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Abstract

As interest in analog acceleration for deep neural networks (DNNs) grows, ReRAM-1

based Dot-Product Engines (DPEs) offer an energy-efficient solution for performing2

vector-matrix multiplications (VMMs) in the analog domain. However, DPEs re-3

quire Analog-to-Digital Converters (ADCs), which contribute significantly to area4

and power overhead, and rely on digital logic for operations such as non-linear5

activations. This work presents an ADC-less DNN accelerator that leverages Ana-6

log Content Addressable Memory (ACAM) to replace ADCs and digital activation7

units. By training decision trees to approximate activation functions and program-8

ming them to ACAMs, the novel Non-linear DPE (NL-DPE) enables arbitrary9

activation to be implemented directly in the analog domain, supporting a broader10

range of future DNN architectures. Additionally, we explore the inherent noise11

present in real devices of both DPE and ACAM and propose noise-aware finetuning12

techniques that mitigate accuracy loss, demonstrating notable improvements.13

1 Introduction14

DNNs have significantly grown in size and complexity, driving an increasing demand for memory15

bandwidth and computation. As DNN models continue to expand, the energy consumption associated16

with frequent data movement between memory and processing units has become a significant17

bottleneck, known as the memory wall. Such bottlenecks have led to the development of In-Memory18

Computing (IMC) accelerators, where computation occurs directly within the memory. Among the19

various IMC approaches, ReRAM-based analog computing stands out as one of the most promising20

solutions due to its potential for high energy efficiency and scalability. ReRAM cells can be organized21

in a crossbar structure to design DPEs, which perform VMMs in the analog domain in a single step,22

achieving low energy consumption and high parallelism [Shafiee et al. (2016); Ankit et al. (2019)].23

However, DNNs consist of more than just VMMs; they also require non-linear activations, which are24

typically executed using digital logic. Therefore, DPE’s analog outputs must be converted into digital25

signals via ADCs. Unfortunately, ADCs are both energy and area-inefficient, significantly impacting26

the overall efficiency of ReRAM-based accelerators. ADCs can consume more than 30% of the chip27

area and account for over 50% of the total power consumption, creating a substantial bottleneck in28

achieving truly energy-efficient DNN accelerators [Shafiee et al. (2016); Ankit et al. (2019)].29

Another challenge for ReRAM-based DNN accelerators is the inherent noise in analog computing.30

While many existing works tend to overlook or underestimate its effect, our experiments demonstrate31

that noise plays a crucial role in determining the accuracy of computations on real hardware. In fact,32

without careful attention to noise, accuracy can degrade to unacceptable levels, as noted also in other33

studies [Mao et al. (2022)]. Although some efforts have been made to address this issue [Momeni34

et al. (2024)], novel computation primitives may require to carefully handle new sources of noise.35
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In this work, we propose the NL-DPE, an analog DNN accelerator design that eliminates the need for36

ADCs and digital activation units. We convert activation functions into decision trees, which are then37

mapped onto the programmable ACAM for analog computation. Since ACAM accepts analog inputs38

and produces digital outputs, ADCs are no longer required after the DPE. To address the reliability39

issues of analog computation, we measure noise directly from real devices and develop detailed40

noise models that account for various sources, including programming inaccuracies and conductance41

fluctuations, etc. Noise models are integrated into a fine-tuning process to minimize the accuracy gap42

caused by noise.43

2 Analog Computing with ReRAM44
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Figure 1: (a) An example of VMM computing. (b) Computing the VMM in DPE. (c) An example of
a decision tree. (d) Mapping the decision tree onto ACAM and performing an inference.
Fig. 1(a) shows an example VMM operation (O = I · W). O ∈ R3, I ∈ R3 and W ∈ R3×3.45

Fig. 1(b) illustrates computing the VMM operation in the DPE with a 3×3 crossbar. A ReRAM cell46

is placed at every intersection of the horizontal wires and vertical wires. Weight elements (Wij) are47

programmed as ReRAM conductance (Gij), and input elements(ii) are represented by voltage (Vi)48

on horizontal wires. Following Kirchhoff’s law and Ohm’s law, the current (I) from each vertical49

wire conveys the dot-product result of the input vector and the weight matrix. The analog VMM50

operation is completed in a single step within the DPE, achieving high computing parallelism.51

Recently, ReRAM has been used to build Analog Content Addressable Memories (ACAMs), ac-52

celerating tree-based machine learning algorithms in the analog domain [Li et al. (2020); Pedretti53

et al. (2021b, 2023)]. Unlike digital CAM, which is limited to comparing a single input bit with a54

stored bit, an ACAM cell can compare an analog input value against a stored analog range. To map a55

trained decision tree of Fig. 1(c) onto an ACAM array, we traverse each leaf node back to the root,56

storing the feature thresholds along the path in a row of ACAM cells (Fig. 1(b)). Wildcard cells (’X’)57

indicates that the particular feature is irrelevant along that path, thus the full range is programmed.58

Given an input feature vector during inference, if all feature values fall within the ranges stored in a59

row, the corresponding match line will be activated, retrieving the predicted class from an adjacent60

RAM. ACAMs have thus analog input, but digital output representing a match of mismatch.61

3 Non-Linear Dot Product Engine62
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Figure 2: Mapping DNN on (a) converntional DPE and (b)
NL-DPE.

Fig. 2 shows a two-layer snippet from63

a larger neural network mapped to64

a conventional DPE (a) and the pro-65

posed NL-DPE (b). The first layer66

is followed by a Sigmoid activation67

function, while the second layer has68

no activation.Digital-to-Analog Con-69

verters (DACs) are required to convert70

the digital input into analog signals for71

computing VMM with the weights in72

the DPE. In conventional DPE-based73

accelerators (Fig. 2(a)), activations are74

typically performed in the digital do-75
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main, thus ADCs are then needed to convert the analog output from the DPE back into digital form.76

In our proposed NL-DPE (Fig. 2(b)), we use ACAM to compute activations. As ACAM accepts77

analog input, ADCs are no longer needed after the DPE. The output of our ACAM is a digital signal,78

DACs are still needed before the next DPE. To replace the ADC, ACAM is programmed as an identity79

function, a special case of activation.80
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Figure 3: (a) Analytical and 3-bit quantized sigmoid function using conventional binary (y) and
Grey code (g)format.(b) Trained decision tree to predict the second MSB of the activation with
conventional binary representation (y1) and (c) its mapping on ACAM. (d) Trained decision tree to
predict the second MSB of the activation with Grey coding (g1) and (e) its mapping on ACAM.

Fig. 3(a) demonstrates how ACAM is used to compute the Sigmoid activation with a 3-bit output. In81

this example, we assume 0 and 1 are quantized to 000b and 111b respectively, and the remaining 682

values are evenly distributed between 0 and 1, as shown by the y axis in Fig. 3(a). Each output bit83

(y2, y1, and y0) is computed using a separate decision tree, treating each as a binary classification84

task. The training dataset contains only one feature (input x), with the output bit as the target. For85

example, to train the decision tree for the second most significant bit (MSB) (y1), the target is set86

to 1 when the input x falls within the range of -0.91 to 0.28, or when x exceeds 1.79, as shown in87

Fig. 3(a). Fig. 3(b) depicts the trained decision tree and Fig. 3(c) its mapping onto an ACAM array.88

Unlike traditional decision trees, which generalize to predict unseen inputs, these trees memorize the89

exact patterns from the training data, forcing overfitting. Note that the output of the ACAM already90

represents the bit value, there is no need to access to an attached memory as opposed to a Look Up91

Table (LUT) approach [Zhu et al. (2022)].92

Since activations are typically monotonic functions, the less significant bits in the output tend to93

toggle more frequently between 0 and 1, leading to deeper decision trees. To mitigate this, we94

propose an encoding scheme based on Gray code to reduce bit toggling. Fig. 3(a) also shows the Gray95

code for the output y on the left (denoted as g), where only one bit changes between consecutive96

values. Fig. 3(d) shows the decision tree trained using Gray code as the output format and Fig. 3(e)97

its mapping to ACAM.98

To enable subsequent computations, the Gray code output from the ACAM must be converted back99

to its original binary form, as illustrated in the Appendix Section A.100

4 Mapping DNN layers into NL-DPE101

Although ReRAM is inherently analog devices, most previous work maps DNN weights onto DPEs102

in a digital manner [Shafiee et al. (2016)]. Typically, this involves quantizing the full-precision103

floating-point DNN weights into fixed-point format (e.g., 8 bits) and using ReRAM cells to store104

portions of the quantized weights. Fig. 4(a) shows an example with four ReRAM cells used to store105

an 8-bit weight, with each cell representing 2 bits, an approch called bit slicing [Shafiee et al. (2016)]106

However, this approach is suboptimal, as it doesn’t fully use the analog potential of ReRAM.107

In our design, we take advantage of the analog properties of ReRAM to map unquantized DNN108

weights (Fig. 4 (b)), with a technique often referred to as analog slicing [Pedretti et al. (2021c); Song109

et al. (2024)]. Programming ReRAM cells involves an iterative program-and-verify (PV) process to110

reach a target conductance. However, achieving an exact value can be time-consuming, so a tolerance111
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Figure 4: Mapping a weight matrix onto DPE in (a) digital form and (b) analog form.

threshold δ is used to stop once the error between the programmed conductance (G) and its target112

(W ) is close enough (i.e., |W − G| < δ). Typically, an error ϵ remains (ϵ = W − G). In analog113

slicing a first Most Significant Cell (MSC) is iteratively programmed. In the example of Fig. 4(b),114

considering the target weight W00 = 51.1µS the programmed MSC is GM
00 = 49.2µS, resulting in115

an error ϵM00 = 51.1− 49.2 = 2.7µS.116

After programming all the MSCs, the resulting error is mapped into a second ReRAM cell, namely the117

least significant cell (LSC). First, the maximum error ϵMmax is used to compute a gain for programming118

the error exploiting the conductance full-scale range. For example, if the conductance range is 0 to119

100 µS and the maximum error is 10µS, a gain g = 10 can be considered, as in our example. Thus,120

the LSC corrects the ϵMij error by being programmed to a conductance that represents the scaled-up121

error. In our example, the LSC is programmed targeting 27 µS. At the end of program-and-verify122

algorithm, the actual conductance of the LSC might be GL
00 = 18.1µS, with a programming error123

ϵL00 = 27 − 18.1 = 8.9µS. During inference, both cells receive the input at the same time, and124

their output currents are combined, with the LSC’s current scaled down to compensate for the error,125

attenuating it by g−1. Thus, the final programming error for each weight is126

ϵTOT
ij = Wij − (GM

ij − g−1GL
ij)

= Wij − (GM
ij + g−1[g(Wij −GM

ij ) + ϵLij)]

= Wij −GM
ij −Wij +GM

ij − g−1ϵLij

= g−1ϵLij

(1)

reducing the conductance error by a factor g >> 1. In our example, the final noise is thus 51.1−127

(49.2 + 18.1÷ 10) = 0.09µS. We use the programming strategy described in [Mao et al. (2022)] to128

make the actual conductance always smaller than the target value.129

For our experiments, we considered TaOx ReRAM devices integrated in 28 nm CMOS technology130

[Sheng et al. (2019)] and extracted a detailed noise model-based measurement on a fabricated crossbar131

test chip. The detailed noise model are described in Appendix Section B.132

5 Noise Aware Finetuning for NL-DPE133

With noise present in both DPE and ACAM of the NL-DPE, accuracy can be significantly affected.134

We propose a progressive approach that replaces ADCs and digital activation units with ACAM135

while accommodating noise. Fig. 5 outlines the process, which starts from a trained DNN model and136

produces a noise-tolerant model ready for deployment on hardware. In Step 1, activation quantization137

is applied, as DPE inputs must be processed bit by bit (i.e., input bit slicing [Shafiee et al. (2016)]).138

Step 2 introduces noise by sampling from the model in Appendix Section B and injecting it into139

the DPE, followed by a few iterations of noise aware fine-tuning (NAF) to compensate for DPE140

noise. This finetuning also helps to recover the accuracy lost due to quantization in Step 1. In141

Step 3, the quantization parameters are exported to generate the training data for the decision trees.142

Specifically, we need the activation function type to generate the graph similar to Fig. 3(a), and the143
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Figure 5: Steps of replacing activations with decision trees and using NAF to tolerate noise in
NL-DPE.

quantization parameters (i.e., scaling factor and zero point) that are used to generate the output bit144

format (equivalent to y in Fig. 3(a)), which are then converted into Gray code format. Step 4 involves145

training decision trees for each activation using tools like scikit-learn. In Step 5, these decision trees146

replace the original activations in the DNN. Finally, in Step 6, we sample again from the noise model147

in Appendix Section B and inject noise into the decision tree thresholds, performing additional NAF148

iterations to account for ACAM noise.149

6 Results150

Table 1 shows inference accuracy for three neural network models on MNIST and CIFAR-10 datasets,151

all utilizing DPE for VMM and ACAM for ADCs and activation. We first consider an ideal DPE152

and ideal activation functions, in which only inputs and outputs are quantized. Then we introduce153

noise in the ReRAM conductance according to the model previously presented and programming154

with analog slicing, which results in an accuracy drop. We then implement Noise Aware Finetuning155

(NAF) as described in Section 5 We then train decision trees to approximate the activation functions156

and ADCs, we introduce noise for the ACAMs and perform NAF for the ACAMs as well. NAF157

helps recover the accuracy both for DPE and ACAMs. Note that we did not exhaustively explore all158

training hyperparameters, the accuracy was largely recovered, suggesting that further optimization of159

hyperparameters could potentially close this gap. We envision more sophisticated training algorithms160

for the NL-DPE employing differentiable ACAMs [Pedretti et al. (2022)].

Table 1: Inference accuracy of the proposed NL-DPE, also considering the noise in DPE and ACAM.

LeNet ResNet18 ResNet50
MNIST Cifar10 Cifar10

Baseline (FP32) 99.15 92.59 92.78
Qunatized Activations 99.15 92.43 92.86

+ Noisy DPE 99.117 89.99 89.03
+ NAF for Noisy DPE 99.133 90.24 90.23

+ ACAM 99.067 90.09 89.69
+ Noisy ACAM 98.483 89.13 87.53

+ NAF for noisy ACAM 98.917 84.88 86.34

161

NL-DPE completely removes the ADC and digital activation unit in conventional DPE accelerators.162

We compare the power and area between our proposed NL-DPE computing unit and conventional DPE-163

based computing unit (including ADC and activation units needed by DPE) in Table 2. We take the164

ADC data from [Shafiee et al. (2016)] and scaled down to 28nm to match the technology node in NL-165

DPE. For digital activation unit, we take the data from FlexSFU [Reggiani et al. (2023)], a piecewise166

linear (PWL) based implementation to approximate arbitrary activation in digital domain. While167
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Figure 6: Speedup and normalized energy of running the benchmarks on different accelerators.

ACAM’s area is larger than that of ADC, it is significantly smaller than the FlexSFU. Considering the168

whole computing unit, NL-DPE’s area and power are both lower than that of DPE based computing.169

Table 2: Power and area of ACAM, ADC and digital activation unit.

Params Spec Power
(mW )

Area
(mm2)

NL-DPE computing unit
DPE array size

number
256× 256

1
0.82 1.73

ACAM array size
number

16× 1
8

0.18 0.009

Total 1 1.74
DPE computing unit

DPE array size
number

256× 256
1

0.82 1.73

ADC resolution
frequency

8bits
1.2GSps

1.71 0.001

FlexSFU bit width 8bits 3.7 0.015
Total 6.23 1.75

The speedup and energy of running the whole model on three different accelerators are shown in170

Fig. 6. DPE is a conventional in-memory computing accelerator with ADC and digital activation units171

[Shafiee et al. (2016)], while NL-DPE replaces ADC and digital activation units with the proposed172

ACAM approach. We also test on NVidia P100 as the GPU baseline. Larger models have higher173

speedup and energy saving due to more activation can be paralleled using ACAM. On average,174

NL-DPE achieves 23× speedup and over 200× energy saving over GPU. Compared with DPE,175

NL-DPE achieves 2× speedup and 2.5× energy saving on average.176

7 Conclusion177

We presented the NL-DPE, a novel ADC-less analog in-memory computing primitive. NL-DPE178

builds on previous works on crossbar arrays and ACAM, by connecting them in the analog domain,179

with the former accelerating dot products and the latter activation functions, effectively implementing180

f(xW ) in the analog domain. Activations are approximated with decision trees which the ACAM181

can efficiently accelerate. We propose a Noise Aware Finetuning (NAF) routing to increase accuracy182

in the presence of ReRAM analog noise and we benchmark the proposed accelerator against the183

conventional DPE and GPU, reaching significant improvements. We envision NL-DPE as a new184

building block for in-memory computing, opening up new possibilities for model design fully185

exploiting the programmable analog non-linearity operation.186
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A Reconstruction of Gray coded output237

Conversion from Gray code to binary can be achieved using simple logic gates: each binary bit is ob-238

tained by performing an XOR operation with all the higher-order bits in the Gray code representation,239

except the MSB which is the same between these two formats, i.e.,240

bi =

{
gi i = n− 1

XOR(gn−1, gn−2, ..., gi+1) i < n− 1

where bi and gi are the ith bit in the binary and Gray code format. n is the output bit width. The241

overhead of these XOR gates are inlcuded in the power and area estimation of ACAM.242

B ReRAM Noise Model243

Since weight values are represented by ReRAM conductance, the conductance should ideally remain244

stable and exhibit linear properties. However, real ReRAM devices exhibit various stochastic behav-245

iors, such as inaccurate programming, conductance relaxation, and conductance fluctuation [Pedretti246

et al. (2021a)]. Inaccurate programming refers to the error between the actual conductance and the247

target value, determined by the programming tolerance. After programming, the conductance may248

drift before stabilizing—a phenomenon known as conductance relaxation. Conductance fluctuation249

is temporary noise that occurs during each read operation. Both relaxation and fluctuation are250

conductance-dependent. For example, evidence shows a constant standard deviation of fluctuations251

for high conductance states, with a linear decrease once a strong filament is formed and a low252

resistance state is reached [Ielmini (2016)].253

(a) (b)

Figure 7: (a) Pragramming 8 levels at 10µS and below, with equal conductance spacing of 1.29µS
and a fixed tolerance of 0.55µS. (b) Standard deviation of read conductance as a function of mean
conductance.

We use the same mathematical model from [Mao et al. (2022)] that accounts for all three ef-254

fects—inaccurate programming, conductance relaxation, and conductance fluctuation—and fit the255

model parameters using data from TaOx based ReRAM [Sheng et al. (2019)]. Fig. 7(a) shows the256

actual conductance values programmed at 10µS or below, with 8 levels spaced evenly at 1.29µS and257

a fixed tolerance of 0.55µS. Fig. 7(b) illustrates the standard deviation (σ) of the read conductance258

as a function of the mean programmed conductance, demonstrating that while σ increases with the259

mean, it remains within 1µS across the entire range.260

The conductance read out from the device is modeled as:261

Gread = Gtarget +Grelax +Gfluc (2)

Gtarget is target conductance converted from weight value w, i.e., Gtarget = w · gration, we use262

gration = 75. Grelax and Gfluc are the noise caused by relaxation and fluctuation, respectively.263

After fitting the data, Grelax and Gfluc are computed as:264

8



Grelax = N(0.064, 0.312) (3)

Gfluc = exp(log(Grelax +Gtarget) · 0.75− 2.93 +N(0, 0.982)) ·N(0, 1) (4)

N(µ, σ2) denotes the gaussian with mean µ and standard devivation σ.265
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