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ABSTRACT

The recent empirical success of Mamba and other selective state space models
(SSMs) has renewed interest in non-attention architectures for sequence model-
ing, yet their theoretical foundations remain underexplored. We present a first-
step analysis of generalization and learning dynamics for a simplified but rep-
resentative Mamba block: a single-layer, single-head selective SSM with input-
dependent gating, followed by a two-layer MLP trained via gradient descent
(GD). Our study adopts a structured data model with tokens that include both
class-relevant and class-irrelevant patterns under token-level noise and examines
two canonical regimes: majority-voting and locality-structured data sequences.
We prove that the model achieves guaranteed generalization by establishing non-
asymptotic sample complexity and convergence rate bounds, which improve as
the effective signal increases and the noise decreases. Furthermore, we show
that the gating vector aligns with class-relevant features while ignoring irrelevant
ones, thereby formalizing a feature-selection role similar to attention but realized
through selective recurrence. Numerical experiments on synthetic data justify our
theoretical results. Overall, our results provide principled insight into when and
why Mamba-style selective SSMs learn efficiently, offering a theoretical counter-
point to Transformer-centric explanations.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the mainstream framework in large language mod-
els (Achiam et al., 2023; Guo et al., 2025; Brown et al., 2020; Touvron et al., 2023). However, due
to the quadratic time and memory complexity introduced by the attention mechanism with respect to
input length (Gu & Dao, 2023; Dao & Gu, 2024), Transformers are inefficient when handling long
input sequences. Recently, State Space Models (SSMs) (Gu & Dao, 2023; Dao & Gu, 2024; Zhu
et al., 2024; Wang et al., 2024a; Behrouz & Hashemi, 2024; Liu et al., 2024; Wang et al., 2024b)
have shown competitive or superior performance to Transformers across domains such as language
(Gu & Dao, 2023), vision (Zhu et al., 2024; Liu et al., 2024), graphs (Wang et al., 2024a; Behrouz &
Hashemi, 2024), audio (Yadav & Tan, 2024), and reinforcement learning (Lu et al., 2023). SSMs has
brought many advantages absent in Transformer-based models, such as linear computational com-
plexity and hardware-friendly properties that enable efficient parallelization. Among these models,
Mamba (Gu & Dao, 2023) proposes a selection mechanism, which parameterizes the SSM with the
input, which allows the model to dynamically retain or discard relevant and irrelevant information.
This enables the Mamba model to achieve performance comparable to Transformer-based models
in long-text modeling as well as tasks such as visual classification and dense prediction (Zhu et al.,
2024; Liu et al., 2024), but in a more efficient manner.

Although recent work has primarily focused on the empirical performance of Mamba and its ar-
chitectural comparisons with other models, the theoretical understanding of Mamba remains less
investigated. In addition, recent empirical evidence shows that Mamba’s success is highly sensitive
to hyperparameter tuning (Okpekpe & Orvieto, 2025). Such dependence on fragile optimization
choices raises fundamental questions about why and when Mamba succeeds. These include funda-
mental inquiries such as:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Under what conditions can a Mamba be trained to achieve satisfactory generalization?

• How is the selection mechanism implemented through Mamba’s components?

Existing theoretical studies on Mamba or related SSMs mainly focus on the expressive power and
the mechanisms of optimal parameters. Orvieto et al. (2024) and Nishikawa & Suzuki prove SSMs
augmented with MLPs are universal approximators of regular functionals and can mimic token selec-
tion dynamically. Muca Cirone et al. (2024) and Huang et al. (2025) show that Mamba has stronger
expressive power than its diagonal SSM predecessor, especially in approximating discontinuous
functions. Li et al. (2024c) and Li et al. (2025b) respectively prove that two simplified SSMs, H3
and GLA, implicitly perform weighted preconditioned GD at the global minima of in-context learn-
ing problems when input with context examples. However, these works do not explain whether the
selection mechanisms and advantages of Mamba can actually be obtained through practical training.
Moreover, these studies do not analyze the generalization ability of Mamba models.

Contributions of this paper. In this work, we study a nonlinear neural model composed of a one-
layer Mamba block and a two-layer perceptron, which is simplified but sufficiently representative
to reflect the gating structure in Mamba. By assuming the presence of the class-relevant feature
that influence the label and class-irrelevant features that do not, we respectively formulate majority-
voting and locality-structured data, whose labels depend on the proportion and the spatial/temporal
locality of a certain class-relevant feature in the data. To the best of our knowledge, this work
provides the first theoretical analysis of Mamba’s training dynamics with input-dependent gating,
together with generalization guarantees under the two structured data regimes. The highlights of our
technical contributions include:

First, we develop a general theoretical framework for analyzing gated architectures trained with gra-
dient descent on structured data. Our analysis explains how the selection mechanism within Mamba
interacts with data structure to enable efficient learning and guaranteed generalization, complement-
ing prior results that focus mainly on attention-based models.

Second, we provide a theoretical characterization of the gating mechanism in Mamba. We show
that the gating parameter vector is trained to amplify class-relevant features while ignoring class-
irrelevant ones, thereby formalizing the intuition that the gating network dynamically allocates ca-
pacity to informative patterns.

Third, we establish the sample complexity and the required number of iterations for two canonical
data types: majority-voting and locality-structured data sequences. For majority-voting data, these
bounds scale with the gap between the class-relevant and confusion features; for locality-structured
data, they depend on the concentration of class-relevant tokens. In both regimes, stronger signal and
lower token-level noise yield faster convergence and better generalization.

1.1 RELATED WORK

State Space Models (SSMs). Building upon the early S4 models (Gu et al., 2021; Gupta et al.,
2022; Smith et al.), Mamba (Gu & Dao, 2023; Dao & Gu, 2024) introduced input-dependent gating
to dynamically select relevant features, achieving remarkable performance in NLP and CV. Recent
works extending SSMs beyond 1D sequences have highlighted the importance of input ordering and
scanning. For example, VMamba (Liu et al., 2024) introduces SS2D, employing multiple scanning
routes to bridge sequential structure with the non-sequential nature of vision inputs, while Graph
Mamba (Wang et al., 2024a; Behrouz & Hashemi, 2024) adapts SSMs to non-Euclidean domains
by leveraging graph connectivity. Collectively, these works show that the effectiveness of SSMs is
tightly linked to input ordering and scanning strategies, a challenge that also motivates our theoreti-
cal analysis.

Theoretical Analysis of SSMs. Theoretical understanding of Mamba is still in its early stages and
has so far centered primarily on approximation theory, such as connections to attention-like mech-
anisms (Dao & Gu, 2024; Nishikawa & Suzuki), expressive capacity (Cohen-Karlik et al., 2025;
Huang et al., 2025; Muca Cirone et al., 2024; Bao et al., 2025), long-range dependency modeling
(Ma & Najarian, 2025; Yu & Erichson, 2025), and the comparison with Transformers Jelassi et al.
(2024). Beyond approximation theory, several recent works have begun examining optimization
and generalization aspects of SSMs. Honarpisheh et al. (2025) provide a generalization-error bound
based on Rademacher complexity; Slutzky et al. (2024) study implicit bias under a teacher–student
setting and show that gradient flow can converge to a low-rank solution, though their model does not
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incorporate Mamba’s input-dependent gating. These analyses provide valuable intuition about the
representational strengths and weaknesses of Mamba blocks. However, such results remain largely
structural: they establish only the existence of desirable representations, without explaining whether
or how these capabilities arise during training, particularly under Mamba’s unique mechanism. Mo-
tivated by this gap, we focus on studying how Mamba interacts with structured data, with particular
emphasis on the role of its gating mechanism in shaping training dynamics and generalization.

Feature Learning Framework. Recent theoretical studies of deep learning have shifted focus from
the NTK framework (Jacot et al., 2018; Allen-Zhu et al., 2019b; Arora et al., 2019; Wen & Li,
2021) to the feature-learning framework, where data is modeled as a combination of features and
the central question is how neural networks align with these features. Much of the recent work has
concentrated on transformers (Li et al., 2023a; 2024b; 2023b; 2025a), feedforward neural networks
(Bakshi et al., 2019; Arora et al., 2019), and graph neural networks (Zhang et al., 2023; Li et al.,
2024a). Due to the inherent complexity of non-convex optimization and modern architectures, prior
works on feature learning have, to the best of our knowledge, focused primarily on shallow networks.
In this work, we extend the structural data model to analyze the training dynamics of a shallow yet
representative Mamba block, with particular emphasis on how its data-dependent gating mechanism
shapes learning and generalization.

2 PRELIMINARIES

Structured state space models (S4). For the t-th token, e.g., at time step t, let xt ∈ Rd be the
input, Ht ∈ RN×d denote the corresponding hidden state, and yt ∈ Rd denote the output. Let
A ∈ RN×N and b, c ∈ RN be model parameters. The discrete-time SSM is given by

Ht = AHt−1 + bx⊤
t , yt = H⊤

t c, (1)
where A = exp(∆A) and b = A−1(exp(∆A)− I) b with ∆ > 0 as the sampling step.

Mamba. To overcome the data-independence of S4, recent work introduced selective state space
models (Gu & Dao, 2023), where key parameters are made input-dependent. Concretely, given input
tokens xt ∈ Rd, the recurrence parameters are defined as

bt = W⊤
B xt, ∆t = log

(
1 + ew

⊤
∆xt
)
, ct = W⊤

C xt, (2)

with learnable projections WB ,WC ∈ Rd×N and a gating vector w∆ ∈ Rd. The discretization
then yields two input-dependent gates,

b̄t = σ(w⊤
∆xt) bt, āt = 1− σ(w⊤

∆xt), (3)
which respectively control the input update and the carry-over of past states. With hidden state
Ht ∈ RN×d, the recurrence becomes

Ht = ātHt−1 + b̄tx
⊤
t . (4)

Mamba output at token t is given by:
yt(X) := H⊤

t ct = σ(w⊤
∆xt) (W

⊤
B xt)

⊤(W⊤
C xt)xt +

(
1− σ(w⊤

∆xt)
)
H⊤

t−1ct

=

t∑
s=1

( t∏
j=s+1

(
1− σ(w⊤

∆xj)
))

· σ(w⊤
∆xs) (W

⊤
B xs)

⊤(W⊤
C xt)xs. (5)

Connection and Difference with Transformer. The Mamba formulation reveals a natural analogy
to attention mechanisms (Dao & Gu, 2024; Sieber et al., 2024). In particular, the input-dependent
matrices WB and WC can be interpreted as counterparts to queries and keys in the self-attention,
while the gating term σ(w⊤

∆xt) acts as a dynamic weight controlling how past information con-
tributes to the current output (Dao & Gu, 2024). This structure yields a formulation closely related
to gated linear attention (Yang et al.; Li et al., 2025b; Lu et al., 2025), thereby highlighting a connec-
tion between SSM and Transformer models. Meanwhile, Mamba departs from these architectures:
its gating mechanism is defined through multiplicative interactions, effectively involving products
of successive terms. This nonlinearity makes the analysis of Mamba substantially different and more
challenging than that of gated linear attention. Unlike additive attention-style weighting, Mamba’s
gating introduces input-dependent multiplicative modulation in the selection mechanism. This alters
how information is propagated through the model and results in training dynamics that differ from
attention-based architectures.
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3 PROBLEM FORMULATION

Following existing works (Brutzkus & Globerson, 2021; Zhang et al., 2023; Li et al., 2023a), we
consider a binary classification problem with training data {(X(n), z(n))}Nn=1 sampled i.i.d. from
an unknown distribution D, where z(n) ∈ {+1,−1} is the label. The goal is to learn a model that
maps X to z for any (X, z) ∼ D. Each input takes the form X(n) = [x

(n)
1 , . . . ,x

(n)
L ] ∈ Rd×L

with L tokens, where each token is d-dimensional. Tokens can be image patches (Dosovitskiy et al.,
2021; Touvron et al., 2021) or subwords (Sennrich et al., 2016; Kudo & Richardson, 2018).

Learning is performed using a simplified Mamba block formulated by (5), followed by a two-layer
MLP. Formally, the model output can be expressed as

F (X) =
1

L

L∑
l=1

m∑
i=1

viϕ
(
WO(i,·)yl(X)

)
, (6)

where ϕ(·) denotes the ReLU function, and WO ∈ Rm×d, with WO(i,·) being the i-th row of WO.
Here, yl(X) corresponds to the l-th token output of Mamba, as defined in (5). In addition, vi
represents the output-layer weight for the i-th hidden unit.

Model Training. Let Ψ = (v,WO,w∆,WB ,WC) denote the set of model parameters. The
training process is to minimize the empirical risk fN (Ψ),

min
Ψ

fN (Ψ) =
1

N

N∑
n=1

ℓ(X(n), z(n);Ψ), (7)

where ℓ(X(n), z(n);Ψ) is the hinge loss function, i.e.,

ℓ(X(n), z(n);Ψ) = max{0, 1− z(n) · F (X(n))}. (8)

The empirical risk minimization problem in (7) is solved via gradient descent (GD). For the theo-
retical analysis, we consider the full batch gradient update with a learning rate of η at each iteration
t = 1, 2, . . . , T . Each entry of WO ∈ Rm×d is independently initialized from N (0, c20), and w∆

is initialized to 0. Similarly, each entry of v ∈ Rm is independently sampled from {+ 1√
m
,− 1√

m
}

with equal probability. v is fixed during training, as in other theoretical works (Allen-Zhu & Li,
2022; Arora et al., 2019; Karp et al., 2021; Allen-Zhu et al., 2019a; Li et al., 2023a; 2024b).

Generalization. The generalization error of the learned model Ψ is evaluated using the population
risk f(Ψ), defined as

f(Ψ) = f(v,WO,w∆,WB ,WC) = E(X,z)∼D ℓ(X, z). (9)

4 THEORETICAL RESULTS

Table 1: Some important notations
yl Mamba block output at token position l N Number of samples in a batch
d Embedding dimension m The number of neurons in WO

η Learning rate for gradient descent L Length of the squence
∆L+

o+
Concentration of class-relevant tokens αr Average fraction of class-relevant tokens

∆L−
o+

Dispersion of the confusion tokens αc Average fraction of confusion tokens

4.1 KEY TAKEAWAYS AND INSIGHTS OF THE FINDINGS

Before formally presenting our data assumptions and theoretical results, we first summarize key
insights derived from our theoretical findings. We consider a data model where tokens are noisy
versions of class-relevant patterns that determine the data label and class-irrelevant patterns that do
not affect the label. Some important parameters are summarized in Table 1.

(T1). Convergence and sample complexity analysis of GD to achieve guaranteed generaliza-
tion. We introduce a theoretical framework for analyzing gated architectures with structured data.

4
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Compared with existing results on attention-based models, our framework captures the role of the
gating mechanism inside the Mamba block and structured weight interactions, explaining how gra-
dient descent (GD) exploits data structure to improve learning efficiency. Based on this analysis, we
show that a model trained with GD achieves guaranteed generalization with high probability over
the randomness of the data and the GD updates.

(T2). Theoretical characterization of the gating mechanism in Mamba. We prove that dur-
ing training, the gating network learns to prioritize class-relevant features while ignoring irrele-
vant ones. In the majority-voting regime, the gating vector w∆ becomes increasingly aligned with
class-relevant directions: gradients along those directions grow, while those along irrelevant fea-
tures remain negligible. In the locality-structured data regime, learning emphasizes the elimination
of irrelevant features. Their directions are consistently pushed downward by negative updates, while
the directions of relevant features remain nearly unchanged. This occurs because class-relevant and
confusion tokens appear in equal proportion, so the model cannot amplify the former and instead
reduces the influence of the latter. These dynamics strengthen informative tokens and weaken un-
informative ones, inducing effective sparsity in the activations and formalizing the intuition that
Mamba allocates capacity to the most important patterns in the data.

(T3). Larger fraction or higher local concentration of class-relevant features accelerates learn-
ing. We show that both the number of iterations and the sample complexity required for gen-
eralization depend on the discriminative structure of the data and the token-level noise τ . For
majority-voting data, these quantities scale as (αr − αc)

−2, so learning is faster when the frac-
tion of class-relevant tokens is larger. For locality-structured data, the number of iterations scales as[
( 12 )

∆L+
o+ − ( 12 )

∆L−
o+
]−1

, while the sample complexity scales as
[
( 12 )

∆L+
o+ − ( 12 )

∆L−
o+
]−2

. Here,
∆L+

o+
denotes the separation between class-relevant features o+ in positive samples (capturing their

locality), and ∆L−
o+

denotes the separation between confusion features o+ in negative samples (cap-
turing the locality of confusing patterns). Thus, when ∆L+

o+
≫ ∆L−

o+
, the locality of class-relevant

features dominates, which reduces both the number of iterations and the sample complexity needed
for convergence, implying faster learning when class-relevant tokens are more concentrated locally.
Finally, in both regimes, smaller token-level noise τ further accelerates learning.

4.2 DATA MODEL

Consider an arbitrary set of orthonormal vectors O = {o+,o−,o3, . . . ,od} in Rd, where o+ and o−
are discriminative features and the remaining vectors oj , j ≥ 3, are class-irrelevant (filler) features.
Depending on the class label, either o+ or o− serves as the class-relevant pattern, while the other
acts as a confusion pattern. Each token x

(n)
l in X(n) is a noisy version of one of the input patterns

(features), i.e., x(n)
l = o+ ξ, where o ∈ O and ξ is the Gaussian noise. We consider two different

data types: majority-voting and locality-structured data.

Majority Voting Data. For the majority voting data type, the label is determined by a majority vote
over the class-relevant patterns. Let αr and αc denote the average fractions of class-relevant tokens
and confusion tokens over the distribution D, respectively. In positive samples, noisy variants of o+

are class-relevant, while noisy variants of o− act as confusion tokens. In negative samples, the roles
are reversed. All other tokens correspond to class-irrelevant features.

Locality-structured Data. For the locality-structured data type, each sequence contains two o+

tokens and two o− tokens, while all other tokens correspond to class-irrelevant features. In positive
samples, the two o+ tokens are close to each other, while the two o− tokens are far apart; formally,
∆L+

o+
≪ ∆L+

o−
, where ∆L+

o+
and ∆L+

o−
denote the distances between the two o+ and o− tokens,

respectively. In negative samples, the pattern is reversed: ∆L−
o−

≪ ∆L−
o+

.

In addition, we consider a balanced dataset sampled from the unknown distribution D. Let N+ =
{(X(n), z(n)) : z(n) = +1, n ∈ [N ]} and N− = {(X(n), z(n)) : z(n) = −1, n ∈ [N ]} denote
the sets of positively and negatively labeled samples, respectively. Then the class balance satisfies∣∣ |N+| − |N−|

∣∣ = O(
√
N).

Interpreting the Data Model in Practice. Our theoretical data models are motivated by common
patterns observed in practical machine learning tasks.

5
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On the one hand, the majority-voting data model captures a widely adopted assumption (Li et al.,
2023a; 2024b) in theoretical analysis, whereby the label is determined by the aggregate contribution
through majority vote. For example, in image classification tasks (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2014; He et al., 2016), the class label is often driven by multiple discriminative patches
corresponding to foreground objects (class-relevant tokens). In contrast, background patches may
contain other objects or patterns that are not associated with the target class (confusing tokens),
along with random patches that are entirely unrelated (class-irrelevant tokens) (Dosovitskiy et al.,
2021; Touvron et al., 2021).

On the other hand, the locality-structured data corresponds to tasks where semantic meaning is
concentrated in spatially or temporally localized clusters, while background features are more dis-
persed. This structure is most familiar in vision tasks such as object detection and localization (Ren
et al., 2015; Carion et al., 2020; Zhou et al., 2016) and image captioning (Vinyals et al., 2016; Xu
et al., 2015; Radford et al., 2021), where the decisive content is often confined to a small region of
the image. For example, in an image labeled “dog in a park,” the prediction relies primarily on the
contiguous region containing the dog rather than on scattered background textures. A similar prin-
ciple holds in audio and speech recognition (Yadav & Tan, 2024; Gulati et al., 2020), where short
phonetic segments capture the information needed to recognize words, and in genomics (Alipanahi
et al., 2015; Zhou & Troyanskaya, 2015), where functional elements such as sequence motifs and
regulatory regions are localized to short windows of DNA. In these settings, the local structure of
nearby tokens strongly correlates with the label.

Together, the majority-voting and locality-structured models offer complementary perspectives on
when selective recurrence can most effectively support learning from structured real-world data.

4.3 FORMAL THEORETICAL RESULTS

4.3.1 THEORETICAL RESULTS FOR MAJORITY-VOTING DATA

We next present a lemma characterizing how the gating vector aligns with different features under
the majority-voting data.

Lemma 4.1 (Gating Vector Alignment for Majority Voting Data). With initialization where each
entry of WO is drawn independently from N (0, ξ2) and w

(0)
∆ = 0. With a sufficient number of

training samples and iterations, we have〈
w

(T )
∆ ,o+

〉
≥ ηT

8L2
Θ((αrL− αcL)

2) (10)

〈
w

(T )
∆ ,o−

〉
≥ ηT

8L2
Θ((αrL− αcL)

2) (11)

⟨w(T )
∆ ,oj⟩ ≤ Õ (1/poly(d)) , ∀j ≥ 3. (12)

Lemma 4.1 establishes that after sufficient training, the gating vector w∆ aligns positively with the
class-relevant features o+(10) and o− as shown in (11), while its alignment with irrelevant features
remains strictly negative as shown in (12). In other words, the selection mechanism implicitly acts
as a feature selector, amplifying relevant tokens and ignoring irrelevant ones. Lemma 4.1 serves as
an informal version of Lemmas B.5 and B.6.

Remark 1: With majority voting data, the gating vector aligns with discriminative features, i.e., o+

and o−. As a result, the model’s output focuses primarily on these features, giving more weight to
tokens that carry discriminative features while reducing the influence of less important tokens. Since
the number of class-relevant tokens is greater than the number of confusing ones, e.g., in a positive
sample, the tokens containing o+ outnumber those containing o−, the model can correctly assign
the label through this majority effect. Furthermore, as the difference between the counts of class-
relevant features and confusing features (i.e., αr − αL) increases, the gating vector converges much
faster. Overall, this gating mechanism allows the model to use its training samples more efficiently
because it learns to emphasize the most relevant feature early on and ignore irrelevant features.

We now present the theorem establishing the generalization guarantee for Mamba under the
majority-voting data.

6
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Theorem 1 (Generalization for Majority Voting Data). Suppose the model width satisfies m ≥
d2 log q for some constant q > 0, and the token noise level is bounded as τ < O

(
1
d

)
. Then, with

probability at least 1−N−d, if the number of training samples N satisfies

N ≥ Ω

(
L2d

η2(αr − αc)2

)
, (13)

and the number of iterations T satisfies

T = Θ

(
L2

η(αr − αc)2

)
, (14)

the model returned by Algorithm 1 achieves guaranteed generalization, i.e.,

f
(
v(0),W

(T )
O ,w

(T )
∆ ,W

(0)
B ,W

(0)
C

)
= 0. (15)

Theorem 1 establishes the sample complexity, as shown in (13), and the convergence rate, as given
in (14), that are required to guarantee desirable generalization when training the model in (6) using
GD for the majority-voting data type. In other words, the model achieves good generalization once
a sufficient number of samples is available, as specified in (13), and training has proceeded for a
sufficient number of iterations, as specified in (14).

Remark 2: With majority-voting data, the Mamba architecture can effectively capture the under-
lying data distribution by first identifying discriminative features through its gating mechanism and
then aggregating them via a data-dependent recurrent mechanism. In this sense, Mamba behaves
similarly to the Transformer (Li et al., 2023a), suggesting a close connection between the two mod-
els despite their architectural differences. According to the results of Lemma 4.1, the model further
benefits from a faster convergence rate and reduced sample complexity when the gap between class-
relevant and confusing features is larger.

4.3.2 THEORETICAL RESULTS FOR LOCALITY-STRUCTURED DATA

We next present a lemma characterizing how the gating vector aligns with different features under
the locality-structured data.
Lemma 4.2 (Gating Vector Alignment for Locality-structured Data). With initialization where each
entry of WO is drawn independently from N (0, ξ2) and w

(0)
∆ = 0. With a sufficient number of

training samples and iterations, we have

⟨w(T )
∆ ,o+⟩ ≥ −Õ (1/poly(d)) , (16)

⟨w(T )
∆ ,o−⟩ ≥ −Õ (1/poly(d)) , (17)

〈
w

(T )
∆ ,oj

〉
≤ −ηTc′3

16L

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
][(

1

2

)∆L+
o+

+

(
1

2

)∆L−
o−
]
. (18)

Lemma 4.2 establishes that after sufficient training, the gating vector w∆ remains close to zero for
class-relevant features o+ as shown in (16) and o− as shown in (17), however its alignment with
irrelevant features remains strongly negative as shown in (18). Through this mechanism, the gating
favors class-relevant features to select the most informative feature for learning. Lemma 4.2 serves
as an informal version of Lemmas C.5 and C.6.

Remark 3: The gating vector behaves differently from majority voting, though the overall insights
remain similar. We can no longer guarantee that w∆ will always grow in the direction of discrimi-
native features, because we assume that the number of class-relevant features can be comparable to
the number of confusing features. This assumption is introduced to highlight the role of data locality
in shaping the gating vector, which is more challenging to analyze in isolation since majority voting
can readily reinforce it; however, their combined effect better reflects real-world data. Although this
direct growth no longer holds, the gating vector consistently decreases in the direction of irrelevant
features. At a higher level, this can be seen as a synergistic interaction: the recurrent mechanism
captures locality and suppresses irrelevant features, which pushes the gating vector to decrease along
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those directions, while the gating itself further amplifies this suppression. From another perspective,
by making the model pay less attention to irrelevant features, the gating vector effectively shifts
more attention toward discriminative features.

We now present the theorem establishing the generalization guarantee for Mamba under the locality-
structured data.

Theorem 2 (Generalization for Locality-structured Data). Suppose the model width satisfies m ≥
d2 log q for some constant q > 0, and the token noise level is bounded as τ < O

(
1
d

)
. Then, with

probability at least 1−N−d, if the number of training samples N satisfies

N ≥ Ω

(
L2d

η2
[
(1/2)

∆L+
o+ − (1/2)

∆L−
o+
]2), (19)

and the number of iterations T satisfies

T = Θ

(
L2

η
[
(1/2)

∆L+
o+ − (1/2)

∆L−
o+
]), (20)

the model returned by Algorithm 1 achieves guaranteed generalization, i.e.,

f
(
v(0),W

(T )
O ,w

(T )
∆ ,W

(0)
B ,W

(0)
C

)
= 0. (21)

Theorem 2 shows that good generalization on locality-structured data is guaranteed if the sample
complexity meets (19) and training proceeds for at least (20) iterations.

Remark 4: We establish that Mamba can also effectively learn this type of data through its ability to
exploit locality, in contrast to Transformers, where no such guarantee is provided in (Li et al., 2023a).
In our analysis, ∆L+

o+ captures the distance between class-relevant tokens, reflecting the locality of
class-relevant features, while ∆L−

o+ captures the locality of confusing features. The effectiveness of
learning is governed by the separation between these two quantities. In particular, when ∆L+

o+ ≫
∆L−

o+, the locality of class-relevant features dominates that of confusing features. In particular,
when ∆L+

o+ ≫ ∆L−
o+, the locality of class-relevant features dominates that of confusing ones,

which reduces both the sample complexity and the number of iterations required for convergence,
allowing Mamba to learn more effectively and efficiently.

4.4 TECHNICAL NOVELTY AND CHALLENGES

Differences with Existing Works. Our work is mainly inspired by prior feature-learning analyses
of (Bakshi et al., 2019; Arora et al., 2019; Brutzkus & Globerson, 2021; Li et al., 2023a; 2025a).
Building on these foundations, we develop a framework specifically tailored to gated architectures
with structured data. Unlike these existing models, Mamba introduces an input-dependent gating
mechanism, absent from other network architectures, which acts as a dynamic selection operator and
requires new analytical techniques to capture its learning dynamics. Moreover, while the majority-
voting data model has been previously studied in the context of Transformers (Li et al., 2023a),
we show that Mamba can also learn this type of data with comparable performance. Furthermore,
we find that Mamba is particularly effective at capturing the inherent locality of the data, which
motivates us to introduce a new locality-structured data model. For both regimes, we establish
generalization guarantees within the framework of selective state space models, thereby advancing
our understanding of this class of architectures and clarifying their distinctions from Transformers.
A proof sketch can be found in Appendix A.2.

Technical Challenges. Our analysis faces several unique technical challenges stemming from the
structure of selective SSMs. Unlike attention-based models, where interactions are primarily addi-
tive, Mamba’s gating mechanism introduces multiplicative recurrences across tokens, with dynam-
ics that are explicitly sensitive to token order. These multiplicative effects accumulate over time,
substantially complicating the training analysis. To capture this behavior, we systematically track
the gradient updates of the gating vector w∆, decomposing the contributions from different token
positions and analyzing how token placement influences training dynamics.
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Specifically, in the majority-voting data, the gradient decomposition of the gating includes off-
diagonal terms β(l)

s,s+1 that exhibit additional multiplicative decay due to the recursive gating struc-

ture, whereas the diagonal term β
(l)
s,s is independent of token position. Hence, it is important to

carefully consider competing token contributions to prove indeed the gating vector indeed aligns
with class-relevant feature directions.

Instead, in the locality-structured data, the variation introduced by the number of class-relevant and
confusion tokens in positive and negative samples is negligible, as our data model assumes an equal
number of class-relevant and confusion tokens. Consequently, we need to rely on ∆L+

o+
and ∆L+

o−

to ensure that the lucky neuron WO(i,·) learns the class-relevant feature. Moreover, since the number
of class-relevant and confusion tokens is balanced, updates along the class-relevant feature direction
for the gating vector remain close to zero. To demonstrate how the gate filters information, we show
that gradient updates along class-irrelevant features are driven strongly negative. To prove this, in
addition to the terms considered in the majority-voting setting, we must also bound the positively
contributing terms that hinder the gate’s ability to suppress irrelevant features. Specifically, we
bound these opposing terms as O

(
(1− σ(p2))

∆L−
o+

)
+O

(
(1− σ(p2))

∆L+
o−

)
ensuring that their

effect remains minimal. This reveals that the gate effectively suppresses irrelevant features while
preserving class-relevant features for this data model.

5 NUMERICAL EXPERIMENTS

We verify our theoretical results through synthetic experiments based on the data models described
in Section 4.2. Due to the space limit, we defer the experiment details to Appendix A.3

Faster convergence with larger majority-voting gap. Fig. 1 illustrates that increasing the
majority-voting gap αr − αc consistently reduces the number of epochs across various sizes of
training samples. These findings are consistent with our theoretical results in (13) and (14).

Gating mechanism amplifies relevant features in majority-voting data. Fig. 2 shows the cosine
similarity between the gating vector w∆ and both class-relevant and class-irrelevant features. The
similarity with class-relevant features steadily increases, while that with class-irrelevant features
remains essentially unchanged. This empirically confirms Lemma 4.1, demonstrating that the gate
prioritizes informative features while ignoring irrelevant ones.

MLP weights selectively align with only class-relevant features. Fig. 3 tracks the average co-
sine similarity between each neuron WO(i, :) and both class-relevant & class-irrelevant features.
The alignment increases for class-relevant features and stays essentially unchanged for irrelevant
features, which is consistent with our findings in Lemmas B.1 and B.3 in the Appendix.

Figure 1: Convergence vs.
majority-voting gap.

Figure 2: Alignment of w∆

for majority-voting data.
Figure 3: Average alignment
of WO(i,·) during training.

Locality affects the learning. Fig. 4 illustrate the effect of class-relevant token separation ∆L on
the convergence in the locality-structured data. Larger ∆ slows convergence across different training
sample sizes, which is consistent with our results in (19) and (20).

Gating mechanism suppresses irrelevant features. Fig. 5 illustrates that while the cosine similar-
ity is negative for both types of features, it stays close to zero for class-relevant features but becomes
largely negative for class-irrelevant ones. This contrast drives the gating mechanism to prioritize
class-relevant features, consistent with Lemma 4.2.
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Mamba outperforms Transformer and local attention on locality-structured data. Intuitively,
locality-structured data favors models that exploit local biases. Global attention performs only
marginally better than random guessing, whereas both local attention and Mamba learn meaningful
patterns, with Mamba achieving the best performance.

Figure 4: Convergence under
locality-structured data.

Figure 5: Alignment of w∆

for locality-structured data.
Figure 6: Mamba outper-
forms on locality data.

6 CONCLUSION

Encouraged by the emergence and successful applications of the Transformer alternative architecture
Mamba, this paper provides a novel theoretical generalization analysis of Mamba by considering its
unique gated selection mechanism. Focusing on a data model with class-relevant and class-irrelevant
tokens, we establish the non-asymptotic sample complexity and the convergence rate required to
achieve desirable test accuracy. Our analysis further shows that the gating parameter vector filters
out the class-relevant features while ignoring irrelevant ones. To the best of our knowledge, this is the
first theoretical analysis of Mamba’s training dynamics, with its input-dependent gating mechanism,
together with generalization guarantees.

Finally, we note some limitations of our work. First, our theoretical analysis focuses on a simplified
Mamba setting that abstracts away practical components such as depth, multiple heads, residual con-
nections, and layer normalization. Second, our data model, while standard in theoretical studies, also
simplifies real-world sequence structures. Extending the analysis to more realistic multi-layer and
multi-head Mamba architectures, richer data models, and alternative designs such as gated Trans-
formers or hybrid Mamba–Transformer frameworks remains an important direction for future work.

LLM USAGE DISCLOSURE

We used large-language models (ChatGPT) to aid in polishing the writing of this paper. For numer-
ical experiments, we employed AI-assisted coding tools (GitHub Copilot and ChatGPT) to support
code development.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the se-
quence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33
(8):831–838, 2015.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural networks
in polynomial time. In Conference on Learning Theory, pp. 195–268. PMLR, 2019.

Zeyu Bao, Penghao Yu, Haotian Jiang, and Qianxiao Li. The effect of depth on the expressivity of
deep linear state-space models. arXiv preprint arXiv:2506.19296, 2025.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data
mining, pp. 119–130, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Alon Brutzkus and Amir Globerson. An optimization and generalization analysis for max-pooling
networks. In Uncertainty in Artificial Intelligence, pp. 1650–1660. PMLR, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Edo Cohen-Karlik, Itamar Zimerman, Liane Galanti, Ido Atad, Amir Globerson, and Lior Wolf.
On the expressivity of selective state-space layers: A multivariate polynomial approach. arXiv
preprint arXiv:2502.02209, 2025.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.
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A NOTATIONS, PROOF SKETCH AND ADDITIONAL EXPERIMENTS

A.1 NOTATIONS

A.1.1 LUCKY NEURON DEFINITION

Let
K+ = {i ∈ [m] : vi > 0} , K− = {i ∈ [m] : vi < 0} (22)

denote the sets of neurons with positive and negative output layer weights, respectively.

We define the sets of lucky neurons at initialization as:

W(0) =
{
i ∈ K+ : WO(i,·)(0)o+ > 0

}
, (23)

U(0) =
{
i ∈ K− : WO(i,·)(0)o− > 0

}
, (24)

where o+ and o− denote the class-relevant features for the positive and negative classes, respec-
tively.

A.1.2 LOSS FUNCTION

The loss function for the nth sample is defined as

ℓ(X(n), z(n)) = max{0, 1− z(n) · F (X(n))}

= max

{
0, 1− z(n) · 1

L

L∑
l=1

m∑
i=1

viϕ
(
WO(i,·)y

(n)
l

)}
.

(25)

The empirical loss is denoted by L̂ and is given by

L̂ =
1

N

N∑
n=1

ℓ(X(n), z(n)). (26)

The population loss is denoted by L and is defined as

L = E(X,z)∼Dℓ(X, z). (27)

With additional important notations can be found in Table 2.

A.2 PROOF SKETCH

The major idea of our proof is to analyze how GD gradually aligns both the hidden-layer weights
and gating vector with class-relevant features while ignoring the irrelevant ones. A key tool in our
analysis is the notion of a lucky neuron, i.e., a hidden layer neuron whose initialization is well
aligned with a class-relevant feature. For the majority-voting data model, the signal driving this
alignment is proportional to the gap between the fractions of class-relevant and confusion tokens,
Θ(αr − αc), as established by Lemmas B.1–B.4. Lucky neurons move consistently toward their
class-relevant feature, while the magnitude of unlucky ones remains small (upper-bounded by the
inverse square root of the number of samples). For the locality-structured data model, we prove that
the update in the class-relevant feature direction for the gating vector remains close to zero because
an equal number of class-relevant and confusion tokens are present in the data. We then show that
the gating vector consistently decreases along irrelevant feature directions, thereby enabling the gate
to effectively select the class-relevant feature.

Due to these properties, the training dynamics can be simplified to show that the network output
in (6) changes linearly with the iteration number t. In particular, we prove that, for a new posi-
tive sample (w.l.o.g.) during inference, the learned model’s output is strictly positive. From this
analysis, we derive the sample complexity and the required number of iterations for achieving zero
generalization error for both data types, as shown in (13) and (14) for the majority-voting setting in
Theorem 1, and similarly in (19) and (20) for the locality-structured setting in Theorem 2.
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Table 2: Summary of notations
F (X(n)) The final model output for X(n)

αr The average fractions of class-relevant tokens
αc The average fractions of confusion tokens

∆L+
o+

Separation between class-relevant features o+ in positive samples
∆L−

o+
Separation between confusion features o+ in negative samples

∆L−
o−

Separation between class-relevant features o− in negative samples
∆L+

o−
Separation between confusion features o− in positive samples

O The set of class-relevant and class-irrelevant patterns
K+ The set of lucky neurons with respect to W (0)

K− The set of lucky neurons with respect to U (0)

N The set of training data
N+ The set of training data with positive labels
N− The set of training data with negative labels
W(t) Set of lucky neurons for the positive class at iteration t
U(t) Set of lucky neurons for the negative class at iteration t

O(·), Ω(·), Θ(·) We use the standard convention: f(x) = O(g(x)) (resp. Ω(g(x)),
Θ(g(x))) means f(x) grows at most (resp. at least, on the order of)
g(x).

Õ(·) Soft-O notation: hides polylog factors
poly(d) An unspecified polynomial in d
≳, ≲ f(x) ≳ g(x) (resp. f(x) ≲ g(x)) abbreviates f(x) ≥ Ω

(
g(x)

)
(resp. f(x) ≤ O

(
g(x)

)
).

A.3 ADDITIONAL NUMERICAL EXPERIMENTS

Experiment settings.

The data dimension and token embedding size are both set to d = 32, which also corresponds to the
number of feature directions. Unless otherwise stated, experiments in the main text use exactly the
model defined in Eq. (6) to match our theoretical setting. We also use the model without convolution,
and keep WB = WC = I frozen as in Eq. (15). The total number of neurons in the hidden layer
WO is set to m = 50. For simplicity, we fix the ratio of different features to be the same across all
data. The sequence length is set to L = 30.

We run 100 independent trials and consider only the successful trials to compute the mean epochs
for convergence for a given fraction of class-relevant patterns. An experiment is successful if the
testing loss is smaller than 10−3. For this experiment, we fixed the fraction of the confusion tokens
at 0.10 and varied the fraction of class-relevant features.

Additional Results on MLP Weight Alignment.

Figure 7 illustrates the alignment of sampled neurons with the class-relevant feature. We observe
that, with a good initialization, a subset of neurons, denoted as lucky neurons, consistently increases
in the direction of the class-relevant feature, while another subset, denoted as unlucky neurons,
remains almost unchanged, which supports our findings in Lemmas B.3 and C.3.

In contrast, Figure 8 shows the alignment of sampled neurons with the class-irrelevant feature. In
this case, we observe that all neurons, both lucky and unlucky, remain nearly unchanged in the
direction of the class-irrelevant feature, which further supports our findings in Lemmas B.4 and C.4.

ADDITIONAL EXPERIMENTS

To further strengthen the empirical connection between our theoretical analysis and practical Mamba
architectures, we conducted additional experiments using the multi-layer, multi-head Mamba model

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Alignment of WO(i,·) with class-
relevant feature directions during training on
the majority-voting data.

Figure 8: Alignment of WO(i,·) with class-
irrelevant feature directions during training on
the majority-voting data.

from Dao & Gu (2024), trained on synthetic datasets that follow the same structured data models as
in our theory.

We first evaluated the Mamba2 block, which includes residual connections and RMSNorm. We
focused on a 2-block Mamba model with 4 heads and report the cosine similarity of the learned
gating vectors and MLP weights with class-relevant and class-irrelevant features in Figures 9 and 10.
For a deeper 5-block Mamba model with the same configuration, we summarize the final alignment
values in Table 3, which exhibit the same qualitative trends predicted by our analysis.

Figure 9: Alignment of the gating vector in
the 2-block Mamba model.

Figure 10: Alignment of the MLP weights in
the 2-block Mamba model.

Table 3: Cosine similarity alignment in the 5-block Mamba model

Component Class-relevant Class-irrelevant
Gating vector 0.53 0.00
MLP weights 0.73 0.00

Next, we examined the effect of the gating mechanism by comparing models trained with and with-
out gating across both structured data regimes. On the majority-voting data, the gated model consis-
tently outperforms the ungated variant (Figure 11). On the locality-structured data, gating becomes
essential: the ungated model fails to learn the task, whereas the gated model converges reliably
(Figure 12).
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Figure 11: Test accuracy with and without
gating on the majority-voting data.

Figure 12: Test accuracy with and without
gating on the locality-structured data.

We also conducted two controlled ablations. First, we varied the feature dimension d ∈
{32, 64, 128} and observed that the qualitative behavior of the model remained consistent across
all three settings (Figures 13–15). Second, we varied the data distribution parameter αc, the fraction
of confusion tokens in the majority-voting data. Across all three choices of αc, the empirical results
remained closely aligned with the theoretical predictions (Figures 16–18).

Figure 13: Ablation with fea-
ture dimension d = 32.

Figure 14: Ablation with fea-
ture dimension d = 64.

Figure 15: Ablation with fea-
ture dimension d = 128.

Figure 16: Ablation with con-
fusion fraction αc = 0.17.

Figure 17: Ablation with con-
fusion fraction αc = 0.20 .

Figure 18: Ablation with con-
fusion fraction αc = 0.23.

B MAJORITY-VOTING DATA

B.1 USEFUL LEMMAS

Lemma B.1 provides bounds on the gradient updates of lucky neurons i ∈ W(t) in the directions of
both class-relevant features (o+, o−) and irrelevant features.

Lemma B.1. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1 and p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1. Then, for any lucky
neuron i ∈ W(t) at iteration t, the following bounds hold:
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(L1.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≥ 1√

mL
· σ(p1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (28)

(L1.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ 1√

mL
· σ(q1)Θ(αrL− αcL) +O

(√
d logN

mN

)
+O(τ). (29)

(L1.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≥ − 1√

mL
· σ(q1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (30)

(L1.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (31)

(L1.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (32)

Lemma B.2 shows that, for unlucky neurons associated with the positive class, the gradients in the
directions of both class-relevant and irrelevant features are small.

Lemma B.2. For any unlucky neuron i ∈ K+ \W(t) at iteration t, the following bounds hold:

(L2.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (33)

(L2.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (34)

(L2.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (35)

Lemmas B.3 and B.4, by symmetry, state the analogous results for lucky and unlucky neurons
associated with the negative class.
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Lemma B.3. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1 and p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1. Then, for any lucky
neuron i ∈ U(t) at iteration t, the following bounds hold:

(L3.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≥ 1√

mL
· σ(p1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (36)

(L3.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ 1√

mL
· σ(q1)Θ(αrL− αcL) +O

(√
d logN

mN

)
+O(τ). (37)

(L3.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≥ − 1√

mL
· σ(q1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (38)

(L3.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (39)

(L3.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (40)

Lemma B.4. For any unlucky neuron i ∈ K− \ U(t) at iteration t, the following bounds hold:

(L4.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (41)

(L4.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (42)

(L4.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (43)

Lemma B.5 establishes bounds for the gradient updates of w∆ in the class-relevant feature direc-
tions.
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Lemma B.5. Suppose r∗1 ≤ ⟨W (t+1)
O(i,·)

⊤
,o+⟩ ≤ s∗1. Let |W(t)| = ρ+t and |U(t)| = ρ−t . Then, at

iteration t, the following bounds hold:

(L5.1) A lower bound on the gradient of L̂ with respect to w∆ at iteration t, in the direction of o+,
is given by

〈
− ∂L̂
∂w

(t)
∆

,o+

〉
≥ r∗1

2
√
mL

· ρ+t ·Θ(αrL)−
√
ms∗1
4L

·Θ(αcL)−O

(√
d logN

mN

)
−O(τ). (44)

(L5.2) A lower bound on the gradient of L̂ with respect to w∆ at iteration t, in the direction of o−,
is given by〈

− ∂L̂
∂w

(t)
∆

,o−

〉
≥ r∗1

2
√
mL

· ρ−t ·Θ(αrL)−
√
ms∗1
4L

·Θ(αcL)−O

(√
d logN

mN

)
−O(τ) (45)

Lemma B.6 establishes bounds for the gradient updates of w∆ in the directions of irrelevant features.

Lemma B.6. An upper bound on the gradient of L̂ with respect to w∆ at iteration t, in the direction
of oj , is given by 〈

− ∂L̂
∂w

(t)
∆

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (46)

B.2 PROOF OF CONVERGENCE

Proof of Theorem 1. The proof starts with the base case at t = 0 and proceeds to analyze the training
dynamics in a deductive manner, providing additional details in deriving the corresponding conver-
gence and sample complexity bounds.

(S1) Warm-up (Base case): Training dynamics at the first iteration t = 0.

Recall that we set w(0)
∆ = 0. Then, we have

⟨w(0)
∆ ,o+⟩ = 0 and ⟨w(0)

∆ ,o−⟩ = 0.

(S1.1) Training dynamics of WO(i,:) at the first iteration t = 0.

From Lemma B.1, identify p1 = 0 and q1 = 0. Let αr and αc denote the average fraction of
label-relevant tokens and confusion tokens, respectively. Then, for any lucky neuron i ∈ W(0), we
obtain

1

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤

〈
− ∂L̂
∂W

(0)
O(i,·)

,o+

〉

≤ 1

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
.

(47)

and

〈
− ∂L̂
∂W

(0)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (48)

Recall that we set the number of samples in a batch N = poly(d).

Recall that the initialization is

WO(i,·)(0) = δ1o+ + δ2o− + · · ·+ δdod, δj
i.i.d.∼ N (0, ξ2) j = 1, 2, · · · , d. (49)
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Then, after one gradient descent step, we have

δ1 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o+

〉
≤ δ1 +

η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
(50)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (51)

By applying Lemma B.3, for any lucky neuron i ∈ U(0), we obtain

δ2 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o−

〉
≤ δ2 +

η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
(52)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2. (53)

For any unlucky neuron i ∈ K− \ U(0), Lemma B.4 gives〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for ∀j. (54)

(S1.2) Training dynamics of W∆ at the first iteration t = 0.

Now consider the gradient update for w∆. Define:

a = δ1 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
b = δ1 +

η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
Applying Lemma B.5 with r∗1 = a, s∗1 = b, and ρ+0 = |W(0)|, we get

〈
− ∂L̂
∂w

(0)
∆

,o+

〉
≥ a

2
√
mL

· ρ+0 ·Θ(αrL)−
√
mb

4L
·Θ(αcL)− Õ

(
1

poly(d)

)
=: α (55)

Let δ1 = 1
poly(d) . Since a− b = Õ

(
1

poly(d)

)
that is sufficiently small,

α =
1

2L

[
a√
m

· m
2
Θ(αrL)−

√
mb

2
Θ(αcL)

]
− Õ

(
1

poly(d)

)
=

1

2L

[√
ma

2
(Θ(αrL)−Θ(αcL))

]
− Õ

(
1

poly(d)

)
=

√
m

4L
· η

2
√
mL

Θ((αrL− αcL)
2)− Õ

(
1

poly(d)

)
=

η

8L2
Θ((αrL− αcL)

2)− Õ
(

1

poly(d)

)
> 0 (56)
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From Lemma B.6, we also obtain〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ Õ

(
1

poly(d)

)
=: γ for j ̸= 1, 2. (57)

(S2) Induction Step: Training dynamics at a general iteration t.

Suppose ⟨w(t)
∆ ,o+⟩ = α∗ ≥ α · t, ⟨w(t)

∆ ,o−⟩ = β∗ ≥ β · t, and ⟨w(t)
∆ ,oj⟩ = γ∗ ≤ γ · t, where

β =
a′

2
√
mL

· ρ−0 ·Θ(αrL)−
√
mb′

4L
·Θ(αcL)− Õ

(
1

poly(d)

)
> 0, (58)

a′ = δ2 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
, (59)

b′ = δ2 +
η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
. (60)

Following the same approach as in (56), we can simplify and obtain

β =
η

8L2
Θ((αrL− αcL)

2)− Õ
(

1

poly(d)

)
> 0. (61)

For any lucky neuron i ∈ W(t) at the (t+ 1)-th iteration, we have
1√
mL

· σ(α∗)Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(α∗)Θ(αrL− αcL) + Õ
(

1

poly(d)

)
,

and 〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (62)

Next, we have σ(α∗) > 1
2 since α∗ > 0 when t = 1. By a simple induction, this further ensures〈

− ∂L̂
∂W

(0)
O(i,·)

,o+

〉
≤

〈
− ∂L̂
∂W

(1)
O(i,·)

,o+

〉
≤ · · ·

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤

〈
− ∂L̂
∂W

(t+1)
O(i,·)

,o+

〉
.

(63)

Thus, we obtain the following bound after the second gradient descent step:

δ1 +
η

2
√
mL

Θ(αrL− αcL) [1 + 2σ(α∗)]− Õ
(

1

poly(d)

)
=: u

≤
〈
(W

(2)
O(i,·))

⊤, o+

〉
≤ δ1 +

η

2
√
mL

Θ(αrL− αcL) [1 + 2σ(α∗)] + Õ
(

1

poly(d)

)
=: v. (64)

Similarly, applying Lemma B.3 to any lucky neuron i ∈ U(1) at iteration 2, we get
1√
mL

· σ(β∗)Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤

〈
− ∂L̂
∂W

(1)
O(i,·)

,o−

〉

≤ 1√
mL

· σ(β∗)Θ(αrL− αcL) + Õ
(

1

poly(d)

)
,

(65)
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and

〈
− ∂L̂
∂W

(1)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2. (66)

Applying Lemma B.5 with r∗1 = u, and s∗1 = v, we obtain〈
− ∂L̂
∂w

(1)
∆

,o+

〉
≥ u

2
√
mL

· ρ+1 ·Θ(αrL)−
√
mv

4L
·Θ(αcL)− Õ

(
1

poly(d)

)
=: χ. (67)

Since u− v = Õ
(

1
poly(d)

)
that is sufficiently small, we have χ ≥ 0.

By applying Lemma B.6, we get〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1, 2. (68)

(S3) Induction conclusion: Training dynamics when the algorithm ends.

We proceed by induction on t: the base case t = 0 is established in (S1), and the induction step for
general t is shown in (S2). For any lucky neuron i ∈ W(T ), we obtain〈

W⊤
O(i,·)

(T )
,o+

〉
≥ aT, (69)

and
〈
W⊤

O(i,·)
(T )
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (70)

For any lucky neuron i ∈ U(T ), we obtain〈
W⊤

O(i,·)
(T )
,o−

〉
≥ aT, (71)

and
〈
W⊤

O(i,·)
(T )
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2 (72)

Also, we obtain

〈
w

(T )
∆ ,o+

〉
≥ αT, (73)

〈
w

(T )
∆ ,o−

〉
≥ βT, (74)

and
〈
w

(T )
∆ ,oj

〉
≤ γT. (75)

(S4) Derivation for the generalization bound.

We will demonstrate that once the weights have converged at iteration T , the model accurately
captures the underlying data distribution, which leads to zero generalization error, as shown in (94).

Consider z(n) = +1 as an example. The sequence X(n) =
[
x
(n)
1 x

(n)
2 · · · x

(n)
L

]
has first αrL

tokens correspond to the feature o+, while the following αcL tokens correspond to the feature o−.
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F (X(n)) =
1

L

L∑
l=1

m∑
i=1

vi ϕ
(
WO(i,·)y

(n)
l

)
=

1√
mL

∑
i∈K+

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈K−

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

≥ 1√
mL

∑
i∈W(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

− 1√
mL

∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
(76)

The Mamba output y(n)
l is defined as

y
(n)
l =

l∑
s=1

 l∏
j=s+1

(
1− σ(w⊤

∆x
(n)
j )
) · σ(w⊤

∆x
(n)
s ) · (x(n)⊤

s x
(n)
l )x(n)

s . (77)

We now derive a lower bound for ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

To that end, consider the aggregated projection

∑
i∈W(0)

L∑
l=1

WO(i,·)yl =
∑

i∈W(0)

L∑
l=1

d∑
j=1

⟨W⊤
O(i,·),oj⟩ · ⟨yl,oj⟩. (78)

For any i ∈ W(0), we know that
⟨W⊤

O(i,·),o+⟩ ≥ aT. (79)

Hence, let’s obtain a lower bound for ⟨yl,o+⟩.
We only need to consider the cases where xs = o+ for some s in the range 1 ≤ s ≤ l.

After T iterations, we know

⟨w∆,o+⟩ ≥ αT, ⟨w∆,o−⟩ ≥ βT, ⟨w∆,oj⟩ ≤ γT for j ̸= 1, 2. (80)

Therefore, we have

⟨yl,o+⟩ = Θ(σ (⟨w∆,o+⟩)) = Θ(σ(αT )), for l = 1, 2, . . . , αrL. (81)

We now lower bound the objective

∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

Note that

WO(i,·)yl =

d∑
j=1

〈
W⊤

O(i,·),oj

〉〈
yL+

1
,oj

〉
,

and yl has only o+ component for l = 1, 2, . . . , αrL.
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Therefore,

WO(i,·)yl =
〈
W⊤

O(i,·),o+

〉
⟨yl,o+⟩ ≥ aT ·Θ(σ(αT )) > 0, for l = 1, 2, . . . , αrL.

Applying ϕ(z) = z for positive z, we obtain

ϕ(WO(i,·)yl) ≥ aT ·Θ(σ(αT )), for l = 1, 2, . . . , αrL.

Hence, ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl) ≥
∑

i∈W(0)

aT ·Θ(σ(αT )) · αrL (82)

Next, we derive an upper bound for ∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
.

For any i ∈ U(0), we know that
0 < ⟨W⊤

O(i,·),o−⟩ ≤ bT. (83)

We now derive an upper bound for ⟨yl,o−⟩. We only need to consider the cases where xs = o−
such that 1 ≤ s ≤ l.

We have,
⟨w∆,o+⟩ ≤WT, ⟨w∆,o−⟩ ≤WT,

where

W =
η

8L2
Θ((αrL− αcL)

2) + Õ
(

1

poly(d)

)
. (84)

⟨yl,o−⟩ = Θ(σ (⟨w∆,o−⟩)) = Θ(σ(WT )), for l = 1, 2, . . . , αcL. (85)

L∑
l=1

WO(i,·)yl ≤ bT ·Θ(σ(WT )) · αcL. (86)

∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
≤
∑

i∈U(0)

bT ·Θ(σ(WT )) · αcL. (87)

In addition, we have ∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
≤ Õ

(
1

poly(d)

)
. (88)

By (76), we can write

F (X(n)) ≥ 1√
mL

{
m

2
· aT ·Θ(σ(αT )) · αrL− m

2
· bT ·Θ(σ(WT )) · αcL− Õ

(
1

poly(d)

)}
, (89)

with

a =
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
, (90)

and b =
η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
. (91)
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α =
η

8L2
Θ((αrL− αcL)

2)− Õ
(

1

poly(d)

)
=W − Õ

(
1

poly(d)

)
. (92)

Therefore, we conclude that

F (X(n)) ≥
√
m

2
· aT ·Θ(σ(αT )) · (αr − αc)− Õ

(
1

poly(d)

)
(93)

There, for any positive sample, we can prove that

F (X(n)) ≥ C, where C is some positive constant. (94)

Similar to the previous analysis, one can show that the negtive sample Xn leads to

(S4.1) Derivation for the convergence rate. Let’s find the number of iterations T required such that
F (X(n)) ≥ 1, since the label is +1. We require

√
m

2
· aT (αr − αc) ≥ 1 + ϵ. (95)

Substituting the value of a ≈ b = η
2
√
mL

Θ(αrL− αcL), the condition becomes
√
maT

2
(αr − αc) =

√
m

2
· η

2
√
mL

Θ(αrL− αcL)T · (αr − αc)

=
ηT

4
Θ((αr − αc)

2) ≥ 1 + ϵ. (96)

Solving for T , we obtain

T ≥ 4(1 + ϵ)

ηΘ((αr − αc)2)
≥ 4

ηΘ((αr − αc)2)
. (97)

Now, we additionally require that the sigmoid activation σ(αT ) be sufficiently large, i.e.,

σ(αT ) ≥ 1− ϵ. (98)

When z is sufficiently large we can approximate

σ(z) =
1

1 + e−z
≈ 1− e−z.

Substituting z = αT , condition (98) becomes:

σ(αT ) ≈ 1− e−αT ≥ 1− ϵ,

e−αT ≤ ϵ,

αT ≥ − ln(ϵ)

T ≥ − ln(ϵ)

α
. (99)

Substituting α = η
8L2Θ((αrL− αcL)

2), we get:

T ≥ − ln(ϵ) · 8L2

ηΘ((αrL− αcL)2)
. (100)

T ≥ − ln(ϵ) · 8

ηΘ((αr − αc)2)
. (101)
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Hence, by combining (97) and (101), we obtain

T ≥ max

{
4

ηΘ((αr − αc)2)
,− ln(ϵ) · 8

ηΘ((αr − αc)2)

}
. (102)

By combining (95) and (98) with the expression for the model output F (X(n)) in (93), we obtain

F (X(n)) ≥ (1 + ϵ) · (1− ϵ)

≥ 1−O(ϵ2) (103)

Hence, for sufficiently small ϵ > 0, the model output satisfies F (X(n)) ≥ 1.

Similarly, for a negative sample, one can show by symmetry that the model output satisfies
F (X(n)) ≤ 1.

(S4.2) Derivation for the sample complexity.

Now we derive a sample-complexity bound that guarantees zero generalization error.

Assuming enough samples, we can write for sufficiently small λ≪ 1

O

(√
d logN

mN

)
≤ λ · η

2
√
mL

Θ(αrL− αcL). (104)

From this, we can derive a lower bound on the required sample size,

N ≥ Ω

(
λ−2 · 4L2d

η2Θ((αr − αc)2)

)
≥ Ω

(
L2d

η2Θ((αr − αc)2)

)
,

(105)

which will be (13) in Theorem 1.

C LOCALITY-STRUCTURED DATA

C.1 USEFUL LEMMAS

Lemma C.1 provides bounds on the gradient updates of lucky neurons i ∈ W(t) in the directions of
both class-relevant features (o+, o−) and irrelevant features.

Lemma C.1. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1, p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1, and p2 ≤ ⟨w(t)
∆ ,oj⟩ ≤ q2 for

j ̸= 1, 2. Then, for any lucky neuron i ∈ W(t) at iteration t, the following bounds hold:

(L1.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o+

〉
≥ 1√

mL
· σ(p1) · (1− σ(q1))

2

[
(1− σ(q2))

∆L+
o+

−2 − (1− σ(p2))
∆L−

o+
−2
]

−O

(√
d logN

mN

)
.

(106)

(L1.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o+

〉
≤ 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L+
o+

−2 − (1− σ(q2))
∆L−

o+
−2
]

+O

(√
d logN

mN

)
.

(107)
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(L1.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o−

〉
≥− 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L−
o−

−2 − (1− σ(q2))
∆L+

o−
−2
]

−O

(√
d logN

mN

)
.

(108)

(L1.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
. (109)

(L1.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (110)

Lemma C.2 shows that, for unlucky neurons associated with the positive class, the gradients in the
directions of both class-relevant and irrelevant features are small.

Lemma C.2. For any unlucky neuron i ∈ K+ \W(t) at iteration t, the following bounds hold:

(L2.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
. (111)

(L2.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
. (112)

(L2.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (113)

Lemmas C.3 and C.4, by symmetry, state the analogous results for lucky and unlucky neurons
associated with the negative class.

Lemma C.3. Suppose p1 ≤ ⟨w(t)
∆ ,o−⟩ ≤ q1, p1 ≤ ⟨w(t)

∆ ,o+⟩ ≤ q1, and p2 ≤ ⟨w(t)
∆ ,oj⟩ ≤ q2 for

j ̸= 1, 2. Then, for any lucky neuron i ∈ U(t) at iteration t, the following bounds hold:

(L3.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o−

〉
≥ 1√

mL
· σ(p1) · (1− σ(q1))

2

[
(1− σ(q2))

∆L−
o−

−2 − (1− σ(p2))
∆L+

o−
−2
]

−O

(√
d logN

mN

)
.

(114)
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(L3.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o−

〉
≤ 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L−
o−

−2 − (1− σ(q2))
∆L+

o−
−2
]

+O

(√
d logN

mN

)
.

(115)

(L3.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o+

〉
≥− 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L+
o+

−2 − (1− σ(q2))
∆L−

o+
−2
]

−O

(√
d logN

mN

)
.

(116)

(L3.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
. (117)

(L3.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (118)

Lemma C.4. For any unlucky neuron i ∈ K− \ U(t) at iteration t, the following bounds hold:

(L4.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
. (119)

(L4.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
. (120)

(L4.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (121)

Lemma C.5 establishes bounds for the gradient updates of w∆ in the class-relevant feature direc-
tions.

Lemma C.5. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1 and r∗1 ≤ ⟨W (t+1)

O(i,·)
⊤
,o+⟩ ≤ s∗1. Let |W(t)| = ρ+t

and |U(t)| = ρ−t . Then, we have:

〈
− ∂L̂
∂w

(t)
∆

,o+

〉
≥ σ(p1) (1− σ(q1)) r

∗
1 · ρ+t√

m
− σ(q1) (1− σ(p1)) s

∗
1 ·

√
m

2
−O

(√
d logN

mN

)
. (122)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Suppose p1 ≤ ⟨w(t)
∆ ,o−⟩ ≤ q1 and r∗1 ≤ ⟨W (t+1)

O(i,·)
⊤
,o−⟩ ≤ s∗1. Let |W(t)| = ρ+t and |U(t)| = ρ−t .

Then, we have:

〈
− ∂L̂
∂w

(t)
∆

,o−

〉
≥ σ(p1) (1− σ(q1)) r

∗
1 · ρ−t√

m
− σ(q1) (1− σ(p1)) s

∗
1 ·

√
m

2
−O

(√
d logN

mN

)
. (123)

Lemma C.6 establishes bounds for the gradient updates of w∆ in the directions of irrelevant features.

Lemma C.6. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1, p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1, ⟨w(t)
∆ ,oj⟩ ≤ q2 for j ̸= 1, 2,

and r∗1 ≤ ⟨W (t)
O(i,·)

⊤
,o+⟩. Let ρ+t = |W(t)| and ρ−t = |U(t)|. Then we have:〈

− ∂L̂
∂w

(t)
∆

,oj

〉
≤ − r∗1

2
√
m

· σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]

+O
(
(1− σ(p2))

∆L−
o+

)
+O

(
(1− σ(p2))

∆L+
o−

)
+O

(√
d logN

mN

)
.

(124)

C.2 PROOF OF CONVERGENCE

Proof of Theorem 2. Similar to the proof of Theorem 1, the proof starts with the base case at t = 0
and proceeds to analyze the training dynamics in a deductive manner, providing additional details in
deriving the corresponding convergence and sample complexity bounds.

(S1) Warm-up (Base case): Training dynamics at the first iteration t = 0.

Recall that we set w(0)
∆ = 0. Then, we have

⟨w(0)
∆ ,o+⟩ = 0, ⟨w(0)

∆ ,o−⟩ = 0, and ⟨w(0)
∆ ,oj⟩ = 0 ∀j.

(S1.1) Training dynamics of WO(i,:) at the first iteration t = 0.

From Lemma C.1, identify p1 = 0, q1 = 0, p2 = 0 and q2 = 0. Let ∆L+
o+

and ∆L+
o−

be the distance
between two o+ and o− features respectively in the positive sample. Similarly, in a negative sample,
let the distance between the two o+ tokens as ∆L−

o+
, and the distance between the two o− tokens

as ∆L−
o−

. Then, for any lucky neuron i ∈ W(0), we obtain

c′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)

≤

〈
− ∂L̂
∂W

(0)
O(i,·)

,o+

〉

≤ 1

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)
(125)

and

〈
− ∂L̂
∂W

(0)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (126)

Recall that we set the number of samples in a batch N = poly(d).

Suppose the initialization is

WO(i,·)(0) = δ1o+ + δ2o− + · · ·+ δdod, δj
i.i.d.∼ N (0, ξ2) j = 1, 2, · · · , d. (127)
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Then, after one gradient descent step, we have

δ1 +
ηc′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o+

〉
≤ δ1 +

η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)
(128)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (129)

By applying Lemma C.3, for any lucky neuron i ∈ U(0), we obtain

δ2 +
ηc′2

2
√
mL

[(
1

2

)∆L−
o−

−2

−
(
1

2

)∆L+
o−

−2
]
− Õ

(
1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o+

〉
≤ δ2 +

η

2
√
mL

[(
1

2

)∆L−
o−

−
(
1

2

)∆L+
o−

]
+ Õ

(
1

poly(d)

)
(130)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2. (131)

For any unlucky neuron i ∈ K− \ U(0), Lemma C.4 gives〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for ∀j. (132)

(S1.2) Training dynamics of W∆ at the first iteration t = 0.

Now consider the gradient update for w∆. Define:

a = δ1 +
ηc′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)

b = δ1 +
η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)

Applying Lemma C.5 with p1 = 0, q1 = 0, r∗1 = a, s∗1 = b, and ρ+0 = |W(0)|, we get

〈
− ∂L̂
∂w

(0)
∆

,o+

〉
≥ a

4
√
m

· ρ+0 − b
√
m

8
− Õ

(
1

poly(d)

)
(133)

We can relax this lower bound and obtain〈
− ∂L̂
∂w

(0)
∆

,o+

〉
≥ c′

4

[
2a√
m

· ρ+0 −
√
mb

]
− Õ

(
1

poly(d)

)
=: α (134)
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Recall that δ1 = 1
poly(d) . Since a− b = Õ

(
1

poly(d)

)
that is sufficiently small,

α =
c′

4

[
2a√
m

· m
2

−
√
mb

]
− Õ

(
1

poly(d)

)
=
c′

4

[√
ma−

√
ma
]
− Õ

(
1

poly(d)

)
= 0− Õ

(
1

poly(d)

)
= −Õ

(
1

poly(d)

)
≈ 0 (135)

From Lemma C.6, we also obtain〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ −a

8
√
m

[(
1

2

)∆L+
o+

· ρ+0 +

(
1

2

)∆L−
o−

· ρ−0

]
(136)

where we apply the lemma with the values

p1 = 0, q1 = 0, q2 = 0, and r∗1 = a.

We can relax this upper bound and obtain〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ −ac′

4
√
m

[(
1

2

)∆L+
o+

· ρ+0 +

(
1

2

)∆L−
o−

· ρ−0

]
=: γ (137)

Taking ρ+0 = ρ−0 = m
2 + Õ

(
1

poly(d)

)
, we can simplify and write

γ =
−ac′

4
√
m

· m
2

[(
1

2

)∆L+
o+

+

(
1

2

)∆L−
o−

]

= −
√
ma · c

′

8

[(
1

2

)∆L+
o+

+

(
1

2

)∆L−
o−

]

=
−ηc′3

16L

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
][(

1

2

)∆L+
o+

+

(
1

2

)∆L−
o−

]

− Õ
(

1

poly(d)

)
.

(138)

(S2) Induction Step: Training dynamics at a general iteration t.

Let ⟨w(t)
∆ ,o+⟩ = α∗ ≥ α · t, ⟨w(t)

∆ ,o−⟩ = β∗ ≥ β · t, and ⟨w(t)
∆ ,oj⟩ = γ∗ ≤ γ · t, where

β =
c′

4

[
2a′√
m

· ρ−0 −
√
mb′

]
− Õ

(
1

poly(d)

)
> 0 (139)

a′ = δ2 +
ηc′2

2
√
mL

[(
1

2

)∆L−
o−

−2

−
(
1

2

)∆L+
o−

−2
]
− Õ

(
1

poly(d)

)

b′ = δ2 +
η

2
√
mL

[(
1

2

)∆L−
o−

−
(
1

2

)∆L+
o−

]
+ Õ

(
1

poly(d)

)
Following the same approach as in (135), we can simplify and obtain

β = −Õ
(

1

poly(d)

)
. (140)
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For any lucky neuron i ∈ W(t) at the (t+ 1)-th iteration, we have

c′2√
mL

· σ(α∗)
[
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
]
− Õ

(
1

poly(d)

)
≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(α∗) · (1− σ(α∗))
2
[
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
]

+ Õ
(

1

poly(d)

)
(141)

〈
− ∂L̂
∂W

(1)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (142)

Note that, σ(α∗) > 1
2 and σ(γ∗) < 1

2 .

Thus, we obtain the following bound after the second gradient descent step.〈
(W

(2)

O(i,·))
⊤, o+

〉
≥δ1 +

ηc′2√
mL

[(
1

2

)∆L+
o+

−1

−
(
1

2

)∆L−
o+

−1

+ σ(α∗)

(
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
)]

− Õ
(

1

poly(d)

)
.

(143)

and 〈
(W

(2)

O(i,·))
⊤, o+

〉
≤δ1 +

η

2
√
mL

[(
1

2

)∆L−
o−

−
(
1

2

)∆L+
o−

+ 2σ(α∗) · (1− σ(α∗))
2

(
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
)]

+ Õ
(

1

poly(d)

)
.

(144)

For the convenience of presentation, we use u to denote the lower bound in (143), and v to denote
the upper bound in (144).

Similarly, applying Lemma C.3 to any lucky neuron i ∈ U(1) at iteration 2, we get

〈
− ∂L̂
∂W

(1)

O(i,·)

,o−

〉
≥ c′2√

mL
· σ(β∗)

[
(1− σ(γ∗))

∆L−
o−

−2 − (1− σ(γ∗))
∆L+

o−
−2
]

− Õ
(

1

poly(d)

)
,

(145)

〈
− ∂L̂
∂W

(1)

O(i,·)

,o−

〉
≤ 1√

mL
· σ(β∗) · (1− σ(β∗))

2

[
(1− σ(γ∗))

∆L−
o−

−2 − (1− σ(γ∗))
∆L+

o−
−2
]

+ Õ
(

1

poly(d)

)
,

(146)

and 〈
− ∂L̂
∂W

(1)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (147)
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Applying Lemma C.5 with p1 = α∗, q1 = α∗, r∗1 = u, and s∗1 = v, we obtain

〈
− ∂L̂
∂w

(1)
∆

,o+

〉
≥ σ(α∗)c′

2

[
2u√
m

· ρ+1 −
√
mv

]
− Õ

(
1

poly(d)

)
=: χ (148)

Since ρ+1 = m
2 and u− v = Õ

(
1

poly(d)

)
that is sufficiently small,, we have χ ≈ 0.

By applying Lemma C.6 with

p1 = α∗(= β∗), q1 = α∗(= β∗), q2 = γ∗, and r∗1 = u,we have〈
− ∂L̂
∂w

(t)
∆

,oj

〉
≤ − c′u

2
√
m
σ(α∗)

[
(1− σ(γ∗))

∆L+
o+ ρ+t + (1− σ(γ∗))

∆L−
o− ρ−t

]
=: ι (149)

Note that here we assumed the distribution of ∆L+ is identical to ∆L− to have α∗ = β∗.

(S3) Induction conclusion: Training dynamics when the algorithm ends.

We proceed by induction on t: the base case t = 0 is established in (S1), and the induction step for
general t is shown in (S2). For, any lucky neuron i ∈ W(T ), we obtain〈

W⊤
O(i,·)

(T )
,o+

〉
≥ aT (150)

〈
W⊤

O(i,·)
(T )
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (151)

For any lucky neuron i ∈ U(T ), we obtain〈
W⊤

O(i,·)
(T )
,o−

〉
≥ aT (152)

〈
W⊤

O(i,·)
(T )
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2 (153)

Also, we obtain

〈
w

(T )
∆ ,o+

〉
≥ αT, (154)

〈
w

(T )
∆ ,o−

〉
≥ βT, (155)

and
〈
w

(T )
∆ ,oj

〉
≤ γT. (156)

(S4) Derivation for the generalization bound.

We will demonstrate that once the weights have converged at iteration T , the model accurately
captures the underlying data distribution, which leads to zero generalization error, as shown in (180).

Consider z(n) = +1 as an example. The sequence X(n) =
[
x
(n)
1 x

(n)
2 · · · x

(n)
L

]
contains two

o+ at L+
1 and L+

2 and two o− at L−
1 and L−

2 .
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F (X(n)) =
1

L

L∑
l=1

m∑
i=1

vi ϕ
(
WO(i,·)y

(n)
l

)
=

1√
mL

∑
i∈K+

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈K−

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

≥ 1√
mL

∑
i∈W(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

− 1√
mL

∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
(157)

The Mamba output y(n)
l is defined as

y
(n)
l =

l∑
s=1

 l∏
j=s+1

(
1− σ(w⊤

∆x
(n)
j )
) · σ(w⊤

∆x
(n)
s ) · (x(n)⊤

s x
(n)
l )x(n)

s . (158)

We now derive a lower bound for ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

To that end, consider the aggregated projection

∑
i∈W(0)

L∑
l=1

WO(i,·)yl =
∑

i∈W(0)

L∑
l=1

d∑
j=1

⟨W⊤
O(i,·),oj⟩ · ⟨yl,oj⟩. (159)

For any i ∈ W(0), we know that
⟨W⊤

O(i,·),o+⟩ ≥ aT. (160)

Hence, let’s obtain a lower bound for ⟨yl,o+⟩
We only need to consider the cases where xs = o+ for some s in the range 1 ≤ s ≤ l. In particular,
we will focus on the following instances:

s = L+
1 and l ∈ {L+

1 , L
+
2 }, s = L+

2 and l = L+
2 .

After T iterations, we know

⟨w∆,o+⟩ ≥ αT, ⟨w∆,o−⟩ ≥ βT, ⟨w∆,oj⟩ ≤ γT for j ̸= 1, 2. (161)

Therefore, 〈
yL+

1
,o+

〉
= σ (⟨w∆,o+⟩) ≥ σ(αT ). (162)

We have,
⟨w∆,o+⟩ ≤W1T, ⟨w∆,o−⟩ ≤W2T,

where

W1 = Õ
(

1

poly(d)

)
, (163)

W2 = Õ
(

1

poly(d)

)
. (164)
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Then we obtain the following:〈
yL+

2
,o+

〉
≥ σ(αT ) + (1− σ(W1T )) (1− σ(W2T )) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 · σ(αT )

= σ(αT )
[
1 + (1− σ(W1T )) (1− σ(W2T )) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
. (165)

We now lower bound the objective ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

We begin with∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl) ≥
∑

i∈W(0)

[
ϕ(WO(i,·)yL+

1
) + ϕ(WO(i,·)yL+

2
)
]
.

Note that

WO(i,·)yL+
1
=

d∑
j=1

〈
W⊤

O(i,·),oj

〉〈
yL+

1
,oj

〉
,

and yL+
1

has only o+ component.

Therefore,
WO(i,·)yL+

1
=
〈
W⊤

O(i,·),o+

〉〈
yL+

1
,o+

〉
≥ aT · σ(αT ) > 0.

Similarly, we can write

WO(i,·)yL+
2
≥ aT · σ(αT )

[
1 + (1− σ(W1T )) (1− σ(W2T )) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
> 0.

Applying ϕ(z) = z for positive z, we obtain

ϕ(WO(i,·)yL+
1
) ≥ aT · σ(αT ),

ϕ(WO(i,·)yL+
2
) ≥ aT · σ(αT )

[
1 + (1− σ(W1T )) (1− σ(W2T )) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
.

Hence,∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl) ≥
∑

i∈W(0)

aT · σ(αT )·

[
2 + (1− σ(W1T )) (1− σ(W2T )) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
.

(166)

Next, we derive an upper bound for ∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
.

For any i ∈ U(0), we know that
0 < ⟨W⊤

O(i,·),o−⟩ ≤ bT. (167)

We now derive an upper bound for ⟨yl,o−⟩. We need to focus on the following instances:

s = L−
1 and l ∈ {L−

1 , L
−
2 }, s = L−

2 and l = L−
2 .

〈
yL−

1
,o−

〉
= σ (⟨w∆,o−⟩) ≤ σ(W2T ). (168)
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〈
yL−

2
,o−

〉
≤ σ(W2T ) + (1− σ(αT )) (1− σ(βT )) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2 · σ(W2T )

= σ(W2T )
[
1 + (1− σ(αT )) (1− σ(βT )) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2
]
. (169)

Hence,

∑
i∈U(0)

L∑
l=1

ϕ(WO(i,·)yl) ≤
∑

i∈U(0)

bT · σ(W2T )·[
2 + (1− σ(αT )) (1− σ(βT )) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2
]
.

In addition, we have

∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
≤ Õ

(
1

poly(d)

)
. (170)

By (157), we can write

F (X(n)) ≥ 1√
mL

{
m

2
· aT · σ(αT )

[
2 + (1− σ(W1T ))(1− σ(W2T ))(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]

−m

2
· bT · σ(W2T )

[
2 + (1− σ(αT )) (1− σ(βT )) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2
]

− Õ
(

1

poly(d)

)}
,

(171)

with

a =
ηc′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)
, (172)

and b =
η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)
. (173)

α =
c′

4

[
2a√
m

· ρ+0 −
√
mb

]
− Õ

(
1

poly(d)

)
= −Õ

(
1

poly(d)

)
(174)

Therefore, we conclude that

F (X(n)) ≥ 1√
mL

{
m

2
· aT · σ(αT )(1− σ(W1T ))(1− σ(W2T ))

[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]}

− Õ
(

1

poly(d)

)
(175)

If we can show
[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]
> 0, then we can prove

F (X(n)) ≥ C for some positive constant C.
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First define a random variable ψ1 = ⟨w∆,oj⟩. Then, we have from the definition of our locality-
structured data type

En

[
(1− σ(ψ1))

∆L+
o+

−2 − (1− σ(ψ1))
∆L+

o−
−2
]
= k′ > 0

(176)

for some positive constant k′.

The random variable ψ2 = (1− σ(ψ1))
∆L+

o+
−2 − (1− σ(ψ1))

∆L+
o−

−2 is bounded above by 1.

Applying Hoeffding’s bound, for any q > 0,

P

(
|ψ2 − Eψ2| ≳

√
q logN

N

)
≤ N−q. (177)

From this we can conclude that,

ψ2 =
[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]
≥ k′ −O

(√
q logN

N

)
,

(178)
with probability at most N−q .

Hence, for sufficiently large N, we have from (176)[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]
> 0 (179)

Therefore,

F (X(n)) ≥ C, where C is some positive constant. (180)

Similarly, for a negative sample, one can show by symmetry that the model output satisfies
F (X(n)) ≤ 1.

(S4.1) Derivation for the convergence rate. Let’s find the number of iterations T required such that
F (X(n)) ≥ 1, since the label is +1. We require

1√
mL

· m
2

· aT · σ(αT ) ≥ 1 + ϵ. (181)

Substituting the value of a = η
2
√
mL

[(
1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

]
and σ(αT ) ≈ 1

2 since α ≈ 0, the
condition becomes

√
maT

4L
=

√
m

4L
· η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
T

=
ηT

8L2

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
≥ 1 + ϵ. (182)

Solving for T , we obtain

T ≥ 8L2(1 + ϵ)

η

[(
1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

] ≥ 8L2

η

[(
1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

] . (183)

By combining (181) with the expression for the model output F (X(n)) in (175), we obtain

F (X(n)) ≥ (1 + ϵ) (184)
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Hence, the model output satisfies F (X(n)) ≥ 1.

(S4.2) Derivation for the sample complexity. Now we derive a sample-complexity bound that guar-
antees zero generalization error.

Assuming enough samples, we can write for sufficiently small λ≪ 1

O

(√
d logN

mN

)
≤ λ · η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
. (185)

From this we can derive a lower bound on the required sample size,

N ≥ Ω

λ−2 · 4L2d

η2
[(

1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

]2


≥ Ω

 L2d

η2
[(

1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

]2
 ,

(186)

which will be (19) in Theorem 2.

D PROOF OF LEMMAS IN APPENDIX B

Please refer to the supplementary material for this section. We defer all proofs to the supplementary
material, as the high-level ideas underlying the lemmas overlap with those presented in Appendix
C for locality data. However, the case of locality-structured data presents additional challenges.
Appendix E provides the complete proofs for the locality-structured data, which contain the main
technical ideas.

E PROOF OF LEMMAS IN APPENDIX C

E.1 PROOF OF LEMMA C.1

Proof. We know that the gradient of the loss function for the nth sample is

∂ℓ

∂WO(i,·)
=

∂ℓ

∂F (X(n))
· ∂F (X

(n))

∂WO(i,·)

= −z
(n)

L

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

)
· y(n)

l . (187)

If we consider the gradient for the population loss,

∂L
∂WO(i,·)

= −E

[
z(n)

L

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

)
· y(n)

l

]
(188)

= −Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]

+ Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
. (189)
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We are given that

p1 ≤
〈
w

(t)
∆ ,o+

〉
≤ q1, p2 ≤

〈
w

(t)
∆ ,o−

〉
≤ q2, and p3 ≤

〈
w

(t)
∆ ,oj

〉
≤ q3 for j ̸= 1, 2.

(190)

The Mamba output can be written as

yl(t) =

l∑
s=1

 l∏
j=s+1

(
1− σ(w

(t)
∆

⊤
xj)

) · σ(w(t)
∆

⊤
xs) · (x⊤

s xl)xs (191)

We have to consider FOUR cases.

Case I: l = s = L+
1

xs = xl = o+ (192)〈
EyL+

1
,o+

〉
= σ(w

(t)
∆

⊤
o+) ≥ σ(p1)±O(τ) =

1

1 + e−p1
±O(τ). (193)

Case II: l = s = L+
2 〈

EyL+
2 ,L+

2
,o+

〉
= σ(w

(t)
∆

⊤
o+)±O(τ). (194)

Case III: l = L+
2 , s = L+

1〈
EyL+

2 ,L+
1
,o+

〉
=

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L+
o+

−2

· σ(w(t)
∆

⊤
o+)±O(τ). (195)

Combining (194) and (195), we obtain〈
EyL+

2
,o+

〉
= σ(w

(t)
∆

⊤
o+)

+

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L+
o+

−2

· σ(w(t)
∆

⊤
o+)±O(τ).

(196)

Case IV: Others
For the other token positions, xl ̸= o+. Since we assume orthogonality among the features, yl = 0.

From our initialization, for the lucky neuron i ∈ W(0), vi = + 1√
m

. For i ∈ W(0), and z(n) = +1,
we have

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

=
1√
mL

· σ(w(t)
∆

⊤
o+)

[
2 +

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L+
o+

−2
]
±O(τ). (197)

Similarly for z = −1, we can obtain
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〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

=
1√
mL

· σ(w(t)
∆

⊤
o+)

[
2 +

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o+

−2
]
±O(τ). (198)

Therfore, combining (197) and (198),〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

=
1√
mL

· σ(w(t)
∆

⊤
o+) ·

(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
o−)

)
·[(

1− σ(w
(t)
∆

⊤
oj)

)∆L+
o+

−2

−
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o+

−2
]
±O(τ).

(199)

We aim to bound the deviation between the gradient of the population loss and that of the empirical

loss. Specifically,
∥∥∥∥ ∂L
∂W

(t)

O(i,·)
− ∂L̂

∂W
(t)

O(i,·)

∥∥∥∥
2

=
∥∥∥ 1
N

∑N
n=1 γn − Eγn

∥∥∥
2
, where

γn =
z(n)

L

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

)
y
(n)
l . (200)

Consider a fixed vector α with ∥α∥2 = 1. We will show that α⊤γn is a sub-Gaussian random
variable.

∣∣α⊤γn

∣∣ ≤ ∥α∥2 · ∥γn∥2 = ∥γn∥2. (201)

By the problem setup, we know that

|vi| =
1√
m
, |z(n)| = 1,

∣∣∣ϕ′ (WO(i,·)y
(n)
l

)∣∣∣ ≤ 1. (202)

Recall the Mamba output,

y
(n)
l (t) =

l∑
s=1

 l∏
j=s+1

(
1− σ(w

(t)
∆

⊤
xj)

) · σ(w(t)
∆

⊤
xs) · (x⊤

s xl)xs. (203)

Since ∥xs∥2 = 1, we get∥∥∥y(n)
l

∥∥∥
2
≤

l∑
s=1

∣∣al−s+1 ·
(
x⊤
s xl

)∣∣ · ∥xs∥2

≤
l∑

s=1

a

1− a
· 1 · 1 = a′ (where a′ denotes a constant). (204)
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Therefore, the norm of γn satisfies

∥γn∥2 ≤ 1

L

L∑
l=1

|vi| ·
∣∣∣ϕ′ (WO(i,·)y

(n)
l

)∣∣∣ · ∥∥∥y(n)
l

∥∥∥
2

≤ 1

L
· 1√

m

L∑
l=1

∥∥∥y(n)
l

∥∥∥
2

≤ 1

L
· 1√

m
·

L∑
l=1

a′ =
a′√
m
. (205)

Hence, ∣∣α⊤γn

∣∣ ≤ a′√
m

(bounded). (206)

This implies that α⊤γn is sub-Gaussian with variance proxy

σ2 = O
(

1

m

)
. (207)

Now consider the independent sub-Gaussian variables α⊤γ1, . . . ,α
⊤γN , each bounded as

− 1√
m

≤ α⊤γn ≤ 1√
m
. (208)

Applying Hoeffding’s inequality, for any q > 0,

P

(∣∣∣∣∣ 1N
N∑

n=1

α⊤γn − Eα⊤γn

∣∣∣∣∣ ≳
√
q logN

mN

)
≤ N−q. (209)

Observe that this can be written as

1

N

N∑
n=1

α⊤γn − Eα⊤γn = α⊤

(
1

N

N∑
n=1

γn − Eγn

)
:= α⊤ζ. (210)

Therefore, by Hoeffding’s inequality (cf. (209)),

P

(∣∣α⊤ζ
∣∣ ≳√q logN

mN

)
≤ N−q. (211)

To bound ∥ζ∥2, we use the dual norm identity

∥ζ∥2 = sup
∥α∥2=1

α⊤ζ. (212)

We apply an ε-cover argument to obtain

sup
∥α∥2=1

α⊤ζ ≤ 1

1− ε
max
α∈Cε

α⊤ζ

≤ 2 max
α∈C1/2

α⊤ζ. (213)

We have shown that for any fixed α,

P

(∣∣α⊤ζ
∣∣ ≳√q logN

mN

)
≤ N−q. (214)
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Therefore, for all fixed α ∈ C1/2,

∣∣α⊤ζ
∣∣ ≳√q logN

mN
with probability at most N−q. (215)

Then,

max
α∈C1/2

∣∣α⊤ζ
∣∣ ≳√q logN

mN
with probability at most |C1/2|N−q. (216)

Recall that the covering number satisfies

|Cε| ≤
(
3B

ε

)d

. (217)

For B = 1 and ε = 1
2 , we have

|C1/2| ≤ 6d. (218)

We can therefore write

P

(
∥ζ∥2 ≳

√
q logN

mN

)
≤ 6d ·N−q. (219)

We want this probability to be sufficiently small. Set q = d, so that

P

(
∥ζ∥2 ≳ 2

√
d logN

mN

)
≤
(
N

6

)−d

. (220)

Hence, the deviation is bounded with high probability:

∥ζ∥2 > O

(√
d logN

mN

)
with probability at most O(N−d). (221)

Or equivalently, with probability at most O(N−d),∥∥∥∥∥ 1

N

N∑
n=1

γn − Eγn

∥∥∥∥∥
2

> O

(√
d logN

mN

)
. (222)

That is, with high probability 1−O(N−d), we have∥∥∥∥∥ 1

N

N∑
n=1

γn − Eγn

∥∥∥∥∥
2

≤ O

(√
d logN

mN

)
. (223)

Using the identities

− ∂L̂
∂W

(t)
O(i,·)

=
1

N

N∑
n=1

γn, − ∂L
∂W

(t)
O(i,·)

= Eγn, (224)

we conclude that, with high probability,∥∥∥∥∥∥
− ∂L̂

∂W
(t)
O(i,·)

−

− ∂L
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ ∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

≤ O

(√
d logN

mN

)
. (225)
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Using the Cauchy–Schwarz inequality, we have∣∣∣∣∣∣
〈

∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉∣∣∣∣∣∣ ≤
∥∥∥∥∥∥ ∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

· ∥o+∥2

=

∥∥∥∥∥∥ ∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

(since ∥o+∥2 = 1)

≤ O

(√
d logN

mN

)
. (226)

Therefore, we obtain〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
−O

(√
d logN

mN

)
≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
+O

(√
d logN

mN

)
.

(227)

By pairing (199) with the given the conditions on w∆ in (190), we can write〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉

≥ 1√
mL

· σ(p1) · (1− σ(q1)) · (1− σ(q2))
[
(1− σ(q3))

∆L+
o+

−2 − (1− σ(p3))
∆L−

o+
−2
]
−O(τ)

(228)
and〈

− ∂L
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(q1) · (1− σ(p1)) · (1− σ(p2))
[
(1− σ(p3))

∆L+
o+

−2 − (1− σ(q3))
∆L−

o+
−2
]
+O(τ)

(229)

Therefore, we can obtain the lower bound and the upper bound of
〈
− ∂L̂

∂W
(t)

O(i,·)
,o+

〉
as

1√
mL

· σ(p1) · (1− σ(q1)) · (1− σ(q2))
[
(1− σ(q3))

∆L+
o+

−2

− (1− σ(p3))
∆L−

o+
−2
]
−O

(√
d logN

mN

)
−O(τ)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
(230)

and 〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(q1) · (1− σ(p1)) · (1− σ(p2))
[
(1− σ(p3))

∆L+
o+

−2 − (1− σ(q3))
∆L−

o+
−2
]

+O

(√
d logN

mN

)
+O(τ).

(231)
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This concludes the proof of (106) and (107) in Lemma C.1.

To obtain
〈
− ∂L̂

∂W
(t)

O(i,·)
,o−

〉
, we have to consider Ez=−1

[∑L
l=1

1
Lvi · ϕ

′
(
WO(i,·)y

(n)
l

)
· y(n)

l

]
.

If W (t)
O(i,·)o− > 0,

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

=
1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
±O(τ). (232)

If W (t)
O(i,·)o− ≤ 0,

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
= 0±O(τ). (233)

From (189), We know that〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
.

(234)

Hence, combining both cases, we conclude

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
−O(τ)

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
≤ O(τ). (235)

From (225), similar to (227), we can write〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
−O

(√
d logN

mN

)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
+O

(√
d logN

mN

)
. (236)
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Hence, we have

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
−O

(√
d logN

mN

)
−O(τ)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (237)

This concludes the proof of (108) and (109) in Lemma C.1.

Now consider
〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
for j ̸= 1, 2.〈

− ∂L
∂W

(t)
O(i,·)

,oj

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉
:= ⟨I1,oj⟩ − ⟨I2,oj⟩ . (238)

Because oj for j ̸= 1, 2 is identical in both I1 and I2, ⟨I1,oj⟩ − ⟨I2,oj⟩ = 0 ± O(τ). Hence,〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
= 0±O(τ). From (225), similar to (227), we can write〈

− ∂L
∂W

(t)
O(i,·)

,oj

〉
−O

(√
d logN

mN

)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,oj

〉
+O

(√
d logN

mN

)
+O(τ). (239)

Therefore, 〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
for j ̸= 1, 2. (240)

This concludes the proof of (110) in Lemma C.1.

E.2 PROOF OF LEMMA C.2

Proof. By definition, for any unlucky neuron i ∈ K+ \W(0), we have
WO(i,·)o+ ≤ 0. (241)

We first consider the alignment with o+. That is,〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
. (242)

The gradient is given in (188). We only need to consider the cases where
〈
y
(n)
l ,o+

〉
> 0. However,

since WO(i,·)o+ ≤ 0, we have

ϕ′
(
WO(i,·)y

(n)
l

)
= 0. (243)
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〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉
= 0±O(τ). (244)

We know by (227),〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤

〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
+O

(√
d logN

mN

)
. (245)

Hence, 〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (246)

We now analyze the alignment with o−. To obtain the bound on
〈
− ∂L̂

∂W
(t)

O(i,·)
,o−

〉
, we consider the

expectation Ez=−1

[∑L
l=1

1
Lvi · ϕ

′
(
WO(i,·)y

(n)
l

)
· y(n)

l

]
.

If W (t)
O(i,·)o− > 0, the inner product satisfies〈

Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

=
1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
±O(τ). (247)

If W (t)
O(i,·)o− ≤ 0, then〈

Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
= 0±O(τ). (248)

From (189), We know that〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
. (249)

Hence, combining both cases, we conclude

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
−O(τ).

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
≤ O(τ). (250)
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From (225), similar to (227), we can write〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
−O

(√
d logN

mN

)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
+O

(√
d logN

mN

)
. (251)

Hence,

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
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)
·
(
1− σ(w

(t)
∆

⊤
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)∆L−
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−2
]
−O

(√
d logN
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)
−O(τ)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (252)

Now consider
〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
for j ̸= 1, 2.

〈
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(t)
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,oj

〉
=
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[
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1

L
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(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉

−

〈
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[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉
:= ⟨I1,oj⟩ − ⟨I2,oj⟩ . (253)

Because oj for j ̸= 1, 2 is identical in both I1 and I2, ⟨I1,oj⟩ − ⟨I2,oj⟩ = 0 ± O(τ). Hence,〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
= 0±O(τ). From (225), similar to (227), we can write〈

− ∂L
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(t)
O(i,·)

,oj

〉
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d logN
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)

≤

〈
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O(i,·)

,oj

〉

≤

〈
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〉
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(√
d logN
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)
+O(τ). (254)

Therefore, 〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
for j ̸= 1, 2. (255)

E.3 PROOF OF LEMMA C.3

By symmetry, the proof is analogous to that of Lemma C.1; Please see Appendix E.1.
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E.4 PROOF OF LEMMA C.4

By symmetry, the proof is analogous to that of Lemma C.2; Please see Appendix E.2.

E.5 PROOF OF LEMMA C.5

Proof. The gradient of the loss with respect to w∆ for the nth sample is given by

∂ℓ

∂w∆
=− z(n)

L
·

m∑
i=1

L∑
l=1

vi ϕ
′
(
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(
1− σ

(
w⊤

∆x
(n)
r

))

·

(1− σ
(
w⊤

∆x
(n)
s

))
x(n)
s −

l∑
j=s+1

(
1− σ

(
w⊤

∆x
(n)
j

))
x
(n)
j


:=− z(n)

L
·

m∑
i=1

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

)
·

l∑
s=1

I
(n)
l,s . (256)

We define the gradient summand I
(n)
l,s as

I
(n)
l,s = βs,s · x(n)

s −
l∑

j=s+1

βs,jx
(n)
j , (257)

where the coefficients βs,s and βs,j are given by

βs,s = (W⊤
B x(n)

s )⊤(W⊤
C x

(n)
l )(WO(i,·)x

(n)
s )σ(w⊤

∆x
(n)
s )

×

[
l∏

r=s+1

(
1− σ(w⊤

∆x
(n)
r )
)]

(1− σ(w⊤
∆x

(n)
s )). (258)

and

βs,j = (W⊤
B x(n)

s )⊤(W⊤
C x

(n)
l )(WO(i,·)x

(n)
s )σ(w⊤

∆x
(n)
s )

×

[
l∏

r=s+1

(
1− σ(w⊤

∆x
(n)
r )
)]

(1− σ(w⊤
∆x

(n)
j )). (259)

If we consider the gradient of the empirical loss,

∂L̂
∂w∆

= − 1

N

N∑
n=1

z(n)

L
·

m∑
i=1

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

)
·

l∑
s=1

I
(n)
l,s . (260)

We are given that

p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1, and r∗1 ≤ ⟨W (t+1)

O(i,·)
⊤
,o+⟩ ≤ s∗1. (261)

From our initialization, for all i ∈ K+, we have vi = 1√
m

. This gives〈
− ∂ℓ

∂w∆
,o+

〉
=
z(n)

L

m∑
i=1

L∑
l=1

1√
m

· ϕ′(WO(i,·)y
(n)
l )

l∑
s=1

〈
I
(n)
l,s ,o+

〉
. (262)
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Averaging over the training samples, the inner product of the empirical gradient becomes〈
− ∂L̂
∂w∆

,o+

〉
=

1

N

N∑
n=1

z(n)

L
·

m∑
i=1

L∑
l=1

viϕ
′(WO(i,·)y

(n)
l ) ·

l∑
s=1

〈
I
(n)
l,s ,o+

〉

=
1

N

∑
n:z(n)=+1

1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,o+

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,o+

〉
+

1

N

∑
n:z(n)=−1

−1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,o+

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,o+

〉 . (263)

First, we focus on the contribution from the samples where z(n) = +1, for which we seek a lower
bound. We analyze the inner terms by considering four cases.

Case I: l = L+
1 , s = L+

1

Since l = s and xs = o+, it follows from (257) that〈
I
(n)
l,s ,o+

〉
= βs,s. (264)

Using (258), with WB = WC = I and xl = xs = o+, we obtain〈
I
(n)
l,s ,o+

〉
= βs,s = ⟨W (t+1)

O(i,·)
⊤
,o+⟩ · σ(⟨w(t)

∆ ,o+⟩) ·
(
1− σ(⟨w(t)

∆ ,o+⟩)
)
. (265)

Given the conditions in (261), we can write〈
I
(n)
l,s ,o+

〉
≥ (r∗1 −O(τ)) · σ(p1 −O(τ)) · (1− σ(q1 +O(τ))) . (266)

We can approximate σ(p1 −O(τ)) ≈ σ(p1)−O(τ) and 1− σ(q1 +O(τ)) ≈ 1− σ(q1)−O(τ),
since O(τ) < O( 1d ).

Therefore, we obtain〈
I
(n)
l,s ,o+

〉
≥ (r∗1 −O(τ)) · (σ(p1)−O(τ)) · (1− σ(q1)−O(τ))

≥ r∗1 · σ(p1) · (1− σ(q1))−O(τ).
(267)

Case II: l = L+
2 , s = L+

2

This configuration yields the same result as in Case I. We again obtain〈
I
(n)
l,s ,o+

〉
≥ r∗1 · σ(p1) · (1− σ(q1))−O(τ). (268)

Case III: l = L+
2 , s = L+

1 Comparing (258) with (259), we see that the two expressions differ only
in their last term. In this setting, xj equals o+ only when j = L+

2 . Consequently, xs = xj = o+,
which implies βs,s = βs,j . Hence,〈

I
(n)
l,s ,o+

〉
= βs,s − βs,j = 0±O(τ). (269)

Case IV: Others

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

For the other token positions,
〈
I
(n)
l,s ,o+

〉
= 0 due to orthogonality among the features.

Combining the above, the total contribution becomes

l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 2r∗1 · σ(p1) · (1− σ(q1))−O(τ). (270)

We now bound the entire sum over all tokens:

1

L

L∑
l=1

1√
m
ϕ′
(
WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 1

L

L∑
l=1

1√
m

·1·2r∗1 ·σ(p1)·(1− σ(q1))−O(τ). (271)

Let ρ+t = |W(t)| be the number of contributing neurons. Then the total contribution from the active
neurons is lower bounded as

1

L

∑
i∈K+

L∑
l=1

viϕ
′ (WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 2r∗1 · σ(p1) · (1− σ(q1))√

m
· ρ+t −O(τ). (272)

Next, we consider z(n) = −1 for i ∈ K+. For z(n) = −1, the negative sample also contains two o+

features.

Similar to the above, we have to consider 4 cases.

Case I: l = L+
1 , s = L+

1

Since l = s, it follows from (257) that

I
(n)
l,s = βs,s · xl. (273)

Since xl = o+, we have 〈
I
(n)
l,s ,o+

〉
= βs,s. (274)

We now seek an upper bound for this contribution. From the initial conditions in (261), we know

⟨W (t+1)
O(i,·)

⊤
,o+⟩ ≤ s∗1 +O(τ). (275)

Hence, we obtain〈
I
(n)
l,s ,o+

〉
≤ (s∗1 +O(τ)) · σ(q1 +O(τ)) · (1− σ(p1 −O(τ))) . (276)

We can approximate σ(q1 +O(τ)) ≈ σ(q1) +O(τ) and 1− σ(p1 −O(τ)) ≈ 1− σ(p1) +O(τ),
since O(τ) < O( 1d ).

Therefore, we obtain〈
I
(n)
l,s ,o+

〉
≤ (s∗1 +O(τ)) · (σ(q1) +O(τ)) · (1− σ(p1) +O(τ))

≤ s∗1 · σ(q1) · (1− σ(p1)) +O(τ).
(277)

Case II: l = L+
2 , s = L+

2

This configuration yields the same result as in Case I. We again obtain〈
I
(n)
l,s ,o+

〉
≤ s∗1 · σ(q1) · (1− σ(p1)) +O(τ). (278)

Case III: l = L+
2 , s = L+

1

In this case, the contribution vanishes:〈
I
(n)
l,s ,o+

〉
= 0±O(τ). (279)
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Case IV: Others

For the other token positions,
〈
I
(n)
l,s ,o+

〉
= 0 due to orthogonality among the features.

The maximum number of such contributing neurons is m
2 . Therefore, the total contribution is

bounded above by

1

L

∑
i∈K+

L∑
l=1

vi ϕ
′ (WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≤2s∗1 · σ(q1) · (1− σ(p1))√

m
· m
2

+O(τ)

=
√
m · s∗1 · σ(q1) · (1− σ(p1)) +O(τ).

(280)

Thirdly, let us consider the contribution for z(n) = +1 from i ∈ K−. From our initialization, for
i ∈ K−, vi = − 1√

m
. For z(n) = +1, we seek an upper bound on the contribution from such

neurons.

Let z(n) = +1. To maximize the term WO(i,·)x
(n)
s in (258), we can consider the token locations

which contain o− features since WO(i,·) has a large component in the o− direction. Then xl =
o− ⇒ yl contains the o− feature.

However, in this case, xs = o− = xl, and due to orthogonality,〈
I
(n)
l,s ,o+

〉
= 0. (281)

Hence, we only need to consider time steps l = L+
1 , L

+
2 , where o+ features appear.

Recall that 〈
− ∂ℓ

∂w∆
,o+

〉
=

1

L

m∑
i=1

L∑
l=1

− 1√
m

· ϕ′(WO(i,·)yl)

l∑
s=1

〈
I
(n)
l,s ,o+

〉
. (282)

We analyze the inner contributions case by case.

Case I: l = L+
1 , s = L+

1

Given that

WO(i,·)o+ ≤ δ1 +O

(√
d logN

mN

)
=: c, (283)

we obtain 〈
I
(n)
l,s ,o+

〉
≤ c · σ(q1) · (1− σ(p1)) +O(τ). (284)

Case II: l = L+
2 , s = L+

2

This configuration yields the same bound:〈
I
(n)
l,s ,o+

〉
≤ c · σ(q1) · (1− σ(p1)) +O(τ). (285)

Case III: l = L+
2 , s = L+

1

In this case, the contribution vanishes:〈
I
(n)
l,s ,o+

〉
= 0±O(τ). (286)

Case IV: Others

For the other token positions,
〈
I
(n)
l,s ,o+

〉
= 0 due to orthogonality among the features.

Thus, the total contribution from each i ∈ K− satisfies
l∑

s=1

〈
I
(n)
l,s ,o+

〉
≤ 2c · σ(q1) · (1− σ(p1)) +O(τ). (287)
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The maximum number of such contributing neurons is m
2 , so the full contribution is bounded by

1√
mL

∑
i∈K−

L∑
l=1

ϕ′
(
WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≤ 2c · σ(q1) · (1− σ(p1))√

m
· m
2

+O(τ)

=
√
mc · σ(q1) · (1− σ(p1)) +O(τ).

(288)

Therefore, the overall contribution is

− 1√
mL

∑
i∈K−

L∑
l=1

ϕ′(WO(i,·)yl)

l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ −

√
mc · σ(q1) · (1− σ(p1))−O(τ). (289)

Finally, we consider z(n) = −1 for i ∈ K−. For z(n) = −1, we want a lower bound since
vi = − 1√

m
.

We could consider l = L+ ⇒ xl = o+, and write

〈
WO(i,·),o+

〉
≥ δ1 −O

(√
d logN

mN

)
. (290)

However, the minimum number of such contributing neurons is not tractable. Thus, if we consider
the worst case where WO(i,·) for i ∈ K− does not learn the o+ feature, the obvious lower bound is
zero:

1

L

∑
i∈K−

L∑
l=1

1√
m
ϕ′
(
WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 0. (291)

We now combine the bounds for the four terms identified in (263), corresponding to the contributions
from: (i) K+ with z(n) = +1 as shown in (272), (ii) K+ with z(n) = −1 as shown in (280), (iii)
K− with z(n) = +1 as shown in (289), and (iv) K− with z(n) = −1 as shown in (291). We assume
the batch is balanced, so the number of positive and negative samples is equal, with each class
contributing N

2 samples. Then we have〈
− ∂L̂
∂w∆

,o+

〉
≥ 1

2

[
2r∗1 · σ(p1) (1− σ(q1))√

m
· ρ+t −

√
m · c · σ(q1) (1− σ(p1))

−
√
m · s∗1 · σ(q1) · (1− σ(p1)) + 0

]
−O(τ)

=
σ(p1) (1− σ(q1)) r

∗
1 · ρ+t√

m
− σ(q1) (1− σ(p1)) s

∗
1 ·

√
m

2
(292)

−O

(√
d logN

mN

)
−O(τ). (293)

where we have used the fact
√
m
2 ·σ(q1) (1− σ(p1)) ·c = O

(√
d logN
mN

)
since c = O

(√
d logN
mN

)
.

E.6 PROOF OF LEMMA C.6

Proof. The gradient is given in (256).

Let’s consider the alignment with ok for k ̸= 1, 2.

〈
− ∂ℓ

∂w∆
,ok

〉
=
z(n)

L

m∑
i=1

L∑
l=1

vi · ϕ′(WO(i,·)y
(n)
l )

l∑
s=1

〈
I
(n)
l,s ,ok

〉
(294)
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From our initialization, for all i ∈ K+, we have vi = 1√
m

.

We first consider the case z(n) = +1 for i ∈ K+. Since WO(i,·), for i ∈ K+ has a large o+

component, we have to consider the token features with o+. For z(n) = +1, only when l =
L+
2 , s = L+

1 we have xl = xs = o+. Therefore, WO(i,·)xs is significant. Hence, we have〈
I
(n)
l,s ,ok

〉
=−

l∑
j=s+1

βs,j⟨x(n)
j ,ok⟩

≤ − βs,s+1 (Assuming W.L.O.G. x(n)
s+1 = ok)

≤− ⟨W (t+1)
O(i,·)

⊤
,o+⟩ · σ(⟨w(t)

∆ ,o+⟩) ·
(
1− σ(⟨w(t)

∆ ,o+⟩)
)
·
(
1− σ(⟨w(t)

∆ ,ok⟩)
)∆L+

o+
. (295)

Using the the conditions in (261), we can write〈
I
(n)
l,s ,ok

〉
≤ (−r∗1 +O(τ)) · σ(p1 +O(τ)) · (1− σ(q1 −O(τ))) · (1− σ(q2 −O(τ)))

∆L+
o+ .

(296)

We can approximate σ(p1 +O(τ)) ≈ σ(p1) +O(τ), 1− σ(q1 −O(τ)) ≈ 1− σ(q1) +O(τ) and
1− σ(q2 −O(τ)) ≈ 1− σ(q2) +O(τ), since O(τ) < O( 1d ).

Hence, we obtain

1

L

L∑
l=1

1√
m

· ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ 1

L

L∑
l=1

1√
m

· 1 ·
[
−r∗1 · σ(p1) · (1− σ(q1)) · (1− σ(q2))

∆L+
o+

]
+O(τ)).

(297)

Let ρ+t = |W(t)| be the number of contributing neurons. Then the total contribution from K+

neurons is bounded as

1

L

∑
i∈K+

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ − r∗1√

m
· σ(p1) (1− σ(q1))

· (1− σ(q2))
∆L+

o+ · ρ+t +O(τ)).

(298)

Next, we consider z(n) = −1 for i ∈ K+. Since
〈
I
(n)
l,s ,ok

〉
< 0, we require a lower bound for this.〈

I
(n)
l,s ,ok

〉
= −

l∑
j=s+1

βs,j⟨x(n)
j ,ok⟩

≳− ⟨W (t+1)
O(i,·)

⊤
,o+⟩ · σ(⟨w(t)

∆ ,o+⟩) ·
(
1− σ(⟨w(t)

∆ ,o+⟩)
)
·
(
1− σ(⟨w(t)

∆ ,ok⟩)
)∆L−

o+
. (299)

Using the the conditions in (261), we can write〈
I
(n)
l,s ,ok

〉
≳ −s∗1 · σ(q1) · (1− σ(p1)) · (1− σ(p2))

∆L−
o+ . (300)

1

L

∑
i∈K+

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≳− s∗1√

m
· σ(q1) (1− σ(p1)) (1− σ(p2))

∆L−
o+ · ρ+t .

(301)
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Since ∆L−
o+

≫ ∆L+
o+

, this term is negligible which leads to

1

L

∑
i∈K+

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≥ −O

(
(1− σ(p2))

∆L−
o+

)
≈ 0. (302)

Thirdly, we consider the case i ∈ K−, for z(n) = −1. Similar to (295) and(296), when l = L−
2 , s =

L−
1 the contribution is significant.

〈
I
(n)
l,s ,ok

〉
≤ −r∗1 · σ(p1) · (1− σ(q1)) · (1− σ(q2))

∆L−
o− +O(τ)). (303)

Hence, we obtain

1

L

L∑
l=1

1√
m

· ϕ′(WO(i,·)y
(n)
l )

l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ 1

L

L∑
l=1

1√
m

· 1 ·
[
−r∗1 · σ(p1) · (1− σ(q1)) · (1− σ(q2))

∆L−
o−

]
+O(τ))

(304)

Let ρ−t = |U(t)| be the number of contributing neurons. Then the total contribution from K−
neurons is bounded as

1

L

∑
i∈K−

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ − r∗1√

m
σ(p1)

(
1− σ(q1)

) (
1− σ(q2)

)∆L−
o− ρ−t

+O(τ)).
(305)

Finally, we consider i ∈ K− for z(n) = +1. Following the same approach as in (299) to (301), we
can write

1

L

∑
i∈K−

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≳− s∗1√

m
· σ(q1) (1− σ(p1)) (1− σ(p2))

∆L+
o− · ρ−t .

(306)

Since ∆L+
o−

≫ ∆L−
o−

, this term is negligible which leads to

1

L

∑
i∈K−

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≥ −O

(
(1− σ(p2))

∆L+
o−

)
≈ 0. (307)
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Putting it together, We know〈
− ∂L̂
∂w∆

,ok

〉
=

1

N

N∑
n=1

z(n)

L
·

m∑
i=1

L∑
l=1

viϕ
′(WO(i,·)y

(n)
l ) ·

l∑
s=1

〈
I
(n)
l,s ,ok

〉

=
1

N

∑
n:z(n)=+1

1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,ok

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,ok

〉
+

1

N

∑
n:z(n)=−1

−1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,ok

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l )

l∑
s=1

〈
I
(n)
l,s ,ok

〉 . (308)

We now combine the bounds for the two terms identified in equation (308), corresponding to the
contributions from: (i) K+ with z(n) = +1 (298), (ii) K+ with z(n) = −1 (306), (iii) K− with
z(n) = +1 (301), and (iv) K− with z(n) = −1 (305). We assume the batch is balanced, so the
number of positive and negative samples is equal, with each class contributing N

2 samples. Then we
have 〈

− ∂L̂
∂w

(t)
∆

,ok

〉

≤− r∗1
2
√
m
σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]
+

s∗1√
m

· σ(q1) (1− σ(p1))
[
O
(
(1− σ(p2))

∆L+
o−

)
· ρ−t +O

(
(1− σ(p2))

∆L−
o+

)
· ρ+t

]
(309)

+O(τ)) (310)

〈
− ∂L̂
∂w

(t)
∆

,ok

〉

≤− r∗1
2
√
m
σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]
+O

(
(1− σ(p2))

∆L−
o+

)
+O

(
(1− σ(p2))

∆L+
o−

)
+O(τ)) (311)

From (302) and (307), we can conclude〈
− ∂L̂
∂w

(t)
∆

,ok

〉
≤ − r∗1

2
√
m
σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]
+O(τ)). (312)

F EXTENSION TO MULTI-CLASS CLASSIFICATION

Consider the classification problem with four classes, where each example is assigned a label z =
(z1, z2) ∈ {+1,−1}2 representing four distinct classes. Similarly to the binary setting, there exist

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

four orthogonal discriminative patterns. In the output layer, the scalar coefficient vi associated with
hidden neuron i is replaced by a two-dimensional vector vi ∈ R2.

Hence, we define the model output as

F (X) =
1

L

L∑
l=1

m∑
i=1

vi ϕ
(
WO(i,·)yl(X)

)
. (313)

F1(X
(n)) =

1

L

L∑
l=1

m∑
i=1

(vi)1 ϕ
(
WO(i,·)yl(X

(n))
)
, (314)

F2(X
(n)) =

1

L

L∑
l=1

m∑
i=1

(vi)2 ϕ
(
WO(i,·)yl(X

(n))
)
. (315)

The dataset can be divided into four groups as

D1 = {(X(n), z(n)) | z(n) = (1, 1)},
D2 = {(X(n), z(n)) | z(n) = (1,−1)},
D3 = {(X(n), z(n)) | z(n) = (−1, 1)},
D4 = {(X(n), z(n)) | z(n) = (−1,−1)}.

(316)

The loss function for data (X(n), z(n)) is

Loss(X(n), z(n)) = max
{
1− z(n)⊤F (X(n)), 0

}
. (317)

Since vi ∈ {± 1√
m
}2, we divide neurons into four groups:

W1 =
{
i : vi =

1√
m
(1, 1)

}
,

W2 =
{
i : vi =

1√
m
(1,−1)

}
,

W3 =
{
i : vi =

1√
m
(−1, 1)

}
,

W4 =
{
i : vi =

1√
m
(−1,−1)

}
.

(318)

For neuron i, the gradient decomposes as
∂Loss

∂WO(i,·)
= −z(n)1

∂F1(X
(n))

∂WO(i,·)
− z

(n)
2

∂F2(X
(n))

∂WO(i,·)
. (319)

Let o1,o2,o3,o4 denote the four discriminative directions. Consider i ∈ W2, i.e. vi =
1√
m
(1,−1).

Projecting the gradient onto o2, for any (X(n), z(n)) ∈ D2 we obtain

−
〈 ∂Loss

∂WO(i,·)
,o2

〉
≈ 2√

m
∥o2∥2 > 0, (320)

showing GD moves WO(i,·) toward o2.

For samples from the other classes:

(X(n), z(n)) ∈ D1 : −
〈

∂Loss

∂WO(i,·)
,o1

〉
≈ 0,

(X(n), z(n)) ∈ D3 : −
〈

∂Loss

∂WO(i,·)
,o3

〉
≈ − 2√

m
∥o3∥2,

(X(n), z(n)) ∈ D4 : −
〈

∂Loss

∂WO(i,·)
,o4

〉
≈ 0.

(321)

Thus, for i ∈ W2, the update direction aligns with o2, and similarly neurons in W1,W3,W4 align
with o1,o3,o4 respectively. Similarly, we can analyze the gradient dynamics of the gating vector
w∆.
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