV to be the set of all classifiers trained on the victim’s private dataset SV ∼ D, and
m a natural number. The dataset inference experiment follows:
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1. Choose b← {0, 1} uniformly at random.
2. fA∗ = f ∼ FV if b = 1; else fA∗ = f ∼ F

3. ExpDI(V,m, α, SV ,D) =

{
1 if V(fA∗ , α,m) = 1 and b = 1

0 otherwise

4 THEORETICAL MOTIVATION

Dataset Inference (DI) aims to leverage the disparity in the response of an ML model to inputs that
it saw during training time, versus those that it did not. We call this response ‘prediction margin’.
In § 4, we introduce our theoretical framework. In § 4.1, we quantify the difference in the expected
response of a model to any point in the training and test set. Finally, in § 4.2 we describe how DI
succeeds with high probability in this setting, while membership inference (MI) fails.

Setup. Consider a data distribution D, such that any input-label pair (x, y) can be described as:

y ∼ {−1,+1}; x1 = y · u ∈ RK , x2∼N (0, σ2I) ∈ RD (1)

where x = (x1,x2) ∈ RK+D and u ∈ RK is a fixed vector. Observe that the lastD dimensions of x
represent Gaussian noise (with var. σ2) having no correlation to the correct label. However, the first
K dimensions are sufficient to separate inputs from classes {−1,+1} (Nagarajan & Kolter, 2019).
S ∼ D, s.t. |S| = m represents the private training set of a model withm distinct training examples.

Architecture. We consider the scenario of classifying the input distribution using a linear classifier,
f , with weights w = (w1,w2), such that for any input x: f(x) = w1 · x1 + w2 · x2. And the
final classification decision is sgn(f(x)). While we only discuss the case of a linear network in
this analysis, the success of DI only increases with the number of parameters in a machine learning
model, as is the case for MI (Yeom et al., 2018). This, in effect makes the following analysis a
stronger result to prove. Prior works have also argued how over-parametrized deep learning networks
memorize training points (Zhang et al., 2016; Feldman, 2019). At its core, DI builds on the premise
of (weak) input memorization. Results on DNNs are discussed in § 7.

4.1 PREDICTION MARGIN

In our work, we use ‘prediction margin’ to imply the confidence of a machine learning model of its
prediction. In other words, we try to capture the robustness of a model’s prediction under uncertainty,
which is equivalent to viewing the local landscape of a machine learning model. For the purpose of
the theoretical analysis, it is convenient to define it as the margin of a data point from the decision
boundary (y · f(x)). As we scale our method to deep networks in the empirical evaluation, we will
describe alternative methods of measuring the ‘prediction margin’ in multi-class settings.

Theorem 1 (Train-Test Margin) Given a linear classifier f trained to classify inputs (x, y) ∈ S
(training set), the difference in the expected prediction margin for samples in S and D is given by
E(x,y)∼S [y · f(x)]−E(x,y)∼D [y · f(x)] = Dσ2, where σ2 is the Gaussian noise variance as in (1).

The proof (Appendix A.2) first calculates the weights of the learned classifier f by assuming that it
is trained using gradient descent with a fixed learning rate, and viewing all training points exactly
once. We then analyze the expected margin for data points included in training or not.

4.2 DATASET INFERENCE V/S MEMBERSHIP INFERENCE

We now show how MI fails to distinguish between train and test samples in the same setting. This
happens because an adversary has to make a decision about the presence of a given data point in
the training set by querying a single point. However, DI succeeds with high probability in the same
setting because it aggregates signal over multiple data points. We note that the statistical differences
between the ‘prediction margin’ of training and test data points in § 4.1 are only known when we
calculate an expectation over multiple samples.
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Figure 1: The effect of includ-
ing (x, ‘A’) in the train set. If
x is in the train set, the classi-
fier will learn to maximize the
decision boundary’s distance
to Y \ {‘A’}. If x is in the test
set, it has no direct impact on
the learned landscape.

Failure of Membership Inference. Consider a membership in-
ferring adversary M that has no knowledge of the victim’s train-
ing data S, but has domain knowledge such as the publicly avail-
able data distribution D. Define M(x, f) as the adversary’s de-
cision function to predict whether x belongs to S. Let R repre-
sent a distribution that uniformly at random samples from either
S(b = 1) or D(b = 0). Then, M makes a membership decision
about (x, b) ∼ R. Φ denotes the Gaussian CDF.

Theorem 2 (Failure of MI) Given a linear classifier f trained on
S, the probability that an adversaryM correctly predicts the mem-
bership of inputs randomly belonging to the training or test set,

Px∼R [M(x, f) = b] = 1 − Φ
(
−
√

D
2m

)
, and decreases with

|S| = m. Moreover, limm→∞ Px∼R [M(x, f) = b] = 0.5.

The theorem suggests that the success of MI when querying a single
data point is extremely low. Ass m increases, the adversary can do
no better than a coin flip. This means that the success is directly
proportional to overfitting (we present the proof in Appendix A.3)

Success of Dataset Inference. Take V to be a dataset inferring
victim (Definition 1). Let ψV(f, S;D) be V’s decision function for
ownership resolution. In the next theorem, we show that the success
of DI in practice is high and independent of the training set size.
(Proof in Appendix A.4)

Theorem 3 (Success of DI) Choose b← {0, 1} uniformly at random. Given an adversary’s linear
classifier f trained on S′ ∼ D, s.t. |S′| = |S| if b = 0, and on S otherwise. The probability

V correctly decides if an adversary stole its knowledge P [ψ(f, S;D) = b] = 1 − Φ
(
−
√
D

2
√
2

)
.

Moreover, limD→∞ P [ψ(f, S;D) = b] = 1.

Example. Assume a dataset of training size 50K and input dimensions K = 100, D = 900
(i.e., 100 strongly correlated features which is roughly similar to the MNIST dataset) We have
P(x,y)∼S [ψ(f, S;D) = 1] = 1− 10−26 ∼ 1.0 while P(x,b)∼R [M(x, f) = b] = 0.526. Therefore,
in a problem setting where membership inference succeeds only by slightly above random chance,
dataset inference succeeds nearly every time.

5 DATASET INFERENCE

Dataset Inference is the process of determining whether a victim’s private knowledge has been
directly or indirectly incorporated in a model trained by an adversary. Our key intuition is that
classifiers generally try to maximize the distance of training examples from the model’s decision
boundaries. This means that any model which has stolen the victim’s private knowledge should also
position data similar to victim’s private training data far from its own decision boundaries. (See
Figure 1) When a victim suspects knowledge was stolen from their model, they may measure how
the adversary’s model responds to their own training data to substantiate their ownership claim.

5.1 EMBEDDING GENERATION

For a model f and data point x, we aim to extract a feature embedding for x that characterizes its
‘prediction margin’ (or distance from the decision boundaries) w.r.t. f . The victim V extracts these
embeddings for points (x, y) ∼ D and labels them as inside (b = 1) or outside (b = 0) of their
private dataset SV .2 We introduce two methods for generating embeddings based on the level of
access the victim may have to the adversary’s model.

2Recall that for our discussion on linear networks in § 4, we used a simple metric to compute the ‘prediction
margin’ of a given data point as (y · f(x)). However, the same does not apply to deep networks.

5



Published as a conference paper at ICLR 2021

SV

S (Public)

Embedding
Generator

Ownership
Tester

Stolen / Inconclusive
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Figure 2: Training (dotted) the confidence regres-
sor with embeddings of public and private data,
and victim’s model fV ; Dataset Inference (solid)
usingm private samples and adversary model fA∗

White-Box Setting: MinGD White-box em-
bedding generation is used when V and A∗ re-
solve the claim for ownership in the presence of
a neutral arbitrator, such as a court. Indeed, Ku-
mar et al. (2020) highlight that such attacks po-
tentially fall under Computer Fraud and Abuse
Act in the USA and are prosecutable for ‘re-
verse engineering’ the model’s ‘source code’.
Both parties provide access to their models, and
then the ‘prediction margin’ is measured for
the suspected adversary’s model on the victim’s
train and test data points. For any data point
(x, y) we evaluate its minimum distance ∆ to
the neighbouring target classes t by performing
gradient descent optimization of the following
objective (Szegedy et al., 2013): minδ ∆(x,x+
δ) s.t. f(x + δ) = t. The distance metric
∆(x(i),x(j)) refers to the `p distance between
points x(i) and x(j) for p ∈ {1, 2,∞}, and t
is the target label. The distance ∆ to each tar-
get class is a feature in the embedding vector
analyzed by the ownership tester from §5.2.

Black-Box Setting: Blind Walk. V may want to perform DI on a publicly deployed model f
that only allows label query access. This makes them incapable of computing gradients required for
MinGD. Moreover, querying f would be costly for V . Therefore, we introduce a new method called
Blind Walk which estimates the ‘prediction margin’ of any given data point through its robustness to
random noise rather than a gradient search. We sample a random initial direction δ. Starting from
an input (x, y), we take k ∈ N steps in the same direction until f(x + kδ) = t; t 6= y. Then,
∆(x,x + kδ) is used as a proxy for the ‘prediction margin’ of the model. Thus, the approach only
requires label access to f . We repeat the search over multiple random initial directions to increase
the information about the point’s robustness, and use each of these distance values as features in
the generated embedding. In practice, we find Blind Walk to perform better than MinGD with the
ownership tester from §5.2. We discuss further details justifying these observations in Appendix C.

5.2 OWNERSHIP TESTER

It is important for the victim to resolve ownership claims in as few queries as possible, since each
query involves the victim revealing part of their private dataset SV . Since claiming ownership would
likely lead to legal action, it is paramount that the victim minimizes their false positive rate. We thus
test ownership in two phases: a regression model first infers whether the potentially stolen model’s
predictions on individual examples contain the victim’s private knowledge, this is then followed by
a hypothesis test which aggregates these results to decide dataset inference. This is another key
difference with membership inference efforts: rather than always predicting that a point is from the
‘train’ or ‘test’ data, we claim ownership of a model only when we have sufficient confidence. This is
done through statistical hypothesis testing, which takes the false positive rate α as a hyper-parameter,
and produces either conclusive positive results with an error of at most α, or an ‘inconclusive’ result.

Confidence Regressor. As defined in § 5.1, we extract distance embeddings w.r.t fV for data points
in both V’s private data SV and unseen publicly available data. Using the embeddings and the
ground truth membership labels, we train a regression model gV . The goal of gV is to predict a
(proxy) measure of confidence that a sample contains fV ’s private information. For our hypothesis
testing, we require that gV produce smaller values for samples from SV . Complete access to the
dataset SV allows V to train gV accurately, as illustrated via dotted arrows in Figure 2.

Hypothesis Testing. This is the step where dataset inference claims are made (solid lines in Fig-
ure 2). Using the confidence scores produced by gV and the membership labels, we create equal-
sized sample vectors c and cV from private training and public data, respectively. We test the null
hypothesis H0 : µ < µV where µ = c̄ and µV = c̄V are mean confidence scores. The test would
either reject H0 and conclusively rule that fA∗ is ‘stolen’, or give an inconclusive result.
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6 EXPERIMENTAL SETUP AND IMPLEMENTATION OF DATASET INFERENCE

Unlike prior work on membership inference, which evaluates over victim models trained to overfit on
small subsets of the original dataset, we train all of our victim models on large common benchmarks.

Datasets. We perform our experiments on the CIFAR10, CIFAR100, SVHN and ImageNet datasets.
These remain popular image classification benchmarks, further description about which can be
found in Appendix E.1. All details about experiments on SVHN and ImageNet are in Appendix E.2.

Model Architecture. The victim model is a WideResNet (Zagoruyko & Komodakis, 2016) with
depth 28 and widening factor of 10 (WRN-28-10) for both CIFAR10 and CIFAR-100, and is trained
with a dropout rate of 0.3 (Srivastava et al., 2014). For the model stealing attacks described in § 6.1,
we use smaller architectures such as WRN-16-1 on CIFAR10 and WRN-16-10 on CIFAR100.

6.1 MODEL STEALING ATTACKS

We consider the strongest model stealing attacks in the literature, and introduce new attacks targeting
dataset inference to perform an adaptive evaluation of our defense. The adversary A∗ can gain
different levels of access to V’s private knowledge:

(1)AQ has query access to fV . We consider model extraction (Tramèr et al., 2016) based adversaries
which may (1.a) have access to the model’s prediction vectors (via an API).AQ queries fV on a non-
task specific dataset, and minimizes the KL divergence with its predictions. (1.b) Alternately, to
further distance its predictions from the victim, the adversary may only use the most confident label
from these queries (as pseudo-labels) to train. (2) AM has access to the victim’s model fV . This
may happen when V wishes to open-source their work for academic purposes but does not allow its
commercialization, or via insider-access. (2.a) AM may fine-tune over fV , or (2.b) use fV for data-
free distillation (Fang et al., 2019) in a zero-shot learning framework that only utilizes synthetic and
non-semantic queries.3 (3) AD has access to the complete private dataset, SV of the victim. They
may train their own model either (3.a) by distilling fV (over query access), or (3.b) training from
scratch using different learning schemes or architectures. (For further details see Appendix B).

Finally, we also perform DI against an independent and honest machine learning model I that was
trained on its own private dataset. This model is used as a control, to ensure that we do not claim
ownership of models that were not trained by stealing knowledge from our victim model.

Training the threat models. For model extraction and fine-tuning attacks on CIFAR10 and CI-
FAR100, we use a subset of 500,000 unlabeled TinyImages that are closest to CIFAR10, as created
by Carmon et al. (2019). For SVHN, we use the ‘extra’ training data released by the authors. We
train the student model for 20 epochs for model extraction methods and 5 epochs for fine-tuning.
For zero-shot learning, we use data-free adversarial distillation method (Fang et al., 2019) and train
the student model for 200 epochs. In case of distillation and modified architecture, we have access to
the original training data of the victim. We train both models for 100 epochs on the full training set.

In all the training methods, we use a fixed learning rate strategy with SGD optimizer and decay the
learning rate by a factor of 0.2 at the end of the 0.3×, 0.6×, and 0.8× the total number of epochs.

6.2 IMPLEMENTATION DETAILS FOR DATASET INFERENCE

Embedding generation. For the white-box method (MinGD), we perform the attack against each
target class while optimizing the `1, `2, `∞ norms. Hence, we obtain an embedding of size 30
(classes×distance measures). In the case of CIFAR100, we only attack the 10 most confident target
classes, as indicated by the prediction vector f(x). For the black-box method (Blind Walk), we
sample 10 times from uniform, Gaussian, and laplace distributions to perturb the input. Once again,
we obtain an embedding vector of size 30. More details are deferred to Appendix C.

Training the confidence regressor. We train a two-layer linear network (with tanh activation) gV
for the task of providing confidence about a given data point’s membership in ‘private’ and ‘public’
data. The regressor’s loss function is L(x, y) = −b · gV(x) where the label b = 1 for a point in the
(public) training set of the respective model, and −1 if it came from victim’s private set.

3This is the first work to consider data-free distillation as a stealing attack.
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Hypothesis Tests. We query models with equal number of samples from public and private
datasets, create embeddings and calculate confidence score vectors c and cV , respectively. We
form a two sample T-test on the distribution of c and cV and calculate the p-value for the one-sided
hypothesisH0 : µ < µV againstHalt : µ > µV . From L(x, y), it follows that gV learns to minimize
gV(x) when x ∈ SV , and maximizes it otherwise. Therefore, a vector that contains samples from
SV produces lower confidence scores, and decreases the test’s p-value. If the p-value is below a
predefined significance level α, H0 is rejected, and the model under test is marked as ‘stolen’.

In the following results, we repeat all experimental statistical tests for 100 times with randomly
sampled data with replacement. To control for multiple testing, and account for the unknown depen-
dence of the p-values thus generated, we aggregate these values using the harmonic mean (Wilson,
2018). To produce bootstrap 99-percentile confidence intervals, we repeat the experiment 40 times.

7 RESULTS

Table 1 shows p-values and the effect size, ∆µ = µ − µV , which captures the average confidence
of our hypothesis test in claiming that a model was stolen. We test our approach against 6 different
attackers and in two different settings (Black- and White-box). In addition, Table 1 also reports
‘Source’ where the victim’s complete model fV has been stolen, and ‘Independent’, the control
model trained on a separate dataset. Understandably, we typically observe the largest and smallest
effect sizes for these two baselines, which serve as bounds to interpret our evaluation of attacks.

Our evaluation shows that DI is robust to both the strongest model stealing techniques, but also an
adaptive attack we propose based on zero-shot learning. DI can claim a model was stolen with at
least 95% confidence for most threat models with only 10 samples. Hence, the defense exploits
an inherent property of model training. Among the six attacks we considered, we observe that our
model consistently flags fine-tuned models as stolen. This departs from prior defenses against model
extraction: e.g., watermarks often lack robustness to fine-tuning. Here, DI is unaffected because fine-
tuning does not remove knowledge from all private data used to train the stolen model. The label-
query and zero-shot attacks challenge DI the most. This is expected because zero-shot learning uses
only synthetic data points for querying; and in case of logit-query, AQ is merely using V to label
their dataset, which leaks much less private knowledge than distillation-based model extraction. In
practice, their higher query complexity makes both these attacks the most (financially) expensive to
mount. We present concurring results on SVHN and ImageNet in Appendix E.2.

DI requires few private points. In Figure 3, we show the number of private points the victim has
to reveal (from its training set) to achieve a particular p-value when claiming model ownership is
low: 40, and often as few as 20, samples to achieve a false positive rate (FPR) α of at most 1%.

Query efficiency. For the black-box scenario where the victim wants to assess the ownership of a
model served through an API, DI is a query efficient approach that comes at a low cost for the victim.

Model
CIFAR10 CIFAR100

Stealing Attack MinGD Blind Walk MinGD Blind Walk

∆µ p-value ∆µ p-value ∆µ p-value ∆µ p-value

V Source 0.838 10−4 1.823 10−42 1.219 10−16 1.967 10−44

AD
Distillation 0.586 10−4 0.778 10−5 0.362 10−2 1.098 10−5

Diff. Architecture 0.645 10−4 1.400 10−10 1.016 10−6 1.471 10−14

AM
Zero-Shot Learning 0.371 10−2 0.406 10−2 0.466 10−2 0.405 10−2

Fine-tuning 0.832 10−5 1.839 10−27 1.047 10−7 1.423 10−10

AQ
Label-query 0.475 10−3 1.006 10−4 0.270 10−2 0.107 10−1

Logit-query 0.563 10−3 1.048 10−4 0.385 10−2 0.184 10−1

I Independent 0.103 1 -0.397 0.675 -0.242 0.545 -1.793 1

Table 1: Ownership Tester’s effect size (higher is better) and p-value (lower is better) using m = 10
samples on multiple threat models (see § 6.1). The highest and lowest effect sizes among the model
stealing attacks (AD,AM ,AQ) are marked in red and blue respectively.
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Figure 3: p-value against number of revealed samples (m). Significance levels (FPR) α = 0.01
and 0.05 (dotted lines) have been drawn. Under most attack scenarios, the victim V can dispute the
adversary’s ownership of fA∗ (with FPR of at most 1%) by revealing fewer than 50 private samples.

For 100 data points, DI can be performed in less than 30,000 queries to the API. More efficient
embedding generation optimizations can significantly improve this further. (See Appendix D).

White-box access is not essential to DI. While access to gradient information can help in partic-
ular scenarios (such as, logit-query in CIFAR100) which reduces m from 40 to 20 samples, for
fine-tuned adversary models, or those that are trained against a different architecture to evade detec-
tion, our proposed black-box solution (Blind Walk) performs surprisingly better than its White-box
counterpart. We conjecture that the Blind Walk’s advantage stems from a combination of factors: (a)
gradient-based approaches are sensitive to numerical instabilities, (b) the approach is stochastic and
aims to find the expected prediction margin rather than the worst-case (it searches for any incorrect
neighboring class in a randomly chosen direction rather than focusing on the distance to possible
target classes). Hence, our proposed Blind Walk inference procedure is highly efficient.

DI does not require overfitting or retraining. Unlike past defenses (watermarks) and attacks (MI)
which we discussed previously, DI uniquely applies as a post-hoc solution to any publicly deployed
model, irrespective of whether it ‘overfit’ on its training set. This means that model owners in the
real-world can perform DI immediately, to protect models that they have already deployed.

8 DISCUSSION AND CONCLUSION

While adversarial ML often consists of a cycle of attacks and defenses, we turn this game on its head.
Dataset inference leverages knowledge a defender has of their training set to identify models that
an adversary created by either directly accessing this training set without authorization or indirectly
distilling knowledge from one of the models released by the defender. With dataset inference, model
developers resolve model ownership conflicts without making changes to their existing models.

Interestingly, the ability to claim ownership through dataset inference gracefully degrades as the
adversary spends increasingly more resources to train the stolen model. For instance, if an adversary
extracts a copy and later fine-tunes it with a different dataset to conceal the model, it will make the
model more different and dataset inference will be less likely to succeed. But this is expected and
desired: this means the adversary faced a higher cost to obfuscate this stolen copy. In itself it is not
an easy task, because of accuracy degradation and catastrophic forgetting.

Finally, it remains a promising direction for future work to study the confluence of DI with privacy-
preserving models trained using ε-differential privacy (DP). Leino & Fredrikson (2020) have shown
that while DP can help against membership inference (MI) attacks, it comes at a steep cost in accu-
racy. We hypothesize that since DI amplifies the membership signal using multiple private samples,
it follows that the ε values required to make DI ineffective would be even lower than it is for MI.
Therefore, ε values that can make the model private, likely do not interfere with dataset inference.
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APPENDIX

A THEORETICAL MOTIVATION

In this section, we provide the formal proofs of Theorems 1, 2, 3 as stated in § 4. First, we describe
the preliminaries including the binary classification task and the machine learning model used to
train the same in Appendix A.1.

A.1 PRELIMINARIES

We repeat the preliminaries described in § 4 to discuss the proofs in the following sections.

Setup. Consider a data distribution D, such that any input-label pair (x, y) can be described as:

y
u.a.r∼ {−1,+1}; x1 = yu ∈ RK , x2∼N (0, σ2) ∈ RD (2)

where x = (x1,x2) ∈ RK+D and u ∈ RK is some fixed vector. This suggests that the last D
dimensions of the input is Gaussian noise which has no correlation with the correct label. However,
the first K input dimensions are sufficient to perfectly separate data points from classes {−1,+1}.
The setup is adapted from Nagarajan & Kolter (2019). We use S+ and D+ to represent the subset
of the training set S and the distribution D with label y = 1.

Architecture. We consider the scenario of classifying the input distribution using a linear classifier,
f , with weights w = (w1,w2), such that for any input:

f(x) = w1 · x1 + w2 · x2 (3)

While we only discuss the case of a linear network in this analysis, the success of dataset inference
(like membership inference) only increases with the number of parameters in a machine learning
model (Yeom et al., 2018), which in effect makes the following analysis a stronger result to prove.
Prior works have also argued how over-parametrized deep learning networks memorize training
points (Zhang et al., 2016; Feldman, 2019).

A.2 TRAIN-TEST PREDICTION MARGIN (THEOREM 1)

Training Algorithm. We assume that the learning algorithm initializes the weights of the classifier
f to zero. Sample a training set S ∼ Dm =

{(
x(i), y(i)

)
| i = 1 . . .m

}
. The learning algorithm

maximizes the loss L(x, y) = y · f(x) and visits every training point once, with a gradient update
step of learning rate α = 1.

w1 ← w1 + αy(i)x1
(i)

w2 ← w2 + αy(i)x2
(i)

(4)

From the optimization steps described above, one may note that the learned weights for the classifier
f are given by w1 = mu and w2 =

∑
i y

(i)x2
(i) irrespective of the training batch size.

Inference. For any data point (x(j), y(j)), we calculate its ‘prediction margin’ as the distance from
the linear boundary, which is proportional to its label times the classifier’s output y · f(x). For any
point, x = (x1, x2) ∼ D, the ‘prediction margin’ is therefore given by:

y · f(x) = y · (w1 · x1 + w2 · x2) = y · (mu) · (yu) + y ·

(∑
i

y(i)x2
(i)

)
· x2

= c+

(
y ·
∑
i

y(i)x2
(i) · x2

) (5)
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Now, we calculate the expected value of the margin for a point randomly sampled from the training
set. Consider any point in the training set (x, y) ∼ S+ = (x(j), 1) for some index j. Then, we have:

Ex(j)∼S+f(x(j)) = y · c+ Ex2
(i)∼N (0,σ2)

[(
i 6=j∑
i

y(i)x2
(i) · x2

(j)

)]
+ Ex2

(j)∼N (0,σ2)

[
y(i)(x2

(j))2
]

= c+ 0 +Dσ2

(6)

Note that in (6), we utilize the fact that the square of a standard normal variable follows the χ2
(1)

distribution; and that the expected value of product of independent random variables is same as the
product of their expectations, followed by the linearity of expectation.

Similarly, now consider a new data point (x, 1) ∼ D+.

E(x,y)∼D+f(x) = yc+ Ex2
(i)∼N (0,σ2)

[(∑
i

y(i)x2
(i) · x2

)]
= c

(7)

Once again, in (7) we utilize the fact that the expected value of product of independent random
variables is same as the product of their expectations, followed by the linearity of expectation. At an
aggregate over multiple data points, we can hence show that E(x,y)∼S+f(x) − E(x,y)∼D+f(x) =

Dσ2. This concludes the proof for Theorem 1.

A.3 FAILURE OF MEMBERSHIP INFERENCE (THEOREM 2)

In this section, we take a formal view of the conditions that lead to the failure and success of mem-
bership inference. Before we begin with our formal analysis, we would like to point out that the
statistical difference between the distribution of training and test data points in Theorem 1 is only
observed when we aggregate an expectation over multiple samples. Now, we show that the variance
of this difference is so large, that it is very difficult to make any claims from a single input data point.

Consider an adversary that does not have knowledge of the private data used to train a machine
learning model. However, it contains domain knowledge of the task that the model is trying to
solve. This may include the range and dimension of possible inputs to the model. In our case, the
adversary has knowledge of the data distribution D, but not of the training set S.

For a single data point x = (x1,x2), s.t. (x, y) ∼ D, the adversary aims to predict whether it was
used to train the machine learning model, f . The prediction margin for (x, y) ∼ D is given by:

y · f(x) = y · (w1 · x1 + w2 · x2) = c+

(
y ·
∑
i

y(i)x
(i)
2 · x2

)
(8)

From the analysis in Theorem 2, the adversary knows that E(x,y)∼S [y · f(x)] = c + Dσ2 and
E(x,y)∼D [y · f(x)] = c. Let M(x|f) represents the membership decision of the adversary for a
given data point x and classifier f . The strongest adversary will use the following decision rule:

M(x|f) =

{
1, if (y · f(x)− c) ≥ t
0, o.w.

(9)

where t ∈
[
0, Dσ2

]
is some threshold that the adversary can tune in order to achieve maximum true

positive rate and minimum false positives.

Similar to Yeom et al. (2018), we consider the scenario where the input data is randomly (with
equal probability via coin flip b) sampled from either S (if b = 1) or D (if b = 0). Let such a
distribution be specified as (x, b) ∼ R. The adversary M must maximize the single objective
P(x,b)∼R [M(x|f) = b]. In summary,

P(x,b)∼R [M(x|f) = b] =
P(x,y)∼S [M(x|f) = 1] + P(x,y)∼D [M(x|f) = 0]

2
(10)
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We simplify our analysis by considering the data point (x, y) ∼ D+ (has true label, y = 1). How-
ever, the analysis generally applies to any (x, y) ∼ D.

Case 1: (x, y) ∼ D+. Assume meta-variable z2 =
(∑

i y
(i)x2

(i)
)
. Therefore, z2 ∼ N (0,mσ2I),

while x2 ∼ N (0, σ2I). Recall that x2, z2 ∈ RD. Assuming D to be large, we can conveniently
apply the central limit theorem to approximate the distribution of the internal term. Let the individual
dimensions of z2 be denoted by z2(i). Then, we have that:

P(x,y)∼D+ [M(x|f) = 0] = P(x,y)∼D+

[(
m∑
i

y(i)x2
(i) · x2

)
< t

]
= P(x,y)∼D+ [(z2 · x2) < t]

= P(x,y)∼D+

 1

D

 D∑
j

Dz2(j) · x2(j)

 < t


(11)

Let α represents the distribution followed by z2(i) · x2(i). From CLT, we have that the combined
distribution behaves like a normal distribution, with µ = µα = and σ2 = σ2

α

D .

µα = 0

σ2
α = m ·D2 · σ4

(12)

We use the fact that Var[XY ] = Var[X]Var[Y ] + E[X]2Var[Y ] + E[Y ]2Var[X] and Var[c ·X] =
c2 ·Var[X] for computing σ2

α. Therefore, let r ∼ N (0,mDσ4):

P(x,y)∼D+ [M(x|f) = 0] = Pr∼N (0,mDσ4) [r < t] (13)

It can be observed that P [r < t] increases with the threshold value t. For t = 0, P [(z2 · x2) < 0] =
0.5. Whereas, for t = Dσ2, the probability decreases with the value of m (this can be intuitively
understood as – since the size of training set increases, overfitting decreases, making MI more
difficult). Even for as low as m = 100 points in the training set, P

[
(z2 · x2) < Dσ2

]
= 0.6.

For any value of t ∈
[
0, σ2

]
, the maximum probability for size of training data m = 100 is 0.6.

Further, as the size of the training set increases, the probability tends to 0.5.

Case 2: (x, y) ∼ S+. Once again, as in the proof for Theorem 1, consider any point in the training
set (x, y) ∼ S+ = (x(j), 1) for some index j. We will now calculate the probability of success of
the adversary that follows the decision rule described above:

P(x,y)∼S+ [M(x|f) = 1] = P(x,y)∼S+

[(∑
i

y(i)x2
(i) · x2

)
> t

]

= P(x,y)∼S+

[(
i 6=j∑
i

y(i)x2
(i) · x2

(j)

)
+
(
x2

(j) · x2
(j)
)
> t

] (14)

Now, following the discussion in the first case, we know that the first term can be approximated by a
variable α ∼ N (0, (m− 1)Dσ4). Similarly, using CLT over the sum of multiple random variables
sampled from a χ2

1 distribution, we can approximate the second term in the above equation with a
variable β ∼ N (Dσ2, Dσ4). Finally, using the property for sum of independent gaussians, we can
approximate the entire ‘prediction margin’ to be represented by a sample u ∼ N (Dσ2,mDσ4).
Then, we have that:

P(x,y)∼S+ [M(x|f) = 1] = Pu∼N (Dσ2,mDσ4) [u > t] (15)

Hence, we show that the adversary can do no better than a coin flip. This concludes the proof for
Theorem 2. The interested reader may further analyze the assertion that the optimal value of t lies
in
[
0, Dσ2

]
.

To resolve the optimal threshold t for membership inference, we restructure the arguments as fol-
lows. Recall from (10) that the adversary aims to ensure both true positive rates and true negative
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rates are high. We know:

P(x,y)∼D+ [M(x|f) = 0] = Pr∼N (0,mDσ4) [r < t]

P(x,y)∼S+ [M(x|f) = 1] = Pu∼N (Dσ2,mDσ4) [u > t]

P(x,b)∼R [M(x|f) = b] ≤ P [u− r > 0]

(16)

We know that both u, r are sampled from normal distributions. Therefore, define γ = (u −
r) ∼ N (Dσ2, 2mDσ4). This simplifies our discussion to a single normal distribution with mean
µγ = Dσ2 and variance, σ2

γ = 2mDσ4. We can now calculate the CDF at x = 0 to evaluate the
maximum probability of success of membership inference (decision taken by the optimal adversary).

Let Z ∼ N (0, 1). It can hence be shown that:

P[γ > 0] = P (σγZ + µγ) = P
(
Z > −µγ

σγ

)
= 1− Φ

(
−µγ
σγ

)
= 1− Φ

(
−
√

D

2m

) (17)

Clearly, as m→∞, P[γ > 0]→ 0.5. This concludes the proof for Theorem 2.

A.4 SUCCESS OF DATASET INFERENCE (THEOREM 3)

In Theorem 2 we showed that an adversary querying a single data point can say no better than a coin
flip about the presence or absence of a given data point in a model’s training set. In this section, we
show that when we reverse this adversarial game, the victim can utilize the information asymmetry
to predict with high confidence if a potential adversary’s model stole their knowledge in any form.

First, recall that the victim has access to its own private training set of size m. For the purposes
of this proof, we call it SmV . As the victim has complete information of the data distribution, it can
randomly sample another dataset S0 ∼ D.

The victim considers that the potential adversary’s model was stolen if the mean ‘prediction margin’
for the points in SV is greater than S0 by some threshold parameter λ. Let ψV(f, S;D) be V’s
decision function to resolve ownership claims.

Recall that in Theorem 1 we had calculated the expected value of the difference in the prediction
margin for the points in the training set versus those in the test set. In the proof of this theorem, we
calculate the probability of the mean of the difference being greater than some value λ.

Now, let us calculate the probability of this margin for a data point randomly sampled from the
training set. Let tV represent the mean of the ‘prediction margin’ of all points in SV for a classifier
f . Similarly, let t0 represent the mean of the ‘prediction margin’ of all points in S0 for the classifier
f . We will use u2 to denote the last D dimensions of points in S0. Then,

tV =
1

m

∑
j

[(
i 6=j∑
i

y(i)x2
(i) · x2

(j)

)
+ (x2

(j))2

]

=
1

m

∑
j

(x2
(j))2 +

∑
i

[(
i6=j∑
i

y(i)x2
(i) · x2

(j)

)]

t0 =
1

m

∑
j

[(
i 6=j∑
i

y(i)x2
(i) · u2

(j)

)]
P [ψV(f, S;D) = 1] = P [(tV − t0) > λ]

(18)

Recognize the similarity of the above formulation with that discussed in the proof for Theorem 2
in Appendix A.3. Let t = tV − t0. Then the random variable t represents the a sample from the
distribution of means for γ defined in Appendix A.3. We can now directly use the Central Limit
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Theorem for this proof. Therefore,

µt = µz = Dσ2

σ2
t =

σ2
z

m
= 2Dσ4

(19)

Hence, t ∼ N (Dσ2, 2Dσ4). It is important to note that this distribution is independent of the
number of training points. Hence, unlike membership inference, the success of DI is not curtailed
by the lack of overfitting.

Similarly, for an honest adversary, the distribution of ‘prediction margin’ for points in SV is the
same as that for the points in S0. It directly follows that:

P [ψV(f, S;D) = 0] = P
[
t̂ < λ

]
= P [t > λ] (20)

where, t̂ ∼ N (0, 2Dσ4). Once again, like the proof of Theorem 2, by symmetry of two normal
distributions with the same variance, and shifted means, we can find that the optimal value of the
parameter λ that maximized true positives, and minimizes false positives, λ = µt

2 .

Let Z ∼ N (0, 1). Then it can hence be shown that:

P[t̂ > λ] = P
(
σtZ + µt >

µt
2

)
= P

(
Z > − µt

2σt

)
= 1− Φ

(
− µt

2σt

)
= 1− Φ

(
−
√
D

2
√

2

) (21)

Clearly, as D →∞, P[t̂ > λ]→ 1.0. This concludes the proof for Theorem 3.

B MODEL STEALING TECHNIQUES

In this section, we provide more details about the various threat models that we consider in this work.
We also provide specific use-cases and motivation for the respective threat models, and introduce a
new adaptive adversary targeted specifically against DI.

V : Victim. The victim V wishes to release its machine learning model to the community, either
as a service, or by open-sourcing it for non-commercial academic use. V wants to ensure that the
deployed model is not being misused under the terms of license provided.

AD: Data Access. The adversary AD is able to gain complete access to the victim’s private
training data, and aims to deploy its own MLaaS by training the same. We note that labeled private
training data is one of the most expensive commodities in the deployment cycle of modern machine
learning systems.

1. Model Distillation: Traditionally, model distillation (Hinton et al., 2015) was used as a
method to compress larger models by training smaller students using the logits of a teacher
model. We use this as a threat model that the adversary may employ to distance its predic-
tions from a model that was trained using hard labels from the dataset itself. The adversary
requires both query access, and access to the victim’s private training data for this attack.

2. Modified Architecture: Multiple works have attempted at identifying unique properties
(or ’fingerprints’) of a model by analyzing specific activations and representative features
of internal model layers (Olah et al., 2017; 2018; Yin et al., 2019). We study the threat
model where the adversary attempts training an alternate architecture on the victim’s private
dataset Dpriv to valid the robustness of our method to changes in model structure.

AM : Model Access. The use-case of such an adversary is two fold: (1) the victim open-sources
their own machine learning model under a license that does not allow other individuals to monetize
the same; and (2) the adversary gains insider access to the trained model of a victim. In both the
cases, the adversary aims to monetize its own MLaaS and deploys their own model on the web, by
modifying the original victim model to reduce the dependence on K.
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1. Fine-tuning: The adversary has full access to the victim’s machine learning model, but
not to its training data. While fine-tuning is employed used to transfer the knowledge of
large pre-trained models on a given task (Devlin et al., 2018), we use it as a stealing attack,
where the adversary uses the predictions of the victim model on unlabeled public data in
order to modify its decision boundaries. We consider the setting where the adversary can
fine-tune all layers.

2. Zero-Shot Learning: This is the strongest adversary that we introduce specifically targeted
to evade dataset inference. To the best of our knowledge, we are the first to consider such a
threat model. The adversary uses no ‘direct’ knowledge of the actual training data to avoid
any features that it may learn as a result of the training on the victim’s private data set. The
adversary has complete access to the victim model, and uses data-free knowledge transfer
(Micaelli & Storkey, 2019; Fang et al., 2019) to train a student model.

AQ: Query Access. Model extraction (Tramèr et al., 2016) is the most popular form of model
stealing attack against deployed machine leaning models on the web. We discuss the related work
on model extraction attacks in more detail in § 2. Depending on the access provided by the machine
learning service, an adversary may aim to extract the model using the logits or the labels alone.

1. Model Extraction Using Labels: The victim model is used to provide pseudo-labels for a
public dataset. The adversary trains their model on this pseudo-dataset. The key difference
is that the input data points may be semantically irrelevant with respect to the task labels
that the adversary’s model is being trained on.

2. Model Extraction Using Logits: The performance of model extraction attacks can be im-
proved when the victim provides confidence values for different output classes, rather than
the correct labels itself. The adversary’s model is trained to minimize the KL divergence
with the outputs of the victim on a public (or non-task specific) dataset.

I : Independent Model. Finally, we also study the results of dataset inference on an independent
and honest machine learning model that is trained on its own private dataset. This is used as a control
to verify that the dataset inference procedure does not always predict that the potential adversary
stole the victim’s knowledge.4

C EMBEDDING GENERATION

Embedding Generation Hyperparameters.

For the case of MinGD attack, we perform adversarial attacks defined by the optimization equation

min
δ

∆(x,x + δ) s.t. f(x + δ) = t; x + δ ∈ [0, 1]n (22)

The distance metric ∆(x(i),x(j)) refers to the `p distance between points x(i) and x(j) for p ∈
{1, 2,∞}, and t is the targeted label. To perform the optimization, we perform gradient descent
with steps of size αp. We take a maximum of 500 steps of gradient optimization, but pre-terminate
at the earliest misclassification. The step sizes for the individual perturbation types are given by
{α∞, α2, α1} = {0.001, 0.01, 0.1}.
For the case of Blind Walk, We sample a random initial direction δ. Starting from an input (x, y),
take k ∈ N steps in the same direction until f(x + δ) = t; t 6= y. Then, ∆(x,x + kδ) is used as
a proxy for the ‘prediction margin’ of the model. We repeat the search over multiple random initial
directions to increase the information about a training data point’s robustness, and use each of these
distance values as features in the generated embedding.

As an implementation detail, we sample between uniform, laplace and gaussian noise to generate
embedding features. To measure the final perturbation distance from the initial starting point, we use
different `p norms for each of the noise sampling methods. For uniform noise, we compute the `∞

4Note that since we consider the difference in the distribution of outputs of the auxiliary classifier on em-
beddings from the test and training set (rather than hard labels from the auxiliary classifier), even in the absence
of this control, we can un-deniably verify the confidence of dataset inference. This is only included to contrast
the difference and make the effects of the method clearer to the reader.
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distance; for gaussian noise, the `2 distance; and for laplacian noise, the `1 distance of the nearest
misclassification. While we take k steps of Blind Walk up till misclassification, however, we do not
exceed more than 50 steps and prematurely terminate without misclassification in the event that the
prediction label does not change.

Performance of White Box Approach. We find in our evaluations that the white-box MinGD
method generally underperforms the Blind Walk method. This happens despite its ability of being
able to compute the nearest distance to any target class more accurately. While on the onset, this may
seem to be a counter-intuitive result, since generally with more access, the performance of mapping
the neighbours should only increase.

However, we note an important distinction. The end goal of the query generation process is not to
calculate the minimum distance to target classes accurately, but rather to understand the ‘prediction
margin’ or the local landscape of a given data point. Readers may recall from adversarial examples
literature (Szegedy et al., 2013) that adversarial examples can easily be constructed on the dataset
that a given machine learning model was trained on. This observation hurts the idea of Figure 1b.
Despite pushing the neighbouring class boundaries away, the existence of adversarial examples elu-
cidates the existence of small pits within the landscape of the model.

We hypothesize that the gradient-based optimization objective aims to capture this minimum (ad-
versarial) distance, and fails to capture a ‘prediction margin’ that is more representative of the clas-
sifier’s prediction confidence or general landscape. On the contrary, Blind Walk is able to perform
a spectacular job at the same end goal. Since we are no longer adversarially trying to optimize the
minimum distance to the neighbouring classes, multiple Blind Walk runs effectively map the ‘aver-
age case’ prediction margin, which we argue is more useful than the ‘worst case’ prediction margin
as obtained by MinGD.

D EFFECT OF EMBEDDING SIZE

For all models, richer embeddings reduce the need for more revealed samples. (See Figure 4). We
note that in the main body of this work, we had used a fixed size of embedding vector, with 30 input
features. However, recall that in the black-box setting, the victim incurs additional cost for querying
the potential adversary. Therefore, in this section we aim to understand the marginal utility of extra
embedding features added. In general, we find that for most of the threat models studied, using only
10 features for the embedding space is sufficient to achieve the required threshold p-value of 0.01.
This suggests that we can slash the number of queries made to the potential adversary by one-thirds,
without loss in confidence of prediction.

Interestingly, we also note that even in scenarios where the victim reveals only 15 samples, addi-
tional embedding features have insignificant advantage as opposed to querying fresh samples. This
suggests that the amount of entropy gained by revealing a new data point is significantly more than
that by extracting more features (beyond 10) for the same data point. We also note that the effect is
not-consistent in the zero-shot learning threat model.

E EXPERIMENTS

E.1 DATASET DESCRIPTION

CIFAR10. CIFAR10 (Krizhevsky, 2012) contains 60,000 coloured images with 10,000 reserved
for testing. There are 10 target classes with 5000 training images per class.

SVHN. SVHN (Netzer et al., 2011) is a dataset obtained from house numbers in Google Street
View images. The underlying task is of digit classification from 32×32 coloured images.

CIFAR100. CIFAR100 (Krizhevsky, 2012) also contains 60,000 coloured images with 10,000
reserved for testing. There are 100 target classes with 500 training images per class.

ImageNet. The ImageNet dataset (Deng et al., 2009) is a large-scale benchmark, consisting various
challenges including that of image recognition for machine learning systems.
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Figure 4: p-value vs. distance-embedding size

Dataset Inference on SVHN (Blind Walk Attack)

Model Stealing Attack ∆µ p-value

V Source 0.950 10−8

AD
Distillation 0.537 10−3

Diff. Architecture 0.450 10−2

AM
Zero-Shot Learning 0.512 10−3

Fine-tuning 0.581 10−4

AQ
Label-query 0.513 10−03

Logit-query 0.515 10−02

Random-query 0.475 10−02

I Independent -0.322 10−01

Table 2: Ownership Tester’s effect size in a small-data regime (using only m = 10 samples) on the
SVHN dataset using Blind Walk attack. 2nd highest and lowest effect size is marked in red & blue.

E.2 ADDITIONAL DATASETS

To further validate our claims about the success of dataset inference, we provide evidence on two
additional datasets. In this section, we present results on the SVHN and ImageNet datasets.

SVHN. The results of DI via the ‘Blind Walk’ attack on the various threat models discussed in Ap-
pendix B are presented in Table 2. To perform model extraction and fine-tuning attacks, we utilized
the set of ‘extra’ images available with the SVHN dataset. We use the first 50,000 images in this
set to stage such attacks that require a surrogate dataset. For training on the original dataset with a
different architecture, we once again utilize the Pre-activation version of ResNet-18 as for CIFAR10
and CIFAR100 in the main paper. Notably, we also introduce another threat model: Random-query
which describes a scenario where the victim is queried with completely random inputs. While the
zero-short learning framework also queries the victim with synthetic images, the queried images
are synthesized to maximize the disparity between predictions of the student and teacher. On the
contrary, in case of Random-query, we query the victim by sampling from a normal distribution,
x ∼ N (0, 1). DI is resilient to completely random queries as well.

20



Published as a conference paper at ICLR 2021

Threat Model ImageNet Architecture ∆µ p-value

V Source Wide ResNet-50-2 1.868 10−34

AD
Diff. Architecture AlexNet 0.790 10−3

Diff. Architecture Inception V3 1.085 10−5

Table 3: Ownership Tester’s effect size in a small-data regime (using only m = 10 samples) on the
ImageNet dataset using Blind Walk attack.

Fraction Overlap ∆µ p-value

0.0 -0.172 0.308
0.3 0.499 7.93× 10−3

0.5 0.514 5.78× 10−3

0.7 0.576 2.52× 10−3

1.0 0.566 3.45× 10−3

Table 4: Ownership Tester’s effect size in a small-data regime (using only m = 10 samples).

Note that we do not include Random-query as a threat model in case of CIFAR10 and CIFAR100
datasets because random querying is insufficient to achieve model extraction accuracies greater than
the majority class baseline in more complicated tasks such as these. However, in case of SVHN,
we were able to train an extracted model with 90.2% test set accuracy using random queries alone.
Similar observations have been shared in other model extraction literature as well (Truong et al.,
2021). We found that our conclusions hold for this additional dataset and we can claim ownership
with as few as 10 examples.

ImageNet. We remark that prior work in model extraction has not successfully demonstrated the
efficacy of model stealing on large-scale benchmarks like ImageNet. These methods require many
queries to steal a model, and are hence not practical yet. As a proof of validity of our approach, we
demonstrate dataset inference (DI) in the threat model that assumes complete data theft: the adver-
sary directly steals the dataset used by the victim to train a model rather than querying the victim
model. We use 3 pre-trained models on ImageNet using different architectures, and treat the one with
a Wide ResNet-50-2 (Zagoruyko & Komodakis, 2016) backbone as the victim. We then observe if
DI is able to correctly identify that the two other pre-trained models (AlexNet (Krizhevsky, 2014)
and Inception V3 (Szegedy et al., 2015)) were also trained on the same dataset (i.e., ImageNet). We
confirm that DI is able to claim ownership (i.e., that the suspect models were indeed trained using
knowledge of the victim’s training set) with a p-value of 10−3 on revealing only 10 samples.

For performing DI, the victim trains the confidence regressor with the helps of embeddings generated
by querying the Wide ResNet-50-2 architecture over the training and validation sets separately. We
first note that the confidence-regressor generalizes well to other points in the victim’s train and
test set, despite the fact that the ImageNet dataset is orders of magnitude larger than the previous
benchmarks experimented on. With only 10 examples, we attain p-values less than 10−30. Finally,
to test if this generalization holds for other architectures that underwent a disjoint training procedure,
we experiment over AlexNet and Inception V3. We find that given 10 examples from the ImageNet
training dataset, DI can confidently say that the suspect models utilize knowledge of the victim’s
training set with p-values less than 10−4. Note that these models are trained on large datasets where
works in MI attacks train victims on small subsets of training datasets to enable overfitting Yeom
et al. (2018). We believe this demonstrates that DI scales to complex tasks.

F EXTENT OF OVERLAP

In this section we elaborate upon the effect of overlap between private datasets of two parties and
how does dataset inference respond to such scenarios. More specifically, we study the amount of
overlap required for DI to be able to claim theft of common knowledge in the following scenario:
We consider a competitor (or adversary) who owns their own private training dataset SA. The
adversary gains access to the victim’s training dataset SV . The adversary now trains their ML model
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Figure 5: Ownership Tester’s p-value depicted as a function of number of training samples revealed
(m). In the figure to the left, for an honest adversary whose dataset has no overlap with the victim’s
dataset, the p-value increases as the number of revealed samples increases, indicating decrease in
confidence of claim for knowledge theft. For all adversaries with fractional data overlap (to the
right), DI is able to achieve a p-value of less than 0.01 in under 10 samples.

on S = SA ∪SVλ, where SVλ ⊂ SV and |SVλ| = λ|SV |. That is the new dataset S has a fraction λ
of the training points private to V .

Since at the training time the adversary optimizes the ‘prediction margin’ over all points in S, the
prediction margin for points in SV also gets affected. At test time when the victim queries on these
points, DI is expected to succeed.

We validate this claim on the SVHN dataset which provides a set of ‘extra’ images apart from ‘train’
and ‘test’ sets. We train the adversary on the union of ‘extra’ and varying fractions of the ‘train’ set,
where the ‘train’ set is supposed to be private to the victim. At the time of dataset inference, the
victim queries 50 samples from its private ‘train’ and ‘test’ set to the adversary’s model. Dataset
Inference succeeds with p-value = 10−3 for fractions of overlap = 0.3, 0.5, 0.7, 1.0 as tested. More
importantly, as the overlap goes to 0, DI once again does not claim knowledge theft. We present our
results for DI on revealing 10 samples in Table 4 and present a graphical illustration of these results
with varying numbers of samples revealed in Figure 5. From Table 4, it may also be noted how the
effect size increases with the amount of overlap of the private training set, indicating that the DI is
becoming increasingly confident of knowledge theft.
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