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Abstract

Imitation learning in robotics allows humans to teach complex tasks by demonstra-
tion. While this training regime is quite powerful, most current approaches only
rely on directly recorded data, such as joint values and image inputs. In this work
we address this limitation by allowing humans to provide high-level annotations for
each episode, which can contain additional semantic information. We include this
information in the training process through a concept transformer and therefore
enforce that the learning model can handle this additional information during train-
ing. We show in an experiment involving "pick and place" with additional sorting
constraints that our extension of the ACT architecture (which we call ConceptACT)
can lead to faster learning performance. Specifically, ConceptACT achieves a sig-
nificant reduction in optimality gap compared to standard ACT, demonstrating that
properly integrated semantic concepts can significantly improve sample efficiency
in robotic imitation learning.

1 Introduction

Imitation learning has emerged as a powerful paradigm for teaching robots complex manipulation
skills by directly learning from human demonstrations. Rather than designing explicit reward
functions or control algorithms, this approach enables robots to acquire behaviors by observing expert
trajectories, making it particularly valuable for tasks where success criteria are easier to demonstrate
than to formalize. However, current imitation learning methods suffer from a fundamental limitation:
they rely exclusively on low-level sensorimotor data (joint positions, images, forces) while ignoring
the rich semantic knowledge that humans naturally use when teaching and learning tasks.

When humans teach complex tasks to other humans, they instinctively employ a variety of scaffold-
ing techniques—providing conceptual frameworks, highlighting important features, and explaining
underlying principles—to accelerate the learning process. In contrast, machine learning from demon-
stration typically operates as a black box, learning implicit associations between high-dimensional
observations and actions without access to the semantic reasoning that guides human decision-making.
This mismatch represents a significant missed opportunity: human demonstrators possess valuable
high-level knowledge about task structure, object properties, and causal relationships that could
substantially improve learning efficiency if properly leveraged.

Recent advanced in Imitation Learning allowed the learning of complex locomotor tasks quite quickly.
However, even state-of-the-art approaches like ACT remain limited to learning from raw sensorimotor
streams, failing to exploit the conceptual understanding that humans can readily provide alongside
their demonstrations. This limitation is especially pronounced in manipulation tasks involving
complex reasoning about object properties, spatial relationships, or task constraints—precisely the
scenarios where semantic guidance would prove most beneficial.
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Figure 1: Overview of our approach: Top: We enhance the normal Imitation Learning approach by
allowing the user to specify which concepts are in an episode. Bottom: We integrate these concepts
by changing the ACT architecture to include a Concept Transformer, which aligns its attentions
mechanism to match with the given concepts. This alignment cost can then be included in the total
loss. Red indicates changes.

We address this limitation by introducing ConceptACT, an extension of the ACT architecture that
integrates episode-level semantic concepts directly into the imitation learning process. Our approach
enables human demonstrators to annotate episodes with high-level concepts (such as object colors,
shapes, or spatial relationships) and uses these annotations as auxiliary supervision during training.
By incorporating a Concept Transformer module into the standard ACT encoder, ConceptACT learns
to attend to semantically meaningful concepts while predicting action sequences, creating stronger
inductive biases that improve sample efficiency and task understanding. We evaluate ConceptACT
on a robotic pick-and-place task with sorting constraints, where robots must manipulate objects of
varying shapes and colors according to complex conditional rules.

The primary contributions of this work are threefold: (1) we demonstrate a systematic approach for
integrating episode-level semantic concepts into transformer-based imitation learning, (2) we show
that proper architectural integration of concepts through attention mechanisms provides superior
learning compared to auxiliary prediction tasks, and (3) we provide empirical evidence that concept-
guided learning improves sample efficiency in manipulation tasks requiring conditional reasoning
about object properties.

2 Background

We formulate sequential decision-making problems within the framework of Markov Decision
Processes (MDPs). An MDP is defined by the tuple (S,.A, P, R,~), where S represents the state
space, A the action space, P : S x Ax S — [0, 1] the transition probability function, R : S x A — R
the reward function, and v € [0, 1] the discount factor.

At each timestep t, an agent observes state s; € S, executes action a; € A, and transitions to a new
state s;41 according to the transition dynamics P(s:41|s¢, a¢). The agent’s objective is to learn a
policy 7 : & — A that maximizes the expected cumulative discounted reward.

In many practical applications, including robotic manipulation, states s; comprise diverse sensory
inputs such as proprioceptive measurements and visual observations, while actions a; correspond to
motor commands or target configurations.



2.1 Imitation Learning and Behavior Cloning

Imitation learning addresses scenarios where specifying an explicit reward function proves challenging
or impractical, but expert demonstrations are readily available. This paradigm is particularly valuable
in domains where task success is easier to demonstrate than to define formally.

Given a dataset of expert demonstrations D = {(s;, a;)} Y, consisting of state-action pairs collected
from expert trajectories, the goal is to learn a policy my parameterized by 6 that mimics the expert’s
behavior. The underlying assumption is that the expert demonstrations are generated by an optimal or
near-optimal policy 7*.

Behavior Cloning represents the most direct approach to imitation learning, formulating the problem
as supervised learning. The policy parameters 6§ are optimized to minimize the discrepancy between
predicted and demonstrated actions:

Lpc(0) = Eay~pll(To(s), a)] )

where £(-, -) denotes an appropriate loss function—typically L1 or L2 norm for continuous action
spaces, or cross-entropy for discrete actions.

2.2 Action Chunking with Transformers (ACT)

Action Chunking with Transformers (ACT) [Zhao et al., 2023]] represents a significant advancement
in imitation learning for robotic manipulation, introducing two key architectural innovations that
improve policy learning from human demonstrations. Rather than predicting single actions at each
timestep, ACT predicts sequences of actions (chunks) and employs a variational autoencoder (VAE)
framework with transformer encoder-decoder architecture. This approach has proven particularly
effective for fine manipulation tasks requiring temporal consistency and precise control.

2.2.1 Action Chunking

Traditional behavior cloning learns a policy 7y (a¢|s;) that predicts the immediate next action. ACT
instead learns a policy that predicts action sequences:

770(at:t+k71‘5t) = W&(at, Atg1ye-ey at+k71|3t) 2)

This reduces the effective horizon of a task from T timesteps to [7'/k] decision points, mitigating error
accumulation. Action chunking also helps model non-Markovian behavior in human demonstrations,
such as natural pauses that single-step policies struggle to handle.

2.2.2 Variational Training

One key part of ACT is the usage of VAE-style traininé]_-] [Kingma and Welling} 2014]. The VAE-
Encoder has the goal of producing a suitable latent "style" variable z € RY which represents the
characteristics of the current trajectory. To achieve this, the VAE-Encoder is trained on the whole
sequence of joint variables as input (but not other inputs like images to reduce computational needs)
with a KL loss.

The VAE-Encoder infers the posterior distribution:
Q¢>(2|5t7 at:t+k71) = N(M¢>(5t> at:t+k71), U;(St, at:t+k71>) 3)

This latent variable z is then used as input for the VAE-Decoder. At inference time, the latent variable
z is set to zero, ensuring deterministic predictions.

The complete training objective combines reconstruction accuracy with latent regularization:
Lact =Bq, [l(apirr—1,Po(ari1k-1|5¢,2))] + B - Drrlae(2]se, anrr—1)[IN(0,I)] (4

where £(-, -) is typically the L1 loss for continuous actions.

"For writing clarity we refer to VAE Encoder/Decoder as parts of the larger VAE architecture. En-
coder/Decoder then refer to the transformer components inside the VAE-Decoder.



2.2.3 Transformer Architecture

The VAE-Decoder consists of a classical transformer encoder-decoder architecture [[Vaswani et al.}
2017]). The encoder receives the latent variable z, current joint (and environmental) variables, and
images as input. Images are usually embedded by pre-trained ImageNet encoders. The goal of the
encoder is to produce a sequence of latent embeddings which are used by the decoder.

The decoder part then receives this encoder output and additionally uses fixed positional embeddings.
In ACT, the model is trained to predict a whole chunk of actions via L1-Loss, in contrast to normal
behavior cloning where only a single next action would be predicted.

For improved temporal consistency, ACT employs temporal ensembling during inference: overlapping
action chunks are combined through exponentially weighted averaging of predictions for each
timestep.

2.3 Concept Transformers

Traditional deep learning models operate on low-level features that often lack human-interpretable
meaning. To address this limitation, concept-based methods aim to ground model decisions in
high-level concepts that align with human understanding. The Concept Transformer [Rigotti et al.|
2022]|| extends this paradigm by generalizing attention mechanisms from low-level input features
to high-level interpretable concepts. The key idea is to modify the standard multi-headed attention
mechanism to explicitly attend over user-defined concepts.

Instead of the standard query, key, and value projections all derived from the input, the Concept
Transformer only projects the input into queries. Crucially, the keys and values are instead derived
from a fixed set of learnable concept embeddings that are independent of the input.

Given input features X € R”*? (where P is the number of patches or tokens) and a set of C' learnable
concept embeddings c1, ..., cc € RY, the attention mechanism computes: Q = X Wy, K = CWk,
and V = CWy, where C = [cy;...;cc] € RE*? represents the concatenated concept embeddings,

and Wg € R4 Wy € R4 Wy, € R4 are learned projection matrices. The attention weights
are computed as:

QK T)
Qe = softmax ( )
p \/g b

A crucial difference from standard attention is that these attention scores «,. can be interpreted as
importance weights over the given concepts. In the original work [Rigotti et al.,[2022]], these attention
scores are aligned with ground-truth concept annotations through supervision using the Frobenius
norm:

£concept = ”A - HH%‘ (6)

where A = [a,,.] € RP*C represents the computed attention and H indicates which concepts should
be attended to for each input. This supervision ensures that learned attention patterns respect domain
knowledge, making them both plausible (convincing to humans) and faithful (reflective of the model’s
reasoning).

The total loss combines the primary task objective with concept supervision:
Ltotal = ['task + >\£concept (7)

where A controls the relative importance of concept alignment.

3 Implementation

We extend the standard imitation learning setting to incorporate high-level semantic information. In
addition to the demonstration dataset D = {(s;, a;)}Y; of state-action pairs, we assume access to
concept annotations C = {c; }¥ ;, where each c; represents a binary vector indicating the presence of
specific concepts in step .



Formally, for a set of concept types T = {T1, T3, ..., Tk } (e.g., object colors, shapes), each concept

annotation c¢; is composed of ¢; = [¢]",¢l2, ..., ¢l¥], where ¢;” € {0,1}/T5] indicates which

specific concept within type 77 is present in episode 4. For instance, if an episode contains a red
object, then ¢;(color = red) = 1.

3.1 ConceptACT Architecture

To incorporate concept learning into ACT training, we modify the architecture by replacing the final
layer of the transformer encoder (i.e., the encoder part of the VAE-Decoder) with a concept-aware
layer. We implement two distinct approaches for concept integration.

3.1.1 Method 1: Prediction Head Approach

In this approach, we augment the standard ACT encoder with separate prediction heads for each
concept type. The encoder output representation is passed through concept-specific networks that
produce logits for each concept type. These predictions are trained using cross-entropy loss against
the ground-truth concept annotations:

K
Lgﬁlcept = Z [E[CrossEntropy (¢, ¢17)] (8)
j=1
where ¢75 are the predicted logits and ¢’7 are the ground-truth labels for concept type T;.

3.1.2 Method 2: Concept Transformer Integration

Alternatively, we replace the final encoder layer with a concept-aware transformer layer inspired
by Concept Transformers [Rigotti et al., |2022]]. This layer computes cross-attention between input
features and learnable concept embeddings.

Given encoder input X € R¥* and concept embeddings E € RE*¢ (where C = Z]K:1 |T;]), we
compute standard attention: QQ = XWg, K = EWg,V = EWy.

Crucially, we make two key modifications to the standard Concept Transformer. First, instead of
using the Frobenius norm to align concept attention (which would be computationally identical to
MSE), we employ a Binary Cross Entropy loss formulation for multi-label concept prediction.

Second, since our transformer uses multi-headed attention, we do not use simple averaging of concept
attention scores across heads. Instead, we learn a dynamic weighting of attention heads through a
small neural network:

w = softmax (MLPyjgn (X)) 9)

where X = % Ele X is the mean-pooled input representation, and w € R represents the learned
weights for H attention heads.

The final concept predictions are obtained by weighted aggregation:

[}

H
= wy - meang(Ap) (10)
h=1

where A}, represents the attention scores from head h.

The complete ConceptACT training objective combines the standard ACT losses with concept
prediction:

Etotal = ACACT + )\conceptﬁconcept (1 1)

where L 4o includes both the action reconstruction and KL divergence terms as defined in Section
2.3.



Method Optimality Gap 95% CI

ACT 0.549 [0.48, 0.58]
ConceptACT - Heads 0.515 [0.45, 0.56]
ConceptACT - Transformer 0.317 [0.27, 0.40]

Figure 2: Left: Wrist Camera, Table 1: Optimaltiy Gap (lower is better) for each variant. Due to
Top: Scene Camera. Bottom: the overlapping CI we can only claim significance of the Concept
Experimental setup. Transformer method.

For concept prediction, we implement Binary Cross Entropy loss to handle the multi-label nature of
our concept annotations:
Leconcept = E[BCE(¢, ¢)] (12)

where c represents the concatenated ground-truth concept vector across all types.

After training is complete, the concept prediction components can be discarded during inference,
allowing the policy to be used normally for action prediction. This ensures that concept learning aids
training without affecting deployment efficiency.

4 Evaluation

While ConceptACT is generally applicable to any imitation learning domain, we evaluate our
approach in a robotic manipulation setting for several practical reasons. First, robotic tasks naturally
exhibit the complex state-action relationships where concept-based guidance can provide the most
benefit. Second, the visual and proprioceptive nature of robotic observations allows for intuitive
concept definitions (e.g., object properties, spatial relationships). Finally, the precision requirements
of manipulation tasks create scenarios where improved sample efficiency from concept learning
translates to meaningful performance gains.

4.1 Hardware Configuration

Our experimental setup employs a bilateral robotic system consisting of two identical SO-100 robotic
arms. One arm serves as the leader for human demonstration and teleoperation, while the other
functions as the follower for policy execution and evaluation. This leader-follower configuration
enables intuitive data collection: human demonstrators directly manipulate the leader arm through
kinesthetic teaching, with joint positions and trajectories recorded in real-time. The system is
equipped with two cameras providing complementary viewpoints: a gripper camera attached to
the follower arm’s end-effector for detailed manipulation views, and a scene camera positioned to
capture the entire workspace from a fixed overhead perspective. This dual-camera setup ensures
comprehensive visual coverage of both fine-grained manipulation details and global scene context.

4.2 Task Description and Concept Design

The experimental task involves pick-and-place operations with an additional sorting constraint,
requiring the robot to grasp objects of varying shapes and colors and sort them into two designated
collection areas. The workspace contains objects with three distinct shapes (cube, cylinder, rectangular
prism) in four colors (green, red, blue, yellow), though not all shape-color combinations are present.
Objects are randomly placed at five different locations across the table surface. The sorting rule
determines the target collection area based on both shape and color properties:

Area A if (shape = cube A color € {red, green})
Target = or (shape = cylinder A color = blue) (13)
Area B otherwise

This task design creates a scenario where pure behavioral cloning of pick-and-place motions is
insufficient—the policy must also learn the underlying sorting logic to achieve optimal performance.



Test loss throughout training - lower is better Average Score (higher is better)

Value

Checkpoint

(a) ACT loss on a testing dataset during training (b) Robot evaluation performance

Figure 3: Training and evaluation results comparing ACT, ConceptACT with prediction heads, and
ConceptACT with Concept Transformer. (a) Test loss on 20% holdout set throughout training.
(Lower is better) (b) Real robot evaluation performance measured every 3,000 training steps on 10
test episodes. (Higher is better) - Each method was trained with 5 different random seeds. Bold lines
represent means, shaded areas show variance across runs.

4.3 Data Collection and Concept Annotation

Human demonstrators performed the task using the leader arm, with episodes recorded at 5S0Hz
including joint positions, camera feeds, and timestamped action sequences. Crucially, during each
demonstration episode, we annotated the session with high-level concept information corresponding
to the object being manipulated.

For each episode ¢, we recorded concept vectors c; indicating shape concepts czhape € {0,1}3 (one-hot
encoding for cube, cylinder, rectangular prism), color concepts ¢ € {0, 1}* (one-hot encoding
for red, green, blue, yellow), and location concepts c°@°" € {0, 1} (one-hot encoding for drop-off
positions).

This concept annotation process occurred during data collection, with demonstrators explicitly identi-
fying object properties at the beginning of each episode. We collected a total of 200 demonstration
episodes with roughly balanced distributions across shape, color, and pickup location combinations.
To evaluate generalization, we reserved specific shape-color-location combinations exclusively for
testing, ensuring that policy evaluation includes both seen and unseen concept combinations.

4.4 Evaluation Metrics

Given the multi-faceted nature of the task, we employ a hierarchical scoring system that captures
different levels of task completion. We assign a score of 0 if the pick attempt failed (object not
successfully grasped), a score of 1 for successful pick but failed place attempt (object dropped or
misplaced), a score of 2 for successful pick and place but incorrect sorting (object placed in wrong
collection area), and a score of 3 for complete success (correct pick, place, and sorting according
to the rule). We collect this metrics on 10 test-cases (which are not in training dataset) at multiple
training checkpoints (every 3k steps), for multiple training runs (each with a different random seed).
This allows us to showcase the difference in real-world learning progress between our baseline (ACT)
and our addition.

4.5 Results

As shown in Figure [3] ConceptACT with Concept Transformer integration demonstrates accelerated
learning, particularly during early training phases. This improvement is evident in both the test loss
metrics (Figure [3a) and real robot evaluation performance (Figure 3b).

The performance gap between methods becomes less pronounced in later training phases, which
we attribute to the relative simplicity of the current task given the available demonstration data.
Our experimental design first validated task feasibility with standard ACT before evaluating our



extensions. Nevertheless, ConceptACT’s faster convergence provides substantial benefits in scenarios
where training time is critical or demonstration data is limited.

Notably, the prediction head variant of concept integration yields minimal improvement over standard
ACT. This result demonstrates that merely incorporating additional concept information is insuffi-
cient—the integration method is crucial for realizing performance gains. Naive concept inclusion
without proper architectural considerations provides little benefit.

During evaluation, we observed qualitatively different failure modes between methods. Standard ACT
policies frequently dropped objects precisely at the boundary between collection areas, sometimes
even balancing objects on the edge—a behavior indicating successful pick-and-place learning but
failure to internalize the sorting rule. In contrast, ConceptACT policies never exhibited this boundary
confusion, suggesting better acquisition of the underlying sorting logic encoded in the concept
annotations.

To complement the temporal learning curves, we computed optimality gaps for each method and
report means with 95% confidence intervals using bootstrapping following |/Agarwal et al.| [2021]].
Table[T] shows that while both concept-based methods improve the optimality gap, only the Concept
Transformer integration achieves statistically significant improvement over the baseline ACT method.

5 Related Work

Our work integrates high-level semantic concepts into imitation learning to improve sample efficiency
and interpretability. Here we review related approaches that incorporate auxiliary information,
particularly concepts, into various learning paradigms.

[Hristov and Ramamoorthy, [2021]] label demonstrated trajectories with high-level spatial concepts
("behind", "on top") and temporal concepts ("quickly"). Their method learns disentangled repre-
sentations that separate task-relevant features from task-irrelevant variations. While they focus
on trajectory-level semantic labeling similar to our episode-level concepts, their approach targets
explainability through disentanglement rather than improving sample efficiency through auxiliary
supervision.

[Cubek et al., 2015]] employ conceptual spaces theory for learning from demonstration, using
subspace clustering to identify relevant conceptual dimensions from sensory data. Their method
automatically discovers conceptual representations that bridge low-level sensory input and high-level
task understanding but relies on hard-coded high-level actions and leverages symbolic planning.
Unlike their unsupervised concept discovery, ConceptACT uses human-provided concept annotations
during training to guide the learning process explicitly.

[Stepputtis et al.l[2020]) combine natural language, vision, and motion for abstract task representation
in imitation learning. Their multi-modal approach learns policies conditioned on language instructions,
enabling generalization across task variations. While both approaches integrate high-level semantic
information, their language conditioning operates at inference time for task specification, whereas
ConceptACT uses concept annotations during training to improve learning efficiency.

The idea of restricting the network structures to concepts has been quite successfully investigated in
supervised learning. Besides Concept Transformer Rigotti et al.|[2022]], other notable approaches
include Concept Bottleneck Models |[Koh et al.| [2020]] and Concept Whitening |Chen et al.| [2020].
Although most focus has been on interpretability, recent work demonstrates that concept-based
auxiliary supervision can significantly improve learning performance. For instance, |[Fontana et al.
[2024] show how auxiliary concept tasks enhance computer vision performance through multi-
task learning, while |Yao et al.|[2023] demonstrate that semantic auxiliary tasks improve retrieval
performance even with limited annotations. Similarly, Mahapatra et al.| [2020] integrate semantic
guidance into GAN learning, showing improved classification and segmentation performance. These
works highlight that concept supervision provides not just interpretability but also serves as a powerful
inductive bias that improves sample efficiency and generalization.

Our ConceptACT approach is distinguished by its integration of semantic concept learning directly
into the action chunking transformer architecture for imitation learning. Unlike methods that discover
concepts unsupervised or use them solely for interpretability, we leverage human-provided concept
annotations as auxiliary supervision to improve sample efficiency. Furthermore, while most concept-



based approaches in RL focus on state abstraction or skill discovery, ConceptACT operates at the
episode level, providing semantic guidance that helps the policy learn the underlying task structure
more effectively. This positions our work at the intersection of interpretable machine learning
and practical robotic imitation learning, addressing both the need for sample-efficient learning and
human-understandable decision-making in robotic systems.

6 Discussion

Our experimental results demonstrate that incorporating high-level semantic concepts into imitation
learning can significantly improve sample efficiency and task understanding.

The current evaluation is primarily constrained to a single robotic manipulation domain. While
this experimental setting provides a sophisticated testbed with real-world complexities, broader
evaluation across diverse environments—particularly non-robotic domains—would strengthen the
generalizability claims of our approach. The pick-and-place with sorting task, though representative
of many manipulation scenarios, represents only one class of problems where concept-guided learning
might prove beneficial. The concept annotation process currently requires manual labeling during
demonstration collection, which may limit scalability to more complex domains with richer concept
spaces. Future work should investigate automated concept extraction methods or explore how to
leverage existing knowledge bases to reduce the annotation burden on human demonstrators.

The superior performance of the Concept Transformer integration compared to simple prediction
heads highlights the importance of architectural design in concept-based learning. This architectural
difference suggests that effective concept integration requires more than simply adding concept
prediction losses—it demands fundamental changes to how information flows through the network.

7 Conclusion

We introduced ConceptACT, an extension of the Action Chunking with Transformers architecture
that incorporates episode-level semantic concepts directly into the imitation learning process. Our
approach enables human demonstrators to provide high-level semantic annotations alongside be-
havioral demonstrations, creating auxiliary supervision that improves sample efficiency and task
understanding.

Through controlled experiments on a robotic pick-and-place task with sorting constraints, we demon-
strated that ConceptACT achieves faster convergence and better task performance compared to
standard ACT, particularly during early training phases when demonstration data is limited. Crucially,
we showed that the method of concept integration matters significantly—our Concept Transformer
approach substantially outperforms naive prediction head integration, highlighting the importance of
architectural design in concept-based learning.

Our findings suggest that the gap between human teaching and machine learning can be narrowed
by leveraging the rich semantic knowledge that humans naturally provide during demonstration.
This work opens promising directions for more sample-efficient and interpretable imitation learning
systems that can benefit from human conceptual understanding while maintaining the flexibility and
expressiveness of modern neural architectures. Future work should explore the scalability of this
approach to more complex concept spaces, investigate automated concept discovery methods.
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