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ABSTRACT

Majority voting has proven effective for close-ended question answering by ag-
gregating parallel reasoning traces. However, it is not directly applicable to open-
ended reasoning, where “majority” is undefined. We introduce THINKMERGE,
a training-free, plug-and-play decoding strategy that runs K parallel reasoning
traces and averages their next-token logits at synchronization points to produce a
single coherent output. THINKMERGE integrates seamlessly with vLLM/SGLang
and remains compatible with standard decoding techniques such as Top-p/Top-
k. Empirically, it matches or surpasses majority voting on AIME and GPQA,
while delivering consistent gains on open-ended coding tasks: on LiveCodeBench
(hard), pass@1 improves by +8.28% for DeepCoder-14B-Preview and +7.58 %
for Qwen3-8B. These results demonstrate that parallel test-time scaling can bene-
fit open-ended reasoning without relying on voting over complete outputs.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have been driven by test-time compute scaling.
As evidenced by OpenAl’s ol (OpenAl, 2024), DeepSeek-R1 (Guo et al., 2025), etc., models gener-
ate extended “think” segments that reflect intermediate hypotheses, derivations, and self-corrections
prior to emitting the final answer (Chen et al., 2025b; Yang et al., 2025c). Such sequential test-time
scaling has established a new paradigm: increasing the inference-time computation (e.g., longer
reasoning traces) often leads to improved accuracy and problem-solving capability.

Yet simply lengthening the chain has diminishing returns and can even hurt, e.g., overthinking (Chen
et al., 2024; Cuadron et al., 2025), with studies showing that correct answers often appear in shorter
traces (Zeng et al., 2025). A natural complement is parallel scaling: generating multiple reason-
ing traces and combining their evidence, most effectively through majority voting on close-ended
tasks (Wang et al., 2022; Aggarwal et al., 2023; Brown et al., 2024; Knappe et al., 2024).

Many real-world workloads, however, are inherently open-ended. Coding assistants must output
executable programs (Jimenez et al., 2024; Yang et al., 2025b), while autonomous agents often
need multi-step plans or long-form explanations (OpenAl, 2021; Anthropic, 2025). In such settings,
majority voting is undefined since there is no single canonical answer, even though it has been highly
effective in math and QA (MAA, 2025; Cobbe et al., 2021; Rein et al., 2024). This gap motivates
a central question: Can the benefits of test-time parallel reasoning be extended to open-ended tasks
without relying on voting over complete outputs?

In this work, we address this question by introducing THINKMERGE, an inference-time framework
that averages logits across parallel reasoning paths to construct a single high-quality answer. Unlike
majority voting, which selects among complete outputs, THINKMERGE enables the model to think
in parallel but speak with one voice. Concretely, given a question, we run K diverse reasoning traces
concurrently. At a synchronization point (for example, after a reasoning delimiter), we aggregate the
next-token logits from all traces by averaging them, normalize the merged logits into a probability
distribution, and sample the next token. The chosen token is then injected back into every trace, as
if each had generated it, and the parallel reasoning continues step by step.

Through this iterative ensemble decoding, the model produces a single coherent solution that reflects
the guidance of multiple concurrent “thoughts”. The approach is entirely training-free: it requires
no fine-tuning or additional supervision, only multiple forward passes during inference. Moreover,
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Figure 1: Margins between Pass@] and Pass@S8 across (close-ended) tasks and models. Larger
margins imply more room for majority voting to help.

it is plug-and-play and fully compatible with standard decoding strategies such as Top-p, Top-k,
temperature, and repetition penalties (Shi et al., 2024). Intuitively, THINKMERGE allows the model
to explore a broader range of ideas in parallel and converge on a more reliable answer.

Empirically, we evaluate THINKMERGE on both closed-ended and open-ended reasoning tasks. On
benchmarks with well-defined answers, such as math and science questions from AIME (MAA,
2025) and GPQA (Rein et al., 2024), THINKMERGE matches or surpasses the accuracy of majority
voting and its variants (Wang et al., 2022; Zeng et al., 2025). More critically, on open-ended gener-
ation tasks where majority voting is not applicable, THINKMERGE yields consistent improvements
over single-chain decoding. For example, on LiveCodeBench (Jain et al., 2024), Pass@1 increases
by +8.28 % for DeepCoder-14B-Preview and +7.58 % for Qwen3-8B on the hard-level coding prob-
lems. THINKMERGE integrates seamlessly with inference frameworks such as vLLM (Kwon et al.,
2023) and SGLang (Zheng et al., 2024), supports both online serving and offline batch decoding,
and remains compatible with standard sampling controls (Top-p, Top-k, temperature, penalties). It
can thus be adopted as a simple drop-in augmentation to existing LLM deployments.

2 RELATED WORK

Majority Voting and Variants. Parallel scaling explores many candidate solutions and aggregates
them (Brown et al., 2024; Zeng et al., 2025; Stroebl et al., 2024; Sun et al., 2024; Gui et al., 2024;
Snell et al., 2025; Liu et al., 2025; Wu et al., 2025a; Jiang et al., 2023; Li et al., 2025¢; Chen
et al., 2023). Aggregation can happen at the solution level, either with reward-guided Best-of-N
search (Sun et al., 2024) or guidance-free voting such as rule-based Majority Voting (Wang et al.,
2022; Chen et al., 2023), with variants that adapt the sample count or filter candidates (Aggarwal
et al., 2023; Xue et al., 2023; Huang et al., 2024; Knappe et al., 2024). While these methods deliver
strong gains on closed-ended tasks, they are ill-defined for open-ended reasoning, where valid out-
puts rarely repeat and “voting” is not meaningful. Instead,

, reducing dependence on a single con-
sensus answer and turning extra test-time computation into performance gains on open-ended tasks.

Model-Based Aggregation. Beyond voting, several model-based aggregation methods have been
proposed (Chen et al., 2023; Qi et al., 2025; Zhao et al., 2025; Jiang et al., 2023; Edge et al., 2024).
These either (i) train a separate scorer to select among candidates, or (ii) prompt an LLM to compare
and summarize them. Jiang et al., 2023

Edge
et al., 2024

Such approaches require an additional model to assign scalar scores or
produce summaries, (in training) typically demand supervised tuning or domain adaptation to learn
reliable judgments, and (in inference) incur at least one extra model forward over long, concatenated
candidate outputs. In contrast, our method is training-free and performs logit-level aggregation
during answer decoding, yielding a single coherent output that integrates multiple parallel generated
reasoning paths.

Hinton, 1999



Under review as a conference paper at ICLR 2026

GPQA Pass@N Performance AIME Pass@N Performance LiveCodeBench Pass@N Performance

ii/%

v

80

70

Pass@N (%)

Pass@N (%)
3

Pass@N (%)
3

~e— DeepCoder-148
~=— Quen3-4B-Think

—+— Quen3-88

~#— Qwen3-30A38Think

=% Qwen3-Coder-30A38

60 50 e

~o— Qwen3-4B
~m- Qwen3-148
—4— DeepSeek-R1-7B

50 40 —&— DeepSeek-R1-78

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 5 10 25 50

Figure 2: Trend of Pass@N as the number of samples /N increases. Gains are evident on AIME 2025,
GPQA Diamond, and the open-ended LIVECODEBENCH.
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3 PRELIMINARY STUDY

To study the relation between ensemble gains and answer coverage—the probability that among K
sampled solutions at least one is correct (i.e., Pass@ K), we evaluate closed-ended math/science
(AIME’24/°25 (MAA, 2025), HMMT’24/°25 (Balunovi¢ et al.,, 2025), GPQA (Rein et al.,
2024)) and open-ended coding (LiveCodeBench v5 (Jain et al., 2024)). For closed-ended tasks
we use Qwen3-1.7B/4B/8B/14B (Yang et al., 2025a) and DeepSeek-R1-Distill-Qwen-7B (Guo
et al., 2025); for coding we test DeepCoder-14B-Preview (Luo et al., 2025), Qwen3-8B,
Qwen3-Coder-30A3B-Instruct, Qwen3-4B-Thinking, Qwen3-Think-30A3B (Yang et al., 2025a).

Closed-ended tasks: Majority@ K and Pass@ K. For multiple-sampling at inference time, the
empirical benefit of majority voting on closed-ended benchmarks is closely tied to the improved mar-
gins between Pass@ K and Pass@1 and how quickly Pass@ K grows with K. Intuitively, when ad-
ditional samples quickly increase the probability that the correct option appears (i.e., larger pass@ K
gaps between K=1 and K >1), the vote distribution shifts toward the right answer; when pass@ K
saturates, samples tend to reinforce the same wrong choice and voting yields little gain. As shown in
Figure 1, there is a clear margin between Pass @8 and Pass @ [ for two reasoning models across four
closed-ended datasets, indicating that parallel sampling meaningfully raises the chance of observing
the correct option—hence majority voting is expected to perform between these bounds.

Does parallel sampling help in open-ended settings? Unlike classification, open-ended problems
do not admit a direct vote over a small, discrete label set. We therefore examine whether the existence
signal captured by pass@N (at least one good solution among N samples) still grows with N when
evaluation is based on program execution or unit tests. Figure 2 plots Pass@N as NN increases. We
observe a rapid rise on closed-ended AIME 2025 and GPQA Diamond, and a consistent increase
on the open-ended LIVECODEBENCH. The positive slope on LIVECODEBENCH indicates that
ensembling multiple reasoning trajectories can be potentially beneficial.

Where do the gains come from? To localize the effect, we stratify LIVECODEBENCH by difficulty.
Figure 3 shows that the increase in Pass@N is more pronounced on the hard subset: difficult prob-
lems benefit more from multiple, diverse reasoning attempts. This pattern mirrors closed-ended ob-
servations—hard items accrue larger returns from additional samples—suggesting that ensembling
over parallel thoughts might unlock solutions that single-pass decoding misses on hard problems.
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Figure 3: LIVECODEBENCH stratified by difficulty. Hard questions exhibit larger Pass@ N gains
as N increases, indicating that parallel reasoning is potentially helpful on challenging instances.
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Figure 4: Two-stage implementation. Stage I - Map (Diverse reasoning). Sample K chain-
of-thought traces up to a delimiter. Stage II - Reduce (Answer decoding). Left-pad the ques-
tion+reasoning contexts to a common length, re-prefill to “squeeze bubble”, and then decode a
single answer sequence by averaging the pre-softmax logits across the K reasonings at every step.
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Takeaways and motivation. Across closed- and open-ended settings, Pass@N improves with IV,
and the gains concentrate on harder instances. For closed-ended tasks, majority voting directly con-
verts these gains into accuracy. For open-ended tasks, however, voting over free-form outputs is
ill-posed. These findings motivate an open-ended ensembling mechanism that aggregates think-
ing processes—precisely the goal of our approach that averages token-level logits across parallel
reasoning paths.

4 METHOD

We propose a training-free, plug-and-play decoding strategy that ensembles diverse chains of
thought at the token level to produce a single coherent answer for open-ended queries. The
method proceeds in two stages: (i) generate K diverse reasoning traces up to a delimiter token,
e.g. </think>; (ii) after the delimiter, decode one shared answer sequence by averaging the next-
token logits across all K reasoning contexts at every autoregressive step.

Diverse Reasoning Generation. Given an input prompt or question (), we prompt the LLM to pro-
duce a step-by-step reasoning ending with a special delimiter marker (e.g. </think> to indicate
the end of the thinking segment). To obtain diverse reasoning traces, we sample K independent
chain-of-thought sequences R;, Ra, ..., Rk from the model. Notably, official model cards for re-
cent reasoning models recommend relatively high temperatures (e.g., 0.5-0.7 for DeepSeek and
Qwen) (Guo et al., 2025; Yang et al., 2025a). Because of the randomness introduced by the high
temperature, the K reasoning paths are varied, exploring different plausible approaches or perspec-
tives to the problem. This step uses the model as-is, without any fine-tuning — we are simply drawing
multiple reasoning samples from the model’s own distribution, which makes the procedure straight-
forward to integrate.

Ensembled Answer Decoding. Once desired number of reasoning chains reach delimiter markers
(i.e. the end of the thought process), the model begins generating the answer portion jointly informed
by all chains. At each autoregressive decoding step ¢ of the answer, we query the model’s next-token
pre-softmax logits My(-) for each reasoning chain context. We then aggregate these logits by arith-
metic mean. Formally, let y.; denote an empty answer prefix, for each chain k € {1,..., K}, we

define the logit vector over the vocabulary V as zgk) = My(Q, R, y<i) € RIVI, we then ensemble

on logits via arithmetic mean and only then apply softmax:

K
1 _
2 = — Y.z, Pyly | Q Rix.y<i) = softmax(z;)[y]-
k=1

K



Under review as a conference paper at ICLR 2026

Algorithm 1 Ensemble-of-Thought

Require: LLM My (outputs pre-softmax logits); query @Q; number of traces K; reasoning temper-
ature Tihink; answer temperature 7,,; decoding policy 7 (e.g., greedy / top-k / top-p / repetition-
penalty); stopping rule STOP (eos/length/validator)

1: Parallel thinking: For k¥ = 1,..., K, sample a reasoning trace Ry ~ pg(- | @Q; Tthink) by
running the model until reasoning end delimiter.

2: Initialize the shared answer prefix y < @.

3: while not STOP(y) do

4: for k = 1to K do > fully parallelizable across k
5: L) My(Q, Ry, ) > next-token logits conditioned on (@, Rk, y)
6: end for

7 L AR W

8: (optional) Apply logit policy 7 on the averaged logits: £ <+ PROCESS(£; )

9: Form the answer-step distribution P« softmax(f / Tans)
10: Select the next token ypex ~ m(P) > greedy: arg max; sampling: draw from P
11: Y Y| Ynext > append to the shared answer prefix

12: Note: All K contexts implicitly share the updated y token at the next step via My (Q, R, y).
13: end while
14: return y

for each possible token y; € V at that step. We then sample or select the next token y; from
this aggregated distribution P. Note, this ensemble step will not have impact on the up-following
decoding strategies, such as Top-k, temperature, and penalty (Shi et al., 2024). This chosen token
y; becomes the next word in the final answer and is also appended to each of the K contexts before
proceeding to the next decoding step. By updating all contexts with the same generated answer
token, we ensure that subsequent probability predictions from each chain remain conditioned on
a common partial answer. We repeat this token-level ensemble process autoregressively until an

end-of-answer token is produced or another stopping criterion is met.

4.1 IMPLEMENTATION

Our method integrates cleanly with modern high-throughput inference stacks, including
vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024), and supports both online serving
and offline batch processing.

Two-stage pipeline. As illustrated in Figure 4, we (i) batch-generate K diverse reasoning traces
up to a delimiter, and then (ii) left-pad all question+reasoning contexts to the same length and re-
prefill to build an aligned KV cache. This “bubble squeezing” removes idle compute caused by
unequal trace lengths and enables logit-level ensembling for the answer: at each autoregressive step
we average the pre-softmax logits from the K contexts and decode a single shared token. The design
works in both online serving and offline batch settings for vLLM/SGlang with minimal changes. In
practice, prefill in modern optimized systems is fast; its overhead is negligible compared to decoding,
so the two-stage variant remains efficient while being easy to instrument for ablations studies.

One-step pipeline with Flex-Attention. Alternatively, we integrate ensembling directly into the
decoding (Figure 5). We treat the K sequences as a batch and rely on flexable masks of Flex-
Attention (PyTorch Team, 2025) to silence padding tokens emitted by shorter traces when waiting
the longest reasoning stream completes. After the delimiter, we aggregate the pre-softmax logits
across the K contexts at every step and produce one shared answer token. We implement this variant
in the HuggingFace Transformers generation pipeline (Wolf et al., 2020), leveraging its stable Flex-
Attention support (Hugging Face, 2024). At the time of our experiments, vLLM was in the process
of integrating Flex-Attention into vVLLM vl (drisspg, 2025); we plan to open-source a VLLM v1
implementation of the one-step variant once upstream support stabilizes.

For the controlled analyses and method variants in Section 4.2, we default to the two-stage vLLM
pipeline, which maintains high throughput while providing convenient handling of reasoning traces.

4.2 DESIGN CHOICES AND VARIANTS

We study four orthogonal design reasoning trace processing startegies for when to start answer
decoding and which reasoning traces to ensemble. Unless noted, we sample K reasoning traces
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Figure 5: One-step decoding with Flex-Attention. Padding tokens produced by shorter reasoning
traces when waiting for the longest trace are masked so they are not attended. After the delimiter
(e.g., </think>), we average pre-softmax logits across all streams to produce a single shared
answer token at each step for all streams.

with temperature 7, stop each at a delimiter token, and then ensemble a subset of them to decode
one shared answer by averaging pre-softmax logits.

(A) Direct-Merge. We decode K reasoning traces in parallel until their delimiter and immediately
ensemble them to decode the answer. This is the default configuration used in most experiments. It
can be regarded as no extra processing.

(B) K Early-Ready. To reduce tail latency from very long traces, we begin answer decoding as
soon as K traces have completed their reasoning segments, rather than waiting for all N(N > K)
reasoning to be finished. Formally, let Rieaqy = {Rk : Ry has emitted the delimiter}. We start
ensembling when |Rye.dy| > K. The answer is then decoded by averaging logits over the currently
available thinkings. This variant trades a small amount of diversity for lower latency and higher
throughput, and is useful in online serving.

(C) Trimming (De-Repeat Suffix). Motivated by prior observations that models may emit repeated
reflection fragments (e.g., “Wait”, “Hmm”, and “Alternatively”) near the end of the reasoning phase
and that overthinking can degrade performance (Wang et al., 2025), we remove degenerate repeated
suffixes before re-prefill. Concretely, for each finished reasoning trace Ry, we detect the longest
repeated suffix (e.g., via regex pattern matching with length thresholds) and trim it, producing Ry, =
trim(Ry). This preserves semantically useful steps while avoiding overweighting on the long and
misleading words when decoding final answers.

(D) Shortest- K Merge (Anti-Overthinking). Prior work reports that excessive “overthinking” can
correlate with worse final answers (Chen et al., 2024; Cuadron et al., 2025; Wu et al., 2025b; Sui
et al., 2025). To bias toward concise, high-signal reasoning, we sort completed traces by their pre-
delimiter length and select the K shortest from a reasoning pool with size N(N > K) for logit
ensembling: S = argsort ({len(Ry)};_,),.ensemble over { Ry} res. This variant leverages a
length—quality inductive bias to stay clear and on topic, and they help avoid late drift or repetition.
Different from K -Early-Ready, it waits for all IV traces to finish so the K shortest can be selected
globally, trading latency for an anti-overthinking bias.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate THINKMERGE in two regimes. (i) For closed-ended reasoning, we consider AIME
2025 (MAA, 2025) and GPQA Diamond (Rein et al., 2024), where each question has a unique
ground-truth answer and multiple samples can be aggregated via majority voting. (ii) For
open-ended reasoning, we evaluate on LiveCodeBench v5 (2024.10-2025.02) (Jain et al., 2024),

Wei et al., 2025 Zhou et al., 2025 Mialon et al.
2023 Chen et al., 2025a), where majority voting is ill-defined and the
quality of a single coherent solution is what matters. For closed-ended tasks, we run five trials and
report the mean accuracy in the main text, with mean=std in Appendix A.2; for LiveCodeBench,
we report pass@1.
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Table 1: Performance of Majority Voting (MV) vs. THINKMERGE on AIME’25 across different
strategies. Within each (model x K X strategy) group, the highest score within each category is
bold; the highest within tier is underlined.

All-Reduce Early-Ready Shortest- K Merge

Model MV DirectMerge (A) Trimming (B) MV Ours (C) MV Ours (D)
K=2

Qwen3-4B 63.3 66.7 66.0 66.7 66.7 70.7 65.3
Qwen3-14B 70.7 72.0 72.7 72.0 73.3 75.3 74.7
R1-Distill-Qwen-7B  40.7 41.3 42.0 40.7 41.3 50.7 48.0
K=14

Qwen3-4B 68.0 72.0 68.0 72.7 72.7 75.3 69.3
Qwen3-14B 73.3 72.0 73.3 76.0 73.3 78.0 76.0
R1-Distill-Qwen-7B  47.3 46.0 46.0 47.3 453 52.0 50.7
K=8

Qwen3-4B 68.7 70.0 68.7 73.3 70.8 75.3 72.7
Qwen3-14B 74.0 78.0 73.3 77.4 78.0 80.0 78.7
R1-Distill-Qwen-7B  46.7 453 48.0 467 453 527 52.7

Table 2: Performance of Majority Voting (MV) and THINKMERGE on GPQA across different
strategies. Within each (model x K X strategy) group, the highest score within each category is
bold; the highest within tier is underlined.

All-Reduce Early-Ready  Shortest-K Merge

Model MV DirectMerge (A) Trimming (B) MV Ours (C) MV Ours (D)
K=2

Qwen3-4B 49.2 50.3 50.0 494 50.3 52.0 52.6
Qwen3-14B 60.8 61.6 61.4 60.8 62.1 63.4 63.7
R1-Distill-Qwen-7B  44.9 49.2 49.2 474 49.0 47.1 43.8
K=4

Qwen3-4B 51.2 52.2 522 51.4 524 53.7 51.8
Qwen3-14B 63.0 64.0 62.7 64.0 62.4 65.2 63.8
R1-Distill-Qwen-7B  50.3 48.9 49.0 50.3 48.9 50.2 47.4
K=38

Qwen3-4B 53.3 51.6 51.3 53.3 51.3 55.5 53.8
Qwen3-14B 63.9 64.1 63.0 64.1 64.1 65.9 63.7
R1-Distill-Qwen-7B  52.5 50.0 50.0 52.5 50.2 52.9 47.2

For each question, we generate K € {2, 4,8} parallel reasoning traces and perform an ensemble
step at the answer phase by averaging pre-softmax logits across the K. For the Shortest-K Merge
variant (anti-overthinking), we first produce a pool of N = 64 completed traces and ensemble the
K shortest by pre-delimiter length. Our processing strategies, (B) Early-Ready and (D) Shortest-K
Merge, can also be paired with majority voting (MV). For fairness, we report MV under the same
operation whenever it is applicable; thus, trimming cannot be applied to it. Methods that aggregate
all completed traces—Majority Voting, Direct-Merge, and De-Repeat Suffix Trimming—are grouped
under the label All-Reduce in the tables. In contrast, Early-Ready and Shortest-/K operate on a
subset of traces during merging, so we place them in separate columns.

For closed-ended tasks we evaluate Qwen3-4B, Qwen3-14B (Yang et al., 2025a), and
DeepSeek-R1-Distill-Qwen-7B  (Guo et al., 2025). For the open-ended coding task we
use DeepCoder-14B-Preview (Luo et al., 2025), Qwen3-8B, Qwen3-Coder-30A3B-Instruct,
Qwen3-4B-Thinking (0725), and Qwen3-Think-30A3B (Yang et al., 2025a).

Liet al., 2025a
We set the maximum sequence length to 32, 768 tokens, with detailed sampling hyperparameters in
Appendix A.1.

5.2 CLOSE-ENDED TASKS: COMPETITIVE WITH MAJORITY VOTING

On AIME and GPQA, THINKMERGE is competitive with majority voting (MV), often matching
or slightly exceeding it when the merge is performed across all parallel thoughts (“All-Merge”).
For instance, on AIME, Qwen3-4B at K=4 improves from MV 68.0% to THINKMERGE 72.0%
(+4.0%), and Qwen3-14B at K=8 improves from 74.0 to 78.0 (+4.0 %), shown in Table 1. On
GPQA, THINKMERGE at small K is reliably strong: at =2, Qwen3-4B improves from 49.2% to
50.3% (+1.1 %), Qwen3-14B from 60.8% to 61.6% (+0.8 %), and R1-Distill-Qwen-7B from 44.9%
to 49.2% (+4.3 %) (Table 2). When applying Shortest-K Merge strategy, both THINKMERGEand
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Table 3: Effect of answer-phase temperature for THINKMERGE. Default vs. setting the answer-
phase temperature to T,,,=0.3. The highest score within each category is bold; the tier is underlined.

Direct-Merge Early-Ready Shortest- X' Merge

Model Default  Tim—0.3  Default  Ty=0.3  Default  Th—=0.3
K =2

Qwen3-4B 66.7 64.7 66.7 67.3 653 66.7
Qwen3-14B 72.0 713 733 733 747 74.0
R1-Distill-Qwen-7B 413 413 413 413 480 487
K =4

Qwen3-4B 72.0 70.0 727 72.0 69.3 70.7
Qwen3-14B 72.0 727 73.3 727 76.0 753
R1-Distill-Qwen-7B 46.0 427 453 433 50.7 520
K —8

Qwen3-4B 70.0 68.7 70.8 69.3 72.7 70.7
Qwen3-14B 78.0 74.7 78.0 76.7 78.7 773
R1-Distill-Qwen-7B 453 447 453 440 527 513

Table 4: LiveCodeBench Overall Pass@1 (%). Row-wise best among merge settings is highlighted.

Model Baseline Direct-Merge Shortest- K Merge
K=8 K=4 K=2 K=8 K=4 K=2

DeepCoder-14B-Preview 55.32 56.23 57.14 58.36 59.57 59.88 61.09

Qwen3-8B 57.14 53.19 56.53 59.57 58.31 56.53 58.05
Qwen3-Coder-30A3B 37.69 41.34 38.30 39.82 39.82 38.30 39.21
Qwen3-4B-Thinking 63.53 60.79 62.01 62.61 62.31 64.13 63.83
Qwen3-Think-30A3B 69.30 68.39 68.69 65.65 67.78 67.48 72.04

MYV are boosted, but MV is generally stronger than THINKMERGE on AIME/GPQA (e.g., AIME
Qwen3-14B at K=8: 80.0% vs. 78.7%; GPQA shows the same trend at /=4, 8). This indicates
that when there is a large reasoning pool, for math questions, shortest-/K avoiding redundant self-
reflection loops is a strong inductive bias to select high-quality solutions, in which THINKMERGE
cannot help to much.

Trimming repeated reflections. Our regex-based trimming variant (Ours+Trimming) shows
mixed, model-dependent effects—sometimes helpful (e.g., AIME with R1-Distill-Qwen-7B at
K=8: 48.0%), but often neutral or slightly negative. A sample-by-sample checking indicates that
reflection patterns vary widely across model-task combinations, making a single, robust pattern-
matching rule difficult to design (and brittle rules risk removing useful content). Consequently, we
don’t use trimming in the subsequent open-ended experiments.

Answer-phase temperature. Lowering the answer-phase temperature T,,, offers no consistent
gain. On AIME, many cells mildly drop at T;,;=0.3 especially for K=4, 8 (e.g., All-Merge, Qwen3-
4B: K=8, 70.0%—68.7%), with modest increases on K=2 (e.g., Shortest Merge, Qwen3-4B:,
65.3%—66.7%) (Table 3). Our takeaway is that: once the thinking phase already induces enough
diversity, further “cooling” at the answer phase is unnecessary.

5.3 OPEN-ENDED CODE: FEWER IS BETTER, AND “SHORTEST” BIAS LOSE EFFECTIVENESS

On LiveCodeBench, THINKMERGE outperforms single-pass baselines, with the most reliable gains
at small K. For DeepCoder-14B-Preview, overall pass@1 improves from 55.32—61.09 (+5.77
%) (best at Shortest-K, K=2); for Qwen3-8B, it improves from 57.14—59.57 (+2.43 %) (best at
All-Merge, K=2); see Table 4.

The “shortest” inductive bias is not universal. Prior math QA reports that “shorter chains are
often better” attributing failures to long, looping reflections. In code generation, Shortest-K Merge
is not always benefit: shorter traces may omit necessary scaffolding (imports, helper functions) and
harm executability.

Helps most on Medium/Hard Questions. The difficulty split shows that improvements concentrate
on Medium/Hard (Tables 13—14). On Hard, DeepCoder-14B rises 20.69—28.97 (+8.28 %)) and
Qwen3-8B 24.14—31.72 (+7.58 %)), while Easy is largely saturated (Table 12).
12-14
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Table 5: DeepResearch agent benchmarks Pass@1 (%). Row-wise best is highlighted.

Benchmark Model Baseline THINKMERGE
N=2 N=4 N=8
WebSailor-3B 32.22 33.49 15.04 5.34
GAIA WebSailor-7B 35.52 33.98 41.26 36.89
WebSailor-32B 46.64 48.55 51.46 50.49
WebSailor-3B 26.40 26.80 12.20 5.40
Xbench-DeepSearch WebSailor-7B 37.80 43.20 48.00 47.20
WebSailor-32B 50.40 50.20 55.20 57.60
WebSailor-3B 4.70 6.30 3.50 2.50
BrowseComp-EN (200) WebSailor-7B 6.30 11.00 13.60 13.10
WebSailor-32B 11.80 13.10 13.40 14.50
WebSailor-3B 8.67 11.76 4.15 2.77
BrowseComp-ZH WebSailor-7B 14.01 21.45 24.91 22.49
WebSailor-32B 21.97 26.30 28.37 27.34

How many thoughts to merge? On closed-ended datasets, increasing K generally helps but shows
diminishing returns beyond small K and depends on the base model: in several cases K =4 already
saturates, and K =8 doubles the compute but offers little additional gain or may even slightly regress.
Consistently, majority voting also shows diminishing returns as /N grows on those tasks; Figure 6 in
the appendix indicates saturation when N > 8. For open-ended code, the saturation point is even
earlier: K=2 is typically best, often outperforming K =4 and K=8. This is good news for prac-
tical deployment. The strong performance is achievable with small ensembles, keeping affordable
memory and computation costs for online serving.

Finally, we test whether THINKMERGE can also benefit agentic deep-research settings, where
the model must interleave reasoning (e.g., <think>...</think>) and tool calls before pro-
ducing an answer. Concretely, we evaluate three Tongyi-WebSailor agents—WebSailor-3B,
WebSailor-7B, and WebSailor-32B—on four challenging web-based benchmarks: BrowseComp-
en (Wei et al., 2025), BrowseComp-zh (Zhou et al., 2025), GAIA (Mialon et al., 2023), and
XbenchDeepSearch (Chen et al., 2025a). BrowseComp-en/zh focus on hard-to-find, multi-hop
factual queries in English and Chinese. Because BrowseComp-en is large (1,266 questions in total),
we randomly sample 200 questions as a test subset, making it comparable in size to BrowseComp-
zh (289 questions). GAIA requires robust tool use for multi-step real-world tasks; following prior
work (Li et al., 2025b), we evaluate on the 103 text-only validation cases. XbenchDeepSearch tar-
gets professional-style, deep information retrieval. We use the WebSailor agent pipeline with the
recommended decoding hyperparameters: temperature 0.6, top-p 0.95, and context length 32,768.

5.4 OPEN-ENDED DEEPRESEARCH AGENTS

Finally, we test whether THINKMERGE can also benefit agentic deep-research settings, where the
model must interleave internal reasoning (e.g., <think>...</think>) with tool calls before pro-
ducing an answer. We evaluate three Tongyi-WebSailor agents—WebSailor-3B, WebSailor-7B, and
WebSailor-32B—on four challenging web-based benchmarks: BrowseComp-en (Wei et al., 2025),
BrowseComp-zh (Zhou et al., 2025), GAIA (Mialon et al., 2023), and XbenchDeepSearch (Chen
et al., 2025a). BrowseComp-en/zh focus on hard-to-find, multi-hop factual queries in English and
Chinese. Because BrowseComp-en is large (1,266 questions in total), we randomly sample 200
questions as a test subset, making it comparable in size to BrowseComp-zh (289 questions). GAIA
requires robust tool use on multi-step real-world tasks; following prior work (Li et al., 2025b), we
evaluate on the 103 text-only validation cases. XbenchDeepSearch targets professional-style, deep
information retrieval. We use the WebSailor agent pipeline (Alibaba-NLP, 2025) with the recom-
mended decoding hyperparameters: temperature 0.6, top-p 0.95, and context length 32,768. For
computational efficiency, we replace the evaluator model Qwen2.5-72B with GPT-4.1 and swap the
Google Search API for the Serper API (Serper.dev) to reduce API fee costs; under this configuration,
we re-run all baselines and report the average over five runs in Table 5.

Scaling up the agent makes test-time ensembles effective. For the stronger 7B and 32B Web-
Sailor agents, THINKMERGE consistently improves over the single-run baseline, often by a large
margin. On XbenchDeepSearch, WebSailor-32B improves from 50.4 to 57.6 at N=8 (+7.2), while
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Table 6: Performance of Majority Voting, THINKMERGE, and Prob-Merge on AIME’25 across
different numbers of samples K.

Model Majority Voting THINKMERGE Prob-Merge
K =2

Qwen3-4B 63.3 66.7 62.0
Qwen3-14B 70.7 72.0 68.0
R1-Distill-Qwen-7B 40.7 41.3 34.7
K =4

Qwen3-4B 68.0 72.0 65.4
Qwen3-14B 73.3 72.0 70.0
R1-Distill-Qwen-7B 47.3 46.0 32.7
K =8

Qwen3-4B 68.7 70.0 62.0
Qwen3-14B 74.0 78.0 69.4
R1-Distill-Qwen-7B 46.7 453 34.0

WebSailor-7B rises from 37.8 to 48.0 (+10.2). On GAIA, WebSailor-32B reaches 51.46 at N=4,
and WebSailor-7B improves from 35.52 to 41.26. The two BrowseComp benchmarks show a sim-
ilar pattern. These results indicate that, once the underlying agent is sufficiently capable, running
multiple research trajectories in parallel and then merging their answers is an effective way to trade
test-time compute for higher performance.

In contrast, the 3B WebSailor agent only benefits from THINKMERGE at small N: across all four
benchmarks, N=2 yields mild gains, but performance degrades noticeably at N=4, 8. This is con-
sistent with a “garbage in, garbage out” intuition: when most trajectories are low-quality or off-topic,
ensembling more of them will not fix the errors and can even dilute the few good traces. Qualita-
tively, small models tend to generate many such weak research trajectories, so averaging over too
many of them “washes out” the good ones, suggesting that aggressive test-time compute scaling is
only beneficial beyond a certain capability threshold.

5.5 ABLATION: MERGE LOGIT VS. MERGE PROBABILITY FOR REASONING MODELS

Our THINKMERGE aggregates decoding at the logit level: at each answer-time decoding step ¢,
we take the arithmetic mean over the pre-softmax logits as described in Section 4. A natural al-
ternative, more in line with prior work (Wicks et al., 2025; Xu et al., 2024; Guo et al., 2024) on
token probability ensembling, is to first normalize each logit vector and then average probabilities:
pe = % >k softnmx(zlfk)). We refer to this variant as Prob-Merge. In both cases, aggregation is
restricted to the answer phase; the <t hink> phase remains fully independent.

Table 6 compares Majority Voting (MV), THINKMERGE, and Prob-Merge on AIME’25 for three
reasoning models and different numbers of samples K. Across all configurations, Prob-Merge is
consistently weaker than THINKMERGE (logit-level merging) and often even underperforms MV,
especially for the weaker R1-Distill-Qwen-7B model, where performance degrades sharply as K
grows (e.g., 47.3 for MV vs. 32.7 for Prob-Merge at K=4). In contrast, logit-level DirectMerge
either matches or improves upon majority voting in most settings. These trends suggest that, for rea-
soning models, aggregating before normalization is more robust than averaging already-normalized
probabilities. Besides, from an implementation perspective, merging over probabilities also conflicts
with the standard logit-processor interface (e.g., top-k/top-p filtering) in modern inference frame-
works such as vLLM, which operate directly on logits.

6 CONCLUSION

In this work, we introduce THINKMERGE, a training-free parallel test-time scaling for open-ended
reasoning. Given a prompt, we sample K diverse reasoning traces up to a delimiter, then decode
a single answer by averaging next-token logits across traces at every step; the chosen token is fed
back to all contexts so the ensemble continues to guide subsequent tokens. THINKMERGE preserves
compatibility with standard decoding controls and integrates naturally with modern inference stacks
(e.g., vVLLM, SGLang), making it easy to deploy for both online serving and offline batch decod-
ing. Empirically, on closed-ended math/science QA, the proposed method is competitive with, and
sometimes exceeds, majority voting. On open-ended reasoning, LiveCodeBench, THINKMERGE
improves overall pass@1 for several models. These results show that token-level logit averaging
turns extra parallel test-time compute into gains on both closed- and open-ended tasks, improving
performance without additional training.
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A MORE EXPRIMENT DETAILS

A.1 SAMPLING HYPER-PARAMETERS

For closed-ended benchmarks across all tested models, we set temperature=0.6 and top-p=1.0 (i.e.,
no probabilistic truncation). For open-ended LiveCodeBench, we use model-specific settings: for
Qwen/Qwen3-Coder-30B-A3B-Instruct , we set temperature=0.7 and top-p=0.8 (because it is a non-
reasoning model). For all other models, we set temperature=0.6 and top-p=0.95.

A.2 EXPERIMENTAL RESULTS WITH STANDARD DEVIATION

Table 7: Baseline (Majority Voting) on AIME 2025. Results are mean + std. For each n,
majority @ K is evaluated under three combination strategies.

Model Direct-Voting Early-Ready Shortest-K Merge
K=2

Qwen3-4B 0.633 £0.047 0.667 £ 0.047 0.707 £ 0.032
Qwen3-14B 0.707 £0.025 0.720 £ 0.034 0.753 £ 0.045
DeepSeek-R1-Distill-Qwen-7B  0.407 4+ 0.049 0.407 £ 0.049 0.507 £ 0.025
K=4

Qwen3-4B 0.680 £0.034 0.727 £0.033 0.753 £0.017
Qwen3-14B 0.733 £0.021 0.760 £ 0.025 0.780 £ 0.034
DeepSeek-R1-Distill-Qwen-7B  0.473 £ 0.044 0.473 + 0.044 0.520 £ 0.016
K =38

Qwen3-4B 0.687 £0.054 0.733 £ 0.047 0.753 £ 0.017
Qwen3-14B 0.740 = 0.025 0.774 £0.013 0.800 £ 0.021
DeepSeek-R1-Distill-Qwen-7B  0.467 +0.021 0.467 = 0.021 0.527 +0.033

Table 8: THINKMERGE on AIME 2025. Results are mean =+ std under four combination strategies.

Model Direct-Merge Suffix Trimming Early-Ready Shortest-K Merge
K=2

Qwen3-4B 0.667 +£0.059 0.660 +0.068 0.667 +0.027 0.653 +0.017
Qwen3-14B 0.720 £0.016 0.727 £0.033 0.733 £0.021 0.747 +0.034
DeepSeek-R1-Distill-Qwen-7B 0.413 4+ 0.034 0.420 £0.034 0.413 £0.034 0.480 % 0.050
K=4

Qwen3-4B 0.720 £0.016 0.680 £0.034 0.727 £0.033 0.693 +0.025
Qwen3-14B 0.720 £0.034 0.733 £0.021 0.733 +£0.021 0.760 &+ 0.025
DeepSeek-R1-Distill-Qwen-7B 0.460 4 0.033 0.460 £ 0.039 0.453 £+ 0.027 0.507 &+ 0.033
K=8

Qwen3-4B 0.700 £ 0.052 0.687 £ 0.016 0.708 +0.043 0.727 +0.033
Qwen3-14B 0.780 £ 0.045 0.733 £0.021 0.780+0.034 0.787 +0.016
DeepSeek-R1-Distill-Qwen-7B 0.453 4+ 0.045 0.480 +0.054 0.453 +0.034 0.527 £ 0.025

A.3 LIVECODEBENCH EASY / MEDIUM / HARD LEVEL PERFORMANCE

A.4 CLOSE-ENDED TASKS: MAJORITY VOTING SATURATES QUICKLY WITH N

B LLM USAGE

We used large language models (ChatGPT and Gemini) as writing and formatting assistants. In
particular, it helped refine grammar and phrasing, improve clarity, and suggest edits to figure/table
captions and layout (e.g., column alignment, caption length, placement). The LLM did not con-
tribute to research ideation, experimental design, implementation, data analysis, or technical content
beyond surface-level edits. All outputs were reviewed and edited by the authors, who take full
responsibility for the final text and visuals.
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Table 9: Temperature study of THINKMERGE on AIME: parallel thinking uses the officially sug-

gested temperature; the answer phase uses a smaller 7'=0.3. Results are mean =+ std.

Model Direct-Merge Early-Ready Shortest-K Merge
K=2

Qwen3-4B 0.647 £0.062 0.673 £ 0.039 0.667 £+ 0.021
Qwen3-14B 0.713 £0.026 0.733 £0.021 0.740 £ 0.033
DeepSeek-R1-Distill-Qwen-7B  0.413 +0.027 0.413 + 0.027 0.487 £ 0.054
K=4

Qwen3-4B 0.700 £ 0.037 0.720 £ 0.034 0.707 £ 0.032
Qwen3-14B 0.727 £0.025 0.727 £0.033 0.753 £ 0.034
DeepSeek-R1-Distill-Qwen-7B  0.427 £ 0.039 0.433 & 0.042 0.520 £ 0.016
K =38

Qwen3-4B 0.687 £0.034 0.693 £ 0.039 0.707 £0.025
Qwen3-14B 0.747 +0.017 0.767 £ 0.021 0.773 £0.025
DeepSeek-R1-Distill-Qwen-7B  0.447 +0.034  0.440 £+ 0.025 0.513 +£0.034

Table 10: GPQA — Baseline (Majority Voting). Results are mean = std. For each n, majority@n

is evaluated under three combination strategies.

Model Direct-Voting Early-Ready Shortest-K Merge
K=2

Qwen3-4B 0.492 +0.020 0.494 + 0.020 0.520 £ 0.013
Qwen3-14B 0.608 £0.015 0.608 £ 0.015 0.634 + 0.021
DeepSeek-R1-Distill-Qwen-7B  0.449 £+ 0.025 0.474 4+ 0.009 0.449 +0.011
K=4

Qwen3-4B 0.512+0.022 0.514 £0.018 0.537 £0.011
Qwen3-14B 0.640 +0.012 0.640 £0.012 0.652 £ 0.007
DeepSeek-R1-Distill-Qwen-7B  0.503 £ 0.015 0.503 +0.013 0.502 £ 0.010
K =38

Qwen3-4B 0.533 £0.025 0.533 £0.025 0.555 £ 0.013
Qwen3-14B 0.639 +0.011 0.641 £0.011 0.659 + 0.008
DeepSeek-R1-Distill-Qwen-7B  0.525 +0.021 0.525 £ 0.020 0.529 + 0.019

Table 11: GPQA — Our method THINKMERGE. Results are mean =+ std under four combination

strategies.
Model Direct-Merge Suffix Trimming Early-Ready Shortest-K Merge
K=2
Qwen3-4B 0.503 £0.016 0.500 +0.018 0.503 +0.016 0.526 4+ 0.006
Qwen3-14B 0.616 = 0.008 0.614 4+ 0.008 0.621 +0.004 0.637 +0.010
DeepSeek-R1-Distill-Qwen-7B 0.492 4+ 0.020 0.492 £ 0.020 0.490 £ 0.022 0.438 + 0.018
K=4
Qwen3-4B 0.522 £0.008 0.522 £ 0.009 0.524 +£0.007 0.518 £+ 0.009
Qwen3-14B 0.630 £0.012 0.627 +£0.014 0.624 +0.010 0.638 +0.013
DeepSeek-R1-Distill-Qwen-7B 0.489 4+ 0.010 0.490 £ 0.009 0.489 +0.010 0.474 + 0.016
K =38
Qwen3-4B 0.516 £0.017 0.513 +£0.015 0.513+0.022 0.538 +0.013
Qwen3-14B 0.641 +£0.013 0.630+0.011 0.641 +0.011 0.637 +0.011
DeepSeek-R1-Distill-Qwen-7B 0.500 4+ 0.021 0.500 +0.021 0.502 +0.022 0.472 £ 0.009
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Table 12: LiveCodeBench Easy Pass@1 (%). Row-wise best among merge settings is highlighted.
The best score within each category is bold; the tier is underlined.

Model Baseline Direct-Merge Shortest- KX Merge
K=8 K=4 K=2 K=8 K=4 K=2

DeepCoder-14B-Preview 98.77 98.77 96.30 97.53 97.53 98.77 97.53

Qwen3-8B 97.53 95.06  98.77 9753 9630 9506  97.53
Qwen3-Coder-30A3B 90.12 93.83  90.12 87.65 90.12  88.89  93.83
Qwen3-4B-Thinking 98.77 98.77 9877 9753 9753 9753  97.53
Qwen3-Think-30A3B 98.77 98.77 9877 9753 9877 98.77  98.77

Table 13: LiveCodeBench Medium Pass@ 1. Row-wise best among merge settings is highlighted.

Model Baseline Direct-Merge Shortest- K Merge
K=8 K=4 K=2 K=8 K=4 K=2

DeepCoder-14B-Preview 69.90 66.02 71.84 75.73 76.70 75.73 77.67

Qwen3-8B 71.84 63.11 66.99 68.93 69.75 67.96 66.99
Qwen3-Coder-30A3B 36.89 42.72 34.95 41.75 41.75 38.83 37.86
Qwen3-4B-Thinking 76.70 69.90 75.73 76.70 72.82 76.70 75.73
Qwen3-Think-30A3B 82.52 81.55 84.47 80.58 78.64 77.67 84.47

Table 14: LiveCodeBench Hard Pass@1 (%). Row-wise best among merge settings is highlighted.

Model Baseline Direct-Merge Shortest- K Merge
K=8 K=4 K=2 K=8 K=4 K=2

DeepCoder-14B-Preview 20.69 25.52 24.83 24.14 26.21 26.90 28.97

Qwen3-8B 24.14 22.76 25.52 31.72 28.97 26.90 29.66
Qwen3-Coder-30A3B 8.97 11.03 11.72 11.72 10.34 9.66 9.66
Qwen3-4B-Thinking 34.48 33.10 31.72 33.10 35.17 36.55 36.55
Qwen3-Think-30A3B 43.45 42.07 40.69 37.24 42.76 42.76 48.28
AIME Performance: Majority@N vs Pass@N GPQA Performance: Majority@N vs Pass@N

90 100
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Figure 6: On Close-edned task AIME’25 and GPQA, majority voting saturates quickly with V.
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