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École nationale Supérieure d’Informatique
Algiers, Algeria
ji hamzaoui@esi.dz

Hadjer Benmeziane
IBM Research Europe
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ABSTRACT

This work investigates the role of the emerging Analog In-memory computing
(AIMC) paradigm in enabling Medical AI analysis and improving the certainty
of these models at the edge. It contrasts AIMC’s efficiency with traditional dig-
ital computing’s limitations in power, speed, and scalability. Our comprehensive
evaluation focuses on brain tumor analysis, spleen segmentation, and nuclei de-
tection. The study highlights the superior robustness of isotropic architectures,
which exhibit a minimal accuracy drop (0.04) in analog-aware training, compared
to significant drops (up to 0.15) in pyramidal structures. Additionally, the pa-
per emphasizes IMC’s effective data pipelining, reducing latency and increasing
throughput as well as the exploitation of inherent noise within AIMC, strategically
harnessed to augment model certainty.

1 INTRODUCTION

Analog In-memory Computing (AIMC) marks a shift from traditional digital computing promis-
ing efficient and scalable processing for the rapidly growing medical data. Traditional digital
systems, hindered by the Von Neumann bottleneck where data and instructions travel separately,
struggle with large-scale data tasks, resulting in inherent inefficiencies. AIMC promises better ef-
ficiency and lower power use but faces challenges like susceptibility to noise, which can impact
computation accuracy. In a recent study (Bonnet et al., 2023), memristor-based Bayesian neural
networks (BNNs) were investigated for heartbeats classification. In contrast, our work explores
AIMC’s application on a wider range of medical imaging tasks, analyzing if it can effectively ad-
dress healthcare needs while managing noise issues. Our primary focus lies on the algorithmic
aspects, given that AIMC accelerators are still in the early stages of development (Gallo et al.,
2023; Wan et al., 2022; Yin et al., 2019; Khwa et al., 2022). The code is available via this link
(https://anonymous.4open.science/r/Analog Med-B867).

2 EVALUATING MEDICAL DEEP LEARNING ON ANALOG IMC

We present a comprehensive evaluation of Analog In-memory Computing (AIMC) for medical
imaging, utilizing three benchmark datasets: Brain Tumor Segmentation, Spleen Segmentation, and
Nuclei Detection. The study incorporates advanced architectures like U-Net (Ronneberger et al.,
2015), U-Net++ (Zhou et al., 2018), and Swin Transformer (Hatamizadeh et al., 2021), trained via
AIHWKIT (Rasch et al., 2021). The benchmarks and training methodologies are described in the ap-
pendix A.1 and appendixA.2. This analysis aims to assess AIMC’s effectiveness in critical medical
imaging tasks, highlighting its potential and capabilities in this evolving field.
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Figure 1: (a) Dissimilarity and targeted task variance. b-c-d) Noise-induced dice score drop in
different medical datasets.

Noise-resiliency in medical imaging analysis models: We depict the diversity of the benchmarks
we evaluate in Figure 1(a), highlighting various characteristics such as the size, the number of
classes, etc., inspired by (Isensee et al., 2020).

Our study on noise resilience in medical imaging models highlights two key insights. First, the
pyramidal structure of U-Net models leads to increased noise vulnerability, as evidenced by dice
score reductions of 0.15 and 0.22 for U-Net and U-Net++ respectively in brain segmentation tasks
(see Figure 1). This vulnerability is attributed to their alternating down-sampling and up-sampling
design which can amplify noise variations. In contrast, Swin-like transformer architectures exhibit
remarkable noise resilience, with a negligible 0.04 performance drop as shown in Figure 1. Their
isotropic design, which treats image patches consistently and lacks hierarchical convolutional oper-
ations, contributes to their enhanced stability against noise disturbances.

Model Avg tile uti-
lization (%)

Avg Reuse factor # Parameters (M)

U-Net (Ronneberger et al., 2015) 7.42 6574.7 7.76
UNet++ (Zhou et al., 2018) 12.53 8721.0 19.6
Swin UNET (Hatamizadeh et al., 2021) 43.2 11540.6 62.19

Table 1: Performance metrics of state-of-the-art medical imaging models.

Model Inference on MRIs & CT images: In medical imaging, such as MRI and CT scans, Analog
In-memory Computing (AIMC) significantly enhances data processing efficiency. Unlike traditional
methods, AIMC’s pipelining ability allows for rapid, parallel processing of sequential image slices,
crucial for three-dimensional anatomical analysis. This approach not only improves throughput in
urgent medical scenarios but also optimizes energy usage and minimizes latency between slices,
making it particularly effective for volumetric data in tumor segmentation.

Figure 2:
Uncertainty
analysis on
sample brain
tumor
segmentation
images for
UNet++.

Certainty enhanced through noise: While noise in computational models is often seen as detri-
mental, in hardware-aware training (HWA training), it inadvertently leads to more resilient models.
These models, trained under controlled noise conditions, show improved noise tolerance and pre-
diction certainty, as visualized in Figure 2. In critical healthcare applications, the certainty of model
predictions is vital, as it minimizes the risk of misdiagnosis and enhances decision-making in treat-
ment planning. This is especially evident when comparing digital and analog-trained models, such
as the U-Net++ architectures.
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3 CONCLUSION

In-memory computing (IMC) holds promise in refining medical imaging, with transformer struc-
tures surpassing their pyramidal counterparts in resilience to noise. Rather than being detrimental,
strategic noise injection fortifies model precision, an essential aspect in healthcare. This approach
mitigates overfitting and boosts confidence in diagnostics. Future efforts will focus on advancing
transformer-based analog-aware architectures through the application of neural architecture search,
catering to a wide array of medical imaging tasks.
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Figure 3: Model uncertainty density analysis across different brain tumor detection inputs.

A APPENDIX

A.1 DATASETS

The Brain Tumor Segmentation dataset from The Cancer Imaging Archive (Simpson et al., 2019)
features MRI scans and segmentation masks for 110 lower-grade glioma patients, enriched with
FLAIR sequences and genomic cluster data. The Spleen Segmentation dataset, also from the Med-
ical Segmentation Decathlon (Simpson et al., 2019), offers CT scans for detailed spleen segmen-
tation, focusing on organ delineation. Lastly, the Nuclei detection dataset (Caicedo et al., 2019)
provides a broad collection of segmented nuclei images, showcasing diversity in cell types and
imaging modalities, including brightfield and fluorescence techniques.

A.2 MODELS & TRAINING

U-Net, effective in biomedical segmentation, offers a balanced ’U’ shaped structure for localization.
U-Net++ enhances U-Net by adding nested and skip pathways for improved detail capture. Swin
Transformer, unlike these, utilizes shifted windows to handle image patches, focusing on long-range
interdependencies. Transitioning from initial training, the models were adapted to hardware-aware
training through noise injection, facilitated by AIHWKIT (Rasch et al., 2021). This approach,
supported by MONAI (Cardoso et al., 2022) frameworks and other open-source tools, optimized
our models for in-memory computing applications. The simulation of the analog aware train-
ing’s parameters and characteristics is available in the provided code and defined in the function
create rpu config().

A.3 EXTENDED CERTAINTY ANALYSIS

Figure 3 provides an overall certainty analysis of U-Net++ and Swin U-Net when trained with hard-
ware training versus digital training. While the main paper presents a compelling and illustrative
example, we extend the density quantification to the whole test set. The uncertainty is computed
using Monte Carlo Sampling. This involves using multiple passes of the input data and observ-
ing the variability in the outputs. The lower the variability, the higher the certainty of the model’s
predictions.

Results suggest that the analog-trained model exhibits a lower uncertainty density compared to the
digital-trained model. This implies that the analog-trained U-Net++ is be more reliable and con-
sistent in its predictions, making it a more suitable choice for medical applications. This is mainly
due to the hardware-aware training that forces the model to adapt to the inherent variability and
constraints of the analog computing environment, thereby enhancing its ability to handle uncertain
scenarios with greater precision.
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