
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS OF MAMBA’S TRAINING
DYNAMICS: FILTERING RELEVANT FEATURES FOR
GENERALIZATION IN STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent empirical success of Mamba and other selective state space models
(SSMs) has renewed interest in non-attention architectures for sequence model-
ing, yet their theoretical foundations remain underexplored. We present a first-
step analysis of generalization and learning dynamics for a simplified but rep-
resentative Mamba block: a single-layer, single-head selective SSM with input-
dependent gating, followed by a two-layer MLP trained via gradient descent
(GD). Our study adopts a structured data model with tokens that include both
class-relevant and class-irrelevant patterns under token-level noise and examines
two canonical regimes: majority-voting and locality-structured data sequences.
We prove that the model achieves guaranteed generalization by establishing non-
asymptotic sample complexity and convergence rate bounds, which improve as
the effective signal increases and the noise decreases. Furthermore, we show
that the gating vector aligns with class-relevant features while ignoring irrelevant
ones, thereby formalizing a feature-selection role similar to attention but realized
through selective recurrence. Numerical experiments on synthetic data justify our
theoretical results. Overall, our results provide principled insight into when and
why Mamba-style selective SSMs learn efficiently, offering a theoretical counter-
point to Transformer-centric explanations.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the mainstream framework in large language mod-
els (Achiam et al., 2023; Guo et al., 2025; Brown et al., 2020; Touvron et al., 2023). However, due
to the quadratic time and memory complexity introduced by the attention mechanism with respect to
input length (Gu & Dao, 2023; Dao & Gu, 2024), Transformers are inefficient when handling long
input sequences. Recently, State Space Models (SSMs) (Gu & Dao, 2023; Dao & Gu, 2024; Zhu
et al., 2024; Wang et al., 2024a; Behrouz & Hashemi, 2024; Liu et al., 2024; Wang et al., 2024b)
have shown competitive or superior performance to Transformers across domains such as language
(Gu & Dao, 2023), vision (Zhu et al., 2024; Liu et al., 2024), graphs (Wang et al., 2024a; Behrouz &
Hashemi, 2024), audio (Yadav & Tan, 2024), and reinforcement learning (Lu et al., 2023). SSMs has
brought many advantages absent in Transformer-based models, such as linear computational com-
plexity and hardware-friendly properties that enable efficient parallelization. Among these models,
Mamba (Gu & Dao, 2023) proposes a selection mechanism, which parameterizes the SSM with the
input, which allows the model to dynamically retain or discard relevant and irrelevant information.
This enables the Mamba model to achieve performance comparable to Transformer-based models
in long-text modeling as well as tasks such as visual classification and dense prediction (Zhu et al.,
2024; Liu et al., 2024), but in a more efficient manner.

Although recent work has primarily focused on the empirical performance of Mamba and its ar-
chitectural comparisons with other models, the theoretical understanding of Mamba remains less
investigated. In addition, recent empirical evidence shows that Mamba’s success is highly sensitive
to hyperparameter tuning (Okpekpe & Orvieto, 2025). Such dependence on fragile optimization
choices raises fundamental questions about why and when Mamba succeeds. These include funda-
mental inquiries such as:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Under what conditions can a Mamba be trained to achieve satisfactory generalization?

• How is the selection mechanism implemented through Mamba’s components?

Existing theoretical studies on Mamba or related SSMs mainly focus on the expressive power and
the mechanisms of optimal parameters. Orvieto et al. (2024) and Nishikawa & Suzuki prove SSMs
augmented with MLPs are universal approximators of regular functionals and can mimic token selec-
tion dynamically. Muca Cirone et al. (2024) and Huang et al. (2025) show that Mamba has stronger
expressive power than its diagonal SSM predecessor, especially in approximating discontinuous
functions. Li et al. (2024c) and Li et al. (2025b) respectively prove that two simplified SSMs, H3
and GLA, implicitly perform weighted preconditioned GD at the global minima of in-context learn-
ing problems when input with context examples. However, these works do not explain whether the
selection mechanisms and advantages of Mamba can actually be obtained through practical training.
Moreover, these studies do not analyze the generalization ability of Mamba models.

Contributions of this paper. In this work, we study a nonlinear neural model composed of a one-
layer Mamba block and a two-layer perceptron, which is simplified but sufficiently representative
to reflect the gating structure in Mamba. By assuming the presence of the class-relevant feature
that influence the label and class-irrelevant features that do not, we respectively formulate majority-
voting and locality-structured data, whose labels depend on the proportion and the spatial/temporal
locality of a certain class-relevant feature in the data. To the best of our knowledge, this work
provides the first theoretical analysis of Mamba’s training dynamics with input-dependent gating,
together with generalization guarantees under the two structured data regimes. The highlights of our
technical contributions include:

First, we develop a general theoretical framework for analyzing gated architectures trained with gra-
dient descent on structured data. Our analysis explains how the selection mechanism within Mamba
interacts with data structure to enable efficient learning and guaranteed generalization, complement-
ing prior results that focus mainly on attention-based models.

Second, we provide a theoretical characterization of the gating mechanism in Mamba. We show
that the gating parameter vector is trained to amplify class-relevant features while ignoring class-
irrelevant ones, thereby formalizing the intuition that the gating network dynamically allocates ca-
pacity to informative patterns.

Third, we establish the sample complexity and the required number of iterations for two canonical
data types: majority-voting and locality-structured data sequences. For majority-voting data, these
bounds scale with the gap between the class-relevant and confusion features; for locality-structured
data, they depend on the concentration of class-relevant tokens. In both regimes, stronger signal and
lower token-level noise yield faster convergence and better generalization.

1.1 RELATED WORK

State Space Models (SSMs). Building upon the early S4 models (Gu et al., 2021; Gupta et al.,
2022; Smith et al.), Mamba (Gu & Dao, 2023; Dao & Gu, 2024) introduced input-dependent gating
to dynamically select relevant features, achieving remarkable performance in NLP and CV. Recent
works extending SSMs beyond 1D sequences have highlighted the importance of input ordering and
scanning. For example, VMamba (Liu et al., 2024) introduces SS2D, employing multiple scanning
routes to bridge sequential structure with the non-sequential nature of vision inputs, while Graph
Mamba (Wang et al., 2024a; Behrouz & Hashemi, 2024) adapts SSMs to non-Euclidean domains
by leveraging graph connectivity. Collectively, these works show that the effectiveness of SSMs is
tightly linked to input ordering and scanning strategies, a challenge that also motivates our theoreti-
cal analysis.

Theoretical Analysis of SSMs. Theoretical understanding of Mamba is still in its early stages and
has so far centered primarily on approximation theory, such as connections to attention-like mech-
anisms (Dao & Gu, 2024; Nishikawa & Suzuki), expressive capacity (Cohen-Karlik et al., 2025;
Huang et al., 2025; Muca Cirone et al., 2024; Bao et al., 2025), long-range dependency modeling
(Ma & Najarian, 2025; Yu & Erichson, 2025), and the comparison with Transformers Jelassi et al.
(2024). Beyond approximation theory, several recent works have begun examining optimization
and generalization aspects of SSMs. Honarpisheh et al. (2025) provide a generalization-error bound
based on Rademacher complexity; Slutzky et al. (2024) study implicit bias under a teacher–student
setting and show that gradient flow can converge to a low-rank solution, though their model does not

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

incorporate Mamba’s input-dependent gating. These analyses provide valuable intuition about the
representational strengths and weaknesses of Mamba blocks. However, such results remain largely
structural: they establish only the existence of desirable representations, without explaining whether
or how these capabilities arise during training, particularly under Mamba’s unique mechanism. Mo-
tivated by this gap, we focus on studying how Mamba interacts with structured data, with particular
emphasis on the role of its gating mechanism in shaping training dynamics and generalization.

Feature Learning Framework. Recent theoretical studies of deep learning have shifted focus from
the NTK framework (Jacot et al., 2018; Allen-Zhu et al., 2019b; Arora et al., 2019; Wen & Li,
2021) to the feature-learning framework, where data is modeled as a combination of features and
the central question is how neural networks align with these features. Much of the recent work has
concentrated on transformers (Li et al., 2023a; 2024b; 2023b; 2025a), feedforward neural networks
(Bakshi et al., 2019; Arora et al., 2019), and graph neural networks (Zhang et al., 2023; Li et al.,
2024a). Due to the inherent complexity of non-convex optimization and modern architectures, prior
works on feature learning have, to the best of our knowledge, focused primarily on shallow networks.
In this work, we extend the structural data model to analyze the training dynamics of a shallow yet
representative Mamba block, with particular emphasis on how its data-dependent gating mechanism
shapes learning and generalization.

2 PRELIMINARIES

Structured state space models (S4). For the t-th token, e.g., at time step t, let xt ∈ Rd be the
input, Ht ∈ RN×d denote the corresponding hidden state, and yt ∈ Rd denote the output. Let
A ∈ RN×N and b, c ∈ RN be model parameters. The discrete-time SSM is given by

Ht = AHt−1 + bx⊤
t , yt = H⊤

t c, (1)
where A = exp(∆A) and b = A−1(exp(∆A)− I) b with ∆ > 0 as the sampling step.

Mamba. To overcome the data-independence of S4, recent work introduced selective state space
models (Gu & Dao, 2023), where key parameters are made input-dependent. Concretely, given input
tokens xt ∈ Rd, the recurrence parameters are defined as

bt = W⊤
B xt, ∆t = log

(
1 + ew

⊤
∆xt
)
, ct = W⊤

C xt, (2)

with learnable projections WB ,WC ∈ Rd×N and a gating vector w∆ ∈ Rd. The discretization
then yields two input-dependent gates,

b̄t = σ(w⊤
∆xt) bt, āt = 1− σ(w⊤

∆xt), (3)
which respectively control the input update and the carry-over of past states. With hidden state
Ht ∈ RN×d, the recurrence becomes

Ht = ātHt−1 + b̄tx
⊤
t . (4)

Mamba output at token t is given by:
yt(X) := H⊤

t ct = σ(w⊤
∆xt) (W

⊤
B xt)

⊤(W⊤
C xt)xt +

(
1− σ(w⊤

∆xt)
)
H⊤

t−1ct

=

t∑
s=1

(t∏
j=s+1

(
1− σ(w⊤

∆xj)
))

· σ(w⊤
∆xs) (W

⊤
B xs)

⊤(W⊤
C xt)xs. (5)

Connection and Difference with Transformer. The Mamba formulation reveals a natural analogy
to attention mechanisms (Dao & Gu, 2024; Sieber et al., 2024). In particular, the input-dependent
matrices WB and WC can be interpreted as counterparts to queries and keys in the self-attention,
while the gating term σ(w⊤

∆xt) acts as a dynamic weight controlling how past information con-
tributes to the current output (Dao & Gu, 2024). This structure yields a formulation closely related
to gated linear attention (Yang et al.; Li et al., 2025b; Lu et al., 2025), thereby highlighting a connec-
tion between SSM and Transformer models. Meanwhile, Mamba departs from these architectures:
its gating mechanism is defined through multiplicative interactions, effectively involving products
of successive terms. This nonlinearity makes the analysis of Mamba substantially different and more
challenging than that of gated linear attention. Unlike additive attention-style weighting, Mamba’s
gating introduces input-dependent multiplicative modulation in the selection mechanism. This alters
how information is propagated through the model and results in training dynamics that differ from
attention-based architectures.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PROBLEM FORMULATION

Following existing works (Brutzkus & Globerson, 2021; Zhang et al., 2023; Li et al., 2023a), we
consider a binary classification problem with training data {(X(n), z(n))}Nn=1 sampled i.i.d. from
an unknown distribution D, where z(n) ∈ {+1,−1} is the label. The goal is to learn a model that
maps X to z for any (X, z) ∼ D. Each input takes the form X(n) = [x

(n)
1 , . . . ,x

(n)
L] ∈ Rd×L

with L tokens, where each token is d-dimensional. Tokens can be image patches (Dosovitskiy et al.,
2021; Touvron et al., 2021) or subwords (Sennrich et al., 2016; Kudo & Richardson, 2018).

Learning is performed using a simplified Mamba block formulated by (5), followed by a two-layer
MLP. Formally, the model output can be expressed as

F (X) =
1

L

L∑
l=1

m∑
i=1

viϕ
(
WO(i,·)yl(X)

)
, (6)

where ϕ(·) denotes the ReLU function, and WO ∈ Rm×d, with WO(i,·) being the i-th row of WO.
Here, yl(X) corresponds to the l-th token output of Mamba, as defined in (5). In addition, vi
represents the output-layer weight for the i-th hidden unit.

Model Training. Let Ψ = (v,WO,w∆,WB ,WC) denote the set of model parameters. The
training process is to minimize the empirical risk fN (Ψ),

min
Ψ

fN (Ψ) =
1

N

N∑
n=1

ℓ(X(n), z(n);Ψ), (7)

where ℓ(X(n), z(n);Ψ) is the hinge loss function, i.e.,

ℓ(X(n), z(n);Ψ) = max{0, 1− z(n) · F (X(n))}. (8)

The empirical risk minimization problem in (7) is solved via gradient descent (GD). For the theo-
retical analysis, we consider the full batch gradient update with a learning rate of η at each iteration
t = 1, 2, . . . , T . Each entry of WO ∈ Rm×d is independently initialized from N (0, c20), and w∆

is initialized to 0. Similarly, each entry of v ∈ Rm is independently sampled from {+ 1√
m
,− 1√

m
}

with equal probability. v is fixed during training, as in other theoretical works (Allen-Zhu & Li,
2022; Arora et al., 2019; Karp et al., 2021; Allen-Zhu et al., 2019a; Li et al., 2023a; 2024b).

Generalization. The generalization error of the learned model Ψ is evaluated using the population
risk f(Ψ), defined as

f(Ψ) = f(v,WO,w∆,WB ,WC) = E(X,z)∼D ℓ(X, z). (9)

4 THEORETICAL RESULTS

Table 1: Some important notations
yl Mamba block output at token position l N Number of samples in a batch
d Embedding dimension m The number of neurons in WO

η Learning rate for gradient descent L Length of the squence
∆L+

o+
Concentration of class-relevant tokens αr Average fraction of class-relevant tokens

∆L−
o+

Dispersion of the confusion tokens αc Average fraction of confusion tokens

4.1 KEY TAKEAWAYS AND INSIGHTS OF THE FINDINGS

Before formally presenting our data assumptions and theoretical results, we first summarize key
insights derived from our theoretical findings. We consider a data model where tokens are noisy
versions of class-relevant patterns that determine the data label and class-irrelevant patterns that do
not affect the label. Some important parameters are summarized in Table 1.

(T1). Convergence and sample complexity analysis of GD to achieve guaranteed generaliza-
tion. We introduce a theoretical framework for analyzing gated architectures with structured data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Compared with existing results on attention-based models, our framework captures the role of the
gating mechanism inside the Mamba block and structured weight interactions, explaining how gra-
dient descent (GD) exploits data structure to improve learning efficiency. Based on this analysis, we
show that a model trained with GD achieves guaranteed generalization with high probability over
the randomness of the data and the GD updates.

(T2). Theoretical characterization of the gating mechanism in Mamba. We prove that dur-
ing training, the gating network learns to prioritize class-relevant features while ignoring irrele-
vant ones. In the majority-voting regime, the gating vector w∆ becomes increasingly aligned with
class-relevant directions: gradients along those directions grow, while those along irrelevant fea-
tures remain negligible. In the locality-structured data regime, learning emphasizes the elimination
of irrelevant features. Their directions are consistently pushed downward by negative updates, while
the directions of relevant features remain nearly unchanged. This occurs because class-relevant and
confusion tokens appear in equal proportion, so the model cannot amplify the former and instead
reduces the influence of the latter. These dynamics strengthen informative tokens and weaken un-
informative ones, inducing effective sparsity in the activations and formalizing the intuition that
Mamba allocates capacity to the most important patterns in the data.

(T3). Larger fraction or higher local concentration of class-relevant features accelerates learn-
ing. We show that both the number of iterations and the sample complexity required for gen-
eralization depend on the discriminative structure of the data and the token-level noise τ . For
majority-voting data, these quantities scale as (αr − αc)

−2, so learning is faster when the frac-
tion of class-relevant tokens is larger. For locality-structured data, the number of iterations scales as[
(12)

∆L+
o+ − (12)

∆L−
o+
]−1

, while the sample complexity scales as
[
(12)

∆L+
o+ − (12)

∆L−
o+
]−2

. Here,
∆L+

o+
denotes the separation between class-relevant features o+ in positive samples (capturing their

locality), and ∆L−
o+

denotes the separation between confusion features o+ in negative samples (cap-
turing the locality of confusing patterns). Thus, when ∆L+

o+
≫ ∆L−

o+
, the locality of class-relevant

features dominates, which reduces both the number of iterations and the sample complexity needed
for convergence, implying faster learning when class-relevant tokens are more concentrated locally.
Finally, in both regimes, smaller token-level noise τ further accelerates learning.

4.2 DATA MODEL

Consider an arbitrary set of orthonormal vectors O = {o+,o−,o3, . . . ,od} in Rd, where o+ and o−
are discriminative features and the remaining vectors oj , j ≥ 3, are class-irrelevant (filler) features.
Depending on the class label, either o+ or o− serves as the class-relevant pattern, while the other
acts as a confusion pattern. Each token x

(n)
l in X(n) is a noisy version of one of the input patterns

(features), i.e., x(n)
l = o+ ξ, where o ∈ O and ξ is the Gaussian noise. We consider two different

data types: majority-voting and locality-structured data.

Majority Voting Data. For the majority voting data type, the label is determined by a majority vote
over the class-relevant patterns. Let αr and αc denote the average fractions of class-relevant tokens
and confusion tokens over the distribution D, respectively. In positive samples, noisy variants of o+

are class-relevant, while noisy variants of o− act as confusion tokens. In negative samples, the roles
are reversed. All other tokens correspond to class-irrelevant features.

Locality-structured Data. For the locality-structured data type, each sequence contains two o+

tokens and two o− tokens, while all other tokens correspond to class-irrelevant features. In positive
samples, the two o+ tokens are close to each other, while the two o− tokens are far apart; formally,
∆L+

o+
≪ ∆L+

o−
, where ∆L+

o+
and ∆L+

o−
denote the distances between the two o+ and o− tokens,

respectively. In negative samples, the pattern is reversed: ∆L−
o−

≪ ∆L−
o+

.

In addition, we consider a balanced dataset sampled from the unknown distribution D. Let N+ =
{(X(n), z(n)) : z(n) = +1, n ∈ [N]} and N− = {(X(n), z(n)) : z(n) = −1, n ∈ [N]} denote
the sets of positively and negatively labeled samples, respectively. Then the class balance satisfies∣∣ |N+| − |N−|

∣∣ = O(
√
N).

Interpreting the Data Model in Practice. Our theoretical data models are motivated by common
patterns observed in practical machine learning tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

On the one hand, the majority-voting data model captures a widely adopted assumption (Li et al.,
2023a; 2024b) in theoretical analysis, whereby the label is determined by the aggregate contribution
through majority vote. For example, in image classification tasks (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2014; He et al., 2016), the class label is often driven by multiple discriminative patches
corresponding to foreground objects (class-relevant tokens). In contrast, background patches may
contain other objects or patterns that are not associated with the target class (confusing tokens),
along with random patches that are entirely unrelated (class-irrelevant tokens) (Dosovitskiy et al.,
2021; Touvron et al., 2021).

On the other hand, the locality-structured data corresponds to tasks where semantic meaning is
concentrated in spatially or temporally localized clusters, while background features are more dis-
persed. This structure is most familiar in vision tasks such as object detection and localization (Ren
et al., 2015; Carion et al., 2020; Zhou et al., 2016) and image captioning (Vinyals et al., 2016; Xu
et al., 2015; Radford et al., 2021), where the decisive content is often confined to a small region of
the image. For example, in an image labeled “dog in a park,” the prediction relies primarily on the
contiguous region containing the dog rather than on scattered background textures. A similar prin-
ciple holds in audio and speech recognition (Yadav & Tan, 2024; Gulati et al., 2020), where short
phonetic segments capture the information needed to recognize words, and in genomics (Alipanahi
et al., 2015; Zhou & Troyanskaya, 2015), where functional elements such as sequence motifs and
regulatory regions are localized to short windows of DNA. In these settings, the local structure of
nearby tokens strongly correlates with the label.

Together, the majority-voting and locality-structured models offer complementary perspectives on
when selective recurrence can most effectively support learning from structured real-world data.

4.3 FORMAL THEORETICAL RESULTS

4.3.1 THEORETICAL RESULTS FOR MAJORITY-VOTING DATA

We next present a lemma characterizing how the gating vector aligns with different features under
the majority-voting data.

Lemma 4.1 (Gating Vector Alignment for Majority Voting Data). With initialization where each
entry of WO is drawn independently from N (0, ξ2) and w

(0)
∆ = 0. With a sufficient number of

training samples and iterations, we have〈
w

(T)
∆ ,o+

〉
≥ ηT

8L2
Θ((αrL− αcL)

2) (10)

〈
w

(T)
∆ ,o−

〉
≥ ηT

8L2
Θ((αrL− αcL)

2) (11)

⟨w(T)
∆ ,oj⟩ ≤ Õ (1/poly(d)) , ∀j ≥ 3. (12)

Lemma 4.1 establishes that after sufficient training, the gating vector w∆ aligns positively with the
class-relevant features o+(10) and o− as shown in (11), while its alignment with irrelevant features
remains strictly negative as shown in (12). In other words, the selection mechanism implicitly acts
as a feature selector, amplifying relevant tokens and ignoring irrelevant ones. Lemma 4.1 serves as
an informal version of Lemmas B.5 and B.6.

Remark 1: With majority voting data, the gating vector aligns with discriminative features, i.e., o+

and o−. As a result, the model’s output focuses primarily on these features, giving more weight to
tokens that carry discriminative features while reducing the influence of less important tokens. Since
the number of class-relevant tokens is greater than the number of confusing ones, e.g., in a positive
sample, the tokens containing o+ outnumber those containing o−, the model can correctly assign
the label through this majority effect. Furthermore, as the difference between the counts of class-
relevant features and confusing features (i.e., αr − αL) increases, the gating vector converges much
faster. Overall, this gating mechanism allows the model to use its training samples more efficiently
because it learns to emphasize the most relevant feature early on and ignore irrelevant features.

We now present the theorem establishing the generalization guarantee for Mamba under the
majority-voting data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 1 (Generalization for Majority Voting Data). Suppose the model width satisfies m ≥
d2 log q for some constant q > 0, and the token noise level is bounded as τ < O

(
1
d

)
. Then, with

probability at least 1−N−d, if the number of training samples N satisfies

N ≥ Ω

(
L2d

η2(αr − αc)2

)
, (13)

and the number of iterations T satisfies

T = Θ

(
L2

η(αr − αc)2

)
, (14)

the model returned by Algorithm 1 achieves guaranteed generalization, i.e.,

f
(
v(0),W

(T)
O ,w

(T)
∆ ,W

(0)
B ,W

(0)
C

)
= 0. (15)

Theorem 1 establishes the sample complexity, as shown in (13), and the convergence rate, as given
in (14), that are required to guarantee desirable generalization when training the model in (6) using
GD for the majority-voting data type. In other words, the model achieves good generalization once
a sufficient number of samples is available, as specified in (13), and training has proceeded for a
sufficient number of iterations, as specified in (14).

Remark 2: With majority-voting data, the Mamba architecture can effectively capture the under-
lying data distribution by first identifying discriminative features through its gating mechanism and
then aggregating them via a data-dependent recurrent mechanism. In this sense, Mamba behaves
similarly to the Transformer (Li et al., 2023a), suggesting a close connection between the two mod-
els despite their architectural differences. According to the results of Lemma 4.1, the model further
benefits from a faster convergence rate and reduced sample complexity when the gap between class-
relevant and confusing features is larger.

4.3.2 THEORETICAL RESULTS FOR LOCALITY-STRUCTURED DATA

We next present a lemma characterizing how the gating vector aligns with different features under
the locality-structured data.
Lemma 4.2 (Gating Vector Alignment for Locality-structured Data). With initialization where each
entry of WO is drawn independently from N (0, ξ2) and w

(0)
∆ = 0. With a sufficient number of

training samples and iterations, we have

⟨w(T)
∆ ,o+⟩ ≥ −Õ (1/poly(d)) , (16)

⟨w(T)
∆ ,o−⟩ ≥ −Õ (1/poly(d)) , (17)

〈
w

(T)
∆ ,oj

〉
≤ −ηTc′3

16L

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
][(

1

2

)∆L+
o+

+

(
1

2

)∆L−
o−
]
. (18)

Lemma 4.2 establishes that after sufficient training, the gating vector w∆ remains close to zero for
class-relevant features o+ as shown in (16) and o− as shown in (17), however its alignment with
irrelevant features remains strongly negative as shown in (18). Through this mechanism, the gating
favors class-relevant features to select the most informative feature for learning. Lemma 4.2 serves
as an informal version of Lemmas C.5 and C.6.

Remark 3: The gating vector behaves differently from majority voting, though the overall insights
remain similar. We can no longer guarantee that w∆ will always grow in the direction of discrimi-
native features, because we assume that the number of class-relevant features can be comparable to
the number of confusing features. This assumption is introduced to highlight the role of data locality
in shaping the gating vector, which is more challenging to analyze in isolation since majority voting
can readily reinforce it; however, their combined effect better reflects real-world data. Although this
direct growth no longer holds, the gating vector consistently decreases in the direction of irrelevant
features. At a higher level, this can be seen as a synergistic interaction: the recurrent mechanism
captures locality and suppresses irrelevant features, which pushes the gating vector to decrease along

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

those directions, while the gating itself further amplifies this suppression. From another perspective,
by making the model pay less attention to irrelevant features, the gating vector effectively shifts
more attention toward discriminative features.

We now present the theorem establishing the generalization guarantee for Mamba under the locality-
structured data.

Theorem 2 (Generalization for Locality-structured Data). Suppose the model width satisfies m ≥
d2 log q for some constant q > 0, and the token noise level is bounded as τ < O

(
1
d

)
. Then, with

probability at least 1−N−d, if the number of training samples N satisfies

N ≥ Ω

(
L2d

η2
[
(1/2)

∆L+
o+ − (1/2)

∆L−
o+
]2), (19)

and the number of iterations T satisfies

T = Θ

(
L2

η
[
(1/2)

∆L+
o+ − (1/2)

∆L−
o+
]), (20)

the model returned by Algorithm 1 achieves guaranteed generalization, i.e.,

f
(
v(0),W

(T)
O ,w

(T)
∆ ,W

(0)
B ,W

(0)
C

)
= 0. (21)

Theorem 2 shows that good generalization on locality-structured data is guaranteed if the sample
complexity meets (19) and training proceeds for at least (20) iterations.

Remark 4: We establish that Mamba can also effectively learn this type of data through its ability to
exploit locality, in contrast to Transformers, where no such guarantee is provided in (Li et al., 2023a).
In our analysis, ∆L+

o+ captures the distance between class-relevant tokens, reflecting the locality of
class-relevant features, while ∆L−

o+ captures the locality of confusing features. The effectiveness of
learning is governed by the separation between these two quantities. In particular, when ∆L+

o+ ≫
∆L−

o+, the locality of class-relevant features dominates that of confusing features. In particular,
when ∆L+

o+ ≫ ∆L−
o+, the locality of class-relevant features dominates that of confusing ones,

which reduces both the sample complexity and the number of iterations required for convergence,
allowing Mamba to learn more effectively and efficiently.

4.4 TECHNICAL NOVELTY AND CHALLENGES

Differences with Existing Works. Our work is mainly inspired by prior feature-learning analyses
of (Bakshi et al., 2019; Arora et al., 2019; Brutzkus & Globerson, 2021; Li et al., 2023a; 2025a).
Building on these foundations, we develop a framework specifically tailored to gated architectures
with structured data. Unlike these existing models, Mamba introduces an input-dependent gating
mechanism, absent from other network architectures, which acts as a dynamic selection operator and
requires new analytical techniques to capture its learning dynamics. Moreover, while the majority-
voting data model has been previously studied in the context of Transformers (Li et al., 2023a),
we show that Mamba can also learn this type of data with comparable performance. Furthermore,
we find that Mamba is particularly effective at capturing the inherent locality of the data, which
motivates us to introduce a new locality-structured data model. For both regimes, we establish
generalization guarantees within the framework of selective state space models, thereby advancing
our understanding of this class of architectures and clarifying their distinctions from Transformers.
A proof sketch can be found in Appendix A.2.

Technical Challenges. Our analysis faces several unique technical challenges stemming from the
structure of selective SSMs. Unlike attention-based models, where interactions are primarily addi-
tive, Mamba’s gating mechanism introduces multiplicative recurrences across tokens, with dynam-
ics that are explicitly sensitive to token order. These multiplicative effects accumulate over time,
substantially complicating the training analysis. To capture this behavior, we systematically track
the gradient updates of the gating vector w∆, decomposing the contributions from different token
positions and analyzing how token placement influences training dynamics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Specifically, in the majority-voting data, the gradient decomposition of the gating includes off-
diagonal terms β(l)

s,s+1 that exhibit additional multiplicative decay due to the recursive gating struc-

ture, whereas the diagonal term β
(l)
s,s is independent of token position. Hence, it is important to

carefully consider competing token contributions to prove indeed the gating vector indeed aligns
with class-relevant feature directions.

Instead, in the locality-structured data, the variation introduced by the number of class-relevant and
confusion tokens in positive and negative samples is negligible, as our data model assumes an equal
number of class-relevant and confusion tokens. Consequently, we need to rely on ∆L+

o+
and ∆L+

o−

to ensure that the lucky neuron WO(i,·) learns the class-relevant feature. Moreover, since the number
of class-relevant and confusion tokens is balanced, updates along the class-relevant feature direction
for the gating vector remain close to zero. To demonstrate how the gate filters information, we show
that gradient updates along class-irrelevant features are driven strongly negative. To prove this, in
addition to the terms considered in the majority-voting setting, we must also bound the positively
contributing terms that hinder the gate’s ability to suppress irrelevant features. Specifically, we
bound these opposing terms as O

(
(1− σ(p2))

∆L−
o+

)
+O

(
(1− σ(p2))

∆L+
o−

)
ensuring that their

effect remains minimal. This reveals that the gate effectively suppresses irrelevant features while
preserving class-relevant features for this data model.

5 NUMERICAL EXPERIMENTS

We verify our theoretical results through synthetic experiments based on the data models described
in Section 4.2. Due to the space limit, we defer the experiment details to Appendix A.3

Faster convergence with larger majority-voting gap. Fig. 1 illustrates that increasing the
majority-voting gap αr − αc consistently reduces the number of epochs across various sizes of
training samples. These findings are consistent with our theoretical results in (13) and (14).

Gating mechanism amplifies relevant features in majority-voting data. Fig. 2 shows the cosine
similarity between the gating vector w∆ and both class-relevant and class-irrelevant features. The
similarity with class-relevant features steadily increases, while that with class-irrelevant features
remains essentially unchanged. This empirically confirms Lemma 4.1, demonstrating that the gate
prioritizes informative features while ignoring irrelevant ones.

MLP weights selectively align with only class-relevant features. Fig. 3 tracks the average co-
sine similarity between each neuron WO(i, :) and both class-relevant & class-irrelevant features.
The alignment increases for class-relevant features and stays essentially unchanged for irrelevant
features, which is consistent with our findings in Lemmas B.1 and B.3 in the Appendix.

Figure 1: Convergence vs.
majority-voting gap.

Figure 2: Alignment of w∆

for majority-voting data.
Figure 3: Average alignment
of WO(i,·) during training.

Locality affects the learning. Fig. 4 illustrate the effect of class-relevant token separation ∆L on
the convergence in the locality-structured data. Larger ∆ slows convergence across different training
sample sizes, which is consistent with our results in (19) and (20).

Gating mechanism suppresses irrelevant features. Fig. 5 illustrates that while the cosine similar-
ity is negative for both types of features, it stays close to zero for class-relevant features but becomes
largely negative for class-irrelevant ones. This contrast drives the gating mechanism to prioritize
class-relevant features, consistent with Lemma 4.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Mamba outperforms Transformer and local attention on locality-structured data. Intuitively,
locality-structured data favors models that exploit local biases. Global attention performs only
marginally better than random guessing, whereas both local attention and Mamba learn meaningful
patterns, with Mamba achieving the best performance.

Figure 4: Convergence under
locality-structured data.

Figure 5: Alignment of w∆

for locality-structured data.
Figure 6: Mamba outper-
forms on locality data.

6 CONCLUSION

Encouraged by the emergence and successful applications of the Transformer alternative architecture
Mamba, this paper provides a novel theoretical generalization analysis of Mamba by considering its
unique gated selection mechanism. Focusing on a data model with class-relevant and class-irrelevant
tokens, we establish the non-asymptotic sample complexity and the convergence rate required to
achieve desirable test accuracy. Our analysis further shows that the gating parameter vector filters
out the class-relevant features while ignoring irrelevant ones. To the best of our knowledge, this is the
first theoretical analysis of Mamba’s training dynamics, with its input-dependent gating mechanism,
together with generalization guarantees.

Finally, we note some limitations of our work. First, our theoretical analysis focuses on a simplified
Mamba setting that abstracts away practical components such as depth, multiple heads, residual con-
nections, and layer normalization. Second, our data model, while standard in theoretical studies, also
simplifies real-world sequence structures. Extending the analysis to more realistic multi-layer and
multi-head Mamba architectures, richer data models, and alternative designs such as gated Trans-
formers or hybrid Mamba–Transformer frameworks remains an important direction for future work.

LLM USAGE DISCLOSURE

We used large-language models (ChatGPT) to aid in polishing the writing of this paper. For numer-
ical experiments, we employed AI-assisted coding tools (GitHub Copilot and ChatGPT) to support
code development.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the se-
quence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33
(8):831–838, 2015.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural networks
in polynomial time. In Conference on Learning Theory, pp. 195–268. PMLR, 2019.

Zeyu Bao, Penghao Yu, Haotian Jiang, and Qianxiao Li. The effect of depth on the expressivity of
deep linear state-space models. arXiv preprint arXiv:2506.19296, 2025.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data
mining, pp. 119–130, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Alon Brutzkus and Amir Globerson. An optimization and generalization analysis for max-pooling
networks. In Uncertainty in Artificial Intelligence, pp. 1650–1660. PMLR, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Edo Cohen-Karlik, Itamar Zimerman, Liane Galanti, Ido Atad, Amir Globerson, and Lior Wolf.
On the expressivity of selective state-space layers: A multivariate polynomial approach. arXiv
preprint arXiv:2502.02209, 2025.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
for speech recognition. In Proc. Interspeech 2020, pp. 5036–5040, 2020.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in neural information processing systems, 35:22982–22994, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Arya Honarpisheh, Mustafa Bozdag, Octavia Camps, and Mario Sznaier. Generalization er-
ror analysis for selective state-space models through the lens of attention. arXiv preprint
arXiv:2502.01473, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ningyuan Huang, Miguel Sarabia, Abhinav Moudgil, Pau Rodriguez, Luca Zappella, and Federico
Danieli. Understanding input selectivity in mamba: Impact on approximation power, memoriza-
tion, and associative recall capacity. arXiv preprint arXiv:2506.11891, 2025.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
learning in neural networks beyond kernels. Advances in Neural Information Processing Systems,
34:24883–24897, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. EMNLP 2018, pp. 66, 2018.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vi-
sion transformers: Learning, generalization, and sample complexity. In International Conference
on Learning Representations (ICLR 2023), 2023a.

Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, Zaixi Zhang, and Pin-Yu Chen. What improves
the generalization of graph transformers? a theoretical dive into the self-attention and positional
encoding. In International Conference on Machine Learning, pp. 28784–28829. PMLR, 2024a.

Hongkang Li, Meng Weng, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear trans-
formers learn and generalize in in-context learning? In International Conference on Machine
Learning, 2024b.

Hongkang Li, Yihua Zhang, Shuai Zhang, Pin-Yu Chen, Sijia Liu, and Meng Wang. When is task
vector provably effective for model editing? a generalization analysis of nonlinear transformers.
In International Conference on Learning Representations, 2025a.

Yingcong Li, Ankit S Rawat, and Samet Oymak. Fine-grained analysis of in-context linear estima-
tion: Data, architecture, and beyond. Advances in Neural Information Processing Systems, 37:
138324–138364, 2024c.

Yingcong Li, Davoud Ataee Tarzanagh, Ankit Singh Rawat, Maryam Fazel, and Samet Oymak.
Gating is weighting: Understanding gated linear attention through in-context learning. arXiv
preprint arXiv:2504.04308, 2025b.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, pp. 19689–19729.
PMLR, 2023b.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
Jiao, and Yunfan Liu. Vmamba: Visual state space model. Advances in neural information
processing systems, 37:103031–103063, 2024.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36:47016–47031, 2023.

Peng Lu, Ivan Kobyzev, Mehdi Rezagholizadeh, Boxing Chen, and Philippe Langlais. Regla: Re-
fining gated linear attention. arXiv preprint arXiv:2502.01578, 2025.

Cong Ma and Kayvan Najarian. Rethinking the long-range dependency in mamba/ssm and trans-
former models. arXiv preprint arXiv:2509.04226, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. The-
oretical foundations of deep selective state-space models. Advances in Neural Information Pro-
cessing Systems, 37:127226–127272, 2024.

Naoki Nishikawa and Taiji Suzuki. State space models are provably comparable to transformers in
dynamic token selection. In The Thirteenth International Conference on Learning Representa-
tions.

Destiny Okpekpe and Antonio Orvieto. Revisiting associative recall in modern recurrent models. In
First Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models, 2025.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. Universality
of linear recurrences followed by non-linear projections: finite-width guarantees and benefits of
complex eigenvalues. In Proceedings of the 41st International Conference on Machine Learning,
pp. 38837–38863, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, 2016.

Jerome Sieber, Carmen A Alonso, Alexandre Didier, Melanie N Zeilinger, and Antonio Orvieto.
Understanding the differences in foundation models: Attention, state space models, and recurrent
neural networks. Advances in Neural Information Processing Systems, 37:134534–134566, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yonatan Slutzky, Yotam Alexander, Noam Razin, and Nadav Cohen. The implicit bias of structured
state space models can be poisoned with clean labels. arXiv preprint arXiv:2410.10473, 2024.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: Lessons learned
from the 2015 mscoco image captioning challenge. IEEE transactions on pattern analysis and
machine intelligence, 39(4):652–663, 2016.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024a.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. arXiv preprint arXiv:2401.13660, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122.
PMLR, 2021.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International conference on machine learning, pp. 2048–2057. PMLR, 2015.

Sarthak Yadav and Zheng-Hua Tan. Audio mamba: Selective state spaces for self-supervised audio
representations. arXiv preprint arXiv:2406.02178, 2024.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Forty-first International Conference on Machine
Learning.

Annan Yu and N Benjamin Erichson. Block-biased mamba for long-range sequence processing.
arXiv preprint arXiv:2505.09022, 2025.

Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model
sparse learning is provably efficient for graph neural networks. The Eleventh International Con-
ference on Learning Representations, 2023.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning–
based sequence model. Nature methods, 12(10):931–934, 2015.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. In Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 62429–62442. PMLR, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NOTATIONS, PROOF SKETCH AND ADDITIONAL EXPERIMENTS

A.1 NOTATIONS

A.1.1 LUCKY NEURON DEFINITION

Let
K+ = {i ∈ [m] : vi > 0} , K− = {i ∈ [m] : vi < 0} (22)

denote the sets of neurons with positive and negative output layer weights, respectively.

We define the sets of lucky neurons at initialization as:

W(0) =
{
i ∈ K+ : WO(i,·)(0)o+ > 0

}
, (23)

U(0) =
{
i ∈ K− : WO(i,·)(0)o− > 0

}
, (24)

where o+ and o− denote the class-relevant features for the positive and negative classes, respec-
tively.

A.1.2 LOSS FUNCTION

The loss function for the nth sample is defined as

ℓ(X(n), z(n)) = max{0, 1− z(n) · F (X(n))}

= max

{
0, 1− z(n) · 1

L

L∑
l=1

m∑
i=1

viϕ
(
WO(i,·)y

(n)
l

)}
.

(25)

The empirical loss is denoted by L̂ and is given by

L̂ =
1

N

N∑
n=1

ℓ(X(n), z(n)). (26)

The population loss is denoted by L and is defined as

L = E(X,z)∼Dℓ(X, z). (27)

With additional important notations can be found in Table 2.

A.2 PROOF SKETCH

The major idea of our proof is to analyze how GD gradually aligns both the hidden-layer weights
and gating vector with class-relevant features while ignoring the irrelevant ones. A key tool in our
analysis is the notion of a lucky neuron, i.e., a hidden layer neuron whose initialization is well
aligned with a class-relevant feature. For the majority-voting data model, the signal driving this
alignment is proportional to the gap between the fractions of class-relevant and confusion tokens,
Θ(αr − αc), as established by Lemmas B.1–B.4. Lucky neurons move consistently toward their
class-relevant feature, while the magnitude of unlucky ones remains small (upper-bounded by the
inverse square root of the number of samples). For the locality-structured data model, we prove that
the update in the class-relevant feature direction for the gating vector remains close to zero because
an equal number of class-relevant and confusion tokens are present in the data. We then show that
the gating vector consistently decreases along irrelevant feature directions, thereby enabling the gate
to effectively select the class-relevant feature.

Due to these properties, the training dynamics can be simplified to show that the network output
in (6) changes linearly with the iteration number t. In particular, we prove that, for a new posi-
tive sample (w.l.o.g.) during inference, the learned model’s output is strictly positive. From this
analysis, we derive the sample complexity and the required number of iterations for achieving zero
generalization error for both data types, as shown in (13) and (14) for the majority-voting setting in
Theorem 1, and similarly in (19) and (20) for the locality-structured setting in Theorem 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Summary of notations
F (X(n)) The final model output for X(n)

αr The average fractions of class-relevant tokens
αc The average fractions of confusion tokens

∆L+
o+

Separation between class-relevant features o+ in positive samples
∆L−

o+
Separation between confusion features o+ in negative samples

∆L−
o−

Separation between class-relevant features o− in negative samples
∆L+

o−
Separation between confusion features o− in positive samples

O The set of class-relevant and class-irrelevant patterns
K+ The set of lucky neurons with respect to W (0)

K− The set of lucky neurons with respect to U (0)

N The set of training data
N+ The set of training data with positive labels
N− The set of training data with negative labels
W(t) Set of lucky neurons for the positive class at iteration t
U(t) Set of lucky neurons for the negative class at iteration t

O(·), Ω(·), Θ(·) We use the standard convention: f(x) = O(g(x)) (resp. Ω(g(x)),
Θ(g(x))) means f(x) grows at most (resp. at least, on the order of)
g(x).

Õ(·) Soft-O notation: hides polylog factors
poly(d) An unspecified polynomial in d
≳, ≲ f(x) ≳ g(x) (resp. f(x) ≲ g(x)) abbreviates f(x) ≥ Ω

(
g(x)

)
(resp. f(x) ≤ O

(
g(x)

)
).

A.3 ADDITIONAL NUMERICAL EXPERIMENTS

Experiment settings.

The data dimension and token embedding size are both set to d = 32, which also corresponds to the
number of feature directions. Unless otherwise stated, experiments in the main text use exactly the
model defined in Eq. (6) to match our theoretical setting. We also use the model without convolution,
and keep WB = WC = I frozen as in Eq. (15). The total number of neurons in the hidden layer
WO is set to m = 50. For simplicity, we fix the ratio of different features to be the same across all
data. The sequence length is set to L = 30.

We run 100 independent trials and consider only the successful trials to compute the mean epochs
for convergence for a given fraction of class-relevant patterns. An experiment is successful if the
testing loss is smaller than 10−3. For this experiment, we fixed the fraction of the confusion tokens
at 0.10 and varied the fraction of class-relevant features.

Additional Results on MLP Weight Alignment.

Figure 7 illustrates the alignment of sampled neurons with the class-relevant feature. We observe
that, with a good initialization, a subset of neurons, denoted as lucky neurons, consistently increases
in the direction of the class-relevant feature, while another subset, denoted as unlucky neurons,
remains almost unchanged, which supports our findings in Lemmas B.3 and C.3.

In contrast, Figure 8 shows the alignment of sampled neurons with the class-irrelevant feature. In
this case, we observe that all neurons, both lucky and unlucky, remain nearly unchanged in the
direction of the class-irrelevant feature, which further supports our findings in Lemmas B.4 and C.4.

ADDITIONAL EXPERIMENTS

To further strengthen the empirical connection between our theoretical analysis and practical Mamba
architectures, we conducted additional experiments using the multi-layer, multi-head Mamba model

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Alignment of WO(i,·) with class-
relevant feature directions during training on
the majority-voting data.

Figure 8: Alignment of WO(i,·) with class-
irrelevant feature directions during training on
the majority-voting data.

from Dao & Gu (2024), trained on synthetic datasets that follow the same structured data models as
in our theory.

We first evaluated the Mamba2 block, which includes residual connections and RMSNorm. We
focused on a 2-block Mamba model with 4 heads and report the cosine similarity of the learned
gating vectors and MLP weights with class-relevant and class-irrelevant features in Figures 9 and 10.
For a deeper 5-block Mamba model with the same configuration, we summarize the final alignment
values in Table 3, which exhibit the same qualitative trends predicted by our analysis.

Figure 9: Alignment of the gating vector in
the 2-block Mamba model.

Figure 10: Alignment of the MLP weights in
the 2-block Mamba model.

Table 3: Cosine similarity alignment in the 5-block Mamba model

Component Class-relevant Class-irrelevant
Gating vector 0.53 0.00
MLP weights 0.73 0.00

Next, we examined the effect of the gating mechanism by comparing models trained with and with-
out gating across both structured data regimes. On the majority-voting data, the gated model consis-
tently outperforms the ungated variant (Figure 11). On the locality-structured data, gating becomes
essential: the ungated model fails to learn the task, whereas the gated model converges reliably
(Figure 12).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 11: Test accuracy with and without
gating on the majority-voting data.

Figure 12: Test accuracy with and without
gating on the locality-structured data.

We also conducted two controlled ablations. First, we varied the feature dimension d ∈
{32, 64, 128} and observed that the qualitative behavior of the model remained consistent across
all three settings (Figures 13–15). Second, we varied the data distribution parameter αc, the fraction
of confusion tokens in the majority-voting data. Across all three choices of αc, the empirical results
remained closely aligned with the theoretical predictions (Figures 16–18).

Figure 13: Ablation with fea-
ture dimension d = 32.

Figure 14: Ablation with fea-
ture dimension d = 64.

Figure 15: Ablation with fea-
ture dimension d = 128.

Figure 16: Ablation with con-
fusion fraction αc = 0.17.

Figure 17: Ablation with con-
fusion fraction αc = 0.20 .

Figure 18: Ablation with con-
fusion fraction αc = 0.23.

B MAJORITY-VOTING DATA

B.1 USEFUL LEMMAS

Lemma B.1 provides bounds on the gradient updates of lucky neurons i ∈ W(t) in the directions of
both class-relevant features (o+, o−) and irrelevant features.

Lemma B.1. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1 and p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1. Then, for any lucky
neuron i ∈ W(t) at iteration t, the following bounds hold:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(L1.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≥ 1√

mL
· σ(p1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (28)

(L1.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ 1√

mL
· σ(q1)Θ(αrL− αcL) +O

(√
d logN

mN

)
+O(τ). (29)

(L1.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≥ − 1√

mL
· σ(q1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (30)

(L1.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (31)

(L1.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (32)

Lemma B.2 shows that, for unlucky neurons associated with the positive class, the gradients in the
directions of both class-relevant and irrelevant features are small.

Lemma B.2. For any unlucky neuron i ∈ K+ \W(t) at iteration t, the following bounds hold:

(L2.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (33)

(L2.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (34)

(L2.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (35)

Lemmas B.3 and B.4, by symmetry, state the analogous results for lucky and unlucky neurons
associated with the negative class.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma B.3. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1 and p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1. Then, for any lucky
neuron i ∈ U(t) at iteration t, the following bounds hold:

(L3.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≥ 1√

mL
· σ(p1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (36)

(L3.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ 1√

mL
· σ(q1)Θ(αrL− αcL) +O

(√
d logN

mN

)
+O(τ). (37)

(L3.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≥ − 1√

mL
· σ(q1)Θ(αrL− αcL)−O

(√
d logN

mN

)
−O(τ). (38)

(L3.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (39)

(L3.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (40)

Lemma B.4. For any unlucky neuron i ∈ K− \ U(t) at iteration t, the following bounds hold:

(L4.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (41)

(L4.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (42)

(L4.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (43)

Lemma B.5 establishes bounds for the gradient updates of w∆ in the class-relevant feature direc-
tions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Lemma B.5. Suppose r∗1 ≤ ⟨W (t+1)
O(i,·)

⊤
,o+⟩ ≤ s∗1. Let |W(t)| = ρ+t and |U(t)| = ρ−t . Then, at

iteration t, the following bounds hold:

(L5.1) A lower bound on the gradient of L̂ with respect to w∆ at iteration t, in the direction of o+,
is given by

〈
− ∂L̂
∂w

(t)
∆

,o+

〉
≥ r∗1

2
√
mL

· ρ+t ·Θ(αrL)−
√
ms∗1
4L

·Θ(αcL)−O

(√
d logN

mN

)
−O(τ). (44)

(L5.2) A lower bound on the gradient of L̂ with respect to w∆ at iteration t, in the direction of o−,
is given by〈

− ∂L̂
∂w

(t)
∆

,o−

〉
≥ r∗1

2
√
mL

· ρ−t ·Θ(αrL)−
√
ms∗1
4L

·Θ(αcL)−O

(√
d logN

mN

)
−O(τ) (45)

Lemma B.6 establishes bounds for the gradient updates of w∆ in the directions of irrelevant features.

Lemma B.6. An upper bound on the gradient of L̂ with respect to w∆ at iteration t, in the direction
of oj , is given by 〈

− ∂L̂
∂w

(t)
∆

,oj

〉
≤ O

(√
d logN

mN

)
+O(τ), for j ̸= 1, 2. (46)

B.2 PROOF OF CONVERGENCE

Proof of Theorem 1. The proof starts with the base case at t = 0 and proceeds to analyze the training
dynamics in a deductive manner, providing additional details in deriving the corresponding conver-
gence and sample complexity bounds.

(S1) Warm-up (Base case): Training dynamics at the first iteration t = 0.

Recall that we set w(0)
∆ = 0. Then, we have

⟨w(0)
∆ ,o+⟩ = 0 and ⟨w(0)

∆ ,o−⟩ = 0.

(S1.1) Training dynamics of WO(i,:) at the first iteration t = 0.

From Lemma B.1, identify p1 = 0 and q1 = 0. Let αr and αc denote the average fraction of
label-relevant tokens and confusion tokens, respectively. Then, for any lucky neuron i ∈ W(0), we
obtain

1

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤

〈
− ∂L̂
∂W

(0)
O(i,·)

,o+

〉

≤ 1

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
.

(47)

and

〈
− ∂L̂
∂W

(0)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (48)

Recall that we set the number of samples in a batch N = poly(d).

Recall that the initialization is

WO(i,·)(0) = δ1o+ + δ2o− + · · ·+ δdod, δj
i.i.d.∼ N (0, ξ2) j = 1, 2, · · · , d. (49)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Then, after one gradient descent step, we have

δ1 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o+

〉
≤ δ1 +

η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
(50)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (51)

By applying Lemma B.3, for any lucky neuron i ∈ U(0), we obtain

δ2 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o−

〉
≤ δ2 +

η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
(52)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2. (53)

For any unlucky neuron i ∈ K− \ U(0), Lemma B.4 gives〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for ∀j. (54)

(S1.2) Training dynamics of W∆ at the first iteration t = 0.

Now consider the gradient update for w∆. Define:

a = δ1 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
b = δ1 +

η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
Applying Lemma B.5 with r∗1 = a, s∗1 = b, and ρ+0 = |W(0)|, we get

〈
− ∂L̂
∂w

(0)
∆

,o+

〉
≥ a

2
√
mL

· ρ+0 ·Θ(αrL)−
√
mb

4L
·Θ(αcL)− Õ

(
1

poly(d)

)
=: α (55)

Let δ1 = 1
poly(d) . Since a− b = Õ

(
1

poly(d)

)
that is sufficiently small,

α =
1

2L

[
a√
m

· m
2
Θ(αrL)−

√
mb

2
Θ(αcL)

]
− Õ

(
1

poly(d)

)
=

1

2L

[√
ma

2
(Θ(αrL)−Θ(αcL))

]
− Õ

(
1

poly(d)

)
=

√
m

4L
· η

2
√
mL

Θ((αrL− αcL)
2)− Õ

(
1

poly(d)

)
=

η

8L2
Θ((αrL− αcL)

2)− Õ
(

1

poly(d)

)
> 0 (56)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

From Lemma B.6, we also obtain〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ Õ

(
1

poly(d)

)
=: γ for j ̸= 1, 2. (57)

(S2) Induction Step: Training dynamics at a general iteration t.

Suppose ⟨w(t)
∆ ,o+⟩ = α∗ ≥ α · t, ⟨w(t)

∆ ,o−⟩ = β∗ ≥ β · t, and ⟨w(t)
∆ ,oj⟩ = γ∗ ≤ γ · t, where

β =
a′

2
√
mL

· ρ−0 ·Θ(αrL)−
√
mb′

4L
·Θ(αcL)− Õ

(
1

poly(d)

)
> 0, (58)

a′ = δ2 +
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
, (59)

b′ = δ2 +
η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
. (60)

Following the same approach as in (56), we can simplify and obtain

β =
η

8L2
Θ((αrL− αcL)

2)− Õ
(

1

poly(d)

)
> 0. (61)

For any lucky neuron i ∈ W(t) at the (t+ 1)-th iteration, we have
1√
mL

· σ(α∗)Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(α∗)Θ(αrL− αcL) + Õ
(

1

poly(d)

)
,

and 〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (62)

Next, we have σ(α∗) > 1
2 since α∗ > 0 when t = 1. By a simple induction, this further ensures〈

− ∂L̂
∂W

(0)
O(i,·)

,o+

〉
≤

〈
− ∂L̂
∂W

(1)
O(i,·)

,o+

〉
≤ · · ·

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤

〈
− ∂L̂
∂W

(t+1)
O(i,·)

,o+

〉
.

(63)

Thus, we obtain the following bound after the second gradient descent step:

δ1 +
η

2
√
mL

Θ(αrL− αcL) [1 + 2σ(α∗)]− Õ
(

1

poly(d)

)
=: u

≤
〈
(W

(2)
O(i,·))

⊤, o+

〉
≤ δ1 +

η

2
√
mL

Θ(αrL− αcL) [1 + 2σ(α∗)] + Õ
(

1

poly(d)

)
=: v. (64)

Similarly, applying Lemma B.3 to any lucky neuron i ∈ U(1) at iteration 2, we get
1√
mL

· σ(β∗)Θ(αrL− αcL)− Õ
(

1

poly(d)

)
≤

〈
− ∂L̂
∂W

(1)
O(i,·)

,o−

〉

≤ 1√
mL

· σ(β∗)Θ(αrL− αcL) + Õ
(

1

poly(d)

)
,

(65)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

and

〈
− ∂L̂
∂W

(1)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2. (66)

Applying Lemma B.5 with r∗1 = u, and s∗1 = v, we obtain〈
− ∂L̂
∂w

(1)
∆

,o+

〉
≥ u

2
√
mL

· ρ+1 ·Θ(αrL)−
√
mv

4L
·Θ(αcL)− Õ

(
1

poly(d)

)
=: χ. (67)

Since u− v = Õ
(

1
poly(d)

)
that is sufficiently small, we have χ ≥ 0.

By applying Lemma B.6, we get〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1, 2. (68)

(S3) Induction conclusion: Training dynamics when the algorithm ends.

We proceed by induction on t: the base case t = 0 is established in (S1), and the induction step for
general t is shown in (S2). For any lucky neuron i ∈ W(T), we obtain〈

W⊤
O(i,·)

(T)
,o+

〉
≥ aT, (69)

and
〈
W⊤

O(i,·)
(T)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (70)

For any lucky neuron i ∈ U(T), we obtain〈
W⊤

O(i,·)
(T)
,o−

〉
≥ aT, (71)

and
〈
W⊤

O(i,·)
(T)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2 (72)

Also, we obtain

〈
w

(T)
∆ ,o+

〉
≥ αT, (73)

〈
w

(T)
∆ ,o−

〉
≥ βT, (74)

and
〈
w

(T)
∆ ,oj

〉
≤ γT. (75)

(S4) Derivation for the generalization bound.

We will demonstrate that once the weights have converged at iteration T , the model accurately
captures the underlying data distribution, which leads to zero generalization error, as shown in (94).

Consider z(n) = +1 as an example. The sequence X(n) =
[
x
(n)
1 x

(n)
2 · · · x

(n)
L

]
has first αrL

tokens correspond to the feature o+, while the following αcL tokens correspond to the feature o−.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F (X(n)) =
1

L

L∑
l=1

m∑
i=1

vi ϕ
(
WO(i,·)y

(n)
l

)
=

1√
mL

∑
i∈K+

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈K−

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

≥ 1√
mL

∑
i∈W(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

− 1√
mL

∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
(76)

The Mamba output y(n)
l is defined as

y
(n)
l =

l∑
s=1

 l∏
j=s+1

(
1− σ(w⊤

∆x
(n)
j)
) · σ(w⊤

∆x
(n)
s) · (x(n)⊤

s x
(n)
l)x(n)

s . (77)

We now derive a lower bound for ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

To that end, consider the aggregated projection

∑
i∈W(0)

L∑
l=1

WO(i,·)yl =
∑

i∈W(0)

L∑
l=1

d∑
j=1

⟨W⊤
O(i,·),oj⟩ · ⟨yl,oj⟩. (78)

For any i ∈ W(0), we know that
⟨W⊤

O(i,·),o+⟩ ≥ aT. (79)

Hence, let’s obtain a lower bound for ⟨yl,o+⟩.
We only need to consider the cases where xs = o+ for some s in the range 1 ≤ s ≤ l.

After T iterations, we know

⟨w∆,o+⟩ ≥ αT, ⟨w∆,o−⟩ ≥ βT, ⟨w∆,oj⟩ ≤ γT for j ̸= 1, 2. (80)

Therefore, we have

⟨yl,o+⟩ = Θ(σ (⟨w∆,o+⟩)) = Θ(σ(αT)), for l = 1, 2, . . . , αrL. (81)

We now lower bound the objective

∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

Note that

WO(i,·)yl =

d∑
j=1

〈
W⊤

O(i,·),oj

〉〈
yL+

1
,oj

〉
,

and yl has only o+ component for l = 1, 2, . . . , αrL.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Therefore,

WO(i,·)yl =
〈
W⊤

O(i,·),o+

〉
⟨yl,o+⟩ ≥ aT ·Θ(σ(αT)) > 0, for l = 1, 2, . . . , αrL.

Applying ϕ(z) = z for positive z, we obtain

ϕ(WO(i,·)yl) ≥ aT ·Θ(σ(αT)), for l = 1, 2, . . . , αrL.

Hence, ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl) ≥
∑

i∈W(0)

aT ·Θ(σ(αT)) · αrL (82)

Next, we derive an upper bound for ∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
.

For any i ∈ U(0), we know that
0 < ⟨W⊤

O(i,·),o−⟩ ≤ bT. (83)

We now derive an upper bound for ⟨yl,o−⟩. We only need to consider the cases where xs = o−
such that 1 ≤ s ≤ l.

We have,
⟨w∆,o+⟩ ≤WT, ⟨w∆,o−⟩ ≤WT,

where

W =
η

8L2
Θ((αrL− αcL)

2) + Õ
(

1

poly(d)

)
. (84)

⟨yl,o−⟩ = Θ(σ (⟨w∆,o−⟩)) = Θ(σ(WT)), for l = 1, 2, . . . , αcL. (85)

L∑
l=1

WO(i,·)yl ≤ bT ·Θ(σ(WT)) · αcL. (86)

∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
≤
∑

i∈U(0)

bT ·Θ(σ(WT)) · αcL. (87)

In addition, we have ∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
≤ Õ

(
1

poly(d)

)
. (88)

By (76), we can write

F (X(n)) ≥ 1√
mL

{
m

2
· aT ·Θ(σ(αT)) · αrL− m

2
· bT ·Θ(σ(WT)) · αcL− Õ

(
1

poly(d)

)}
, (89)

with

a =
η

2
√
mL

Θ(αrL− αcL)− Õ
(

1

poly(d)

)
, (90)

and b =
η

2
√
mL

Θ(αrL− αcL) + Õ
(

1

poly(d)

)
. (91)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

α =
η

8L2
Θ((αrL− αcL)

2)− Õ
(

1

poly(d)

)
=W − Õ

(
1

poly(d)

)
. (92)

Therefore, we conclude that

F (X(n)) ≥
√
m

2
· aT ·Θ(σ(αT)) · (αr − αc)− Õ

(
1

poly(d)

)
(93)

There, for any positive sample, we can prove that

F (X(n)) ≥ C, where C is some positive constant. (94)

Similar to the previous analysis, one can show that the negtive sample Xn leads to

(S4.1) Derivation for the convergence rate. Let’s find the number of iterations T required such that
F (X(n)) ≥ 1, since the label is +1. We require

√
m

2
· aT (αr − αc) ≥ 1 + ϵ. (95)

Substituting the value of a ≈ b = η
2
√
mL

Θ(αrL− αcL), the condition becomes
√
maT

2
(αr − αc) =

√
m

2
· η

2
√
mL

Θ(αrL− αcL)T · (αr − αc)

=
ηT

4
Θ((αr − αc)

2) ≥ 1 + ϵ. (96)

Solving for T , we obtain

T ≥ 4(1 + ϵ)

ηΘ((αr − αc)2)
≥ 4

ηΘ((αr − αc)2)
. (97)

Now, we additionally require that the sigmoid activation σ(αT) be sufficiently large, i.e.,

σ(αT) ≥ 1− ϵ. (98)

When z is sufficiently large we can approximate

σ(z) =
1

1 + e−z
≈ 1− e−z.

Substituting z = αT , condition (98) becomes:

σ(αT) ≈ 1− e−αT ≥ 1− ϵ,

e−αT ≤ ϵ,

αT ≥ − ln(ϵ)

T ≥ − ln(ϵ)

α
. (99)

Substituting α = η
8L2Θ((αrL− αcL)

2), we get:

T ≥ − ln(ϵ) · 8L2

ηΘ((αrL− αcL)2)
. (100)

T ≥ − ln(ϵ) · 8

ηΘ((αr − αc)2)
. (101)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Hence, by combining (97) and (101), we obtain

T ≥ max

{
4

ηΘ((αr − αc)2)
,− ln(ϵ) · 8

ηΘ((αr − αc)2)

}
. (102)

By combining (95) and (98) with the expression for the model output F (X(n)) in (93), we obtain

F (X(n)) ≥ (1 + ϵ) · (1− ϵ)

≥ 1−O(ϵ2) (103)

Hence, for sufficiently small ϵ > 0, the model output satisfies F (X(n)) ≥ 1.

Similarly, for a negative sample, one can show by symmetry that the model output satisfies
F (X(n)) ≤ 1.

(S4.2) Derivation for the sample complexity.

Now we derive a sample-complexity bound that guarantees zero generalization error.

Assuming enough samples, we can write for sufficiently small λ≪ 1

O

(√
d logN

mN

)
≤ λ · η

2
√
mL

Θ(αrL− αcL). (104)

From this, we can derive a lower bound on the required sample size,

N ≥ Ω

(
λ−2 · 4L2d

η2Θ((αr − αc)2)

)
≥ Ω

(
L2d

η2Θ((αr − αc)2)

)
,

(105)

which will be (13) in Theorem 1.

C LOCALITY-STRUCTURED DATA

C.1 USEFUL LEMMAS

Lemma C.1 provides bounds on the gradient updates of lucky neurons i ∈ W(t) in the directions of
both class-relevant features (o+, o−) and irrelevant features.

Lemma C.1. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1, p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1, and p2 ≤ ⟨w(t)
∆ ,oj⟩ ≤ q2 for

j ̸= 1, 2. Then, for any lucky neuron i ∈ W(t) at iteration t, the following bounds hold:

(L1.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o+

〉
≥ 1√

mL
· σ(p1) · (1− σ(q1))

2

[
(1− σ(q2))

∆L+
o+

−2 − (1− σ(p2))
∆L−

o+
−2
]

−O

(√
d logN

mN

)
.

(106)

(L1.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o+

〉
≤ 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L+
o+

−2 − (1− σ(q2))
∆L−

o+
−2
]

+O

(√
d logN

mN

)
.

(107)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(L1.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o−

〉
≥− 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L−
o−

−2 − (1− σ(q2))
∆L+

o−
−2
]

−O

(√
d logN

mN

)
.

(108)

(L1.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
. (109)

(L1.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (110)

Lemma C.2 shows that, for unlucky neurons associated with the positive class, the gradients in the
directions of both class-relevant and irrelevant features are small.

Lemma C.2. For any unlucky neuron i ∈ K+ \W(t) at iteration t, the following bounds hold:

(L2.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
. (111)

(L2.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
. (112)

(L2.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (113)

Lemmas C.3 and C.4, by symmetry, state the analogous results for lucky and unlucky neurons
associated with the negative class.

Lemma C.3. Suppose p1 ≤ ⟨w(t)
∆ ,o−⟩ ≤ q1, p1 ≤ ⟨w(t)

∆ ,o+⟩ ≤ q1, and p2 ≤ ⟨w(t)
∆ ,oj⟩ ≤ q2 for

j ̸= 1, 2. Then, for any lucky neuron i ∈ U(t) at iteration t, the following bounds hold:

(L3.1) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o−

〉
≥ 1√

mL
· σ(p1) · (1− σ(q1))

2

[
(1− σ(q2))

∆L−
o−

−2 − (1− σ(p2))
∆L+

o−
−2
]

−O

(√
d logN

mN

)
.

(114)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(L3.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o−

〉
≤ 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L−
o−

−2 − (1− σ(q2))
∆L+

o−
−2
]

+O

(√
d logN

mN

)
.

(115)

(L3.3) A lower bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by〈

− ∂L̂
∂W

(t)

O(i,·)

,o+

〉
≥− 1√

mL
· σ(q1) · (1− σ(p1))

2

[
(1− σ(p2))

∆L+
o+

−2 − (1− σ(q2))
∆L−

o+
−2
]

−O

(√
d logN

mN

)
.

(116)

(L3.4) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
. (117)

(L3.5) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (118)

Lemma C.4. For any unlucky neuron i ∈ K− \ U(t) at iteration t, the following bounds hold:

(L4.1) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o−, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
. (119)

(L4.2) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
o+, is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
. (120)

(L4.3) An upper bound on the gradient of L̂ with respect to WO(i,·) at iteration t, in the direction of
oj , is given by 〈

− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
, for j ̸= 1, 2. (121)

Lemma C.5 establishes bounds for the gradient updates of w∆ in the class-relevant feature direc-
tions.

Lemma C.5. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1 and r∗1 ≤ ⟨W (t+1)

O(i,·)
⊤
,o+⟩ ≤ s∗1. Let |W(t)| = ρ+t

and |U(t)| = ρ−t . Then, we have:

〈
− ∂L̂
∂w

(t)
∆

,o+

〉
≥ σ(p1) (1− σ(q1)) r

∗
1 · ρ+t√

m
− σ(q1) (1− σ(p1)) s

∗
1 ·

√
m

2
−O

(√
d logN

mN

)
. (122)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Suppose p1 ≤ ⟨w(t)
∆ ,o−⟩ ≤ q1 and r∗1 ≤ ⟨W (t+1)

O(i,·)
⊤
,o−⟩ ≤ s∗1. Let |W(t)| = ρ+t and |U(t)| = ρ−t .

Then, we have:

〈
− ∂L̂
∂w

(t)
∆

,o−

〉
≥ σ(p1) (1− σ(q1)) r

∗
1 · ρ−t√

m
− σ(q1) (1− σ(p1)) s

∗
1 ·

√
m

2
−O

(√
d logN

mN

)
. (123)

Lemma C.6 establishes bounds for the gradient updates of w∆ in the directions of irrelevant features.

Lemma C.6. Suppose p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1, p1 ≤ ⟨w(t)

∆ ,o−⟩ ≤ q1, ⟨w(t)
∆ ,oj⟩ ≤ q2 for j ̸= 1, 2,

and r∗1 ≤ ⟨W (t)
O(i,·)

⊤
,o+⟩. Let ρ+t = |W(t)| and ρ−t = |U(t)|. Then we have:〈

− ∂L̂
∂w

(t)
∆

,oj

〉
≤ − r∗1

2
√
m

· σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]

+O
(
(1− σ(p2))

∆L−
o+

)
+O

(
(1− σ(p2))

∆L+
o−

)
+O

(√
d logN

mN

)
.

(124)

C.2 PROOF OF CONVERGENCE

Proof of Theorem 2. Similar to the proof of Theorem 1, the proof starts with the base case at t = 0
and proceeds to analyze the training dynamics in a deductive manner, providing additional details in
deriving the corresponding convergence and sample complexity bounds.

(S1) Warm-up (Base case): Training dynamics at the first iteration t = 0.

Recall that we set w(0)
∆ = 0. Then, we have

⟨w(0)
∆ ,o+⟩ = 0, ⟨w(0)

∆ ,o−⟩ = 0, and ⟨w(0)
∆ ,oj⟩ = 0 ∀j.

(S1.1) Training dynamics of WO(i,:) at the first iteration t = 0.

From Lemma C.1, identify p1 = 0, q1 = 0, p2 = 0 and q2 = 0. Let ∆L+
o+

and ∆L+
o−

be the distance
between two o+ and o− features respectively in the positive sample. Similarly, in a negative sample,
let the distance between the two o+ tokens as ∆L−

o+
, and the distance between the two o− tokens

as ∆L−
o−

. Then, for any lucky neuron i ∈ W(0), we obtain

c′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)

≤

〈
− ∂L̂
∂W

(0)
O(i,·)

,o+

〉

≤ 1

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)
(125)

and

〈
− ∂L̂
∂W

(0)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (126)

Recall that we set the number of samples in a batch N = poly(d).

Suppose the initialization is

WO(i,·)(0) = δ1o+ + δ2o− + · · ·+ δdod, δj
i.i.d.∼ N (0, ξ2) j = 1, 2, · · · , d. (127)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Then, after one gradient descent step, we have

δ1 +
ηc′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o+

〉
≤ δ1 +

η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)
(128)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1. (129)

By applying Lemma C.3, for any lucky neuron i ∈ U(0), we obtain

δ2 +
ηc′2

2
√
mL

[(
1

2

)∆L−
o−

−2

−
(
1

2

)∆L+
o−

−2
]
− Õ

(
1

poly(d)

)
≤
〈
W⊤

O(i,·)
(1)
,o+

〉
≤ δ2 +

η

2
√
mL

[(
1

2

)∆L−
o−

−
(
1

2

)∆L+
o−

]
+ Õ

(
1

poly(d)

)
(130)

and
〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2. (131)

For any unlucky neuron i ∈ K− \ U(0), Lemma C.4 gives〈
W⊤

O(i,·)
(1)
,oj

〉
≤ Õ

(
1

poly(d)

)
for ∀j. (132)

(S1.2) Training dynamics of W∆ at the first iteration t = 0.

Now consider the gradient update for w∆. Define:

a = δ1 +
ηc′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)

b = δ1 +
η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)

Applying Lemma C.5 with p1 = 0, q1 = 0, r∗1 = a, s∗1 = b, and ρ+0 = |W(0)|, we get

〈
− ∂L̂
∂w

(0)
∆

,o+

〉
≥ a

4
√
m

· ρ+0 − b
√
m

8
− Õ

(
1

poly(d)

)
(133)

We can relax this lower bound and obtain〈
− ∂L̂
∂w

(0)
∆

,o+

〉
≥ c′

4

[
2a√
m

· ρ+0 −
√
mb

]
− Õ

(
1

poly(d)

)
=: α (134)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Recall that δ1 = 1
poly(d) . Since a− b = Õ

(
1

poly(d)

)
that is sufficiently small,

α =
c′

4

[
2a√
m

· m
2

−
√
mb

]
− Õ

(
1

poly(d)

)
=
c′

4

[√
ma−

√
ma
]
− Õ

(
1

poly(d)

)
= 0− Õ

(
1

poly(d)

)
= −Õ

(
1

poly(d)

)
≈ 0 (135)

From Lemma C.6, we also obtain〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ −a

8
√
m

[(
1

2

)∆L+
o+

· ρ+0 +

(
1

2

)∆L−
o−

· ρ−0

]
(136)

where we apply the lemma with the values

p1 = 0, q1 = 0, q2 = 0, and r∗1 = a.

We can relax this upper bound and obtain〈
− ∂L̂
∂w

(0)
∆

,oj

〉
≤ −ac′

4
√
m

[(
1

2

)∆L+
o+

· ρ+0 +

(
1

2

)∆L−
o−

· ρ−0

]
=: γ (137)

Taking ρ+0 = ρ−0 = m
2 + Õ

(
1

poly(d)

)
, we can simplify and write

γ =
−ac′

4
√
m

· m
2

[(
1

2

)∆L+
o+

+

(
1

2

)∆L−
o−

]

= −
√
ma · c

′

8

[(
1

2

)∆L+
o+

+

(
1

2

)∆L−
o−

]

=
−ηc′3

16L

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
][(

1

2

)∆L+
o+

+

(
1

2

)∆L−
o−

]

− Õ
(

1

poly(d)

)
.

(138)

(S2) Induction Step: Training dynamics at a general iteration t.

Let ⟨w(t)
∆ ,o+⟩ = α∗ ≥ α · t, ⟨w(t)

∆ ,o−⟩ = β∗ ≥ β · t, and ⟨w(t)
∆ ,oj⟩ = γ∗ ≤ γ · t, where

β =
c′

4

[
2a′√
m

· ρ−0 −
√
mb′

]
− Õ

(
1

poly(d)

)
> 0 (139)

a′ = δ2 +
ηc′2

2
√
mL

[(
1

2

)∆L−
o−

−2

−
(
1

2

)∆L+
o−

−2
]
− Õ

(
1

poly(d)

)

b′ = δ2 +
η

2
√
mL

[(
1

2

)∆L−
o−

−
(
1

2

)∆L+
o−

]
+ Õ

(
1

poly(d)

)
Following the same approach as in (135), we can simplify and obtain

β = −Õ
(

1

poly(d)

)
. (140)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

For any lucky neuron i ∈ W(t) at the (t+ 1)-th iteration, we have

c′2√
mL

· σ(α∗)
[
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
]
− Õ

(
1

poly(d)

)
≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(α∗) · (1− σ(α∗))
2
[
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
]

+ Õ
(

1

poly(d)

)
(141)

〈
− ∂L̂
∂W

(1)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (142)

Note that, σ(α∗) > 1
2 and σ(γ∗) < 1

2 .

Thus, we obtain the following bound after the second gradient descent step.〈
(W

(2)

O(i,·))
⊤, o+

〉
≥δ1 +

ηc′2√
mL

[(
1

2

)∆L+
o+

−1

−
(
1

2

)∆L−
o+

−1

+ σ(α∗)

(
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
)]

− Õ
(

1

poly(d)

)
.

(143)

and 〈
(W

(2)

O(i,·))
⊤, o+

〉
≤δ1 +

η

2
√
mL

[(
1

2

)∆L−
o−

−
(
1

2

)∆L+
o−

+ 2σ(α∗) · (1− σ(α∗))
2

(
(1− σ(γ∗))

∆L+
o+

−2 − (1− σ(γ∗))
∆L−

o+
−2
)]

+ Õ
(

1

poly(d)

)
.

(144)

For the convenience of presentation, we use u to denote the lower bound in (143), and v to denote
the upper bound in (144).

Similarly, applying Lemma C.3 to any lucky neuron i ∈ U(1) at iteration 2, we get

〈
− ∂L̂
∂W

(1)

O(i,·)

,o−

〉
≥ c′2√

mL
· σ(β∗)

[
(1− σ(γ∗))

∆L−
o−

−2 − (1− σ(γ∗))
∆L+

o−
−2
]

− Õ
(

1

poly(d)

)
,

(145)

〈
− ∂L̂
∂W

(1)

O(i,·)

,o−

〉
≤ 1√

mL
· σ(β∗) · (1− σ(β∗))

2

[
(1− σ(γ∗))

∆L−
o−

−2 − (1− σ(γ∗))
∆L+

o−
−2
]

+ Õ
(

1

poly(d)

)
,

(146)

and 〈
− ∂L̂
∂W

(1)
O(i,·)

,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (147)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Applying Lemma C.5 with p1 = α∗, q1 = α∗, r∗1 = u, and s∗1 = v, we obtain

〈
− ∂L̂
∂w

(1)
∆

,o+

〉
≥ σ(α∗)c′

2

[
2u√
m

· ρ+1 −
√
mv

]
− Õ

(
1

poly(d)

)
=: χ (148)

Since ρ+1 = m
2 and u− v = Õ

(
1

poly(d)

)
that is sufficiently small,, we have χ ≈ 0.

By applying Lemma C.6 with

p1 = α∗(= β∗), q1 = α∗(= β∗), q2 = γ∗, and r∗1 = u,we have〈
− ∂L̂
∂w

(t)
∆

,oj

〉
≤ − c′u

2
√
m
σ(α∗)

[
(1− σ(γ∗))

∆L+
o+ ρ+t + (1− σ(γ∗))

∆L−
o− ρ−t

]
=: ι (149)

Note that here we assumed the distribution of ∆L+ is identical to ∆L− to have α∗ = β∗.

(S3) Induction conclusion: Training dynamics when the algorithm ends.

We proceed by induction on t: the base case t = 0 is established in (S1), and the induction step for
general t is shown in (S2). For, any lucky neuron i ∈ W(T), we obtain〈

W⊤
O(i,·)

(T)
,o+

〉
≥ aT (150)

〈
W⊤

O(i,·)
(T)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 1 (151)

For any lucky neuron i ∈ U(T), we obtain〈
W⊤

O(i,·)
(T)
,o−

〉
≥ aT (152)

〈
W⊤

O(i,·)
(T)
,oj

〉
≤ Õ

(
1

poly(d)

)
for j ̸= 2 (153)

Also, we obtain

〈
w

(T)
∆ ,o+

〉
≥ αT, (154)

〈
w

(T)
∆ ,o−

〉
≥ βT, (155)

and
〈
w

(T)
∆ ,oj

〉
≤ γT. (156)

(S4) Derivation for the generalization bound.

We will demonstrate that once the weights have converged at iteration T , the model accurately
captures the underlying data distribution, which leads to zero generalization error, as shown in (180).

Consider z(n) = +1 as an example. The sequence X(n) =
[
x
(n)
1 x

(n)
2 · · · x

(n)
L

]
contains two

o+ at L+
1 and L+

2 and two o− at L−
1 and L−

2 .

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F (X(n)) =
1

L

L∑
l=1

m∑
i=1

vi ϕ
(
WO(i,·)y

(n)
l

)
=

1√
mL

∑
i∈K+

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈K−

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

≥ 1√
mL

∑
i∈W(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
− 1√

mL

∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)

− 1√
mL

∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
(157)

The Mamba output y(n)
l is defined as

y
(n)
l =

l∑
s=1

 l∏
j=s+1

(
1− σ(w⊤

∆x
(n)
j)
) · σ(w⊤

∆x
(n)
s) · (x(n)⊤

s x
(n)
l)x(n)

s . (158)

We now derive a lower bound for ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

To that end, consider the aggregated projection

∑
i∈W(0)

L∑
l=1

WO(i,·)yl =
∑

i∈W(0)

L∑
l=1

d∑
j=1

⟨W⊤
O(i,·),oj⟩ · ⟨yl,oj⟩. (159)

For any i ∈ W(0), we know that
⟨W⊤

O(i,·),o+⟩ ≥ aT. (160)

Hence, let’s obtain a lower bound for ⟨yl,o+⟩
We only need to consider the cases where xs = o+ for some s in the range 1 ≤ s ≤ l. In particular,
we will focus on the following instances:

s = L+
1 and l ∈ {L+

1 , L
+
2 }, s = L+

2 and l = L+
2 .

After T iterations, we know

⟨w∆,o+⟩ ≥ αT, ⟨w∆,o−⟩ ≥ βT, ⟨w∆,oj⟩ ≤ γT for j ̸= 1, 2. (161)

Therefore, 〈
yL+

1
,o+

〉
= σ (⟨w∆,o+⟩) ≥ σ(αT). (162)

We have,
⟨w∆,o+⟩ ≤W1T, ⟨w∆,o−⟩ ≤W2T,

where

W1 = Õ
(

1

poly(d)

)
, (163)

W2 = Õ
(

1

poly(d)

)
. (164)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Then we obtain the following:〈
yL+

2
,o+

〉
≥ σ(αT) + (1− σ(W1T)) (1− σ(W2T)) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 · σ(αT)

= σ(αT)
[
1 + (1− σ(W1T)) (1− σ(W2T)) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
. (165)

We now lower bound the objective ∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl).

We begin with∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl) ≥
∑

i∈W(0)

[
ϕ(WO(i,·)yL+

1
) + ϕ(WO(i,·)yL+

2
)
]
.

Note that

WO(i,·)yL+
1
=

d∑
j=1

〈
W⊤

O(i,·),oj

〉〈
yL+

1
,oj

〉
,

and yL+
1

has only o+ component.

Therefore,
WO(i,·)yL+

1
=
〈
W⊤

O(i,·),o+

〉〈
yL+

1
,o+

〉
≥ aT · σ(αT) > 0.

Similarly, we can write

WO(i,·)yL+
2
≥ aT · σ(αT)

[
1 + (1− σ(W1T)) (1− σ(W2T)) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
> 0.

Applying ϕ(z) = z for positive z, we obtain

ϕ(WO(i,·)yL+
1
) ≥ aT · σ(αT),

ϕ(WO(i,·)yL+
2
) ≥ aT · σ(αT)

[
1 + (1− σ(W1T)) (1− σ(W2T)) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
.

Hence,∑
i∈W(0)

L∑
l=1

ϕ(WO(i,·)yl) ≥
∑

i∈W(0)

aT · σ(αT)·

[
2 + (1− σ(W1T)) (1− σ(W2T)) (1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]
.

(166)

Next, we derive an upper bound for ∑
i∈U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
.

For any i ∈ U(0), we know that
0 < ⟨W⊤

O(i,·),o−⟩ ≤ bT. (167)

We now derive an upper bound for ⟨yl,o−⟩. We need to focus on the following instances:

s = L−
1 and l ∈ {L−

1 , L
−
2 }, s = L−

2 and l = L−
2 .

〈
yL−

1
,o−

〉
= σ (⟨w∆,o−⟩) ≤ σ(W2T). (168)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

〈
yL−

2
,o−

〉
≤ σ(W2T) + (1− σ(αT)) (1− σ(βT)) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2 · σ(W2T)

= σ(W2T)
[
1 + (1− σ(αT)) (1− σ(βT)) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2
]
. (169)

Hence,

∑
i∈U(0)

L∑
l=1

ϕ(WO(i,·)yl) ≤
∑

i∈U(0)

bT · σ(W2T)·[
2 + (1− σ(αT)) (1− σ(βT)) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2
]
.

In addition, we have

∑
i∈K−\U(0)

L∑
l=1

ϕ
(
WO(i,·)y

(n)
l

)
≤ Õ

(
1

poly(d)

)
. (170)

By (157), we can write

F (X(n)) ≥ 1√
mL

{
m

2
· aT · σ(αT)

[
2 + (1− σ(W1T))(1− σ(W2T))(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2
]

−m

2
· bT · σ(W2T)

[
2 + (1− σ(αT)) (1− σ(βT)) (1− σ(⟨w∆,oj⟩))

∆L+
o−

−2
]

− Õ
(

1

poly(d)

)}
,

(171)

with

a =
ηc′2

2
√
mL

[(
1

2

)∆L+
o+

−2

−
(
1

2

)∆L−
o+

−2
]
− Õ

(
1

poly(d)

)
, (172)

and b =
η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
+ Õ

(
1

poly(d)

)
. (173)

α =
c′

4

[
2a√
m

· ρ+0 −
√
mb

]
− Õ

(
1

poly(d)

)
= −Õ

(
1

poly(d)

)
(174)

Therefore, we conclude that

F (X(n)) ≥ 1√
mL

{
m

2
· aT · σ(αT)(1− σ(W1T))(1− σ(W2T))

[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]}

− Õ
(

1

poly(d)

)
(175)

If we can show
[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]
> 0, then we can prove

F (X(n)) ≥ C for some positive constant C.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

First define a random variable ψ1 = ⟨w∆,oj⟩. Then, we have from the definition of our locality-
structured data type

En

[
(1− σ(ψ1))

∆L+
o+

−2 − (1− σ(ψ1))
∆L+

o−
−2
]
= k′ > 0

(176)

for some positive constant k′.

The random variable ψ2 = (1− σ(ψ1))
∆L+

o+
−2 − (1− σ(ψ1))

∆L+
o−

−2 is bounded above by 1.

Applying Hoeffding’s bound, for any q > 0,

P

(
|ψ2 − Eψ2| ≳

√
q logN

N

)
≤ N−q. (177)

From this we can conclude that,

ψ2 =
[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]
≥ k′ −O

(√
q logN

N

)
,

(178)
with probability at most N−q .

Hence, for sufficiently large N, we have from (176)[
(1− σ(⟨w∆,oj⟩))

∆L+
o+

−2 − (1− σ(⟨w∆,oj⟩))
∆L+

o−
−2
]
> 0 (179)

Therefore,

F (X(n)) ≥ C, where C is some positive constant. (180)

Similarly, for a negative sample, one can show by symmetry that the model output satisfies
F (X(n)) ≤ 1.

(S4.1) Derivation for the convergence rate. Let’s find the number of iterations T required such that
F (X(n)) ≥ 1, since the label is +1. We require

1√
mL

· m
2

· aT · σ(αT) ≥ 1 + ϵ. (181)

Substituting the value of a = η
2
√
mL

[(
1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

]
and σ(αT) ≈ 1

2 since α ≈ 0, the
condition becomes

√
maT

4L
=

√
m

4L
· η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
T

=
ηT

8L2

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
≥ 1 + ϵ. (182)

Solving for T , we obtain

T ≥ 8L2(1 + ϵ)

η

[(
1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

] ≥ 8L2

η

[(
1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

] . (183)

By combining (181) with the expression for the model output F (X(n)) in (175), we obtain

F (X(n)) ≥ (1 + ϵ) (184)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Hence, the model output satisfies F (X(n)) ≥ 1.

(S4.2) Derivation for the sample complexity. Now we derive a sample-complexity bound that guar-
antees zero generalization error.

Assuming enough samples, we can write for sufficiently small λ≪ 1

O

(√
d logN

mN

)
≤ λ · η

2
√
mL

[(
1

2

)∆L+
o+

−
(
1

2

)∆L−
o+

]
. (185)

From this we can derive a lower bound on the required sample size,

N ≥ Ω

λ−2 · 4L2d

η2
[(

1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

]2


≥ Ω

 L2d

η2
[(

1
2

)∆L+
o+ −

(
1
2

)∆L−
o+

]2
 ,

(186)

which will be (19) in Theorem 2.

D PROOF OF LEMMAS IN APPENDIX B

Please refer to the supplementary material for this section. We defer all proofs to the supplementary
material, as the high-level ideas underlying the lemmas overlap with those presented in Appendix
C for locality data. However, the case of locality-structured data presents additional challenges.
Appendix E provides the complete proofs for the locality-structured data, which contain the main
technical ideas.

E PROOF OF LEMMAS IN APPENDIX C

E.1 PROOF OF LEMMA C.1

Proof. We know that the gradient of the loss function for the nth sample is

∂ℓ

∂WO(i,·)
=

∂ℓ

∂F (X(n))
· ∂F (X

(n))

∂WO(i,·)

= −z
(n)

L

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

)
· y(n)

l . (187)

If we consider the gradient for the population loss,

∂L
∂WO(i,·)

= −E

[
z(n)

L

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

)
· y(n)

l

]
(188)

= −Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]

+ Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
. (189)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

We are given that

p1 ≤
〈
w

(t)
∆ ,o+

〉
≤ q1, p2 ≤

〈
w

(t)
∆ ,o−

〉
≤ q2, and p3 ≤

〈
w

(t)
∆ ,oj

〉
≤ q3 for j ̸= 1, 2.

(190)

The Mamba output can be written as

yl(t) =

l∑
s=1

 l∏
j=s+1

(
1− σ(w

(t)
∆

⊤
xj)

) · σ(w(t)
∆

⊤
xs) · (x⊤

s xl)xs (191)

We have to consider FOUR cases.

Case I: l = s = L+
1

xs = xl = o+ (192)〈
EyL+

1
,o+

〉
= σ(w

(t)
∆

⊤
o+) ≥ σ(p1)±O(τ) =

1

1 + e−p1
±O(τ). (193)

Case II: l = s = L+
2 〈

EyL+
2 ,L+

2
,o+

〉
= σ(w

(t)
∆

⊤
o+)±O(τ). (194)

Case III: l = L+
2 , s = L+

1〈
EyL+

2 ,L+
1
,o+

〉
=

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L+
o+

−2

· σ(w(t)
∆

⊤
o+)±O(τ). (195)

Combining (194) and (195), we obtain〈
EyL+

2
,o+

〉
= σ(w

(t)
∆

⊤
o+)

+

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L+
o+

−2

· σ(w(t)
∆

⊤
o+)±O(τ).

(196)

Case IV: Others
For the other token positions, xl ̸= o+. Since we assume orthogonality among the features, yl = 0.

From our initialization, for the lucky neuron i ∈ W(0), vi = + 1√
m

. For i ∈ W(0), and z(n) = +1,
we have

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

=
1√
mL

· σ(w(t)
∆

⊤
o+)

[
2 +

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L+
o+

−2
]
±O(τ). (197)

Similarly for z = −1, we can obtain

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

=
1√
mL

· σ(w(t)
∆

⊤
o+)

[
2 +

(
1− σ(w

(t)
∆

⊤
o+)

)(
1− σ(w

(t)
∆

⊤
o−)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o+

−2
]
±O(τ). (198)

Therfore, combining (197) and (198),〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

=
1√
mL

· σ(w(t)
∆

⊤
o+) ·

(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
o−)

)
·[(

1− σ(w
(t)
∆

⊤
oj)

)∆L+
o+

−2

−
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o+

−2
]
±O(τ).

(199)

We aim to bound the deviation between the gradient of the population loss and that of the empirical

loss. Specifically,
∥∥∥∥ ∂L
∂W

(t)

O(i,·)
− ∂L̂

∂W
(t)

O(i,·)

∥∥∥∥
2

=
∥∥∥ 1
N

∑N
n=1 γn − Eγn

∥∥∥
2
, where

γn =
z(n)

L

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

)
y
(n)
l . (200)

Consider a fixed vector α with ∥α∥2 = 1. We will show that α⊤γn is a sub-Gaussian random
variable.

∣∣α⊤γn

∣∣ ≤ ∥α∥2 · ∥γn∥2 = ∥γn∥2. (201)

By the problem setup, we know that

|vi| =
1√
m
, |z(n)| = 1,

∣∣∣ϕ′ (WO(i,·)y
(n)
l

)∣∣∣ ≤ 1. (202)

Recall the Mamba output,

y
(n)
l (t) =

l∑
s=1

 l∏
j=s+1

(
1− σ(w

(t)
∆

⊤
xj)

) · σ(w(t)
∆

⊤
xs) · (x⊤

s xl)xs. (203)

Since ∥xs∥2 = 1, we get∥∥∥y(n)
l

∥∥∥
2
≤

l∑
s=1

∣∣al−s+1 ·
(
x⊤
s xl

)∣∣ · ∥xs∥2

≤
l∑

s=1

a

1− a
· 1 · 1 = a′ (where a′ denotes a constant). (204)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Therefore, the norm of γn satisfies

∥γn∥2 ≤ 1

L

L∑
l=1

|vi| ·
∣∣∣ϕ′ (WO(i,·)y

(n)
l

)∣∣∣ · ∥∥∥y(n)
l

∥∥∥
2

≤ 1

L
· 1√

m

L∑
l=1

∥∥∥y(n)
l

∥∥∥
2

≤ 1

L
· 1√

m
·

L∑
l=1

a′ =
a′√
m
. (205)

Hence, ∣∣α⊤γn

∣∣ ≤ a′√
m

(bounded). (206)

This implies that α⊤γn is sub-Gaussian with variance proxy

σ2 = O
(

1

m

)
. (207)

Now consider the independent sub-Gaussian variables α⊤γ1, . . . ,α
⊤γN , each bounded as

− 1√
m

≤ α⊤γn ≤ 1√
m
. (208)

Applying Hoeffding’s inequality, for any q > 0,

P

(∣∣∣∣∣ 1N
N∑

n=1

α⊤γn − Eα⊤γn

∣∣∣∣∣ ≳
√
q logN

mN

)
≤ N−q. (209)

Observe that this can be written as

1

N

N∑
n=1

α⊤γn − Eα⊤γn = α⊤

(
1

N

N∑
n=1

γn − Eγn

)
:= α⊤ζ. (210)

Therefore, by Hoeffding’s inequality (cf. (209)),

P

(∣∣α⊤ζ
∣∣ ≳√q logN

mN

)
≤ N−q. (211)

To bound ∥ζ∥2, we use the dual norm identity

∥ζ∥2 = sup
∥α∥2=1

α⊤ζ. (212)

We apply an ε-cover argument to obtain

sup
∥α∥2=1

α⊤ζ ≤ 1

1− ε
max
α∈Cε

α⊤ζ

≤ 2 max
α∈C1/2

α⊤ζ. (213)

We have shown that for any fixed α,

P

(∣∣α⊤ζ
∣∣ ≳√q logN

mN

)
≤ N−q. (214)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Therefore, for all fixed α ∈ C1/2,

∣∣α⊤ζ
∣∣ ≳√q logN

mN
with probability at most N−q. (215)

Then,

max
α∈C1/2

∣∣α⊤ζ
∣∣ ≳√q logN

mN
with probability at most |C1/2|N−q. (216)

Recall that the covering number satisfies

|Cε| ≤
(
3B

ε

)d

. (217)

For B = 1 and ε = 1
2 , we have

|C1/2| ≤ 6d. (218)

We can therefore write

P

(
∥ζ∥2 ≳

√
q logN

mN

)
≤ 6d ·N−q. (219)

We want this probability to be sufficiently small. Set q = d, so that

P

(
∥ζ∥2 ≳ 2

√
d logN

mN

)
≤
(
N

6

)−d

. (220)

Hence, the deviation is bounded with high probability:

∥ζ∥2 > O

(√
d logN

mN

)
with probability at most O(N−d). (221)

Or equivalently, with probability at most O(N−d),∥∥∥∥∥ 1

N

N∑
n=1

γn − Eγn

∥∥∥∥∥
2

> O

(√
d logN

mN

)
. (222)

That is, with high probability 1−O(N−d), we have∥∥∥∥∥ 1

N

N∑
n=1

γn − Eγn

∥∥∥∥∥
2

≤ O

(√
d logN

mN

)
. (223)

Using the identities

− ∂L̂
∂W

(t)
O(i,·)

=
1

N

N∑
n=1

γn, − ∂L
∂W

(t)
O(i,·)

= Eγn, (224)

we conclude that, with high probability,∥∥∥∥∥∥
− ∂L̂

∂W
(t)
O(i,·)

−

− ∂L
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ ∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

≤ O

(√
d logN

mN

)
. (225)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Using the Cauchy–Schwarz inequality, we have∣∣∣∣∣∣
〈

∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

,o+

〉∣∣∣∣∣∣ ≤
∥∥∥∥∥∥ ∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

· ∥o+∥2

=

∥∥∥∥∥∥ ∂L
∂W

(t)
O(i,·)

− ∂L̂
∂W

(t)
O(i,·)

∥∥∥∥∥∥
2

(since ∥o+∥2 = 1)

≤ O

(√
d logN

mN

)
. (226)

Therefore, we obtain〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
−O

(√
d logN

mN

)
≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
+O

(√
d logN

mN

)
.

(227)

By pairing (199) with the given the conditions on w∆ in (190), we can write〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉

≥ 1√
mL

· σ(p1) · (1− σ(q1)) · (1− σ(q2))
[
(1− σ(q3))

∆L+
o+

−2 − (1− σ(p3))
∆L−

o+
−2
]
−O(τ)

(228)
and〈

− ∂L
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(q1) · (1− σ(p1)) · (1− σ(p2))
[
(1− σ(p3))

∆L+
o+

−2 − (1− σ(q3))
∆L−

o+
−2
]
+O(τ)

(229)

Therefore, we can obtain the lower bound and the upper bound of
〈
− ∂L̂

∂W
(t)

O(i,·)
,o+

〉
as

1√
mL

· σ(p1) · (1− σ(q1)) · (1− σ(q2))
[
(1− σ(q3))

∆L+
o+

−2

− (1− σ(p3))
∆L−

o+
−2
]
−O

(√
d logN

mN

)
−O(τ)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
(230)

and 〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉

≤ 1√
mL

· σ(q1) · (1− σ(p1)) · (1− σ(p2))
[
(1− σ(p3))

∆L+
o+

−2 − (1− σ(q3))
∆L−

o+
−2
]

+O

(√
d logN

mN

)
+O(τ).

(231)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

This concludes the proof of (106) and (107) in Lemma C.1.

To obtain
〈
− ∂L̂

∂W
(t)

O(i,·)
,o−

〉
, we have to consider Ez=−1

[∑L
l=1

1
Lvi · ϕ

′
(
WO(i,·)y

(n)
l

)
· y(n)

l

]
.

If W (t)
O(i,·)o− > 0,

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

=
1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
±O(τ). (232)

If W (t)
O(i,·)o− ≤ 0,

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
= 0±O(τ). (233)

From (189), We know that〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
.

(234)

Hence, combining both cases, we conclude

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
−O(τ)

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
≤ O(τ). (235)

From (225), similar to (227), we can write〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
−O

(√
d logN

mN

)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
+O

(√
d logN

mN

)
. (236)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Hence, we have

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
−O

(√
d logN

mN

)
−O(τ)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (237)

This concludes the proof of (108) and (109) in Lemma C.1.

Now consider
〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
for j ̸= 1, 2.〈

− ∂L
∂W

(t)
O(i,·)

,oj

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉
:= ⟨I1,oj⟩ − ⟨I2,oj⟩ . (238)

Because oj for j ̸= 1, 2 is identical in both I1 and I2, ⟨I1,oj⟩ − ⟨I2,oj⟩ = 0 ± O(τ). Hence,〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
= 0±O(τ). From (225), similar to (227), we can write〈

− ∂L
∂W

(t)
O(i,·)

,oj

〉
−O

(√
d logN

mN

)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,oj

〉
+O

(√
d logN

mN

)
+O(τ). (239)

Therefore, 〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
for j ̸= 1, 2. (240)

This concludes the proof of (110) in Lemma C.1.

E.2 PROOF OF LEMMA C.2

Proof. By definition, for any unlucky neuron i ∈ K+ \W(0), we have
WO(i,·)o+ ≤ 0. (241)

We first consider the alignment with o+. That is,〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
. (242)

The gradient is given in (188). We only need to consider the cases where
〈
y
(n)
l ,o+

〉
> 0. However,

since WO(i,·)o+ ≤ 0, we have

ϕ′
(
WO(i,·)y

(n)
l

)
= 0. (243)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o+

〉
= 0±O(τ). (244)

We know by (227),〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤

〈
− ∂L
∂W

(t)
O(i,·)

,o+

〉
+O

(√
d logN

mN

)
. (245)

Hence, 〈
− ∂L̂
∂W

(t)
O(i,·)

,o+

〉
≤ O

(√
d logN

mN

)
+O(τ). (246)

We now analyze the alignment with o−. To obtain the bound on
〈
− ∂L̂

∂W
(t)

O(i,·)
,o−

〉
, we consider the

expectation Ez=−1

[∑L
l=1

1
Lvi · ϕ

′
(
WO(i,·)y

(n)
l

)
· y(n)

l

]
.

If W (t)
O(i,·)o− > 0, the inner product satisfies〈

Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

=
1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
±O(τ). (247)

If W (t)
O(i,·)o− ≤ 0, then〈

Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
= 0±O(τ). (248)

From (189), We know that〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,o−

〉
. (249)

Hence, combining both cases, we conclude

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
−O(τ).

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
≤ O(τ). (250)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

From (225), similar to (227), we can write〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
−O

(√
d logN

mN

)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,o−

〉
+O

(√
d logN

mN

)
. (251)

Hence,

− 1√
mL

· σ(w(t)
∆

⊤
o−)

[
2 +

(
1− σ(w

(t)
∆

⊤
o−)

)(
1− σ(w

(t)
∆

⊤
o+)

)
·
(
1− σ(w

(t)
∆

⊤
oj)

)∆L−
o−

−2
]
−O

(√
d logN

mN

)
−O(τ)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,o−

〉
≤ O

(√
d logN

mN

)
+O(τ). (252)

Now consider
〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
for j ̸= 1, 2.

〈
− ∂L
∂W

(t)
O(i,·)

,oj

〉
=

〈
Ez=+1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉

−

〈
Ez=−1

[
L∑

l=1

1

L
vi · ϕ′

(
WO(i,·)y

(n)
l

)
· y(n)

l

]
,oj

〉
:= ⟨I1,oj⟩ − ⟨I2,oj⟩ . (253)

Because oj for j ̸= 1, 2 is identical in both I1 and I2, ⟨I1,oj⟩ − ⟨I2,oj⟩ = 0 ± O(τ). Hence,〈
− ∂L

∂W
(t)

O(i,·)
,oj

〉
= 0±O(τ). From (225), similar to (227), we can write〈

− ∂L
∂W

(t)
O(i,·)

,oj

〉
−O

(√
d logN

mN

)

≤

〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉

≤

〈
− ∂L
∂W

(t)
O(i,·)

,oj

〉
+O

(√
d logN

mN

)
+O(τ). (254)

Therefore, 〈
− ∂L̂
∂W

(t)
O(i,·)

,oj

〉
≤ O

(√
d logN

mN

)
for j ̸= 1, 2. (255)

E.3 PROOF OF LEMMA C.3

By symmetry, the proof is analogous to that of Lemma C.1; Please see Appendix E.1.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

E.4 PROOF OF LEMMA C.4

By symmetry, the proof is analogous to that of Lemma C.2; Please see Appendix E.2.

E.5 PROOF OF LEMMA C.5

Proof. The gradient of the loss with respect to w∆ for the nth sample is given by

∂ℓ

∂w∆
=− z(n)

L
·

m∑
i=1

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

)
·

l∑
s=1

(
W⊤

B x(n)
s

)⊤ (
W⊤

C x
(n)
l

)(
WO(i,·)x

(n)
s

)
· σ
(
w⊤

∆x
(n)
s

)
·

l∏
r=s+1

(
1− σ

(
w⊤

∆x
(n)
r

))

·

(1− σ
(
w⊤

∆x
(n)
s

))
x(n)
s −

l∑
j=s+1

(
1− σ

(
w⊤

∆x
(n)
j

))
x
(n)
j


:=− z(n)

L
·

m∑
i=1

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

)
·

l∑
s=1

I
(n)
l,s . (256)

We define the gradient summand I
(n)
l,s as

I
(n)
l,s = βs,s · x(n)

s −
l∑

j=s+1

βs,jx
(n)
j , (257)

where the coefficients βs,s and βs,j are given by

βs,s = (W⊤
B x(n)

s)⊤(W⊤
C x

(n)
l)(WO(i,·)x

(n)
s)σ(w⊤

∆x
(n)
s)

×

[
l∏

r=s+1

(
1− σ(w⊤

∆x
(n)
r)
)]

(1− σ(w⊤
∆x

(n)
s)). (258)

and

βs,j = (W⊤
B x(n)

s)⊤(W⊤
C x

(n)
l)(WO(i,·)x

(n)
s)σ(w⊤

∆x
(n)
s)

×

[
l∏

r=s+1

(
1− σ(w⊤

∆x
(n)
r)
)]

(1− σ(w⊤
∆x

(n)
j)). (259)

If we consider the gradient of the empirical loss,

∂L̂
∂w∆

= − 1

N

N∑
n=1

z(n)

L
·

m∑
i=1

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

)
·

l∑
s=1

I
(n)
l,s . (260)

We are given that

p1 ≤ ⟨w(t)
∆ ,o+⟩ ≤ q1, and r∗1 ≤ ⟨W (t+1)

O(i,·)
⊤
,o+⟩ ≤ s∗1. (261)

From our initialization, for all i ∈ K+, we have vi = 1√
m

. This gives〈
− ∂ℓ

∂w∆
,o+

〉
=
z(n)

L

m∑
i=1

L∑
l=1

1√
m

· ϕ′(WO(i,·)y
(n)
l)

l∑
s=1

〈
I
(n)
l,s ,o+

〉
. (262)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Averaging over the training samples, the inner product of the empirical gradient becomes〈
− ∂L̂
∂w∆

,o+

〉
=

1

N

N∑
n=1

z(n)

L
·

m∑
i=1

L∑
l=1

viϕ
′(WO(i,·)y

(n)
l) ·

l∑
s=1

〈
I
(n)
l,s ,o+

〉

=
1

N

∑
n:z(n)=+1

1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,o+

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,o+

〉
+

1

N

∑
n:z(n)=−1

−1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,o+

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,o+

〉 . (263)

First, we focus on the contribution from the samples where z(n) = +1, for which we seek a lower
bound. We analyze the inner terms by considering four cases.

Case I: l = L+
1 , s = L+

1

Since l = s and xs = o+, it follows from (257) that〈
I
(n)
l,s ,o+

〉
= βs,s. (264)

Using (258), with WB = WC = I and xl = xs = o+, we obtain〈
I
(n)
l,s ,o+

〉
= βs,s = ⟨W (t+1)

O(i,·)
⊤
,o+⟩ · σ(⟨w(t)

∆ ,o+⟩) ·
(
1− σ(⟨w(t)

∆ ,o+⟩)
)
. (265)

Given the conditions in (261), we can write〈
I
(n)
l,s ,o+

〉
≥ (r∗1 −O(τ)) · σ(p1 −O(τ)) · (1− σ(q1 +O(τ))) . (266)

We can approximate σ(p1 −O(τ)) ≈ σ(p1)−O(τ) and 1− σ(q1 +O(τ)) ≈ 1− σ(q1)−O(τ),
since O(τ) < O(1d).

Therefore, we obtain〈
I
(n)
l,s ,o+

〉
≥ (r∗1 −O(τ)) · (σ(p1)−O(τ)) · (1− σ(q1)−O(τ))

≥ r∗1 · σ(p1) · (1− σ(q1))−O(τ).
(267)

Case II: l = L+
2 , s = L+

2

This configuration yields the same result as in Case I. We again obtain〈
I
(n)
l,s ,o+

〉
≥ r∗1 · σ(p1) · (1− σ(q1))−O(τ). (268)

Case III: l = L+
2 , s = L+

1 Comparing (258) with (259), we see that the two expressions differ only
in their last term. In this setting, xj equals o+ only when j = L+

2 . Consequently, xs = xj = o+,
which implies βs,s = βs,j . Hence,〈

I
(n)
l,s ,o+

〉
= βs,s − βs,j = 0±O(τ). (269)

Case IV: Others

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

For the other token positions,
〈
I
(n)
l,s ,o+

〉
= 0 due to orthogonality among the features.

Combining the above, the total contribution becomes

l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 2r∗1 · σ(p1) · (1− σ(q1))−O(τ). (270)

We now bound the entire sum over all tokens:

1

L

L∑
l=1

1√
m
ϕ′
(
WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 1

L

L∑
l=1

1√
m

·1·2r∗1 ·σ(p1)·(1− σ(q1))−O(τ). (271)

Let ρ+t = |W(t)| be the number of contributing neurons. Then the total contribution from the active
neurons is lower bounded as

1

L

∑
i∈K+

L∑
l=1

viϕ
′ (WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 2r∗1 · σ(p1) · (1− σ(q1))√

m
· ρ+t −O(τ). (272)

Next, we consider z(n) = −1 for i ∈ K+. For z(n) = −1, the negative sample also contains two o+

features.

Similar to the above, we have to consider 4 cases.

Case I: l = L+
1 , s = L+

1

Since l = s, it follows from (257) that

I
(n)
l,s = βs,s · xl. (273)

Since xl = o+, we have 〈
I
(n)
l,s ,o+

〉
= βs,s. (274)

We now seek an upper bound for this contribution. From the initial conditions in (261), we know

⟨W (t+1)
O(i,·)

⊤
,o+⟩ ≤ s∗1 +O(τ). (275)

Hence, we obtain〈
I
(n)
l,s ,o+

〉
≤ (s∗1 +O(τ)) · σ(q1 +O(τ)) · (1− σ(p1 −O(τ))) . (276)

We can approximate σ(q1 +O(τ)) ≈ σ(q1) +O(τ) and 1− σ(p1 −O(τ)) ≈ 1− σ(p1) +O(τ),
since O(τ) < O(1d).

Therefore, we obtain〈
I
(n)
l,s ,o+

〉
≤ (s∗1 +O(τ)) · (σ(q1) +O(τ)) · (1− σ(p1) +O(τ))

≤ s∗1 · σ(q1) · (1− σ(p1)) +O(τ).
(277)

Case II: l = L+
2 , s = L+

2

This configuration yields the same result as in Case I. We again obtain〈
I
(n)
l,s ,o+

〉
≤ s∗1 · σ(q1) · (1− σ(p1)) +O(τ). (278)

Case III: l = L+
2 , s = L+

1

In this case, the contribution vanishes:〈
I
(n)
l,s ,o+

〉
= 0±O(τ). (279)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Case IV: Others

For the other token positions,
〈
I
(n)
l,s ,o+

〉
= 0 due to orthogonality among the features.

The maximum number of such contributing neurons is m
2 . Therefore, the total contribution is

bounded above by

1

L

∑
i∈K+

L∑
l=1

vi ϕ
′ (WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≤2s∗1 · σ(q1) · (1− σ(p1))√

m
· m
2

+O(τ)

=
√
m · s∗1 · σ(q1) · (1− σ(p1)) +O(τ).

(280)

Thirdly, let us consider the contribution for z(n) = +1 from i ∈ K−. From our initialization, for
i ∈ K−, vi = − 1√

m
. For z(n) = +1, we seek an upper bound on the contribution from such

neurons.

Let z(n) = +1. To maximize the term WO(i,·)x
(n)
s in (258), we can consider the token locations

which contain o− features since WO(i,·) has a large component in the o− direction. Then xl =
o− ⇒ yl contains the o− feature.

However, in this case, xs = o− = xl, and due to orthogonality,〈
I
(n)
l,s ,o+

〉
= 0. (281)

Hence, we only need to consider time steps l = L+
1 , L

+
2 , where o+ features appear.

Recall that 〈
− ∂ℓ

∂w∆
,o+

〉
=

1

L

m∑
i=1

L∑
l=1

− 1√
m

· ϕ′(WO(i,·)yl)

l∑
s=1

〈
I
(n)
l,s ,o+

〉
. (282)

We analyze the inner contributions case by case.

Case I: l = L+
1 , s = L+

1

Given that

WO(i,·)o+ ≤ δ1 +O

(√
d logN

mN

)
=: c, (283)

we obtain 〈
I
(n)
l,s ,o+

〉
≤ c · σ(q1) · (1− σ(p1)) +O(τ). (284)

Case II: l = L+
2 , s = L+

2

This configuration yields the same bound:〈
I
(n)
l,s ,o+

〉
≤ c · σ(q1) · (1− σ(p1)) +O(τ). (285)

Case III: l = L+
2 , s = L+

1

In this case, the contribution vanishes:〈
I
(n)
l,s ,o+

〉
= 0±O(τ). (286)

Case IV: Others

For the other token positions,
〈
I
(n)
l,s ,o+

〉
= 0 due to orthogonality among the features.

Thus, the total contribution from each i ∈ K− satisfies
l∑

s=1

〈
I
(n)
l,s ,o+

〉
≤ 2c · σ(q1) · (1− σ(p1)) +O(τ). (287)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

The maximum number of such contributing neurons is m
2 , so the full contribution is bounded by

1√
mL

∑
i∈K−

L∑
l=1

ϕ′
(
WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≤ 2c · σ(q1) · (1− σ(p1))√

m
· m
2

+O(τ)

=
√
mc · σ(q1) · (1− σ(p1)) +O(τ).

(288)

Therefore, the overall contribution is

− 1√
mL

∑
i∈K−

L∑
l=1

ϕ′(WO(i,·)yl)

l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ −

√
mc · σ(q1) · (1− σ(p1))−O(τ). (289)

Finally, we consider z(n) = −1 for i ∈ K−. For z(n) = −1, we want a lower bound since
vi = − 1√

m
.

We could consider l = L+ ⇒ xl = o+, and write

〈
WO(i,·),o+

〉
≥ δ1 −O

(√
d logN

mN

)
. (290)

However, the minimum number of such contributing neurons is not tractable. Thus, if we consider
the worst case where WO(i,·) for i ∈ K− does not learn the o+ feature, the obvious lower bound is
zero:

1

L

∑
i∈K−

L∑
l=1

1√
m
ϕ′
(
WO(i,·)yl

) l∑
s=1

〈
I
(n)
l,s ,o+

〉
≥ 0. (291)

We now combine the bounds for the four terms identified in (263), corresponding to the contributions
from: (i) K+ with z(n) = +1 as shown in (272), (ii) K+ with z(n) = −1 as shown in (280), (iii)
K− with z(n) = +1 as shown in (289), and (iv) K− with z(n) = −1 as shown in (291). We assume
the batch is balanced, so the number of positive and negative samples is equal, with each class
contributing N

2 samples. Then we have〈
− ∂L̂
∂w∆

,o+

〉
≥ 1

2

[
2r∗1 · σ(p1) (1− σ(q1))√

m
· ρ+t −

√
m · c · σ(q1) (1− σ(p1))

−
√
m · s∗1 · σ(q1) · (1− σ(p1)) + 0

]
−O(τ)

=
σ(p1) (1− σ(q1)) r

∗
1 · ρ+t√

m
− σ(q1) (1− σ(p1)) s

∗
1 ·

√
m

2
(292)

−O

(√
d logN

mN

)
−O(τ). (293)

where we have used the fact
√
m
2 ·σ(q1) (1− σ(p1)) ·c = O

(√
d logN
mN

)
since c = O

(√
d logN
mN

)
.

E.6 PROOF OF LEMMA C.6

Proof. The gradient is given in (256).

Let’s consider the alignment with ok for k ̸= 1, 2.

〈
− ∂ℓ

∂w∆
,ok

〉
=
z(n)

L

m∑
i=1

L∑
l=1

vi · ϕ′(WO(i,·)y
(n)
l)

l∑
s=1

〈
I
(n)
l,s ,ok

〉
(294)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

From our initialization, for all i ∈ K+, we have vi = 1√
m

.

We first consider the case z(n) = +1 for i ∈ K+. Since WO(i,·), for i ∈ K+ has a large o+

component, we have to consider the token features with o+. For z(n) = +1, only when l =
L+
2 , s = L+

1 we have xl = xs = o+. Therefore, WO(i,·)xs is significant. Hence, we have〈
I
(n)
l,s ,ok

〉
=−

l∑
j=s+1

βs,j⟨x(n)
j ,ok⟩

≤ − βs,s+1 (Assuming W.L.O.G. x(n)
s+1 = ok)

≤− ⟨W (t+1)
O(i,·)

⊤
,o+⟩ · σ(⟨w(t)

∆ ,o+⟩) ·
(
1− σ(⟨w(t)

∆ ,o+⟩)
)
·
(
1− σ(⟨w(t)

∆ ,ok⟩)
)∆L+

o+
. (295)

Using the the conditions in (261), we can write〈
I
(n)
l,s ,ok

〉
≤ (−r∗1 +O(τ)) · σ(p1 +O(τ)) · (1− σ(q1 −O(τ))) · (1− σ(q2 −O(τ)))

∆L+
o+ .

(296)

We can approximate σ(p1 +O(τ)) ≈ σ(p1) +O(τ), 1− σ(q1 −O(τ)) ≈ 1− σ(q1) +O(τ) and
1− σ(q2 −O(τ)) ≈ 1− σ(q2) +O(τ), since O(τ) < O(1d).

Hence, we obtain

1

L

L∑
l=1

1√
m

· ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ 1

L

L∑
l=1

1√
m

· 1 ·
[
−r∗1 · σ(p1) · (1− σ(q1)) · (1− σ(q2))

∆L+
o+

]
+O(τ)).

(297)

Let ρ+t = |W(t)| be the number of contributing neurons. Then the total contribution from K+

neurons is bounded as

1

L

∑
i∈K+

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ − r∗1√

m
· σ(p1) (1− σ(q1))

· (1− σ(q2))
∆L+

o+ · ρ+t +O(τ)).

(298)

Next, we consider z(n) = −1 for i ∈ K+. Since
〈
I
(n)
l,s ,ok

〉
< 0, we require a lower bound for this.〈

I
(n)
l,s ,ok

〉
= −

l∑
j=s+1

βs,j⟨x(n)
j ,ok⟩

≳− ⟨W (t+1)
O(i,·)

⊤
,o+⟩ · σ(⟨w(t)

∆ ,o+⟩) ·
(
1− σ(⟨w(t)

∆ ,o+⟩)
)
·
(
1− σ(⟨w(t)

∆ ,ok⟩)
)∆L−

o+
. (299)

Using the the conditions in (261), we can write〈
I
(n)
l,s ,ok

〉
≳ −s∗1 · σ(q1) · (1− σ(p1)) · (1− σ(p2))

∆L−
o+ . (300)

1

L

∑
i∈K+

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≳− s∗1√

m
· σ(q1) (1− σ(p1)) (1− σ(p2))

∆L−
o+ · ρ+t .

(301)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Since ∆L−
o+

≫ ∆L+
o+

, this term is negligible which leads to

1

L

∑
i∈K+

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≥ −O

(
(1− σ(p2))

∆L−
o+

)
≈ 0. (302)

Thirdly, we consider the case i ∈ K−, for z(n) = −1. Similar to (295) and(296), when l = L−
2 , s =

L−
1 the contribution is significant.

〈
I
(n)
l,s ,ok

〉
≤ −r∗1 · σ(p1) · (1− σ(q1)) · (1− σ(q2))

∆L−
o− +O(τ)). (303)

Hence, we obtain

1

L

L∑
l=1

1√
m

· ϕ′(WO(i,·)y
(n)
l)

l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ 1

L

L∑
l=1

1√
m

· 1 ·
[
−r∗1 · σ(p1) · (1− σ(q1)) · (1− σ(q2))

∆L−
o−

]
+O(τ))

(304)

Let ρ−t = |U(t)| be the number of contributing neurons. Then the total contribution from K−
neurons is bounded as

1

L

∑
i∈K−

L∑
l=1

vi ϕ
′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≤ − r∗1√

m
σ(p1)

(
1− σ(q1)

) (
1− σ(q2)

)∆L−
o− ρ−t

+O(τ)).
(305)

Finally, we consider i ∈ K− for z(n) = +1. Following the same approach as in (299) to (301), we
can write

1

L

∑
i∈K−

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≳− s∗1√

m
· σ(q1) (1− σ(p1)) (1− σ(p2))

∆L+
o− · ρ−t .

(306)

Since ∆L+
o−

≫ ∆L−
o−

, this term is negligible which leads to

1

L

∑
i∈K−

L∑
l=1

vi · ϕ′
(
WO(i,·)y

(n)
l

) l∑
s=1

〈
I
(n)
l,s ,ok

〉
≥ −O

(
(1− σ(p2))

∆L+
o−

)
≈ 0. (307)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Putting it together, We know〈
− ∂L̂
∂w∆

,ok

〉
=

1

N

N∑
n=1

z(n)

L
·

m∑
i=1

L∑
l=1

viϕ
′(WO(i,·)y

(n)
l) ·

l∑
s=1

〈
I
(n)
l,s ,ok

〉

=
1

N

∑
n:z(n)=+1

1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,ok

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,ok

〉
+

1

N

∑
n:z(n)=−1

−1

L

∑
i∈K+

L∑
l=1

1√
m
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,ok

〉

+
∑
i∈K−

L∑
l=1

(
− 1√

m

)
ϕ′(WO(i,·)y

(n)
l)

l∑
s=1

〈
I
(n)
l,s ,ok

〉 . (308)

We now combine the bounds for the two terms identified in equation (308), corresponding to the
contributions from: (i) K+ with z(n) = +1 (298), (ii) K+ with z(n) = −1 (306), (iii) K− with
z(n) = +1 (301), and (iv) K− with z(n) = −1 (305). We assume the batch is balanced, so the
number of positive and negative samples is equal, with each class contributing N

2 samples. Then we
have 〈

− ∂L̂
∂w

(t)
∆

,ok

〉

≤− r∗1
2
√
m
σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]
+

s∗1√
m

· σ(q1) (1− σ(p1))
[
O
(
(1− σ(p2))

∆L+
o−

)
· ρ−t +O

(
(1− σ(p2))

∆L−
o+

)
· ρ+t

]
(309)

+O(τ)) (310)

〈
− ∂L̂
∂w

(t)
∆

,ok

〉

≤− r∗1
2
√
m
σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]
+O

(
(1− σ(p2))

∆L−
o+

)
+O

(
(1− σ(p2))

∆L+
o−

)
+O(τ)) (311)

From (302) and (307), we can conclude〈
− ∂L̂
∂w

(t)
∆

,ok

〉
≤ − r∗1

2
√
m
σ(p1) (1− σ(q1))

[
(1− σ(q2))

∆L+
o+ ρ+t + (1− σ(q2))

∆L−
o− ρ−t

]
+O(τ)). (312)

F EXTENSION TO MULTI-CLASS CLASSIFICATION

Consider the classification problem with four classes, where each example is assigned a label z =
(z1, z2) ∈ {+1,−1}2 representing four distinct classes. Similarly to the binary setting, there exist

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

four orthogonal discriminative patterns. In the output layer, the scalar coefficient vi associated with
hidden neuron i is replaced by a two-dimensional vector vi ∈ R2.

Hence, we define the model output as

F (X) =
1

L

L∑
l=1

m∑
i=1

vi ϕ
(
WO(i,·)yl(X)

)
. (313)

F1(X
(n)) =

1

L

L∑
l=1

m∑
i=1

(vi)1 ϕ
(
WO(i,·)yl(X

(n))
)
, (314)

F2(X
(n)) =

1

L

L∑
l=1

m∑
i=1

(vi)2 ϕ
(
WO(i,·)yl(X

(n))
)
. (315)

The dataset can be divided into four groups as

D1 = {(X(n), z(n)) | z(n) = (1, 1)},
D2 = {(X(n), z(n)) | z(n) = (1,−1)},
D3 = {(X(n), z(n)) | z(n) = (−1, 1)},
D4 = {(X(n), z(n)) | z(n) = (−1,−1)}.

(316)

The loss function for data (X(n), z(n)) is

Loss(X(n), z(n)) = max
{
1− z(n)⊤F (X(n)), 0

}
. (317)

Since vi ∈ {± 1√
m
}2, we divide neurons into four groups:

W1 =
{
i : vi =

1√
m
(1, 1)

}
,

W2 =
{
i : vi =

1√
m
(1,−1)

}
,

W3 =
{
i : vi =

1√
m
(−1, 1)

}
,

W4 =
{
i : vi =

1√
m
(−1,−1)

}
.

(318)

For neuron i, the gradient decomposes as
∂Loss

∂WO(i,·)
= −z(n)1

∂F1(X
(n))

∂WO(i,·)
− z

(n)
2

∂F2(X
(n))

∂WO(i,·)
. (319)

Let o1,o2,o3,o4 denote the four discriminative directions. Consider i ∈ W2, i.e. vi =
1√
m
(1,−1).

Projecting the gradient onto o2, for any (X(n), z(n)) ∈ D2 we obtain

−
〈 ∂Loss

∂WO(i,·)
,o2

〉
≈ 2√

m
∥o2∥2 > 0, (320)

showing GD moves WO(i,·) toward o2.

For samples from the other classes:

(X(n), z(n)) ∈ D1 : −
〈

∂Loss

∂WO(i,·)
,o1

〉
≈ 0,

(X(n), z(n)) ∈ D3 : −
〈

∂Loss

∂WO(i,·)
,o3

〉
≈ − 2√

m
∥o3∥2,

(X(n), z(n)) ∈ D4 : −
〈

∂Loss

∂WO(i,·)
,o4

〉
≈ 0.

(321)

Thus, for i ∈ W2, the update direction aligns with o2, and similarly neurons in W1,W3,W4 align
with o1,o3,o4 respectively. Similarly, we can analyze the gradient dynamics of the gating vector
w∆.

58

	Introduction
	Related Work

	Preliminaries
	Problem Formulation
	Theoretical Results
	Key Takeaways and Insights of the Findings
	Data Model
	Formal Theoretical Results
	Theoretical Results for Majority-Voting Data
	Theoretical Results for Locality-Structured Data

	Technical Novelty and Challenges

	Numerical Experiments
	Conclusion
	Notations, Proof Sketch and Additional Experiments
	Notations
	Lucky Neuron Definition
	Loss Function

	Proof Sketch
	Additional Numerical Experiments

	Majority-voting data
	Useful Lemmas
	Proof of Convergence

	Locality-structured data
	Useful Lemmas
	Proof of Convergence

	Proof of Lemmas in Appendix B
	Proof of Lemmas in Appendix C
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma C.3
	Proof of Lemma C.4
	Proof of Lemma C.5
	Proof of Lemma C.6

	Extension to Multi-Class Classification

