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CROWN: A Novel Approach to Comprehending Users’
Preferences for Accurate Personalized News Recommendation

Anonymous Author(s)
ABSTRACT

Personalized news recommendation aims to assist users in finding
news articles that align with their interests, which plays a pivotal
role in mitigating users’ information overload problem. Despite
the breakthrough in personalized news recommendation, the fol-
lowing challenges have been rarely explored: (C1) Comprehending
manifold intents coupled within a news article, (C2) Differentiating
varying post-read preferences of news articles, and (C3) Addressing
the cold-start user problem. To tackle these challenges together, we
propose a novel personalized news recommendation framework
(CROWN) that employs (1) category-guided intent disentangle-
ment for (C1), (2) consistency-based news representation for (C2),
and (3) GNN-enhanced hybrid user representation for (C3). Fur-
thermore, we incorporate a category prediction into the training
process of CROWN as an auxiliary task for enhancing intent dis-
entanglement. Extensive experiments on two real-world datasets
reveal that (1) CROWN outperforms twelve state-of-the-art news
recommendation methods and (2) the proposed strategies signifi-
cantly improve the accuracy of CROWN.
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Personalized news recommendation, news representation, user
modeling, cold-start user problem
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1 INTRODUCTION

Personalized news recommendation aims to provide users with
news articles that match their interests, playing a pivotal role in web-
based news platforms such as Google News and MSN News in alle-
viating the information overload of users. For accurate personalized
news recommendations, it is crucial to accurately model users’ in-
terests based on their historical clicked news [1, 2, 16, 24, 33, 36–38].
A general approach to modeling a user’s interest, widely adopted in
existing methods [3, 10, 14, 21, 23, 25, 29, 34, 35, 45], is as follows:
(1) (news representation) the embeddings of news articles in a
user’s click history are generated by a news encoder and (2) (user
representation) these news embeddings are then aggregated by a
user encoder, thereby generating the user embedding.
Challenges. Although many existing methods have been proposed
for better news and user representations, the following challenges
still remain under-explored (See Figure 1):
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Figure 1: Challenges of personalized news recommendation:

(a) news articles are usually created with various intents, (b)

users have varying post-read preferences to news articles,

and (c) some users have only a few clicked news.

(C1) Comprehension of manifold intents. Naturally, a news
article can be created with a range of intents; they may differ across
articles. For example, a weather forecast news aims to achieve
multiple intents: (intent #1) to provide weather information and
(intent #2) to improve public interest, but does not (intent #3) to
persuade people. On the other hand, a political news may aim
(intent #1) to provide information about a new policy and (intent
#3) to persuade people to (dis)agree with the policy, but may not
be interested in (intent #2) public interest. Hence, it is critical to
precisely comprehend each of intents coupled with a news article.

(C2) Differentiation of varying post-read preferences. The
news consumption process is as follows: a user clicks a news article
if its title aligns with the user’s interest; (Case #1) if the news
content also aligns with her interest, she is happy to read it (i.e.,
high post-read preference); (Case #2) Otherwise, she is disappointed
and closes it quickly (i.e., low post-read preference). In both cases,
however, news articles are included in her click history; the articles
that she is unlikely to prefer after clicking can cause inaccurate
user modeling. Therefore, it is necessary to differentiate news articles
with different post-read preferences.

(C3) Cold-start user problem. The cold-start user problem
refers to the challenge of providing personalized recommendations
to new users for whom the recommender system has little informa-
tion. Since most existing news recommender systems rely on users’
historical clicked news [10, 16, 20, 25, 33, 34, 36], it is challenging
to capture new users’ interests and make reliable recommendations
to them. Thus, it is essential to capture cold-start users’ interests by
using a small amount of their historical information.

To address the aforementioned challenges, in this paper, we pro-
pose a novel framework for personalized news recommendation,
named CROWN, which stands for CategoRy-guided intent disen-
tanglement and cOnsistency-based neWs represeNtation. CROWN
consists of four modules: two encoding modules (news and user en-
coders) and two prediction modules (click and category predictors).
News encoder. The news encoder employs two key strategies:

(1) Category-guided intent disentanglement. We revisit the
effect of a news category, which serves as beneficial metadata to

1
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Figure 2: (a) Different intent distributions of news articles according to their categories in MIND [40] and (b) Distribution of

Pearson correlation coefficients between the title-content consistency and users’ content reading time in Adressa [5].

enhancing news representation [16, 21, 25, 29, 33, 35]. It is likely
that the news articles within the same category have similar intents
despite their different contents. As such, we posit that the news cat-
egory can provide us with useful insights for better understanding
various coupled intents of a news article. From this hypothesis, we
propose category-guided intent disentanglement that represents a
news article as multiple disentangled embeddings, each associated
with a distinct intent, with the aid of its category information. To
show the relation between the category and intents of a news arti-
cle, we (1) randomly selected two news articles from each of three
categories (Weather, Politics, and Sports), (2) represented each arti-
cle into 𝑘 (= 3) disentangled intent embeddings, and (3) computed
the relative importance score of each intent embedding (See Appen-
dix A.4 for more details). Figure 2(a) shows that news articles within
the same category tend to show similar intent distributions even
if their news contents differ as we claimed, whereas news articles
from different categories exhibit different intent distributions.

(2) Consistency-based news representation. When a user
clicks the title of a news article that aligns with her interest, she may
expect that its content would align with her interest as well. Then,
as its content matches her interest more, her post-read preference
tends to be higher [17, 18, 43]. To this intuition, we hypothesize
that a user’s post-read preference to her clicked news is correlated to
the consistency between its title and content. To verify our hypothe-
sis, we conduct an experiment to compute the Pearson correlation
coefficient between the title-content consistency and a user’s con-
tent reading time (i.e., post-read preference). Figure 2(b) shows that
users’ post-read preferences to their clicked news are closely related
to the title-content consistency. Motivated by this observation, we
propose a method of consistency-based news representation that rep-
resents the news embedding by aggregating the title and content
embeddings based on the degree of title-content consistency. Here,
the title-content consistency plays a crucial role in adjusting how
much the content is integrated into the news embedding, thereby
differentiating varying post-read preferences for (C2).
User encoder. Then, based on the represented news embeddings,
the user encoder generates a user embedding:

(3) GNN-enhanced hybrid user representation. In recom-
mender systems, users with similar interests are likely to prefer
similar items (i.e., news articles in our case) and the information
about the users with similar interests (i.e., collaborative signals)
tends to be beneficial in enhancing user representation [15, 21, 37],
especially for the users with only a few historical clicked news

(i.e. the cold-start users). Based on this intuition, we adopt a hy-
brid approach to user representation that incorporates a graph
neural network (GNN) into the user encoder. Therefore, the user
encoder of CROWN not only aggregates the embeddings of a user’s
clicked news articles (i.e., content) but also leverages mutual com-
plementary information from other users (i.e., collaborative signals),
thereby alleviating the cold-start user problem for (C3).
Click and category predictors. The embeddings of a target user
and a candidate article are fed into a click predictor to decide
whether the user will click the candidate news (i.e., primary task).
All of the model parameters of CROWN are learned based on the
click prediction loss. In addition to the primary task, we incorporate
a category prediction into the process of CROWN as an auxiliary
task, which provides supplementary supervisory signals to guide
the news encoder to be trained for better intent disentanglement.
Contributions. The main contributions of this work are as follows.
• Challenges: We identify three crucial yet under-explored chal-

lenges for accurate personalized news recommendation: (C1)
comprehending manifold intents coupled within a news arti-
cle, (C2) differentiating varying post-read preferences of news
articles, and (C3) addressing the cold-start user problem.

• Framework: We propose a novel framework for personalized
news recommendation, CROWN, that effectively addresses the
three challenges by employing (1) category-guided intent disen-
tanglement, (2) consistency-based news representation, and (3)
GNN-enhanced hybrid user representation.

• Evaluation: We conduct experiments on real-world datasets to
demonstrate that (1) (accuracy) CROWN consistently achieves
the news recommendation accuracy higher than all state-of-the-
art methods and (2) (effectiveness) each of the proposed strategies
is significantly effective in improving the accuracy of CROWN.

For reproducibility, we have released the code of CROWN and the
datasets at https://anonymous.4open.science/r/CROWN-7B75.

2 RELATEDWORK

In this section, we review existing news recommendation methods.
Table 1 compares CROWN with existing methods in terms of the
three challenges. Many existing works [1, 10, 13, 20, 21, 25, 31, 33–
36, 41] focus on modeling users’ interests based on their clicked
news articles with the news title, content, and category. For instance,
NRMS [36] adopts self-attention networks to capture the context
of news articles. NAML [33] employs a multi-view attention mech-
anism to learn various types of news information (e.g., title and
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Table 1: Comparison of existingmethodswithCROWN based

on the challenges that we address.

Method (C1) (C2) (C3)

LibFM [26], DSSM [9], NPA [34], - - -NRMS [36], LSTUR [1]
NAML [33], TANR [35], FIM [29],

✓ - -HieRec [25], MINER [13], MCCM [31]
CNE-SUE [21], DIGAT [20] ✓ - ✓

CAST [10] - ✓ -
GLORY [41] - - ✓

CPRS [38], FeedRec [39], TCAR [4] - ✓ -
HyperNews [16] ✓ ✓ -

CROWN (proposed) ✓ ✓ ✓

content). TANR [35] exploits topic information within news articles
for news representation. NPA [34] employs personalized attention
networks to selectively learn important information according to
individual user preferences. LSTUR [1] considers both long-term
and short-term user interests for better user representation. CNE-
SUE [21] adopts a collaborative news encoder for mutual learning
of title and content embeddings, along with a GCN-based user en-
coder. HieRec [25] utilizes a hierarchical user modeling method
to capture users’ diverse and multi-grained interests. CAST [10]
leverages the news body text to enhance the words in a news title
by using context-aware attention networks. MINER [13] employs a
method to disentangle a user’s interest into multi levels for better
user representation. DIGAT [20] adopts a dual-graph (news-graph
and user-graph) interaction process to match news and user repre-
sentations. GLORY [41] enhances personalized recommendation by
combining global user representations with local user representa-
tions. MCCM [31] reduces the negative impact of the noisy data via
channel-wise dynamic news encoder and contrastive user encoder.

Historical clicked news articles alone, however, often struggle
with achieving desirable performance [17, 18, 38, 39]. Thus, there
have been a handful of methods that leverage additional user feed-
back [4, 16, 37–39]. For example, HyperNews [16] considers the
freshness of news articles and users’ active time. CPRS [38] takes
users’ reading satisfaction based on their reading speed into ac-
count in user representation. FeedRec [39] considers various user
feedback types including ‘skip,’ ‘finish,’ ‘share,’ and ‘quick close’
to capture users’ interests comprehensively. TCAR [4], a session-
based news recommendation method, incorporates users’ positive,
negative, and neutral implicit feedback in user representation.

In real-world scenarios, however, such types of additional user
feedback are not always available [21, 25, 35, 37]. As such, it is im-
portant and practical to learn news and user representations solely
based on users’ clicked news articles and their static information,
without relying on additional user feedback. To our best knowledge,
this is the first work to address the three challenges without any
additional user feedback.

3 PROBLEM DEFINITION

In this work, we consider the two following problems: click predic-
tion (primary task) and category prediction (auxiliary task). The
notations used in this paper are summarized in Table 2.

Table 2: The notations and their descriptions.

Notation Description

𝑈 , 𝑁 a set of users and news articles
𝑇𝑛 a set of the word embeddings in the news title
𝐶𝑛 a set of the word embeddings in the news content

𝑐𝑛 , 𝑠𝑐𝑛 the news category and sub-category

r𝑢 , r𝑛 the user/news representations
r𝑛(𝑇 ) , r

𝑛
(𝐶 ) the news title/content representations

r𝑛(𝑇 ,𝑘 ) , r
𝑛
(𝐶,𝑘 ) 𝑘-th intent embeddings of the news title/content

𝑑 the embedding dimensionality
𝐾 the number of intents

Θ𝑈 ,Θ𝑁 user and news encoders
Φ𝑃 ,Φ𝐴 click and category predictors

W, b trainable weights and biases
L(·) loss function
𝜂 user-defined learning rate

Problem 1 (Click Prediction). Given a target user 𝑢𝑡 and
a candidate news article 𝑛𝑐 , the goal is to predict whether the target
user 𝑢𝑡 will click the candidate news 𝑛𝑐 or not.

To solve this problem, we first generate the representation of the
target user𝑢𝑡 based on her clicked news articles𝑁𝑢𝑡 = {𝑛𝑢𝑡1 , 𝑛

𝑢𝑡
2 , . . . ,

𝑛
𝑢𝑡
|𝑁𝑢𝑡 |

}. Each news article is denoted by 𝑛 = (𝑇𝑛,𝐶𝑛, 𝑐𝑛, 𝑠𝑐𝑛), where

𝑇𝑛 ∈ R |𝑇𝑛 |×𝑑 is a set of the word embeddings in the news title, i.e.,
{𝑤𝑛1 ,𝑤

𝑛
2 , . . . ,𝑤

𝑛
|𝑇𝑛 | }, 𝐶𝑛 ∈ R |𝐶𝑛 |×𝑑 is a set of the word embeddings

in the content, i.e., {𝑤𝑛1 ,𝑤
𝑛
2 , . . . ,𝑤

𝑛
|𝐶𝑛 | }, 𝑐𝑛 is the news category,

and 𝑠𝑐𝑛 is the news sub-category. Specifically, a news encoder Θ𝑁
generates the representation of each clicked news article 𝑛 ∈ 𝑁𝑢𝑡 ,
i.e., Θ𝑁 (𝑛) → r𝑛 ; then, a user encoder Θ𝑈 generates the target
user representation by aggregating the news representations, i.e.,
Θ𝑈 (R𝑢𝑡 ) → r𝑢𝑡 , where R𝑢𝑡 = {r𝑛 |𝑛 ∈ 𝑁𝑢𝑡 }. Finally, the repre-
sentations of the target user and candidate news are fed into a
click predictor Φ𝑃 to decide whether 𝑢𝑡 will click 𝑛𝑐 or not, i.e.,
Φ𝑃 (r𝑢𝑡 , r𝑛𝑐 ) → 𝑦 ∈ {0, 1}.

In addition to the click prediction (i.e., primary task), we inte-
grate category prediction in the training process of CROWN as
an auxiliary task, providing complementary information to better
train the news encoder Θ𝑁 .

Problem 2 (Category Prediction). Given a news article 𝑛,
the goal is to predict to which category the news 𝑛 belongs.

For each candidate news 𝑛𝑐 , its news representation is gener-
ated by a news encoder Θ𝑁 and fed into a category predictor Φ𝐴
to decide which category the candidate article 𝑛𝑐 belongs to, i.e.,
Φ𝐴 (r𝑛𝑐 ) → 𝑧 ∈ {1, 2, ..., |𝑐 |}, where |𝑐 | is the number of categories.

Based on these two tasks, all model parameters of CROWN
are jointly optimized to minimize both click and category predic-
tion losses in an end-to-end way. We will describe each module of
CROWN and loss function L(·) in Section 4.

4 CROWN: PROPOSED FRAMEWORK

In this section, we present a novel personalized news recommenda-
tion framework, named CategoRy-guided intent disentanglement
and cOnsistency-based neWs represeNtation (CROWN).
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Figure 3: Overview of CROWN: two encoding modules (Modules 1-2) and two prediction modules (Modules 3-4).

Overview. As illustrated in Figure 3, CROWN consists of four
modules: two encoding modules (i.e., news and user encoders) and
two prediction modules (i.e., click and category predictors). Given
a target user and a candidate news, CROWN proceeds as follows:
• News encoder (Module #1) generates the representations of the

news articles in the target user’s click history;
• User encoder (Module #2) aggregates these news representa-

tions into the target user representation;
• Click predictor (Module #3) predicts whether the target user

will click the candidate news based on their representations;
• Category predictor (Module #4) predicts which category the

candidate news belongs to.

4.1 Module 1: News Encoder

The news encoder of CROWN employs (1) category-guided
intent disentanglement and (2) consistency-based news representa-
tion to address the two challenges: (C1) comprehending a range of
intents coupled within a news article and (C2) differentiating news
articles with varying post-read preferences.
(1) Category-guided intent disentanglement. As explained in
Section 1, the news category, which serves as beneficial metadata
to enhancing news representation, has been widely used in many
existing news recommendation methods [16, 21, 25, 29, 33, 35]. In-
tuitively, it is likely that the news articles belonging to the same
category might have similar intents, even if they provide differ-
ent news content. For example, two weather news articles, while
conveying different weather information, are likely to have similar
intents of providing weather information (intent #1) and increasing
public interest (intent #2). Similarly, two political news articles,
despite different political stances, may aim to provide information
about the same policy (intent #1), with the intent to persuade people
to (dis)agree with a specific viewpoint (intent #3).

Based on this intuition, we posit that a range of intents coupled
within a news article are closely related to its category. From this
hypothesis, we propose a method of category-guided intent disen-
tanglement that represents each of the title and content of a given
news article as multiple disentangled embeddings, each associated
with a distinct intent, with the aid of its category information.

Specifically, given a news article 𝑛 = (𝑇𝑛,𝐶𝑛, 𝑐𝑛, 𝑠𝑐𝑛) in a user’s
click history and the number of intents 𝐾 , CROWN represents the
news title 𝑇𝑛 and content 𝐶𝑛 as 𝐾 intent embeddings, i.e., r𝑛(𝑇,𝑘 )
and r𝑛(𝐶,𝑘 ) , where each embedding corresponding to 𝑘-th intent.

• (1)-(a) Text embedding: We apply the multi-head attention block
(MAB) [12, 27] to𝑇𝑛 = {𝑤1,𝑤2, ...,𝑤 |𝑇𝑛 | } and𝐶𝑛 = {𝑤1,𝑤2, ...,𝑤 |𝐶𝑛 | }
to generate context-aware title and content embeddings, i.e., r𝑛𝑇 ∈
R𝑑 and r𝑛𝐶 ∈ R𝑑 , while considering the different informative-
ness of each word in the news title and content, where𝑤𝑖 is the
pre-trained word embeddings by Glove [22]:

r𝑛𝑇 = 𝐴𝑣𝑔(MAB(𝑇𝑛,𝑇𝑛)), r𝑛𝐶 = 𝐴𝑣𝑔(MAB(𝐶𝑛,𝐶𝑛)), (1)
where MAB(𝑋,𝑌 ) = LayerNorm(𝐻 + FeedForward(𝐻 )) and 𝐻 =

LayerNorm(𝑋 + Multihead(𝑋,𝑌,𝑌 )).
• (1)-(b) Category embedding: We then generate the category

embedding, i.e., c𝑛∗ ∈ R𝑑𝑐 , by mixing the information of the news
category and sub-category:

c𝑛∗ = 𝑀𝑖𝑥 (𝑐𝑛, 𝑠𝑐𝑛) = (𝑐𝑛 ⊕ 𝑠𝑐𝑛) ·W𝑚𝑖𝑥 + b𝑚𝑖𝑥 (2)
where ⊕ is the concatenation operator and, W𝑚𝑖𝑥 and b𝑚𝑖𝑥 are
trainable parameters.

• (1)-(c) Intent disentanglement: We generate 𝐾 intent embed-
dings for each of the news title and content, i.e., r𝑛(𝑇,𝑘 ) ∈ R

𝑑 and
r𝑛(𝐶,𝑘 ) ∈ R

𝑑 , by disentangling multiple intents from the title and
content embeddings:

r𝑛(𝑇,𝑘 ) = 𝐷𝑖𝑠𝐸𝑛𝑡𝑎𝑛𝑔𝑙𝑒 (r
𝑛
𝑇 , c

𝑛
∗ ) = 𝜎 ((r𝑛𝑇 ⊕ c𝑛∗ ) ·W𝑘 + b𝑘 ), (3)

r𝑛(𝐶,𝑘 ) = 𝐷𝑖𝑠𝐸𝑛𝑡𝑎𝑛𝑔𝑙𝑒 (r
𝑛
𝐶 , c

𝑛
∗ ) = 𝜎 ((r𝑛𝐶 ⊕ c𝑛∗ ) ·Wk + b𝑘 ) (4)

where 𝜎 (·) is a non-linear activation function (ReLU) and, W𝑘 and
b𝑘 are the trainable parameters of the 𝑘-th intent disentanglement
layer. As highlighted by the same colors in Figure 3, the weights
and biases are shared in disentangling the intents from the title
and content embeddings.

Note that, although there have been a handful works that employ
a method to learn disentangled representations for accurate rec-
ommendation [13, 19, 32, 44], they focus on disentangling a user’s
interest for better user representation, rather than a news article’s
intents for better news representation. In other words, these exist-
ing works are orthogonal to our work and could be incorporated
into the user encoder of our method.
(2) Consistency-based news representation. We then generate
the final news embedding by aggregating the disentangled title and
content embeddings. As mentioned in Section 1, we observed that
“the title-content consistency of a news article is strongly correlated to
users’ post-read preferences to the new article" via the preliminary
experiment (See Figure 2). Based on this observation, we propose
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a method of consistency-based news representation that aggregates
the title and content embeddings into the final news embedding,
based on the degree of title-content consistency.

• (2)-(a) Intent-aware aggregation: Given 𝐾 intent embeddings
for each of the news title and content obtained in the previous
step, i.e., r𝑛(𝑇,𝑘 ) and r𝑛(𝐶,𝑘 ) , we aggregate the 𝐾 intent embeddings
of each of the news title and content into a single intent-aware
embedding, i.e., r𝑛(𝑇 ) ∈ R

𝑑 and r𝑛(𝐶 ) ∈ R
𝑑 , by using an attention

mechanism to give different significance for each intent:

r𝑛(𝑇 ) =
𝐾∑︁
𝑘=1

𝛼 (𝑇,𝑘 ) · r𝑛(𝑇,𝑘 ) , r𝑛(𝐶 ) =
𝐾∑︁
𝑘=1

𝛼 (𝐶,𝑘 ) · r𝑛(𝐶,𝑘 ) , (5)

where 𝛼 (∗,𝑘 ) =
𝑒𝑥𝑝 (𝑧 (∗,𝑘 ) )∑𝐾
𝑖=1 𝑒𝑥𝑝 (𝑧 (∗,𝑖 ) )

indicates the attention weight of
the 𝑘-th intent embedding; 𝑧 (∗,𝑘 ) = tanh(W𝑎𝑔𝑔 · r𝑛(∗,𝑘 ) + b𝑎𝑔𝑔);
W𝑎𝑔𝑔 and b𝑎𝑔𝑔 are trainable parameters. Thus, r𝑛(∗) is the ‘intent-
aware’ title/content embedding that understands a range of intents
coupled within a news article.

• (2)-(b) Consistency computation: Then, we compute the con-
sistency score between the news title and content, i.e., 𝑐𝑠𝑛 , based
on the intent-aware title and content embeddings r𝑛(𝑇 ) and r𝑛(𝐶 ) :

𝑐𝑠𝑛 = 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (r𝑛(𝑇 ) , r
𝑛
(𝐶 ) ) =

𝐶𝑜𝑠 (r𝑛(𝑇 ) , r
𝑛
(𝐶 ) ) + 1

2 . (6)

As a consistency measure, we use the cosine similarity and rescale
the result to the range of [0,1].

• (2)-(c) News representation: Finally, we generate the final news
embedding, i.e., r𝑛 ∈ R𝑑 , by aggregating its intent-aware title and
content embeddings r𝑛(𝑇 ) and r𝑛(𝐶 ) based on its consistency 𝑐𝑠𝑛 :

r𝑛 = r𝑛(𝑇 ) + 𝑐𝑠
𝑛 · r𝑛(𝐶 ) . (7)

Therefore, the news content information is differentially incorpo-
rated into news representation, guided by the title-content con-
sistency, playing a crucial role in adjusting how much the news
content information is integrated into the final news embedding.

As a result, the news encoder of CROWN is able to effectively
address the two challenges of news representation by employing
the (1) category-guided intent disentanglement for (C1) and (2)
consistency-based news representation for (C2). We will verify the
effectiveness of the proposed strategies in improving the recom-
mendation accuracy of CROWN in Section 5.3 and Appendix A.4.

4.2 Module 2: User Encoder

Many existing news recommendation methods suffer from (C3) the
cold-start user problem since they rely only on users’ historical
clicked news [10, 16, 20, 25, 33, 34, 36]. To alleviate this challenge,
we design (3) a GNN-enhanced hybrid user encoder that not only
aggregates the embeddings of a user’s clicked news articles but also
leverages mutual complementary information from other users (i.e.,
collaborative signals) via a graph neural network (GNN).
(3) GNN-enhanced hybrid user representation. Given a user𝑢
and its clicked news articles 𝑁𝑢 = {𝑛𝑢1 , ..., 𝑛

𝑢
𝑁𝑢

}, CROWN generates
the user embedding, i.e., r𝑢 by aggregating the embeddings of its
clicked news articles, i.e., {r𝑛 |𝑛 ∈ 𝑁𝑢 }.

• (3)-(a) Graph construction: First, we construct a user-news
bipartite graph (See Module 2 in Figure 3), where each node cor-
responds to a user (upper) or a news article (lower) and an edge
corresponds to a user’s click. Note that only user-news edges exist
in the bipartite graph (i.e., no user-user or news-news edges). We
represent the bipartite graph as a matrix A ∈ R |𝑈 |× |𝑁 | . The node
feature matrix for user nodes, i.e., R𝑢 ∈ R |𝑈 |×𝑑 , are randomly ini-
tialized and that for news nodes, i.e., R𝑛 ∈ R |𝑁 |×𝑑 are initialized
with the news embeddings represented by the news encoder.

• (3)-(b) GNN-based update: We apply a graph neural network
(GNN) to the user-news bipartite graph to mutually update the
user and news embeddings. Given a user-news matrix A and the
node feature matrices R𝑢 and R𝑛 , the user and news embeddings
at the 𝑙-th layer are defined as follows:

R𝑢 = 𝜎 (AR𝑛W𝑙
𝑔 + b𝑙𝑔), R𝑛 = 𝜎 (A⊺R𝑢W𝑙

𝑔 + b𝑙𝑔), (8)

where W𝑙
𝑔 and b𝑙𝑔 are trainable parameters. For simplicity, we omit

the normalized terms. It is worth noting that any state-of-the-art
GNN models [6–8, 11, 28] can be applied to the user encoder
of CROWN since our method is agnostic to the user encoder
architecture. We use GAT [28] as a GNN model in this work. The
impacts of four state-of-the-art GNN models on the accuracy of
CROWN are included in Appendix A.5.

• (3)-(c) User representation: Finally, we generate the final user
embedding, i.e., r𝑢 . We aggregate all news embeddings in the
user’s click history based on their attention weights computed
by the target user-wise attention mechanism, to reflect different
importance of each news article in the context of the target user:

r𝑢 =

|𝑁𝑢𝑡 |∑︁
𝑖=1

𝛼𝑖 · r𝑛𝑖 , (9)

where 𝛼𝑖 =
𝑒𝑥𝑝 (𝑧 𝑗 )∑|𝑁𝑢𝑡 |

𝑗=1 𝑒𝑥𝑝 (𝑧 𝑗 ) )
indicates the attention weight of the

𝑖-th news embedding; 𝑧 𝑗 = q⊺ · tanh(W𝑢𝑠𝑒𝑟 · r𝑛𝑗 + b𝑢𝑠𝑒𝑟 ); q, a
query vector, is the target user embedding learned from the GNN
model; and W𝑢𝑠𝑒𝑟 and b𝑢𝑠𝑒𝑟 are trainable parameters.

We will evaluate the effectiveness of our user encoder in improv-
ing the recommendation accuracy of CROWN in Section 5.4.

4.3 Modules 3-4: Click and Category Predictors

Based on the learned news and user representations, CROWN per-
forms click prediction (primary) and category prediction (auxiliary),
and then, updates the model parameters based on the two losses.
Click Prediction. Given a target user and a candidate news article,
the click predictor computes the probability of the user clicking
the candidate article based on their representations. Note that we
use only the title embedding of a candidate news, i.e., r𝑛(𝑇 ) for
click prediction since a user could see the news title only, not the
news content, when deciding whether to click a news article or not.
Following [1, 16, 21, 25, 33–36, 39], we compute the click probability
by the inner product of the user embedding and the news title
embedding, i.e., 𝑦𝑢,𝑛 = r𝑢 · r𝑛(𝑇 ) .

We construct the click prediction loss with negative examples
in the same way as in [10, 21, 23, 24, 30, 33, 36, 38]. Specifically, for
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each news article clicked by a target user (i.e., positive example), we
randomly sample𝑀 news articles not clicked by the user as negative
examples. We aim to optimize the model parameters of CROWN so
that positive examples obtain higher scores than negative examples.
Formally, the click prediction loss (primary loss) L𝑃 is defined as:

L𝑃 = −
∑︁
𝑖∈𝑆

log
(

𝑒𝑥𝑝 (𝑦+𝑖 )
𝑒𝑥𝑝 (𝑦+𝑖 ) +

∑𝑀
𝑗=1 𝑒𝑥𝑝 (𝑦−𝑖, 𝑗 )

)
, (10)

where 𝑆 is the set of positive examples, 𝑦+𝑖 is the 𝑖-th positive ex-
ample, and 𝑦−𝑖, 𝑗 is the 𝑗-th negative example for 𝑦+𝑖 .
Category Prediction. In addition, we incorporate a category pre-
diction into the training process as an auxiliary task, which provides
supplementary supervisory signals to guide the news encoder to
be trained for better intent disentanglement (i.e., category-guided).

We compute the category probability distribution of a candi-
date news article by passing its title embedding to the category
prediction layer, which consists of a fully-connected layer (𝑑 × |𝑐 |),
followed by a softmax layer, i.e., 𝑧 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝐶 (r𝑛(𝑇 ) )). Formally,
the category prediction loss (auxiliary loss) L𝐴 is defined as:

L𝐴 = − 1
|𝑁 |

|𝑁 |∑︁
𝑖=1

|𝑐 |∑︁
𝑗=1

𝑧𝑖, 𝑗 · log(𝑧𝑖, 𝑗 ), (11)

where |𝑁 | is the number of news articles, |𝑐 | is the number of
categories, and 𝑧𝑖, 𝑗 and 𝑧𝑖, 𝑗 are the ground-truth and predicted
probabilities of the 𝑖-th news article being in the 𝑗-th category,
respectively. Finally, we unify the click and category prediction
losses by a weighted sum. Thus, the total loss is defined as:

L = L𝑃 + 𝛽L𝐴, (12)

where 𝛽 controls the weight of the auxiliary task. Accordingly, all
model parameters are trained to jointly optimize the two tasks. We
will validate the impact of the hyperparameter 𝛽 on the accuracy
of CROWN in Section 5.5. We also analyze the time and space
complexity of CROWN and provide the results in Appendix A.1.

5 EXPERIMENTAL VALIDATION

In this section, we comprehensively evaluate CROWN by answer-
ing the following evaluation questions:
• EQ1 (Accuracy): To what extent does CROWN improve the accu-

racy of existing methods in personalized news recommendation?
• EQ2 (News representation): Is each of our strategies in a news

encoder effective for getting better news representation?
• EQ3 (User representation): Is our strategy in a user encoder effec-

tive for getting better user representation?
• EQ4 (Auxiliary task): Does our auxiliary task contribute to the

improvement of CROWN in accuracy?
• EQ5 (Cold start user problem): Is CROWN effective in addressing

the cold start problem?

5.1 Experimental Setup

Datasets and competitors. We evaluate CROWN with two real-
world datasets, MIND-small

1 (simply MIND hereafter) [40] and
1In our experiments, we used only MIND-small not MIND-large due to the limited
computing power of our experimental environment, which may limit the generaliz-
ability of CROWN. However, it is worth noting that the trends in recommendation

Table 3: Statistics of news article datasets.

Dataset MIND-small [40] Adressa-1week [5]

# of users 94,057 601,215
# of news articles 65,238 73,844
# of clicks 347,727 2,107,312
# of categories 18 (270) 108 (151)

# of words-per-title 11.67 6.63
# of words-per-content 41.01 552.15

Adressa-1week (simply Adressa hereafter) [5]. Table 3 shows the
statistics of the news article datasets. We compare CROWN with
12 state-of-the-art news recommendation methods: LibFM [26],
DSSM [9], NPA [34], NRMS [36], NAML [33], LSTUR [1], FIM [29],
HieRec [25], CNE-SUE [21], DIGAT [20]2, GLORY [41], and MCCM [31].
For LibFM, DSSM, FIM, HieRec, CNE-SUE, and DIGAT, we use the
official source codes provided by the authors, for NPA, NAML,
NRMS, and LSTUR, we use the implementations publicly avail-
able in the popular open-source library (MS open source), and for
MCCM, we use their 𝑏𝑒𝑠𝑡 reported results in [31] since its official
source code is unavailable. Note that we use the same pre-trained
word embeddings by GloVe [22] for all methods in order to fairly
evaluate the recommendation.
Evaluation protocol. Following [16, 21, 24, 39], we evaluate the
top-n recommendation accuracy of each method. As evaluation
metrics, we use area under the curve (AUC), mean reciprocal rank
(MRR), and normalized discounted cumulative gain (nDCG). We
measure AUC, MRR, nDCG@5, and nDCG@10 on the test set when
the AUC on the validation set is maximized; we report the averaged
AUC, MRR, nDCG@5, and nDCG@10 on the test set over five runs.
The implementation details are provided in Appendix A.2.

5.2 EQ1. Model Accuracy

Table 4 shows the accuracies of all competing methods in two real-
world datasets. The results demonstrate that CROWN consistently
outperforms all state-of-the-art in both datasets in all metrics (av-
eraged AUC, MRR, and nDCG@K). Specifically, CROWN achieves
higher AUC, MRR, nDCG@5, and nDCG@10 by up to 4.78%, 11.71%,
18.82%, and 11.38%, respectively than CNE-SUE, the best competitor
in Adressa. We note that these improvements of CROWN over the
best competitor are remarkable, given that CNE-SUE has already
improved other existing methods significantly [21]. In addition, we
have conducted the t-tests with a 95% confidence level and verified
that the improvement of CROWN over all competing methods
are statistically significant (i.e., the p-values are below 0.05). Con-
sequently, these results demonstrate that CROWN successfully
addresses the three challenges of personalized news recommenda-
tion through the proposed strategies: (1) the category-guided intent
disentanglement for (C1) understanding a range of intents coupled
within a news article, (2) the consistency-based news representation
for (C2) differentiating users’ varying post-read preferences to a

accuracy of existing methods are consistent across the two datasets [13, 20]. Also, we
used two news datasets from different sources (i.e., MIND-small and Adressa-1week)
for comprehensive evaluation as in [2, 4, 41, 42].
2Following [41], we use DIGAT without the pre-trained language model (PLM) for fair
comparison.
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Table 4: News recommendation accuracy on two real-world datasets: CROWN consistently outperforms all competing methods

in terms of all metrics (The bold font and underline indicate the best and the second-best results, respectively).

LibFM DSSM NPA NRMS NAML LSTUR FIM HieRec CNE-SUE DIGAT GLORY MCCM* CROWN Gain

M
I
N
D

AUC 0.6039 0.6235 0.6542 0.6623 0.6648 0.6612 0.6571 0.6718 0.6761 0.6713 0.6792 0.6795 0.6857 +0.91%
MRR 0.2835 0.2934 0.3092 0.3134 0.3142 0.3121 0.3093 0.3169 0.3219 0.3225 0.3221 0.3276 0.3405 +3.94%

nDCG@5 0.3040 0.3094 0.3408 0.3453 0.3480 0.3461 0.3428 0.3532 0.3572 0.3584 0.3601 0.3662 0.3783 +3.30%
nDCG@10 0.3650 0.3748 0.4039 0.4135 0.4112 0.4056 0.4047 0.4161 0.4203 0.4195 0.4196 0.4266 0.4384 +2.77%

A
d
r
e
s
s
a AUC 0.6105 0.6682 0.6704 0.7067 0.7612 0.7673 0.7324 0.7867 0.8074 0.7385 0.7638 - 0.8460 +4.78%

MRR 0.3357 0.3657 0.3885 0.4168 0.4326 0.5034 0.4252 0.4922 0.5073 0.4361 0.4653 - 0.5667 +11.71%
nDCG@5 0.3083 0.3803 0.3955 0.4166 0.4453 0.4906 0.4318 0.4872 0.5021 0.4319 0.4761 - 0.5966 +18.82%
nDCG@10 0.3760 0.4163 0.4279 0.4725 0.5133 0.5577 0.4874 0.5667 0.5712 0.4958 0.5418 - 0.6362 +11.38%

*For MCCM [31], there is no reported accuracy on the Adressa dataset.

Table 5: Ablation study of the news encoder: the proposed components of the news encoder significantly contribute to enhancing

the model accuracy of CROWN (The underline indicate the best result when the same number of the components are applied).

Baseline I.D. C.I. C.R. I.D. C.I. I.D. C.R. C.I. C.R. I.D. C.I. C.R. Gain

M
I
N
D

AUC 0.6624 0.6725 0.6731 0.6684 0.6764 0.6806 0.6793 0.6857 +3.52%
MRR 0.3139 0.3201 0.3192 0.3182 0.3224 0.3282 0.3246 0.3405 +8.47%

nDCG@5 0.3484 0.3546 0.3558 0.3535 0.3567 0.3651 0.3611 0.3783 +8.58%
nDCG@10 0.4095 0.4171 0.4182 0.4151 0.4194 0.4259 0.4230 0.4384 +7.06%

A
d
r
e
s
s
a AUC 0.7789 0.8088 0.7977 0.7829 0.8215 0.8385 0.8343 0.8460 +8.61%

MRR 0.4831 0.5094 0.5047 0.5006 0.5200 0.5284 0.5277 0.5667 +17.30%
nDCG@5 0.4904 0.5266 0.5199 0.4991 0.5331 0.5533 0.5518 0.5966 +21.66%
nDCG@10 0.5546 0.5886 0.5868 0.5704 0.5913 0.6035 0.6032 0.6362 +14.71%

news article, and (3) the GNN-enhanced hybrid user representation
for (C3) the cold-start user problem.

5.3 EQ2. News Representation

We verify the effectiveness of our proposed strategies in the news
encoder. We consider all possible combinations of the three com-
ponents: I.D.: Intent disentanglement; C.I.: Category information;
and C.R.: Consistency-based news representation.

Table 5 shows the results of the ablation study. Overall, each of
our proposed strategies is always beneficial to improving the accu-
racy of CROWN. Specifically, when all strategies (I.D. C.I. C.R.)
are applied to CROWN, the averaged AUC, MRR, nDCG@5, and
nDCG@10 are improved by 8.61%, 17.30%, 21.66%, and 14.71%, re-
spectively inAdressa, compared to the baseline version of CROWN.
These results demonstrate that (1) the two challenges of news rep-
resentation are critical for accurate news recommendation and (2)
our proposed strategies of CROWN address them successfully.

Looking more closely, when one component is applied, CROWN
with I.D. achieves the accuracy comparable to or higher than
CROWN with C.I. and always outperforms CROWN with C.R..
This result implies that the precise comprehension of manifold
intents of a news article is most important for accurate news rec-
ommendation, thereby verifying the effect of the intent disentan-
glement as we claimed in Section 4.1. When two components are
applied, CROWN with I.D. C.R. consistently achieves the highest
accuracy, compared with the other two versions. This is because
CROWN with I.D. C.R. addresses the both challenges of news rep-
resentation (I.D. for (C1) and C.R. for (C2)), while CROWN with
I.D. C.I. or CROWN with C.I. C.R. tackles only one of the two
challenges. Lastly, when all the components are applied, CROWN
achieves the best results in all cases. This result demonstrates that
the category information (C.I.) of a news article is able to provide
useful insights for better intent disentanglement as we claimed in
Section 4.1. In addition to the quantitative effect of the category

Table 6: The model accuracy of CROWN according to differ-

ent user encoders: the proposed GNN-enhanced hybrid user

encoder consistently outperforms other user encoders.

AVG ATT GNN Hybrid Gain

M
I
N
D

AUC 0.6720 0.6736 0.6764 0.6857 +2.04%
MRR 0.3194 0.3236 0.3230 0.3405 +6.61%

nDCG@5 0.3550 0.3594 0.3600 0.3783 +6.56%
nDCG@10 0.4174 0.4208 0.4211 0.4384 +5.03%

A
d
r
e
s
s
a AUC 0.8216 0.8349 0.8257 0.8460 +2.97%

MRR 0.5141 0.5223 0.5208 0.5667 +10.23%
nDCG@5 0.5295 0.5448 0.5316 0.5966 +12.67%
nDCG@10 0.5809 0.5851 0.5905 0.6362 +9.52%

information, we analyze the qualitative effect of the category infor-
mation in disentangling multiple coupled intents and provide the
results in Appendix A.4. We also evaluate the impact of the number
of intents 𝐾 on the accuracy of CROWN and provide the results in
Appendix A.3.

5.4 EQ3. User Representation

We verify the impact of the user encoder on the accuracy of CROWN.
We compare four variants of CROWN with different user encoders.
(1) AVG averages the embeddings of the news articles in a user’s
click history; (2) ATT aggregates the news embeddings based on
their attention weights; (3) GNN mutually updates the news and
user embeddings using a graph neural network (GNN); and (4) Hy-

brid is the proposed GNN-enhanced user encoder (i.e., our final
choice). Table 6 shows the results. Hybrid always achieves the best
accuracy in both datasets, which verifies that our user encoder not
only (1) effectively aggregates the embeddings of a user’s clicked
news articles (i.e., content) by considering their different signifi-
cance but also (2) leverages mutual complementary information
(i.e., collaborative signals), as we claimed in Section 4.2.

We also evaluate the impact of the GNN-enhanced user encoder
on the accuracy according to different GNN models. For the GNN
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Table 7: News recommendation accuracy for cold-start users: CROWN consistently outperforms all competing methods in

terms of all metrics (The bold font and underline indicate the best and the second best results, respectively).

LibFM DSSM NPA NRMS NAML LSTUR FIM HieRec CNE-SUE DIGAT GLORY CROWN Gain

M
I
N
D

AUC 0.5020 0.5832 0.6022 0.6021 0.6118 0.5908 0.6073 0.6104 0.5985 0.5826 0.6092 0.6352 +3.82%
MRR 0.2509 0.2810 0.3080 0.3123 0.3139 0.3003 0.3066 0.3128 0.2945 0.2952 0.3081 0.3263 +3.95%

nDCG@5 0.2592 0.3036 0.3351 0.3377 0.3405 0.3238 0.3389 0.3425 0.3275 0.3208 0.3397 0.3595 +4.96%
nDCG@10 0.3209 0.3670 0.3951 0.3976 0.4017 0.3861 0.3959 0.3986 0.3873 0.3804 0.3964 0.4187 +4.23%

A
d
r
e
s
s
a AUC 0.5273 0.6045 0.6186 0.6351 0.6718 0.6787 0.6252 0.6682 0.6854 0.6327 0.6723 0.7236 +5.57%

MRR 0.2863 0.3181 0.3373 0.3645 0.3872 0.3894 0.3436 0.3823 0.4026 0.3502 0.3922 0.4284 +6.41%
nDCG@5 0.2561 0.3432 0.3529 0.3714 0.3932 0.4025 0.3651 0.3819 0.4153 0.3621 0.3948 0.4469 +7.61%
nDCG@10 0.3358 0.3530 0.3728 0.3935 0.4260 0.4384 0.3885 0.4175 0.4460 0.3973 0.4365 0.4752 +6.55%
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M
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@
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(a) MRR (b) nDCG@10
Figure 4: The impact of the auxiliary task on the accuracy

according to the control weight 𝛽. The auxiliary task with

0.3 ≤ 𝛽 ≤ 0.5 is beneficial to improving the accuracy.

model, we consider four state-of-the-art GNN models (GCN [11],
GraphSAGE [6], GAT [28], and LightGCN [7]). We observed that the
GNN-enhanced user encoder is effective in improving the accuracy
of CROWN regardless of the GNN models (See Appendix A.5).

5.5 EQ4. Auxiliary Task

We evaluate the impact of the auxiliary task (i.e., category predic-
tion) on the accuracy of CROWN according to the control weight
𝛽 . We measure the accuracy of CROWN with varying 𝛽 from 0.0
(i.e., not used) to 1.0 (i.e., as the same as the primary task) in step
of 0.1. Figure 4 shows the results, where the x-axis represents the
control weight 𝛽 and the y-axis represents the accuracy. The ac-
curacy of CROWN tends to increase until 𝛽 reaches to 0.4 and
CROWN achieves the best accuracy at around 0.3 ≤ 𝛽 ≤ 0.5. How-
ever, the accuracy of CROWN decreases when 𝛽 is larger than
0.5 and CROWN with 𝛽 ≥ 0.6 shows lower accuracy even than
CROWN with 𝛽 = 0 (i.e., the auxiliary task is not used). This result
verifies that the auxiliary task, i.e., category prediction, provides
useful complementary signal to CROWN to be trained for better
intent disentanglement. However, too large 𝛽 may cause the model
parameters of CROWN to overfit the auxiliary task, i.e., category
prediction, rather than the primary task, i.e., click prediction. Fig-
ure 5 visually illustrates the effect of the auxiliary task, where the
points with the same color indicate the news articles that belong
to the same category in MIND. Clearly, when the auxiliary task is
incorporated in the training process of CROWN, the news embed-
dings are better learned to distinguish across their categories.

5.6 EQ5. Cold Start User Problem

Finally, we evaluate the recommendation accuracy on cold-start
users. As cold-start users, we select the users with less than five
clicked news articles on two datasets. Then, we measure the rec-
ommendation accuracy of all methods for the selected users on the

(a) Without the auxiliary task (b) With the auxiliary task
Figure 5: Visualization of the effect of the auxiliary task of

CROWN. News embeddings (a) without and (b) with incor-

porating the auxiliary task in CROWN.

two datasets. Table 73 shows that CROWN achieves the highest
accuracy for the cold-start users in all metrics in both datasets. In-
terestingly, the accuracy degradation in CROWN, compared to the
original results shown in Figure 4, is significantly lower than the
best and the second-best competitors, i.e., GLORY and CNE-SUE.
We analyze the reason why CROWN is superior to existing meth-
ods in addressing the cold-start user problem as follows: CROWN
is able (1) to precisely comprehend a user’s preference via the pro-
posed news encoder even with a small number of clicked news
articles and (2) to additionally leverage collaborative signals via the
GNN-enhanced hybrid user encoder.

6 CONCLUSION

In this paper, we point out three challenges of personalized news
recommendation: (C1) comprehension of manifold intents of a
news article, (C2) differentiation of users’ varying post-read prefer-
ences to news articles, and (C3) a cold-start user problem. To tackle
these challenges together, we propose a novel approach, named
as CROWN that employs (1) the category-guided intent disentan-
glement for (C1), (2) the consistency-based news representation
for (C2), and (3) the GNN-enhanced hybrid user representation for
(C3). Furthermore, we integrate the category prediction into the
training process of CROWN as an auxiliary task, which provides
supplementary supervisory signal to guide the news encoder for
better intent disentanglement. Comprehensive experiments on two
real-world datasets reveal that (1) (Accuracy) CROWN consistently
outperforms all competing methods in the news recommendation
accuracy and (2) (Effectiveness) all proposed strategies are signifi-
cantly contribute to improving the accuracy of CROWN.

3We could not include the results of MCCM in this experiment as there is no reported
accuracy of MCCM for cold-start users.
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A APPENDIX

In this appendix, we provide the space and time complexity of
CROWN (Appendix A.1), the implementation details (Appendix A.2),
the experimental results about the impact of the number of intents
𝐾 on the accuracy of CROWN (Appendix A.3), the qualitative
analysis for justifying the category-guided intent disentanglement
(Appendix A.4), and the effectiveness of the GNN-enhanced user
encoder according to GNN models (Appendix A.5).

A.1 Complexity Analysis

In this section, we analyze the space and time complexity of CROWN.
Space Complexity. CROWN consists of (1) a news encoder, (2) a
user encoder, (3) a click predictor, and (4) a category predictor. Stor-
ing the parameters of a news encoder requires 4𝑑2 + 2𝑑2 + 2𝑑2 × 𝐾
for the parameters of MAB, category embedding, and intent disen-
tanglement layers, where 𝑑 is the embedding dimensionality and
𝐾 is the number of intents. The parameter size of a user encoder
is 𝑑 × |𝑈 | + 𝑑 × |𝑁 | + 𝑑2 since the space for storing user and news
embeddings and for the parameters of a GNN model. The parameter
sizes of click and category predictors are 2𝑑 for dot product of news
and user embeddings and𝑑×|𝑐 | for the category prediction layer, re-
spectively, where |𝑐 | is the number of categories. Therefore, since𝐾 ,
|𝑐 | is much smaller than 𝑑 , |𝑈 | and |𝑁 |, the overall space complexity
of CROWN is𝑂 (( |𝑈 |+ |𝑁 |+𝑑) ·𝑑) (i.e., linear to the number of users
and news articles). Although CROWN requires additional space
overhead, especially for the category-guided intent disentangle-
ment layer, the overall space complexity of CROWN is still compa-
rable to that of existing news recommendation methods [4, 16, 21]
since the additional overhead is much smaller than the common
space overhead (i.e.,𝑂 (4𝑑2) +𝑂 (2𝑑2×𝐾) ≪ 𝑂 (( |𝑈 | ·𝑑) +𝑂 ( |𝑁 | ·𝑑)).
Time Complexity.The computational overhead of CROWN comes
from (1) news representation, (2) user representation, and (3) click
and category prediction. The computational overhead of news rep-
resentation is 𝑂 (𝑛𝑞 · 𝑛𝑘 + 𝑑2) for the MAB and category disentan-
glement, where 𝑛𝑞 and 𝑛𝑘 are the number of words in the news
title/content. Following [12], we adopt the induced MAB to reduce
the computational overhead of MAB. Thus, the time complexity
of the news representation in CROWN is 𝑂 (𝑚(𝑛𝑞 + 𝑛𝑘 ) + 𝑑2),
where𝑚 ≪ min(𝑛𝑞, 𝑛𝑘 ). The GNN-based update for user represen-
tation requires𝑂 ( |𝐴| ×𝑑 ×𝑘), where |𝐴| is the number of non-zero
elements in the user-news bipartite graph. Lastly, the click and
category prediction require 𝑂 (𝑑 + 𝑑 × |𝑐 |). Therefore, the overall
time complexity of CROWN is𝑂 ( |𝐴| · 𝑑), i.e., linear to the number
of users’ clicks.

A.2 Implementation Details

We use PyTorch 1.12.1 to implement CROWN on Ubuntu 20.04
OS. We run all experiments on the machine equipped with an
Intel i7-9700k CPU with 64 GB memory and a NVIDIA RTX 2080
Ti GPU, installed with CUDA 11.3 and cuDNN 8.2.1. We set the
batch size 𝑏 as 16 (i.e., 16 positive and 16*4 negative examples)
for MIND and Adressa datasets to fully utilize the GPU memory.
We set the number of negative examples 𝑀 as 4, following [21, 24,
25, 33, 38]. We set the number of disentangled intents 𝐾 as 3 and
the weight factor for the auxiliary task 𝛽 as 0.3. Table 8 shows all

the hyperparameters used in our experiments. For reproducibility,
we also have released the code of CROWN and the datasets at
https://anonymous.4open.science/r/CROWN-7B75.

Table 8: Hyperparameters used in our experiments.

Hyperparameter Value
Optimizer Adam

Learning rate 𝜂 5e-5
Dropout 𝑑 0.2

Batch size 𝑏 16
Early stopping epochs 5

# of intents 𝐾 3
Weight factor 𝛽 0.3

# of negative examples 𝑀 4
Max title length 32

Max content length 128
Max history length 50
Word embedding 300

A.3 Impact of Number of Disentangled Intents

In this section, we evaluate the impact of the number of disentangled
intents 𝐾 on the model accuracy of CROWN. We measure the
recommendation accuracy of CROWN with varying 𝐾 from 1 to
10. Figure 6 shows the results with four accuracy metrics, where
the x-axis represents the number of disentangled intents 𝐾 and
the y-axis represents the accuracy. Across all metrics, the accuracy
of CROWN tends to increase as 𝐾 increases, and achieve the best
accuracy at 𝐾 = 3. On the other hand, when the number of intents
𝐾 is larger than 4, the model accuracy of CROWN starts to decrease.
These results imply that (1) the intent disentanglement could be
beneficial to enhancing the news representation until a specific
limit but (2) too many intents might have adverse effect on the
news representation.

A.4 Justification of the category-guided intent

disentanglement

In this section, we provide empirical evidence to justify the category-
guided intent disentanglement. Specifically, we (1) select news arti-
cles across four categories (Politics, Sports, Weather, and Health),
(2) represent each news article into 𝑘 disentangled intent embed-
dings, and (3) compute the relative importance score of each intent
embedding by using an attention mechanism [27]. As illustrated in
Figure 7, news articles within the same category (i.e., highlighted
as the same color) tend to show similar intent distributions, even if
their news contents differ, whereas news articles from different cat-
egories exhibit different intent distributions. These results support
our claim that the intent of news articles is closely related to their
category. Interestingly, the news articles in the category ’Sports’
and ’Weather’ show similar intent distributions. More specifically,
their most important intents are the same (i.e., the first intent,
the darkest color). We analyze that this result arises because the
most important intent of both news categories (i.e., ’Sports’ and
’Weather’) is to provide information to readers. Therefore, through
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Figure 7: Different intent distributions of news articles ac-

cording to their categories (Politics, Sports, Weather, and

Health).

Table 9: The effectiveness of the GNN-enhanced user encoder

on the accuracy of CROWN according to different GNNmod-

els on the MIND dataset.

Baseline GCN Gain GraphSAGE Gain

M
I
N
D

AUC 0.6720 0.6821 +1.50% 0.6823 +1.53%
MRR 0.3194 0.3350 +4.88% 0.3354 +5.01%

nDCG@5 0.3550 0.3692 +4.00% 0.3697 +4.14%
nDCG@10 0.4174 0.4304 +3.11% 0.4293 +2.85%

Baseline LightGCN Gain GAT Gain

M
I
N
D

AUC 0.6720 0.6846 +1.88% 0.6857 +2.04%
MRR 0.3194 0.3380 +5.82% 0.3405 +6.61%

nDCG@5 0.3550 0.3745 +5.49% 0.3783 +6.56%
nDCG@10 0.4174 0.4364 +4.55% 0.4384 +5.03%
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Figure 6: The impact of the number of disentangled intents

𝐾 on the model accuracy of CROWN.

the category-guided intent disentanglement, CROWN can under-
stand the intents of a news articles more precisely, thereby leading
to better news representation.

A.5 Effectiveness of Our GNN-enhanced User

Encoder

In this section, we evaluate the effectiveness of our GNN-enhanced
user encoder by examining whether the GNN modules improve
the accuracy of CROWN. We measure the recommendation accu-
racy of four CROWNs with different GNN models (i.e., GCN [11],
GraphSAGE [6], GAT [28], and LightGCN [7]) and compare them
with the baseline version of CROWN (i.e., CROWN with a sim-
ple average user encoder, rather than our GNN-enhanced user
encoder). As shown in Table 9, the GNN-enhanced user encoder
is consistently beneficial to improving the news recommendation
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accuracy of CROWN, regardless of the GNN models. More specif-
ically, CROWN with the GNN-enhanced user encoder improves
its baseline version by 4.88% (GCN), 5.01% (GraphSAGE), 5.82%
(LightGCN), and 6.61% (GAT) respectively, in terms of MRR. Based
on these results, we choose GAT as the final GNN model for the

GNN-enhanced user encoder in CROWN. It is worth noting that the
recommendation accuracy of CROWN could be further improved
by leveraging more recent state-of-the-art GNN models or future
GNN models.
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