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Abstract

As interest in analog acceleration for deep neural networks (DNNs) grows, ReRAM-
based Dot-Product Engines (DPEs) offer an energy-efficient solution for performing
vector-matrix multiplications (VMMs) in the analog domain. However, DPEs re-
quire Analog-to-Digital Converters (ADCs), which contribute significantly to area
and power overhead, and rely on digital logic for operations such as non-linear
activations. This work presents an ADC-less DNN accelerator that leverages
Analog Content Addressable Memory (ACAM) to replace ADCs and digital ac-
tivation units. By training decision trees to approximate activation functions and
programming them to ACAMs, the novel Non-linear DPE (NL-DPE) enables ar-
bitrary activation to be implemented directly in the analog domain, supporting a
broader range of future DNN architectures. Additionally, we explore the inherent
noise present in real devices of both crossbars and ACAMs and propose noise-
aware finetuning techniques that mitigate accuracy loss, demonstrating notable
improvements.

1 Introduction

Deep neural networks (DNNs) have significantly grown in size and complexity, driving an increasing
demand for memory bandwidth and computation. As DNN models continue to expand, the energy
consumption associated with frequent data movement between memory and processing units has
become a significant bottleneck, known as the memory wall. Such bottlenecks have led to the
development of In-Memory Computing (IMC) accelerators, where computation occurs directly
within the memory. Among the various IMC approaches, ReRAM-based analog computing stands out
as one of the most promising solutions due to its potential for high energy efficiency and scalability.
ReRAM cells can be organized in a crossbar structure to design Dot-Product Engines (DPEs), which
perform vector-matrix multiplications (VMMs) in the analog domain in a single step, achieving low
energy consumption and high parallelism [Shafiee et al. (2016); Ankit et al. (2019)].

However, DNNs consist of more than just VMMs; they also require non-linear activations, which
are typically executed using digital logic. Therefore, DPE’s analog outputs must be converted into
digital signals via Analog-to-Digital Converters (ADCs). Unfortunately, ADCs are both energy
and area-inefficient, significantly impacting the overall efficiency of ReRAM-based accelerators.
ADCs can consume more than 30% of the chip area and account for over 50% of the total power
consumption, creating a substantial bottleneck in achieving truly energy-efficient DNN accelerators
[Shafiee et al. (2016); Ankit et al. (2019)].

Another challenge for ReRAM-based DNN accelerators is the inherent noise in analog computing.
While many existing works tend to overlook or underestimate its effect, our experiments demonstrate
that noise plays a crucial role in determining the accuracy of computations on real hardware. In fact,
without careful attention to noise, accuracy can degrade to unacceptable levels, as noted also in other
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studies [Mao et al. (2022)]. Although some efforts have been made to address this issue [Momeni
et al. (2024)], novel computation primitives may require to carefully handle new sources of noise.

In this work, we propose the Non-linear DPE (NL-DPE), an analog DNN accelerator design that
eliminates the need for ADCs and digital activation units. We convert activation functions into
decision trees (DTs), which are then mapped onto the programmable Analog Content Addressable
Memory (ACAM) for analog computation. Since ACAM accepts analog inputs and produces digital
outputs, ADCs are no longer required after the crossbars. To address the reliability issues of analog
computation, we measure noise directly from real devices and develop detailed noise models that
account for various sources, including programming inaccuracies and conductance fluctuations, etc.
Noise models are integrated into a finetuning process to minimize the accuracy gap caused by noise.

2 Analog Computing with ReRAM
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Figure 1: (a) An example of VMM computing. (b) Computing the VMM in DPE. (c) An example of
a DT. (d) Mapping the DT onto ACAM and performing an inference.

Fig. 1(a) shows an example VMM operation (O = I · W). O ∈ R3, I ∈ R3 and W ∈ R3×3.
Fig. 1(b) illustrates computing the VMM operation in the DPE with a 3×3 crossbar. A ReRAM cell
is placed at every intersection of the horizontal wires and vertical wires. Weight elements (Wij) are
programmed as ReRAM conductance (Gij), and input elements(ii) are represented by voltage (Vi)
on horizontal wires. Following Kirchhoff’s law and Ohm’s law, the current (I) from vertical wires
convey the dot-product result of the input vector and the weight matrix. The analog VMM operation
is completed in a single step within the DPE, achieving high computing parallelism.

Recently, ReRAM has been used to build ACAMs, accelerating tree-based machine learning algo-
rithms in the analog domain [Li et al. (2020); Pedretti et al. (2021a, 2023)]. Unlike digital CAM,
which is limited to comparing a single input bit with a stored bit, an ACAM cell can compare an
analog input value against a stored analog range. To map a trained DT of Fig. 1(c) onto an ACAM
array, we traverse each leaf node back to the root, storing the feature thresholds along the path in a row
of ACAM cells (Fig. 1(d)). For example, the last row in the ACAM array stores the feature thresholds
corresponding to the highlighted path in the DT. Wildcard cells (’X’) indicate that the particular
feature is irrelevant along that path, thus the full range is programmed. Given an input feature vector
during inference, if all feature values fall within the ranges stored in a row, the corresponding match
line will be activated, retrieving the predicted class from an adjacent RAM. ACAMs have thus analog
input, but digital output representing a match of mismatch.

3 Non-Linear Dot Product Engine

Fig. 2 shows a two-layer snippet from a larger neural network mapped to a conventional DPE (a)
and the proposed NL-DPE (b). The first layer is followed by a Sigmoid activation function, while
the second layer has no activation. Digital-to-Analog Converters (DACs) are required to convert the
digital input into analog signals for computing VMM with the weights in the crossbar. In conventional
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DPE-based accelerators (Fig. 2(a)), activations are typically performed in the digital domain, thus
ADCs are then needed to convert the analog output from the crossbars back into digital form. In our
proposed NL-DPE (Fig. 2(b)), we use ACAM to compute activations. As ACAM accepts analog
input, ADCs are no longer needed after the crossbars. The output of our ACAM is a digital signal,
DACs are still needed before the next DPE. To replace the ADC, ACAM is programmed as an identity
function, a special case of activation. For instance, in the figure, the second layer has no activation,
so we use an ACAM implementing the identity function to replace the second ADC.
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Figure 2: Mapping DNN on (a) converntional DPE and
(b) NL-DPE.

Fig. 3(a) demonstrates how ACAM is used
to compute the Sigmoid activation with a
3-bit output. In this example, we assume
0 and 1 are quantized to 000b and 111b
respectively, and the remaining 6 values
are evenly distributed between 0 and 1, as
shown by the y axis in Fig. 3(a). Note
that any arbitrary output bit format can
be used; the incremental progression from
000b to 111b is simply for illustration pur-
poses. Each output bit (y2, y1, and y0)
is computed using a separate DT, treating
each as a binary classification task. The
training dataset contains only one feature
(input x), with the output bit as the target. For example, to train the DT for the second most significant
bit (MSB) (y1), the target is set to 1 when the input x falls within the range of -0.91 to 0.28, or when
x exceeds 1.79, as shown in Fig. 3(a). Fig. 3(b) depicts the trained DT and Fig. 3(c) its mapping onto
an ACAM array. Unlike conventional DTs, which generalize to predict unseen inputs, the DTs here
memorize the exact patterns from the training data, forcing overfitting. Note that the output of the
ACAM already represents the bit value, there is no need to access to an attached memory as opposed
to a Look Up Table (LUT) approach [Zhu et al. (2022)].
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Figure 3: (a) Analytical and 3-bit quantized sigmoid function using conventional binary (y) and Grey
code (g)format.(b) Trained DT to predict the second MSB of the activation with conventional binary
representation (y1) and (c) its mapping on ACAM. (d) Trained DT to predict the second MSB of the
activation with Grey coding (g1) and (e) its mapping on ACAM.

Since activations are typically monotonic functions, the less significant bits in the output tend to
toggle more frequently between 0 and 1, leading to deeper DTs. To mitigate this, we propose an
encoding scheme based on Gray code to reduce bit toggling. Fig. 3(a) also shows the Gray code
for the output y on the left (denoted as g), where only one bit changes between consecutive values.
Fig. 3(d) shows the DT trained using Gray code as the output format and Fig. 3(e) its mapping to
ACAM. Theoretically, all DTs except for the MSB can be reduced to half their original size, leading
to 50% resource usage reduction.

To enable subsequent computations, the Gray code output from the ACAM must be converted back to
its original binary form. The conversion only needs simple XOR gates, as illustrated in the Appendix
Section A.
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4 Noise Aware Finetuning for ACAM

ReRAM stores information via its conductance but suffers from significant analog non-idealities,
including noise during programming and reading phases. We developed a detailed noise model,
calibrated with real-device measurements, to capture these effects. Additionally, given ACAM’s more
complex cell structure compared to the simple 1T1R crossbar cell, we also propose a noise model for
ACAM’s threshold values. The detailed noise models are described in Appendix B.
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Figure 4: Steps of converting a pretrained DNN into a noise-resilient model that will be deployed on
NL-DPE.

Algorithm 1: Differentiable Approximation of
ACAM
Input: x: one input value for finetuning; wL

i :
lower thresholds of the DT for ith output
bit; wH

i : higher thresholds of the DT for ith
output bit;

Output: y: an 8-bit output of the ACAM
Data: gratio: threshold-to-conductance ratio; gmin:

minimum conductance of RRAM; gmax:
maximum conductance of RRAM; ϵ: a very
small positive constant to avoid
division-by-zero.

1 for i = 0 to 7 do
2 gL

i = Clip(wL
i · gratio + gmin, [gmin, gmax]);

3 gH
i = Clip(wH

i · gratio + gmin, [gmin, gmax]);
4 g̃L

i = Noise(gL
i ); g̃

H
i = Noise(gH

i );
5 w̃L

i = (g̃L
i − gmin)/gratio;

6 w̃H
i = (g̃H

i − gmin)/gratio;
7 mi = ReLU(x− w̃L

i ) · ReLU(w̃H
i − x);

8 mi = Sum(mi);
9 mi = mi/(mi + ϵ);

10 end
11 y = 0;
12 for i = 7 to 0 do
13 if i == 7 then
14 bi = mi;
15 else
16 bi = (mi − bi+1)

2;
17 end
18 y = y + bi · 2i;
19 end

To address noise in crossbars, we adopt
the recently proposed Analog Slicing (AS)
[Pedretti et al. (2021b); Song et al. (2024)]
method to map unquantized DNN weights
onto crossbars. Compared to the traditional
Bit Slicing (BS) [Shafiee et al. (2016)] ap-
proach, AS reduces the noise impact on
crossbars to negligible levels. A detailed
analysis of BS and AS can be found in Ap-
pendix C.

The remaining of this section will focus
on the Noise Aware Finetuning (NAF) to
mitigate the noise impact on ACAMs.

Fig. 4 illustrates the overall process of
converting a pretrained DNN into a noise-
resilient model. Given a pretrained DNN
model, step 1 performs a small number
of additional training iterations (typically
fewer than 10) to mitigate the noise in the
crossbar. During each iteration, each Con-
volutional and Linear layer’s weight matrix
is converted into a MSC matrix and LSC
matrix (see Appendix C for details), and
their corresponding error matrices are sam-
pled based on the noise model described
in Appendix B. Then, we use Eq. 9 to get
the noise-injected weight matrix. This step
finetunes the model to be resilient against
noise inherent in crossbar operations.

Because activation functions will be imple-
mented in ACAM, which produces fixed
point output, we need to quantize the out-
put of activation functions in step 2 . The

quantization will generate two parameters for each activation, i.e., the scaling factor and zero point,
which will be used in step 3 to generate the training data and labels for training DTs for each output
bit of the activation functions. We use scikit-learn to train the DTs.
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Step 4 addresses noises in ACAM by performing NAF for each DT independently. Unlike step 1 ,
this finetuning performs individual DTs rather than the entire DNN. Taking the sigmoid operation
as an example, random input x is used to compute its ground truth output ŷ. The same input
x is processed through Algorithm 1, which performs a differential approximation of the ACAM
computation Pedretti et al. (2022). In Algorithm 1, the DT thresholds are organized into trainable
tensors, which can be updated using gradient-based optimization methods such as stochastic gradient
descent (SGD). When computing Algorithm 1 in the forward pass, a random noise sampled from the
noise model is injected into the DT thresholds. Finally, ŷ and y are used to compute a loss, which is
used in the backward pass and update the DT thresholds.

Algorithm 1 demonstrates the differentiable method for computing an 8-bit output activation using
ACAMs. In this setup, 8 DTs compute 1 bit each of the final output. We organize the lower and upper
thresholds of each DT into tensors and treat these tensors as trainable parameters. To enable gradient
computation, all operations on these tensors are made differentiable.

The for loop in lines 1–10 calculates each of the 8 output bits while incorporating noise into the
thresholds. Since the noise model described in Appendix B is based on conductance, the loop first
converts the DT thresholds into their corresponding target conductance values based on a threshold-
to-conductance ration (gration) (lines 2–3). Noise sampled from the model is then added to the
target conductance (lines 4). The noisy conductance values are subsequently converted back into
DT thresholds (lines 5–6). In line 7, we replace the comparison operation between inputs and
thresholds with a ReLU function. This ensures that mi is positive if the input x lies within the range
defined by the lower and upper thresholds; otherwise, mi is zero. Line 8 uses a Sum() operation
as a differentiable replacement for the OR gate in ACAM, ensuring mi is positive if any value in
mi is positive. Line 9 employs a division to quantize mi to 0 or 1, with a small ϵ added to prevent
division by zero. After the first loop, each mi is a floating-point number very close to either 0 or 1,
representing the Gray code output bit of an ACAM array.

The second loop, in lines 12–19, implements a differentiable version of the XOR-based decode logic.
Here, we replace the XOR operation with a combination of subtraction and squaring to maintain
differentiability.

As a result, all computations in Algorithm 1 are fully differentiable, allowing gradients of the threshold
tensors to be computed during backpropagation.

5 Results

Table 1 shows the accuracy of various models at different stages of NAF. The balled numbers
corresponds to the steps depicted in Fig. 4. A small error is introduced by the crossbars even in the
presence of noise (step 1 ), thanks to the mitigation effect of AS. Using DT-based activations (step
3 ) doesn’t introduce significant error as well, making the approach potentially generalizable to other

accelerators that may efficiently perform inference of tree-based models ?. However, adding noise to
the ACAM performing DT inference (step 4 ) has an enormous impact on the model accuracy due to
the non-linear operation of the ACAM that exacerbates the noise effect, which can only be recovered
thanks to NAF. Thus, results demonstrate that our DT-trained activations approach is feasible and
does not impact accuracy, but NAF is needed for practical utilization with analog accelerators

Table 1: Accuracy of various stages in the proposed NAF.

Model LeNet ResNet-18 SENet EfficientNet ResNet-34 VGG11 ShuffleNet-v2 DenseNet121
Dataset MNIST Cifar10 Cifar10 Cifar10 Cifar10 ImageNet ImageNet ImageNet

Baseline (FP32) 99.02 92.59 95.4 91.17 73.302 70.38 69.356 74.438
1 99.04 92.52 95.4 91.14 73.174 70.218 68.902 74.154

1 + NAF 99.04 92.52 95.4 91.17 73.3 70.22 69.01 74.154
2 99.03 92.48 94.67 90.81 73.154 69.962 68.542 72.394
3 99.02 92.32 93.86 89.52 72.922 69.356 68.22 72.42
4 10.36 71.12 61.92 54.06 41.944 50.53 61.696 53.231

4 + NAF 99.01 91.8 93.23 89.05 72.066 67.4 68.05 71.34

NL-DPE completely removes the ADC and digital activation unit in conventional DPE accelerators.
We compare the power and area between our proposed NL-DPE computing unit and conventional
DPE-based computing unit (including ADC and activation units needed by DPE) in Table 2. We take
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the ADC data from [Shafiee et al. (2016)]. For digital activation unit, we take the data from FlexSFU
[Reggiani et al. (2023)], a piecewise linear (PWL) based implementation to approximate arbitrary
activation in digital domain. Because ACAM array produces the output bits directly, without the need
of associated RAM (see Fig. 1(d)) as opposed to other ACAM-based approaches [Zhu et al. (2022)],
ACAM’s area is significantly smaller than its digital counterpart FlexSFU. As FlexSFU only accepts
digital inputs, which requires power- and area-expensive ADCs, NL-DPE’s area and power are both
lower than that of DPE considering the whole unit.

Table 2: Power and area breakdown of DPE and NL-DPE.
Params Spec Power (mW ) Area (µm2)
DPE computing unit

Crossbar array size
number

256× 256
4 0.82 4325

ADC Shafiee et al. (2016)
resolution
frequency
number

8bits
1.2GSps

256
512 307200

FlexSFU Reggiani et al. (2023) bit width 8bits 6.6082 26431
Total 519.42 337956

NL-DPE computing unit (This work)

Crossbar array size
number

256× 256
4 0.82 4325

ACAM array size
number

130× 1
256 40.95 6973

Total 41.77 11301
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Figure 5: Speedup and normalized energy of running the benchmarks on different accelerators.

Fig. 5 compares running the benchmarks on our proposed NL-DPE with two state-of-the-art ReRAM-
based accelerators (ISAAC [Shafiee et al. (2016)] and RAELLA [Andrulis et al. (2023)]) as well as a
NVIDIA H100 GPU. ISAAC and RAELLA use conventional DPEs for VMMs. Because ISAAC
and RAELLA only supports simple activation functions (e.g., ReLU), we extend them with FlexSFU
for more complex activations (e.g., SiLU, tanh, etc.). Notably, NL-DPE outperforms GPU in energy
efficiency by a geometric mean factor of 4187 while being 292 × faster. At the same time, NL-DPE
beats ISAAC and RAELLA thanks to the improved energy efficiency of NL-DPE compared to
conventional bulky ADCs and to digital activation unit for the case of all models tested. The latency
improvement of NL-DPE compared to ISAAC and RAELLA is due to a drastic reduction of the
digital operation needed in the post-processing of dot products.

6 Conclusion

We presented the NL-DPE, a novel ADC-less analog in-memory computing primitive. NL-DPE builds
on previous works on crossbar arrays and ACAM, by connecting them in the analog domain, with the
former accelerating dot products and the latter activation functions, effectively implementing f(xW )
in the analog domain. Activations are approximated with DTs which the ACAM can efficiently
accelerate. We propose a Noise Aware Finetuning (NAF) routing to increase accuracy in the presence
of ReRAM analog noise and we benchmark the proposed accelerator against the conventional DPE
and GPU, reaching significant improvements. We envision NL-DPE as a new building block for in-
memory computing, opening up new possibilities for model design fully exploiting the programmable
analog non-linearity operation.
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A Reconstruction of Gray coded output

Conversion from Gray code to binary can be achieved using simple logic gates: each binary bit is ob-
tained by performing an XOR operation with all the higher-order bits in the Gray code representation,
except the MSB which is the same between these two formats, i.e.,

bi =

{
gi i = n− 1

XOR(gn−1, gn−2, ..., gi+1) i < n− 1

where bi and gi are the ith bit in the binary and Gray code format. n is the output bit width. The
overhead of these XOR gates are included in the power and area estimation of ACAM.

B ReRAM Noise Model

The ReRAM noises come from two main sources: (1) a ReRAM cell may not be precisely pro-
grammed to the desired conductance levels, due to the stochastic nature of the ionic migration during
the programming operation; (2) each read operation from a programmed ReRAM cell may yield
slightly varying conductance values, due to various physical phenomena, such as thermal and random
telegraph noise. In addition, ReRAM demonstrates minimal conductance drift after programming,
which is neglected in this paper.

It is challenging to build an accurate noise model for ReRAM-based full analog accelerators. First,
both programming and fluctuation noises are conductance-dependent and thus difficult to model. For
example, the conductance fluctuation for high resistance states shows a constant relative standard
deviation, which decreases linearly once the cell transitions to a low resistance state after forming a
strong filament Ielmini (2016). Second, the crossbars and ACAM Units have different cell structures,
i.e., while DPE adopts 1T1R crossbar structure, each ACAM cell consists of multiple ReRAM cells
and transistors. The cell noise behaviors are thus also very different.

(a) (b) (c)

Figure 6: Experimental data and model fitting of (a) standard deviation of programmed conductance
σprog as a function of the target conductance Gtarget, (b) standard deviation of fluctuated conductance
σfluct as a function of the mean conductance G, and (c) transfer function of the ACAM, namely
ACAM threshold as a function of the programmed conductance G.

In this paper, we develop the model by fitting it to noise data collected from real ReRAM de-
vices Sheng et al. (2019). We run a program-and-verify algorithm on Ta-Ox ReRAM devices using a
tolerance of ±0.55µS for Gtarget > 1µS and tolerance proportional to the conductance levels for
Gtarget ≤ 1µS. We then read the conductance values 1000 times to assess the fluctuation noise.

Fig. 6(a) indicates that the maximum standard deviation of programming noise σprog is approximately
0.4µS and can be modeled as a function of the target conductance Gtarget. Note that in practice, since
an inference accelerator programs the weights of its trained model once, we may further minimize
programming noise by using a smaller programming tolerance at the cost of a longer programming
time. Fig. 6(b) indicates that the standard deviation of read fluctuation σfluct can be modeled as a
function of the mean conductance G. The experimental results match those reported in Mao et al.
(2022), where the log-scale standard deviation increases approximately linearly with the mean until it
saturates at a certain point, which may be related to the threshold between low and high conductance
states.
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We model the programming and read noises using normal distribution and compute their standard
deviation as follows.

σx = exp(axlog(G.clip(0, cx) + bx) (1)

We fit the parameters ax, bx and cx to the experimental data and report them in Fig. 6(a,b). The
programming and read fluctuation errors are then computed as Gwrite = σprog · N (0, 1) and
Gread = σfluct · N (0, 1), respectively, where N (0, 1) is a normal distribution with mean 0 and
standard deviation of 1.

Given a ReRAM cell that was programmed to its target conductance Gtarget, we compute the readout
conductance as follows:

G = Gtarget +Gwrite +Gread. (2)

The conductance model in Eq. 2 applies to ReRAM cells in both crossbars and ACAMs. However,
ACAM involves a non-linear operation so the relation between conductance and the ACAM threshold
needs to be modeled as well. Fig. 6(c) reports the experimental data on the ACAM threshold values
as a function of the programmed conductance Pedretti et al. (2021a). We then model the transfer
function as

TH = exp(aACAM ∗ log(G) + bACAM ) + cACAM (3)

with the fitting parameters reported in Fig. 6(c).

C Noise Analysis for Bit Slicing and Analog Slicing
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Figure 7: Mapping a weight matrix onto crossbars with (a) Bit Slicing and (b) Analog Slicing.

Typically, Bit Slicing (BS) involves quantizing the full-precision floating-point DNN weights into
fixed-point format (e.g., 8 bits) and using ReRAM cells to store portions of the quantized bits. Taking
the first value of the weight matrix in Fig. 7(a) as an example, w = 51.1 is first quantized into an 8-bit
fixed point value (i.e., wq = 51 = 00110011b, for simplicity, we assume a simple nearest-integer
quantization for illustration purpose). The quantization error is ϵq = wq − w = 0.1. Each ReRAM
cell stores 2 bits, so four cells are needed to store each weight. The first cell stores the most two
significant bits (B3 = 00), the next cell stores the next two bits (B2 = 11), and so on (B1 = 00,
B0 = 11). Therefore, the quantized weight value 51 is represented by:

wq = B3 · 64 +B2 · 16 +B1 · 4 +B0 (4)

Now, assuming there is an error on each cell ϵi, the actual stored value in these four cells are actually:

w̃q = (B3 + ϵ3) · 64 + (B2 + ϵ2) · 16 + (B1 + ϵ1) · 4 +B0 + ϵ0 (5)

Therefore, the total error of BS is:

ϵBS = w̃q − w = w̃q − wq + ϵq = ϵ3 · 64 + ϵ2 · 16 + ϵ1 · 4 + ϵ0 + ϵq (6)

The error in each cell is amplified by the significance of the stored bits. For instance, the error in B3

is amplified by 64×.
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Fig. 7(b) shows the same weight matrix mapped to the crossbar with Analog Slicing (AS). We still
take the first weight value as an example. First, a most significant cell (MSC) is programmed targeting
the conductance 51.1µS. Because of the programming and read errors introduced in Appendix B,
assuming the actual conductance that we could read out from MSC is gMSC = 49.2µS, resulting in
an error ϵMSC = 51.1− 49.2 = 2.7µS.

After programming the MSC, the resulting error is mapped into a second ReRAM cell, namely the
least significant cell (LSC). In order to exploit the full conductance range, ϵMSC is scaled up by
multiplying a gain α, which is determined by:

α =
gmax

max ϵMSC
(7)

where the denominator is the maximum error of all MSCs in the matrix, gmax is maximum conduc-
tance that can be programmed in ReRAM cells. Thus, the LSC corrects the ϵMSC error by being
programmed to a conductance that represents the scaled-up error. In this example, assuming α = 10,
so the LSC is programmed targeting 27µS. Again, there may be also an error in LSC, the actual
conductance of the LSC might be gLSC = 18.1µS, the error is ϵLSC = 27− 18.1 = 8.9µS. During
inference, both cells receive the input at the same time, and their output currents are combined, with
the LSC’s current scaled down to compensate for the error with a gain circuit, attenuating it by α−1.
The actual stored value in MSC and LSC considering the errors is:

w̃ = gMSC − α−1 · gLSC

= (w + ϵMSC)− α−1 · (α · ϵMSC + ϵLSC)

= w − α−1 · ϵLSC

(8)

Thus, the final error for AS is
ϵAS = w̃ − w = α−1 · ϵLSC (9)

In this example, the final noise is thus 51.1− (49.2 + 18.1÷ 10) = 0.09µS.

Because ϵMSC is always much smaller than gmax, α is always larger than 1. Therefore, comparing
Equation 6 and 9, the error in analog slicing is significantly smaller.

In summary, AS has three advantages over BS: Firstly, the weights no longer need quantization,
which introduces quantization error. Secondly, as shown in the previously analysis, AS has less final
error than BS. Lastly, AS needs less ReRAM cells than BS.
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