

A THEORETICAL ANALYSIS OF MAMBA’S TRAINING DYNAMICS: FILTERING RELEVANT FEATURES FOR GENERALIZATION IN STATE SPACE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 The recent empirical success of Mamba and other selective state space models
 014 (SSMs) has renewed interest in non-attention architectures for sequence model-
 015 ing, yet their theoretical foundations remain underexplored. We present a first-
 016 step analysis of generalization and learning dynamics for a simplified but rep-
 017 resentative Mamba block: a single-layer, single-head selective SSM with input-
 018 dependent gating, followed by a two-layer MLP trained via gradient descent
 019 (GD). Our study adopts a structured data model with tokens that include both
 020 class-relevant and class-irrelevant patterns under token-level noise and examines
 021 two canonical regimes: majority-voting and locality-structured data sequences.
 022 We prove that the model achieves guaranteed generalization by establishing non-
 023 asymptotic sample complexity and convergence rate bounds, which improve as
 024 the effective signal increases and the noise decreases. Furthermore, we show
 025 that the gating vector aligns with class-relevant features while ignoring irrelevant
 026 ones, thereby formalizing a feature-selection role similar to attention but realized
 027 through selective recurrence. Numerical experiments on synthetic data justify our
 028 theoretical results. Overall, our results provide principled insight into when and
 029 why Mamba-style selective SSMs learn efficiently, offering a theoretical counter-
 030 point to Transformer-centric explanations.

1 INTRODUCTION

034 Transformers (Vaswani et al., 2017) have become the mainstream framework in large language mod-
 035 els (Achiam et al., 2023; Guo et al., 2025; Brown et al., 2020; Touvron et al., 2023). However, due
 036 to the quadratic time and memory complexity introduced by the attention mechanism with respect to
 037 input length (Gu & Dao, 2023; Dao & Gu, 2024), Transformers are inefficient when handling long
 038 input sequences. Recently, State Space Models (SSMs) (Gu & Dao, 2023; Dao & Gu, 2024; Zhu
 039 et al., 2024; Wang et al., 2024a; Behrouz & Hashemi, 2024; Liu et al., 2024; Wang et al., 2024b)
 040 have shown competitive or superior performance to Transformers across domains such as language
 041 (Gu & Dao, 2023), vision (Zhu et al., 2024; Liu et al., 2024), graphs (Wang et al., 2024a; Behrouz &
 042 Hashemi, 2024), audio (Yadav & Tan, 2024), and reinforcement learning (Lu et al., 2023). SSMs has
 043 brought many advantages absent in Transformer-based models, such as linear computational com-
 044 plexity and hardware-friendly properties that enable efficient parallelization. Among these models,
 045 Mamba (Gu & Dao, 2023) proposes a selection mechanism, which parameterizes the SSM with the
 046 input, which allows the model to dynamically retain or discard relevant and irrelevant information.
 047 This enables the Mamba model to achieve performance comparable to Transformer-based models
 048 in long-text modeling as well as tasks such as visual classification and dense prediction (Zhu et al.,
 049 2024; Liu et al., 2024), but in a more efficient manner.

050 Although recent work has primarily focused on the empirical performance of Mamba and its ar-
 051 chitectural comparisons with other models, the theoretical understanding of Mamba remains less
 052 investigated. In addition, recent empirical evidence shows that Mamba’s success is highly sensitive
 053 to hyperparameter tuning (Okpekpe & Orvieto, 2025). Such dependence on fragile optimization
 choices raises fundamental questions about why and when Mamba succeeds. These include funda-
 mental inquiries such as:

054 • *Under what conditions can a Mamba be trained to achieve satisfactory generalization?*
 055
 056 • *How is the selection mechanism implemented through Mamba’s components?*

057 Existing theoretical studies on Mamba or related SSMs mainly focus on the expressive power and
 058 the mechanisms of optimal parameters. Orvieto et al. (2024) and Nishikawa & Suzuki prove SSMs
 059 augmented with MLPs are universal approximators of regular functionals and can mimic token selec-
 060 tion dynamically. Muca Cirone et al. (2024) and Huang et al. (2025) show that Mamba has stronger
 061 expressive power than its diagonal SSM predecessor, especially in approximating discontinuous
 062 functions. Li et al. (2024c) and Li et al. (2025b) respectively prove that two simplified SSMs, H3
 063 and GLA, implicitly perform weighted preconditioned GD at the global minima of in-context learn-
 064 ing problems when input with context examples. However, these works do not explain whether the
 065 selection mechanisms and advantages of Mamba can actually be obtained through practical training.
 066 Moreover, these studies do not analyze the generalization ability of Mamba models.

067 **Contributions of this paper.** In this work, we study a nonlinear neural model composed of a one-
 068 layer Mamba block and a two-layer perceptron, which is simplified but sufficiently representative
 069 to reflect the gating structure in Mamba. By assuming the presence of the class-relevant feature
 070 that influence the label and class-irrelevant features that do not, we respectively formulate majority-
 071 voting and locality-structured data, whose labels depend on the proportion and the spatial/temporal
 072 locality of a certain class-relevant feature in the data. **To the best of our knowledge, this work**
 073 **provides the first theoretical analysis of Mamba’s training dynamics with input-dependent gating,**
 074 **together with generalization guarantees under the two structured data regimes.** The highlights of our
 075 technical contributions include:

076 **First**, we develop a general theoretical framework for analyzing gated architectures trained with
 077 gradient descent on structured data. Our analysis explains how the selection mechanism within Mamba
 078 interacts with data structure to enable efficient learning and guaranteed generalization, complement-
 079 ing prior results that focus mainly on attention-based models.

080 **Second**, we provide a theoretical characterization of the gating mechanism in Mamba. We show
 081 that the gating parameter vector is trained to amplify class-relevant features while ignoring class-
 082 irrelevant ones, thereby formalizing the intuition that the gating network dynamically allocates ca-
 083 pacity to informative patterns.

084 **Third**, we establish the sample complexity and the required number of iterations for two canonical
 085 data types: majority-voting and locality-structured data sequences. For majority-voting data, these
 086 bounds scale with the gap between the class-relevant and confusion features; for locality-structured
 087 data, they depend on the concentration of class-relevant tokens. In both regimes, stronger signal and
 088 lower token-level noise yield faster convergence and better generalization.

089 1.1 RELATED WORK

090 **State Space Models (SSMs).** Building upon the early S4 models (Gu et al., 2021; Gupta et al.,
 091 2022; Smith et al.), Mamba (Gu & Dao, 2023; Dao & Gu, 2024) introduced input-dependent gating
 092 to dynamically select relevant features, achieving remarkable performance in NLP and CV. Recent
 093 works extending SSMs beyond 1D sequences have highlighted the importance of input ordering and
 094 scanning. For example, VMamba (Liu et al., 2024) introduces SS2D, employing multiple scanning
 095 routes to bridge sequential structure with the non-sequential nature of vision inputs, while Graph
 096 Mamba (Wang et al., 2024a; Behrouz & Hasemi, 2024) adapts SSMs to non-Euclidean domains
 097 by leveraging graph connectivity. Collectively, these works show that the effectiveness of SSMs is
 098 tightly linked to input ordering and scanning strategies, a challenge that also motivates our theoreti-
 099 cal analysis.

100 **Theoretical Analysis of SSMs.** Theoretical understanding of Mamba is still in its early stages and
 101 has so far centered primarily on approximation theory, such as connections to attention-like mech-
 102 anisms (Dao & Gu, 2024; Nishikawa & Suzuki), expressive capacity (Cohen-Karlik et al., 2025;
 103 Huang et al., 2025; Muca Cirone et al., 2024; Bao et al., 2025), long-range dependency modeling
 104 (Ma & Najarian, 2025; Yu & Erichson, 2025), and the comparison with Transformers Jelassi et al.
 105 (2024). Beyond approximation theory, several recent works have begun examining optimization
 106 and generalization aspects of SSMs. Honarpisheh et al. (2025) provide a generalization-error bound
 107 based on Rademacher complexity; Slutsky et al. (2024) study implicit bias under a teacher-student
 setting and show that gradient flow can converge to a low-rank solution, though their model does not

108 incorporate Mamba’s input-dependent gating. These analyses provide valuable intuition about the
 109 representational strengths and weaknesses of Mamba blocks. However, such results remain largely
 110 structural: they establish only the existence of desirable representations, without explaining whether
 111 or how these capabilities arise during training, particularly under Mamba’s unique mechanism. Mo-
 112 tivated by this gap, we focus on studying how Mamba interacts with structured data, with particular
 113 emphasis on the role of its gating mechanism in shaping training dynamics and generalization.

114 **Feature Learning Framework.** Recent theoretical studies of deep learning have shifted focus from
 115 the NTK framework (Jacot et al., 2018; Allen-Zhu et al., 2019b; Arora et al., 2019; Wen & Li,
 116 2021) to the feature-learning framework, where data is modeled as a combination of features and
 117 the central question is how neural networks align with these features. Much of the recent work has
 118 concentrated on transformers (Li et al., 2023a; 2024b; 2023b; 2025a), feedforward neural networks
 119 (Bakshi et al., 2019; Arora et al., 2019), and graph neural networks (Zhang et al., 2023; Li et al.,
 120 2024a). Due to the inherent complexity of non-convex optimization and modern architectures, prior
 121 works on feature learning have, to the best of our knowledge, focused primarily on shallow networks.
 122 In this work, we extend the structural data model to analyze the training dynamics of a shallow yet
 123 representative Mamba block, with particular emphasis on how its data-dependent gating mechanism
 124 shapes learning and generalization.

2 PRELIMINARIES

128 **Structured state space models (S4).** For the t -th token, e.g., at time step t , let $\mathbf{x}_t \in \mathbb{R}^d$ be the
 129 input, $\mathbf{H}_t \in \mathbb{R}^{N \times d}$ denote the corresponding hidden state, and $\mathbf{y}_t \in \mathbb{R}^d$ denote the output. Let
 130 $\mathbf{A} \in \mathbb{R}^{N \times N}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^N$ be model parameters. The discrete-time SSM is given by

$$\mathbf{H}_t = \overline{\mathbf{A}}\mathbf{H}_{t-1} + \bar{\mathbf{b}}\mathbf{x}_t^\top, \quad \mathbf{y}_t = \mathbf{H}_t^\top \mathbf{c}, \quad (1)$$

131 where $\overline{\mathbf{A}} = \exp(\Delta \mathbf{A})$ and $\bar{\mathbf{b}} = \mathbf{A}^{-1}(\exp(\Delta \mathbf{A}) - \mathbf{I})\mathbf{b}$ with $\Delta > 0$ as the sampling step.

132 **Mamba.** To overcome the data-independence of S4, recent work introduced *selective state space*
 133 *models* (Gu & Dao, 2023), where key parameters are made input-dependent. Concretely, given input
 134 tokens $\mathbf{x}_t \in \mathbb{R}^d$, the recurrence parameters are defined as

$$\mathbf{b}_t = \mathbf{W}_B^\top \mathbf{x}_t, \quad \Delta_t = \log(1 + e^{\mathbf{w}_\Delta^\top \mathbf{x}_t}), \quad \mathbf{c}_t = \mathbf{W}_C^\top \mathbf{x}_t, \quad (2)$$

135 with learnable projections $\mathbf{W}_B, \mathbf{W}_C \in \mathbb{R}^{d \times N}$ and a gating vector $\mathbf{w}_\Delta \in \mathbb{R}^d$. The discretization
 136 then yields two input-dependent gates,

$$\bar{\mathbf{b}}_t = \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_t) \mathbf{b}_t, \quad \bar{a}_t = 1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_t), \quad (3)$$

137 which respectively control the input update and the carry-over of past states. With hidden state
 138 $\mathbf{H}_t \in \mathbb{R}^{N \times d}$, the recurrence becomes

$$\mathbf{H}_t = \bar{a}_t \mathbf{H}_{t-1} + \bar{\mathbf{b}}_t \mathbf{x}_t^\top. \quad (4)$$

139 Mamba output at token t is given by:

$$\begin{aligned} \mathbf{y}_t(\mathbf{X}) &:= \mathbf{H}_t^\top \mathbf{c}_t = \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_t) (\mathbf{W}_B^\top \mathbf{x}_t)^\top (\mathbf{W}_C^\top \mathbf{x}_t) \mathbf{x}_t + (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_t)) \mathbf{H}_{t-1}^\top \mathbf{c}_t \\ &= \sum_{s=1}^t \left(\prod_{j=s+1}^t (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_j)) \right) \cdot \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s) (\mathbf{W}_B^\top \mathbf{x}_s)^\top (\mathbf{W}_C^\top \mathbf{x}_s) \mathbf{x}_s. \end{aligned} \quad (5)$$

140 **Connection and Difference with Transformer.** The Mamba formulation reveals a natural analogy
 141 to attention mechanisms (Dao & Gu, 2024; Sieber et al., 2024). In particular, the input-dependent
 142 matrices \mathbf{W}_B and \mathbf{W}_C can be interpreted as counterparts to queries and keys in the self-attention,
 143 while the gating term $\sigma(\mathbf{w}_\Delta^\top \mathbf{x}_t)$ acts as a dynamic weight controlling how past information
 144 contributes to the current output (Dao & Gu, 2024). This structure yields a formulation closely related
 145 to gated linear attention (Yang et al.; Li et al., 2025b; Lu et al., 2025), thereby highlighting a connec-
 146 tion between SSM and Transformer models. Meanwhile, Mamba departs from these architectures:
 147 its gating mechanism is defined through *multiplicative interactions*, effectively involving products
 148 of successive terms. This nonlinearity makes the analysis of Mamba substantially different and more
 149 challenging than that of gated linear attention. **Unlike additive attention-style weighting, Mamba’s**
 150 **gating introduces input-dependent multiplicative modulation in the selection mechanism.** This alters
 151 how information is propagated through the model and results in training dynamics that differ from
 152 attention-based architectures.

162 **3 PROBLEM FORMULATION**
 163

164 Following existing works (Brutzkus & Globerson, 2021; Zhang et al., 2023; Li et al., 2023a), we
 165 consider a binary classification problem with training data $\{(\mathbf{X}^{(n)}, z^{(n)})\}_{n=1}^N$ sampled i.i.d. from
 166 an unknown distribution \mathcal{D} , where $z^{(n)} \in \{+1, -1\}$ is the label. The goal is to learn a model that
 167 maps \mathbf{X} to z for any $(\mathbf{X}, z) \sim \mathcal{D}$. Each input takes the form $\mathbf{X}^{(n)} = [\mathbf{x}_1^{(n)}, \dots, \mathbf{x}_L^{(n)}] \in \mathbb{R}^{d \times L}$
 168 with L tokens, where each token is d -dimensional. Tokens can be image patches (Dosovitskiy et al.,
 169 2021; Touvron et al., 2021) or subwords (Sennrich et al., 2016; Kudo & Richardson, 2018).
 170

171 Learning is performed using a simplified Mamba block formulated by (5), followed by a two-layer
 172 MLP. Formally, the model output can be expressed as

173
$$F(\mathbf{X}) = \frac{1}{L} \sum_{l=1}^L \sum_{i=1}^m v_i \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l(\mathbf{X})), \quad (6)$$

 174

175 where $\phi(\cdot)$ denotes the ReLU function, and $\mathbf{W}_O \in \mathbb{R}^{m \times d}$, with $\mathbf{W}_{O(i,\cdot)}$ being the i -th row of \mathbf{W}_O .
 176 Here, $\mathbf{y}_l(\mathbf{X})$ corresponds to the l -th token output of Mamba, as defined in (5). In addition, v_i
 177 represents the output-layer weight for the i -th hidden unit.
 178

179 **Model Training.** Let $\Psi = (\mathbf{v}, \mathbf{W}_O, \mathbf{w}_\Delta, \mathbf{W}_B, \mathbf{W}_C)$ denote the set of model parameters. The
 180 training process is to minimize the empirical risk $f_N(\Psi)$,
 181

182
$$\min_{\Psi} f_N(\Psi) = \frac{1}{N} \sum_{n=1}^N \ell(\mathbf{X}^{(n)}, z^{(n)}; \Psi), \quad (7)$$

 183

184 where $\ell(\mathbf{X}^{(n)}, z^{(n)}; \Psi)$ is the hinge loss function, i.e.,
 185

186
$$\ell(\mathbf{X}^{(n)}, z^{(n)}; \Psi) = \max\{0, 1 - z^{(n)} \cdot F(\mathbf{X}^{(n)})\}. \quad (8)$$

 187

188 The empirical risk minimization problem in (7) is solved via gradient descent (GD). For the theo-
 189 retical analysis, we consider the full batch gradient update with a learning rate of η at each iteration
 190 $t = 1, 2, \dots, T$. Each entry of $\mathbf{W}_O \in \mathbb{R}^{m \times d}$ is independently initialized from $\mathcal{N}(0, c_0^2)$, and \mathbf{w}_Δ
 191 is initialized to 0. Similarly, each entry of $\mathbf{v} \in \mathbb{R}^m$ is independently sampled from $\{+\frac{1}{\sqrt{m}}, -\frac{1}{\sqrt{m}}\}$
 192 with equal probability. \mathbf{v} is fixed during training, as in other theoretical works (Allen-Zhu & Li,
 193 2022; Arora et al., 2019; Karp et al., 2021; Allen-Zhu et al., 2019a; Li et al., 2023a; 2024b).
 194

195 **Generalization.** The generalization error of the learned model Ψ is evaluated using the population
 196 risk $f(\Psi)$, defined as

197
$$f(\Psi) = f(\mathbf{v}, \mathbf{W}_O, \mathbf{w}_\Delta, \mathbf{W}_B, \mathbf{W}_C) = \mathbb{E}_{(\mathbf{X}, z) \sim \mathcal{D}} \ell(\mathbf{X}, z). \quad (9)$$

 198

199 **4 THEORETICAL RESULTS**
 200

201 Table 1: Some important notations

\mathbf{y}_l	Mamba block output at token position l	N	Number of samples in a batch
d	Embedding dimension	m	The number of neurons in \mathbf{W}_O
η	Learning rate for gradient descent	L	Length of the sequence
ΔL_{o+}^+	Concentration of class-relevant tokens	α_r	Average fraction of class-relevant tokens
ΔL_{o+}^-	Dispersion of the confusion tokens	α_c	Average fraction of confusion tokens

208 **4.1 KEY TAKEAWAYS AND INSIGHTS OF THE FINDINGS**
 209

210 Before formally presenting our data assumptions and theoretical results, we first summarize key
 211 insights derived from our theoretical findings. We consider a data model where tokens are noisy
 212 versions of *class-relevant* patterns that determine the data label and *class-irrelevant* patterns that do
 213 not affect the label. Some important parameters are summarized in Table 1.

214 **(T1). Convergence and sample complexity analysis of GD to achieve guaranteed generaliza-
 215 tion.** We introduce a theoretical framework for analyzing gated architectures with structured data.

216 Compared with existing results on attention-based models, our framework captures the role of the
 217 gating mechanism inside the Mamba block and structured weight interactions, explaining how
 218 gradient descent (GD) exploits data structure to improve learning efficiency. Based on this analysis, we
 219 show that a model trained with GD achieves guaranteed generalization with high probability over
 220 the randomness of the data and the GD updates.

221 **(T2). Theoretical characterization of the gating mechanism in Mamba.** We prove that during
 222 training, the gating network learns to prioritize class-relevant features while ignoring irrelevant
 223 ones. In the majority-voting regime, the gating vector w_Δ becomes increasingly aligned with
 224 class-relevant directions: gradients along those directions grow, while those along irrelevant features
 225 remain negligible. In the locality-structured data regime, learning emphasizes the elimination
 226 of irrelevant features. Their directions are consistently pushed downward by negative updates, while
 227 the directions of relevant features remain nearly unchanged. This occurs because class-relevant and
 228 confusion tokens appear in equal proportion, so the model cannot amplify the former and instead
 229 reduces the influence of the latter. These dynamics strengthen informative tokens and weaken un-
 230 informative ones, inducing effective sparsity in the activations and formalizing the intuition that
 231 Mamba allocates capacity to the most important patterns in the data.

232 **(T3). Larger fraction or higher local concentration of class-relevant features accelerates learn-
 233 ing.** We show that both the number of iterations and the sample complexity required for gen-
 234 eralization depend on the discriminative structure of the data and the token-level noise τ . For
 235 majority-voting data, these quantities scale as $(\alpha_r - \alpha_c)^{-2}$, so learning is faster when the frac-
 236 tion of class-relevant tokens is larger. For locality-structured data, the number of iterations scales as
 237 $[(\frac{1}{2})^{\Delta L_{o+}^+} - (\frac{1}{2})^{\Delta L_{o+}^-}]^{-1}$, while the sample complexity scales as $[(\frac{1}{2})^{\Delta L_{o+}^+} - (\frac{1}{2})^{\Delta L_{o+}^-}]^{-2}$. Here,
 238 ΔL_{o+}^+ denotes the separation between class-relevant features o_+ in positive samples (capturing their
 239 locality), and ΔL_{o+}^- denotes the separation between confusion features o_+ in negative samples (cap-
 240 turing the locality of confusing patterns). Thus, when $\Delta L_{o+}^+ \gg \Delta L_{o+}^-$, the locality of class-relevant
 241 features dominates, which reduces both the number of iterations and the sample complexity needed
 242 for convergence, implying faster learning when class-relevant tokens are more concentrated locally.
 243 Finally, in both regimes, smaller token-level noise τ further accelerates learning.

244

245

4.2 DATA MODEL

246

247 Consider an arbitrary set of orthonormal vectors $\mathcal{O} = \{o_+, o_-, o_3, \dots, o_d\}$ in \mathbb{R}^d , where o_+ and o_-
 248 are discriminative features and the remaining vectors $o_j, j \geq 3$, are class-irrelevant (filler) features.
 249 Depending on the class label, either o_+ or o_- serves as the class-relevant pattern, while the other
 250 acts as a confusion pattern. Each token $x_l^{(n)}$ in $\mathbf{X}^{(n)}$ is a noisy version of one of the input patterns
 251 (features), i.e., $x_l^{(n)} = o + \xi$, where $o \in \mathcal{O}$ and ξ is the Gaussian noise. We consider two different
 252 data types: majority-voting and locality-structured data.

253

254 **Majority Voting Data.** For the majority voting data type, the label is determined by a majority vote
 255 over the class-relevant patterns. Let α_r and α_c denote the average fractions of class-relevant tokens
 256 and confusion tokens over the distribution \mathcal{D} , respectively. In positive samples, noisy variants of o_+
 257 are class-relevant, while noisy variants of o_- act as confusion tokens. In negative samples, the roles
 258 are reversed. All other tokens correspond to class-irrelevant features.

259

260 **Locality-structured Data.** For the locality-structured data type, each sequence contains two o_+
 261 tokens and two o_- tokens, while all other tokens correspond to class-irrelevant features. In positive
 262 samples, the two o_+ tokens are close to each other, while the two o_- tokens are far apart; formally,
 263 $\Delta L_{o+}^+ \ll \Delta L_{o-}^+$, where ΔL_{o+}^+ and ΔL_{o-}^+ denote the distances between the two o_+ and o_- tokens,
 264 respectively. In negative samples, the pattern is reversed: $\Delta L_{o-}^- \ll \Delta L_{o+}^-$.

265

266 In addition, we consider a **balanced dataset** sampled from the unknown distribution \mathcal{D} . Let $\mathcal{N}_+ =$
 267 $\{(\mathbf{X}^{(n)}, z^{(n)}) : z^{(n)} = +1, n \in [N]\}$ and $\mathcal{N}_- = \{(\mathbf{X}^{(n)}, z^{(n)}) : z^{(n)} = -1, n \in [N]\}$ denote
 268 the sets of positively and negatively labeled samples, respectively. Then the class balance satisfies

$$|\mathcal{N}_+| - |\mathcal{N}_-| = O(\sqrt{N}).$$

269

Interpreting the Data Model in Practice. Our theoretical data models are motivated by common
 270 patterns observed in practical machine learning tasks.

270 On the one hand, the **majority-voting** data model captures a widely adopted assumption (Li et al.,
 271 2023a; 2024b) in theoretical analysis, whereby the label is determined by the aggregate contribution
 272 through majority vote. For example, in image classification tasks (Krizhevsky et al., 2012; Simonyan
 273 & Zisserman, 2014; He et al., 2016), the class label is often driven by multiple discriminative patches
 274 corresponding to foreground objects (class-relevant tokens). In contrast, background patches may
 275 contain other objects or patterns that are not associated with the target class (confusing tokens),
 276 along with random patches that are entirely unrelated (class-irrelevant tokens) (Dosovitskiy et al.,
 277 2021; Touvron et al., 2021).

278 On the other hand, the **locality-structured** data corresponds to tasks where semantic meaning is
 279 concentrated in spatially or temporally localized clusters, while background features are more dis-
 280 persed. This structure is most familiar in vision tasks such as object detection and localization (Ren
 281 et al., 2015; Carion et al., 2020; Zhou et al., 2016) and image captioning (Vinyals et al., 2016; Xu
 282 et al., 2015; Radford et al., 2021), where the decisive content is often confined to a small region of
 283 the image. For example, in an image labeled “dog in a park,” the prediction relies primarily on the
 284 contiguous region containing the dog rather than on scattered background textures. A similar prin-
 285 ciple holds in audio and speech recognition (Yadav & Tan, 2024; Gulati et al., 2020), where short
 286 phonetic segments capture the information needed to recognize words, and in genomics (Alipanahi
 287 et al., 2015; Zhou & Troyanskaya, 2015), where functional elements such as sequence motifs and
 288 regulatory regions are localized to short windows of DNA. In these settings, the local structure of
 289 nearby tokens strongly correlates with the label.

290 Together, the majority-voting and locality-structured models offer complementary perspectives on
 291 when selective recurrence can most effectively support learning from structured real-world data.

292 4.3 FORMAL THEORETICAL RESULTS

294 4.3.1 THEORETICAL RESULTS FOR MAJORITY-VOTING DATA

296 We next present a lemma characterizing how the gating vector aligns with different features under
 297 the majority-voting data.

298 **Lemma 4.1** (Gating Vector Alignment for Majority Voting Data). *With initialization where each
 299 entry of \mathbf{W}_O is drawn independently from $\mathcal{N}(0, \xi^2)$ and $\mathbf{w}_\Delta^{(0)} = 0$. With a sufficient number of
 300 training samples and iterations, we have*

$$302 \quad \langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_+ \rangle \geq \frac{\eta T}{8L^2} \Theta((\alpha_r L - \alpha_c L)^2) \quad (10)$$

$$305 \quad \langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_- \rangle \geq \frac{\eta T}{8L^2} \Theta((\alpha_r L - \alpha_c L)^2) \quad (11)$$

$$307 \quad \langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \rangle \leq \tilde{\mathcal{O}}(1/\text{poly}(d)), \quad \forall j \geq 3. \quad (12)$$

309 Lemma 4.1 establishes that after sufficient training, the gating vector \mathbf{w}_Δ aligns positively with the
 310 class-relevant features \mathbf{o}_+ (10) and \mathbf{o}_- as shown in (11), while its alignment with irrelevant features
 311 remains strictly negative as shown in (12). In other words, the selection mechanism implicitly acts
 312 as a feature selector, amplifying relevant tokens and ignoring irrelevant ones. Lemma 4.1 serves as
 313 an informal version of Lemmas B.5 and B.6.

314 **Remark 1:** With majority voting data, the gating vector aligns with discriminative features, i.e., \mathbf{o}_+
 315 and \mathbf{o}_- . As a result, the model’s output focuses primarily on these features, giving more weight to
 316 tokens that carry discriminative features while reducing the influence of less important tokens. Since
 317 the number of class-relevant tokens is greater than the number of confusing ones, e.g., in a positive
 318 sample, the tokens containing \mathbf{o}_+ outnumber those containing \mathbf{o}_- , the model can correctly assign
 319 the label through this majority effect. Furthermore, as the difference between the counts of class-
 320 relevant features and confusing features (i.e., $\alpha_r - \alpha_c$) increases, the gating vector converges much
 321 faster. Overall, this gating mechanism allows the model to use its training samples more efficiently
 322 because it learns to emphasize the most relevant feature early on and ignore irrelevant features.

323 We now present the theorem establishing the generalization guarantee for Mamba under the
 324 majority-voting data.

324 **Theorem 1** (Generalization for Majority Voting Data). *Suppose the model width satisfies $m \geq$
 325 $d^2 \log q$ for some constant $q > 0$, and the token noise level is bounded as $\tau < \mathcal{O}(\frac{1}{d})$. Then, with
 326 probability at least $1 - N^{-d}$, if the number of training samples N satisfies*
 327

$$328 \quad N \geq \Omega\left(\frac{L^2 d}{\eta^2 (\alpha_r - \alpha_c)^2}\right), \quad (13)$$

330 and the number of iterations T satisfies
 331

$$332 \quad T = \Theta\left(\frac{L^2}{\eta (\alpha_r - \alpha_c)^2}\right), \quad (14)$$

334 the model returned by Algorithm 1 achieves guaranteed generalization, i.e.,
 335

$$336 \quad f(\mathbf{v}^{(0)}, \mathbf{W}_O^{(T)}, \mathbf{w}_\Delta^{(T)}, \mathbf{W}_B^{(0)}, \mathbf{W}_C^{(0)}) = 0. \quad (15)$$

338 Theorem 1 establishes the sample complexity, as shown in (13), and the convergence rate, as given
 339 in (14), that are required to guarantee desirable generalization when training the model in (6) using
 340 GD for the majority-voting data type. In other words, the model achieves good generalization once
 341 a sufficient number of samples is available, as specified in (13), and training has proceeded for a
 342 sufficient number of iterations, as specified in (14).

343 **Remark 2:** With majority-voting data, the Mamba architecture can effectively capture the under-
 344 lying data distribution by first identifying discriminative features through its gating mechanism and
 345 then aggregating them via a data-dependent recurrent mechanism. In this sense, Mamba behaves
 346 similarly to the Transformer (Li et al., 2023a), suggesting a close connection between the two mod-
 347 els despite their architectural differences. According to the results of Lemma 4.1, the model further
 348 benefits from a faster convergence rate and reduced sample complexity when the gap between class-
 349 relevant and confusing features is larger.

350 4.3.2 THEORETICAL RESULTS FOR LOCALITY-STRUCTURED DATA

352 We next present a lemma characterizing how the gating vector aligns with different features under
 353 the locality-structured data.

354 **Lemma 4.2** (Gating Vector Alignment for Locality-structured Data). *With initialization where each
 355 entry of \mathbf{W}_O is drawn independently from $\mathcal{N}(0, \xi^2)$ and $\mathbf{w}_\Delta^{(0)} = 0$. With a sufficient number of
 356 training samples and iterations, we have*

$$358 \quad \langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_+ \rangle \geq -\tilde{\mathcal{O}}(1/\text{poly}(d)), \quad (16)$$

$$359 \quad \langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_- \rangle \geq -\tilde{\mathcal{O}}(1/\text{poly}(d)), \quad (17)$$

$$362 \quad \langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \rangle \leq \frac{-\eta T c'^3}{16L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^- - 2} \right] \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^+} + \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^-} \right]. \quad (18)$$

365 Lemma 4.2 establishes that after sufficient training, the gating vector \mathbf{w}_Δ remains close to zero for
 366 class-relevant features \mathbf{o}_+ as shown in (16) and \mathbf{o}_- as shown in (17), however its alignment with
 367 irrelevant features remains strongly negative as shown in (18). Through this mechanism, the gating
 368 favors class-relevant features to select the most informative feature for learning. Lemma 4.2 serves
 369 as an informal version of Lemmas C.5 and C.6.

370 **Remark 3:** The gating vector behaves differently from majority voting, though the overall insights
 371 remain similar. We can no longer guarantee that \mathbf{w}_Δ will always grow in the direction of discrimi-
 372 native features, because we assume that the number of class-relevant features can be comparable to
 373 the number of confusing features. This assumption is introduced to highlight the role of data locality
 374 in shaping the gating vector, which is more challenging to analyze in isolation since majority voting
 375 can readily reinforce it; however, their combined effect better reflects real-world data. Although this
 376 direct growth no longer holds, the gating vector consistently decreases in the direction of irrelevant
 377 features. At a higher level, this can be seen as a synergistic interaction: the recurrent mechanism
 captures locality and suppresses irrelevant features, which pushes the gating vector to decrease along

378 those directions, while the gating itself further amplifies this suppression. From another perspective,
 379 by making the model pay less attention to irrelevant features, the gating vector effectively shifts
 380 more attention toward discriminative features.

381 We now present the theorem establishing the generalization guarantee for Mamba under the locality-
 382 structured data.

384 **Theorem 2** (Generalization for Locality-structured Data). *Suppose the model width satisfies $m \geq$
 385 $d^2 \log q$ for some constant $q > 0$, and the token noise level is bounded as $\tau < \mathcal{O}(\frac{1}{d})$. Then, with
 386 probability at least $1 - N^{-d}$, if the number of training samples N satisfies*

$$387 \quad 388 \quad 389 \quad N \geq \Omega\left(\frac{L^2 d}{\eta^2 \left[(1/2)^{\Delta L_{o+}^+} - (1/2)^{\Delta L_{o+}^-} \right]^2}\right), \quad (19)$$

390 and the number of iterations T satisfies

$$392 \quad 393 \quad 394 \quad T = \Theta\left(\frac{L^2}{\eta \left[(1/2)^{\Delta L_{o+}^+} - (1/2)^{\Delta L_{o+}^-} \right]}\right), \quad (20)$$

395 the model returned by Algorithm 1 achieves guaranteed generalization, i.e.,

$$397 \quad 398 \quad f(\mathbf{v}^{(0)}, \mathbf{W}_O^{(T)}, \mathbf{w}_\Delta^{(T)}, \mathbf{W}_B^{(0)}, \mathbf{W}_C^{(0)}) = 0. \quad (21)$$

399 Theorem 2 shows that good generalization on locality-structured data is guaranteed if the sample
 400 complexity meets (19) and training proceeds for at least (20) iterations.

402 **Remark 4:** We establish that Mamba can also effectively learn this type of data through its ability to
 403 exploit locality, in contrast to Transformers, where no such guarantee is provided in (Li et al., 2023a).
 404 In our analysis, ΔL_{o+}^+ captures the distance between class-relevant tokens, reflecting the locality of
 405 class-relevant features, while ΔL_{o+}^- captures the locality of confusing features. The effectiveness of
 406 learning is governed by the separation between these two quantities. In particular, when $\Delta L_{o+}^+ \gg$
 407 ΔL_{o+}^- , the locality of class-relevant features dominates that of confusing features. In particular,
 408 when $\Delta L_{o+}^+ \gg \Delta L_{o+}^-$, the locality of class-relevant features dominates that of confusing ones,
 409 which reduces both the sample complexity and the number of iterations required for convergence,
 410 allowing Mamba to learn more effectively and efficiently.

4.4 TECHNICAL NOVELTY AND CHALLENGES

414 **Differences with Existing Works.** Our work is mainly inspired by prior feature-learning analyses
 415 of (Bakshi et al., 2019; Arora et al., 2019; Brutzkus & Globerson, 2021; Li et al., 2023a; 2025a).
 416 Building on these foundations, we develop a framework specifically tailored to *gated* architectures
 417 with structured data. Unlike these existing models, Mamba introduces an input-dependent gating
 418 mechanism, absent from other network architectures, which acts as a dynamic selection operator and
 419 requires new analytical techniques to capture its learning dynamics. Moreover, while the majority-
 420 voting data model has been previously studied in the context of Transformers (Li et al., 2023a),
 421 we show that Mamba can also learn this type of data with comparable performance. Furthermore,
 422 we find that Mamba is particularly effective at capturing the inherent locality of the data, which
 423 motivates us to introduce a new *locality-structured* data model. For both regimes, we establish
 424 generalization guarantees within the framework of selective state space models, thereby advancing
 425 our understanding of this class of architectures and clarifying their distinctions from Transformers.
 426 A proof sketch can be found in Appendix A.2.

427 **Technical Challenges.** Our analysis faces several unique technical challenges stemming from the
 428 structure of selective SSMs. Unlike attention-based models, where interactions are primarily additive,
 429 Mamba’s gating mechanism introduces multiplicative recurrences across tokens, with dynamics
 430 that are explicitly sensitive to token order. These multiplicative effects accumulate over time,
 431 substantially complicating the training analysis. To capture this behavior, we systematically track
 432 the gradient updates of the gating vector \mathbf{w}_Δ , decomposing the contributions from different token
 433 positions and analyzing how token placement influences training dynamics.

432 Specifically, in the **majority-voting data**, the gradient decomposition of the gating includes off-
 433 diagonal terms $\beta_{s,s+1}^{(l)}$ that exhibit additional multiplicative decay due to the recursive gating struc-
 434 ture, whereas the diagonal term $\beta_{s,s}^{(l)}$ is independent of token position. Hence, it is important to
 435 carefully consider competing token contributions to prove indeed the gating vector indeed aligns
 436 with class-relevant feature directions.
 437

438 Instead, in the **locality-structured data**, the variation introduced by the number of class-relevant and
 439 confusion tokens in positive and negative samples is negligible, as our data model assumes an equal
 440 number of class-relevant and confusion tokens. Consequently, we need to rely on ΔL_{o+}^+ and ΔL_{o-}^+
 441 to ensure that the lucky neuron $\mathbf{W}_{O(i,:)}$ learns the class-relevant feature. Moreover, since the number
 442 of class-relevant and confusion tokens is balanced, updates along the class-relevant feature direction
 443 for the gating vector remain close to zero. To demonstrate how the gate filters information, we show
 444 that gradient updates along class-irrelevant features are driven strongly negative. To prove this, in
 445 addition to the terms considered in the majority-voting setting, we must also bound the positively
 446 contributing terms that hinder the gate’s ability to suppress irrelevant features. Specifically, we
 447 bound these opposing terms as $\mathcal{O}\left((1 - \sigma(p_2))^{\Delta L_{o+}^+}\right) + \mathcal{O}\left((1 - \sigma(p_2))^{\Delta L_{o-}^+}\right)$ ensuring that their
 448 effect remains minimal. This reveals that the gate effectively suppresses irrelevant features while
 449 preserving class-relevant features for this data model.
 450

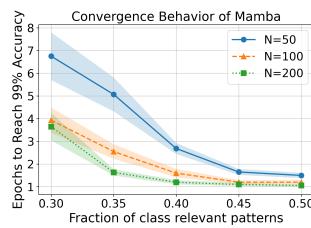
451 5 NUMERICAL EXPERIMENTS

452 We verify our theoretical results through synthetic experiments based on the data models described
 453 in Section 4.2. Due to the space limit, we defer the experiment details to Appendix A.3

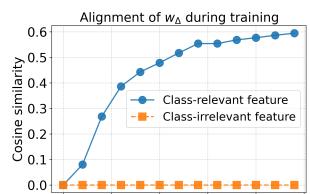
454 **Faster convergence with larger majority-voting gap.** Fig. 1 illustrates that increasing the
 455 majority-voting gap $\alpha_r - \alpha_c$ consistently reduces the number of epochs across various sizes of
 456 training samples. These findings are consistent with our theoretical results in (13) and (14).

457 **Gating mechanism amplifies relevant features in majority-voting data.** Fig. 2 shows the cosine
 458 similarity between the gating vector w_Δ and both class-relevant and class-irrelevant features. The
 459 similarity with class-relevant features steadily increases, while that with class-irrelevant features
 460 remains essentially unchanged. This empirically confirms Lemma 4.1, demonstrating that the gate
 461 prioritizes informative features while ignoring irrelevant ones.
 462

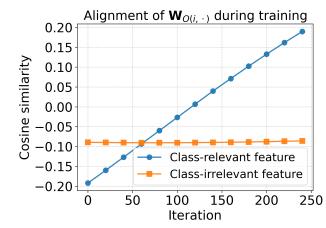
463 **MLP weights selectively align with only class-relevant features.** Fig. 3 tracks the average co-
 464 sine similarity between each neuron $\mathbf{W}_{O(i,:)}$ and both class-relevant & class-irrelevant features.
 465 The alignment increases for class-relevant features and stays essentially unchanged for irrelevant
 466 features, which is consistent with our findings in Lemmas B.1 and B.3 in the Appendix.
 467



468 Figure 1: Convergence vs.
 469 majority-voting gap.



470 Figure 2: Alignment of w_Δ for majority-voting data.

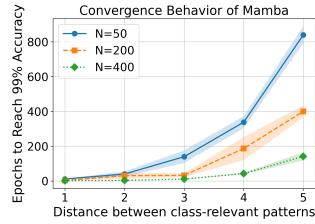


471 Figure 3: Average alignment of $\mathbf{W}_{O(i,:)}$ during training.

472 **Locality affects the learning.** Fig. 4 illustrate the effect of class-relevant token separation ΔL on
 473 the convergence in the locality-structured data. Larger Δ slows convergence across different training
 474 sample sizes, which is consistent with our results in (19) and (20).

475 **Gating mechanism suppresses irrelevant features.** Fig. 5 illustrates that while the cosine simili-
 476 arity is negative for both types of features, it stays close to zero for class-relevant features but becomes
 477 largely negative for class-irrelevant ones. This contrast drives the gating mechanism to prioritize
 478 class-relevant features, consistent with Lemma 4.2.

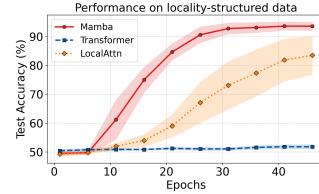
486
 487 **Mamba outperforms Transformer and local attention on locality-structured data.** Intuitively,
 488 locality-structured data favors models that exploit local biases. Global attention performs only
 489 marginally better than random guessing, whereas both local attention and Mamba learn meaningful
 490 patterns, with Mamba achieving the best performance.



491
 492 Figure 4: Convergence under
 493 locality-structured data.
 494
 495



496
 497 Figure 5: Alignment of w_Δ
 498 for locality-structured data.
 499
 500



501
 502 Figure 6: Mamba outper-
 503 forms on locality data.
 504
 505

6 CONCLUSION

506 Encouraged by the emergence and successful applications of the Transformer alternative architecture
 507 Mamba, this paper provides a novel theoretical generalization analysis of Mamba by considering its
 508 unique gated selection mechanism. Focusing on a data model with class-relevant and class-irrelevant
 509 tokens, we establish the non-asymptotic sample complexity and the convergence rate required to
 510 achieve desirable test accuracy. Our analysis further shows that the gating parameter vector filters
 511 out the class-relevant features while ignoring irrelevant ones. **To the best of our knowledge, this is the**
 512 **first theoretical analysis of Mamba’s training dynamics, with its input-dependent gating mechanism,**
 513 **together with generalization guarantees.**

514 Finally, we note some limitations of our work. First, our theoretical analysis focuses on a simplified
 515 Mamba setting that abstracts away practical components such as depth, multiple heads, residual
 516 connections, and layer normalization. Second, our data model, while standard in theoretical studies, also
 517 simplifies real-world sequence structures. Extending the analysis to more realistic multi-layer and
 518 multi-head Mamba architectures, richer data models, and alternative designs such as gated Trans-
 519 formers or hybrid Mamba–Transformer frameworks remains an important direction for future work.

520 LLM USAGE DISCLOSURE

521 We used large-language models (ChatGPT) to aid in polishing the writing of this paper. For numer-
 522 ical experiments, we employed AI-assisted coding tools (GitHub Copilot and ChatGPT) to support
 523 code development.

525 REFERENCES

526
 527 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 528 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 529 report. *arXiv preprint arXiv:2303.08774*, 2023.

530
 531 Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the se-
 532 quence specificities of dna-and rna-binding proteins by deep learning. *Nature biotechnology*, 33
 533 (8):831–838, 2015.

534
 535 Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
 536 deep learning. In *2021 IEEE 62nd Annual Symposium on Foundations of Computer Science*
 537 (*FOCS*), pp. 977–988. IEEE, 2022.

538
 539 Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparam-
 540 terized neural networks, going beyond two layers. *Advances in neural information processing*
 541 *systems*, 32, 2019a.

540 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
 541 parameterization. In *International Conference on Machine Learning*, pp. 242–252. PMLR, 2019b.
 542

543 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
 544 timization and generalization for overparameterized two-layer neural networks. In *International*
 545 *Conference on Machine Learning*, pp. 322–332. PMLR, 2019.

546 Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural networks
 547 in polynomial time. In *Conference on Learning Theory*, pp. 195–268. PMLR, 2019.

548

549 Zeyu Bao, Penghao Yu, Haotian Jiang, and Qianxiao Li. The effect of depth on the expressivity of
 550 deep linear state-space models. *arXiv preprint arXiv:2506.19296*, 2025.

551 Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
 552 models. In *Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data*
 553 *mining*, pp. 119–130, 2024.

554

555 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 556 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 557 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

558

559 Alon Brutzkus and Amir Globerson. An optimization and generalization analysis for max-pooling
 560 networks. In *Uncertainty in Artificial Intelligence*, pp. 1650–1660. PMLR, 2021.

561

562 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
 563 Sergey Zagoruyko. End-to-end object detection with transformers. In *European conference on*
 564 *computer vision*, pp. 213–229. Springer, 2020.

565

566 Edo Cohen-Karlik, Itamar Zimerman, Liane Galanti, Ido Atad, Amir Globerson, and Lior Wolf.
 567 On the expressivity of selective state-space layers: A multivariate polynomial approach. *arXiv*
 568 *preprint arXiv:2502.02209*, 2025.

569

570 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
 571 structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.

572

573 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 574 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 575 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 576 scale. *ICLR*, 2021.

577

578 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 579 *preprint arXiv:2312.00752*, 2023.

580

581 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 582 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.

583

584 Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
 585 Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
 586 for speech recognition. In *Proc. Interspeech 2020*, pp. 5036–5040, 2020.

587

588 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 589 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 590 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

591

592 Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
 593 state spaces. *Advances in neural information processing systems*, 35:22982–22994, 2022.

594

595 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 596 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 597 770–778, 2016.

598

599 Arya Honarpisheh, Mustafa Bozdag, Octavia Camps, and Mario Sznajer. Generalization er-
 600 rror analysis for selective state-space models through the lens of attention. *arXiv preprint*
 601 *arXiv:2502.01473*, 2025.

594 Ningyuan Huang, Miguel Sarabia, Abhinav Moudgil, Pau Rodriguez, Luca Zappella, and Federico
 595 Danieli. Understanding input selectivity in mamba: Impact on approximation power, memoriza-
 596 tion, and associative recall capacity. *arXiv preprint arXiv:2506.11891*, 2025.

597

598 Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gener-
 599 alization in neural networks. In *Advances in Neural Information Processing Systems*, volume 31.
 600 Curran Associates, Inc., 2018.

601

602 Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
 603 formers are better than state space models at copying. *arXiv preprint arXiv:2402.01032*, 2024.

604

605 Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
 606 learning in neural networks beyond kernels. *Advances in Neural Information Processing Systems*,
 607 34:24883–24897, 2021.

608

609 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 610 uctional neural networks. *Advances in neural information processing systems*, 25, 2012.

611

612 Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
 613 tokenizer and detokenizer for neural text processing. *EMNLP 2018*, pp. 66, 2018.

614

615 Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vi-
 616 sion transformers: Learning, generalization, and sample complexity. In *International Conference
 617 on Learning Representations (ICLR 2023)*, 2023a.

618

619 Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, Zaixi Zhang, and Pin-Yu Chen. What improves
 620 the generalization of graph transformers? a theoretical dive into the self-attention and positional
 621 encoding. In *International Conference on Machine Learning*, pp. 28784–28829. PMLR, 2024a.

622

623 Hongkang Li, Meng Weng, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear trans-
 624 formers learn and generalize in in-context learning? In *International Conference on Machine
 625 Learning*, 2024b.

626

627 Hongkang Li, Yihua Zhang, Shuai Zhang, Pin-Yu Chen, Sijia Liu, and Meng Wang. When is task
 628 vector provably effective for model editing? a generalization analysis of nonlinear transformers.
 629 In *International Conference on Learning Representations*, 2025a.

630

631 Yingcong Li, Ankit S Rawat, and Samet Oymak. Fine-grained analysis of in-context linear estima-
 632 tion: Data, architecture, and beyond. *Advances in Neural Information Processing Systems*, 37:
 633 138324–138364, 2024c.

634

635 Yingcong Li, Davoud Ataei Tarzanagh, Ankit Singh Rawat, Maryam Fazel, and Samet Oymak.
 636 Gating is weighting: Understanding gated linear attention through in-context learning. *arXiv
 637 preprint arXiv:2504.04308*, 2025b.

638

639 Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
 640 mechanistic understanding. In *International Conference on Machine Learning*, pp. 19689–19729.
 641 PMLR, 2023b.

642

643 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
 644 Jiao, and Yunfan Liu. Vmamba: Visual state space model. *Advances in neural information
 645 processing systems*, 37:103031–103063, 2024.

646

647 Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
 648 Feryal Behbahani. Structured state space models for in-context reinforcement learning. *Advances
 649 in Neural Information Processing Systems*, 36:47016–47031, 2023.

650

651 Peng Lu, Ivan Kobyzev, Mehdi Rezagholizadeh, Boxing Chen, and Philippe Langlais. Regla: Re-
 652 fining gated linear attention. *arXiv preprint arXiv:2502.01578*, 2025.

653

654 Cong Ma and Kayvan Najarian. Rethinking the long-range dependency in mamba/ssm and trans-
 655 former models. *arXiv preprint arXiv:2509.04226*, 2025.

648 Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. The-
 649 oretical foundations of deep selective state-space models. *Advances in Neural Information Pro-*
 650 *cessing Systems*, 37:127226–127272, 2024.

651

652 Naoki Nishikawa and Taiji Suzuki. State space models are provably comparable to transformers in
 653 dynamic token selection. In *The Thirteenth International Conference on Learning Representa-*
 654 *tions*.

655 Destiny Okpekpe and Antonio Orvieto. Revisiting associative recall in modern recurrent models. In
 656 *First Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models*, 2025.

657

658 Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. Universality
 659 of linear recurrences followed by non-linear projections: finite-width guarantees and benefits of
 660 complex eigenvalues. In *Proceedings of the 41st International Conference on Machine Learning*,
 661 pp. 38837–38863, 2024.

662 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 663 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 664 models from natural language supervision. In *International conference on machine learning*, pp.
 665 8748–8763. PMLR, 2021.

666

667 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 668 detection with region proposal networks. *Advances in neural information processing systems*, 28,
 669 2015.

670

671 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 672 subword units. In *Proceedings of the 54th Annual Meeting of the Association for Computational
 673 Linguistics (Volume 1: Long Papers)*, pp. 1715–1725, 2016.

674

675 Jerome Sieber, Carmen A Alonso, Alexandre Didier, Melanie N Zeilinger, and Antonio Orvieto.
 676 Understanding the differences in foundation models: Attention, state space models, and recurrent
 677 neural networks. *Advances in Neural Information Processing Systems*, 37:134534–134566, 2024.

678

679 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 680 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

681

682 Yonatan Slutzky, Yotam Alexander, Noam Razin, and Nadav Cohen. The implicit bias of structured
 683 state space models can be poisoned with clean labels. *arXiv preprint arXiv:2410.10473*, 2024.

684

685 Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
 686 sequence modeling. In *The Eleventh International Conference on Learning Representations*.

687

688 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 689 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 690 *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

691

692 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 693 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 694 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

695

696 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 697 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 698 *tion processing systems*, 30, 2017.

699

700 Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: Lessons learned
 701 from the 2015 mscoco image captioning challenge. *IEEE transactions on pattern analysis and
 702 machine intelligence*, 39(4):652–663, 2016.

703

704 Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
 705 sequence modeling with selective state spaces. *arXiv preprint arXiv:2402.00789*, 2024a.

706

707 Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
 708 Token-free selective state space model. *arXiv preprint arXiv:2401.13660*, 2024b.

702 Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
703 contrastive learning. In *International Conference on Machine Learning*, pp. 11112–11122.
704 PMLR, 2021.

705 Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
706 Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
707 attention. In *International conference on machine learning*, pp. 2048–2057. PMLR, 2015.

708 Sarthak Yadav and Zheng-Hua Tan. Audio mamba: Selective state spaces for self-supervised audio
709 representations. *arXiv preprint arXiv:2406.02178*, 2024.

710 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
711 transformers with hardware-efficient training. In *Forty-first International Conference on Machine
712 Learning*.

713 Annan Yu and N Benjamin Erichson. Block-biased mamba for long-range sequence processing.
714 *arXiv preprint arXiv:2505.09022*, 2025.

715 Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model
716 sparse learning is provably efficient for graph neural networks. *The Eleventh International Con-
717 ference on Learning Representations*, 2023.

718 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
719 features for discriminative localization. In *Proceedings of the IEEE conference on computer
720 vision and pattern recognition*, pp. 2921–2929, 2016.

721 Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning-
722 based sequence model. *Nature methods*, 12(10):931–934, 2015.

723 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
724 mamba: Efficient visual representation learning with bidirectional state space model. In *Proceed-
725 ings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of
726 Machine Learning Research*, pp. 62429–62442. PMLR, 2024.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A NOTATIONS, PROOF SKETCH AND ADDITIONAL EXPERIMENTS
757758 A.1 NOTATIONS
759760 A.1.1 LUCKY NEURON DEFINITION
761

762 Let

763
$$\mathcal{K}_+ = \{i \in [m] : v_i > 0\}, \quad \mathcal{K}_- = \{i \in [m] : v_i < 0\} \quad (22)$$

764 denote the sets of neurons with positive and negative output layer weights, respectively.

765 We define the sets of lucky neurons at initialization as:

766
$$\mathcal{W}(0) = \{i \in \mathcal{K}_+ : \mathbf{W}_{O(i,\cdot)}(0)\mathbf{o}_+ > 0\}, \quad (23)$$

767
$$\mathcal{U}(0) = \{i \in \mathcal{K}_- : \mathbf{W}_{O(i,\cdot)}(0)\mathbf{o}_- > 0\}, \quad (24)$$

768 where \mathbf{o}_+ and \mathbf{o}_- denote the class-relevant features for the positive and negative classes, respectively.

769 A.1.2 LOSS FUNCTION
770

771 The loss function for the n^{th} sample is defined as

772
$$\ell(\mathbf{X}^{(n)}, z^{(n)}) = \max\{0, 1 - z^{(n)} \cdot F(\mathbf{X}^{(n)})\}$$

773
$$= \max \left\{ 0, 1 - z^{(n)} \cdot \frac{1}{L} \sum_{l=1}^L \sum_{i=1}^m v_i \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \right\}. \quad (25)$$

774 The empirical loss is denoted by $\hat{\mathcal{L}}$ and is given by

775
$$\hat{\mathcal{L}} = \frac{1}{N} \sum_{n=1}^N \ell(\mathbf{X}^{(n)}, z^{(n)}). \quad (26)$$

776 The population loss is denoted by \mathcal{L} and is defined as

777
$$\mathcal{L} = \mathbb{E}_{(\mathbf{X}, z) \sim \mathcal{D}} \ell(\mathbf{X}, z). \quad (27)$$

778 With additional important notations can be found in Table 2.

779 A.2 PROOF SKETCH
780

781 The major idea of our proof is to analyze how GD gradually aligns both the hidden-layer weights
782 and gating vector with class-relevant features while ignoring the irrelevant ones. A key tool in our
783 analysis is the notion of a *lucky neuron*, i.e., a hidden layer neuron whose initialization is well
784 aligned with a class-relevant feature. For the majority-voting data model, the signal driving this
785 alignment is proportional to the gap between the fractions of class-relevant and confusion tokens,
786 $\Theta(\alpha_r - \alpha_c)$, as established by Lemmas B.1–B.4. Lucky neurons move consistently toward their
787 class-relevant feature, while the magnitude of unlucky ones remains small (upper-bounded by the
788 inverse square root of the number of samples). For the locality-structured data model, we prove that
789 the update in the class-relevant feature direction for the gating vector remains close to zero because
790 an equal number of class-relevant and confusion tokens are present in the data. We then show that
791 the gating vector consistently decreases along irrelevant feature directions, thereby enabling the gate
792 to effectively select the class-relevant feature.

793 Due to these properties, the training dynamics can be simplified to show that the network output
794 in (6) changes linearly with the iteration number t . In particular, we prove that, for a new positive
795 sample (w.l.o.g.) during inference, the learned model’s output is strictly positive. From this
796 analysis, we derive the sample complexity and the required number of iterations for achieving zero
797 generalization error for both data types, as shown in (13) and (14) for the majority-voting setting in
798 Theorem 1, and similarly in (19) and (20) for the locality-structured setting in Theorem 2.

15

810

811

Table 2: Summary of notations

$F(\mathbf{X}^{(n)})$	The final model output for $\mathbf{X}^{(n)}$
α_r	The average fractions of class-relevant tokens
α_c	The average fractions of confusion tokens
$\Delta L_{o_+}^+$	Separation between class-relevant features o_+ in positive samples
$\Delta L_{o_+}^-$	Separation between confusion features o_+ in negative samples
$\Delta L_{o_-}^+$	Separation between class-relevant features o_- in negative samples
$\Delta L_{o_-}^-$	Separation between confusion features o_- in positive samples
\mathcal{O}	The set of class-relevant and class-irrelevant patterns
\mathcal{K}_+	The set of lucky neurons with respect to $\mathbf{W}^{(0)}$
\mathcal{K}_-	The set of lucky neurons with respect to $\mathbf{U}^{(0)}$
\mathcal{N}	The set of training data
\mathcal{N}_+	The set of training data with positive labels
\mathcal{N}_-	The set of training data with negative labels
$\mathcal{W}(t)$	Set of lucky neurons for the positive class at iteration t
$\mathcal{U}(t)$	Set of lucky neurons for the negative class at iteration t
$\mathcal{O}(\cdot), \Omega(\cdot), \Theta(\cdot)$	We use the standard convention: $f(x) = \mathcal{O}(g(x))$ (resp. $\Omega(g(x)), \Theta(g(x))$) means $f(x)$ grows at most (resp. at least, on the order of) $g(x)$.
$\tilde{\mathcal{O}}(\cdot)$	Soft- \mathcal{O} notation: hides polylog factors
$\text{poly}(d)$	An unspecified polynomial in d
\gtrsim, \lesssim	$f(x) \gtrsim g(x)$ (resp. $f(x) \lesssim g(x)$) abbreviates $f(x) \geq \Omega(g(x))$ (resp. $f(x) \leq \mathcal{O}(g(x))$).

836

837

A.3 ADDITIONAL NUMERICAL EXPERIMENTS

839

Experiment settings.

841

The data dimension and token embedding size are both set to $d = 32$, which also corresponds to the number of feature directions. Unless otherwise stated, experiments in the main text use exactly the model defined in Eq. (6) to match our theoretical setting. We also use the model without convolution, and keep $\mathbf{W}_B = \mathbf{W}_C = I$ frozen as in Eq. (15). The total number of neurons in the hidden layer \mathbf{W}_O is set to $m = 50$. For simplicity, we fix the ratio of different features to be the same across all data. The sequence length is set to $L = 30$.

847

848

We run 100 independent trials and consider only the successful trials to compute the mean epochs for convergence for a given fraction of class-relevant patterns. An experiment is successful if the testing loss is smaller than 10^{-3} . For this experiment, we fixed the fraction of the confusion tokens at 0.10 and varied the fraction of class-relevant features.

851

852

Additional Results on MLP Weight Alignment.

853

854

Figure 7 illustrates the alignment of sampled neurons with the class-relevant feature. We observe that, with a good initialization, a subset of neurons, denoted as lucky neurons, consistently increases in the direction of the class-relevant feature, while another subset, denoted as unlucky neurons, remains almost unchanged, which supports our findings in Lemmas B.3 and C.3.

856

857

In contrast, Figure 8 shows the alignment of sampled neurons with the class-irrelevant feature. In this case, we observe that all neurons, both lucky and unlucky, remain nearly unchanged in the direction of the class-irrelevant feature, which further supports our findings in Lemmas B.4 and C.4.

860

861

ADDITIONAL EXPERIMENTS

862

863

To further strengthen the empirical connection between our theoretical analysis and practical Mamba architectures, we conducted additional experiments using the multi-layer, multi-head Mamba model

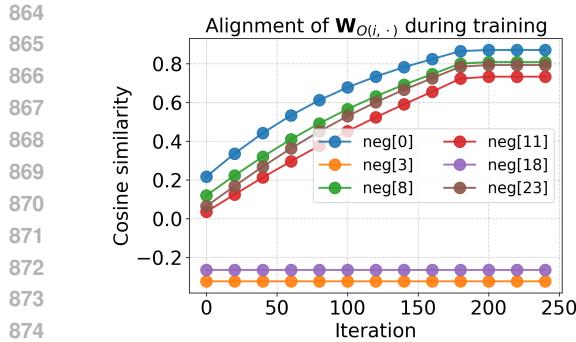


Figure 7: Alignment of $W_{O(i, \cdot)}$ with class-relevant feature directions during training on the majority-voting data.

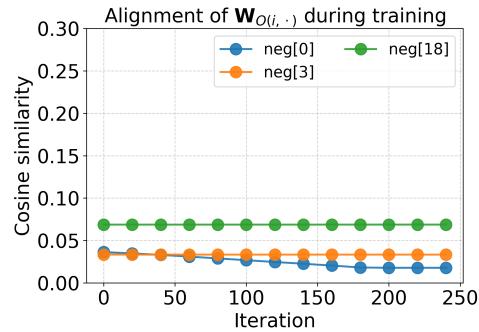


Figure 8: Alignment of $W_{O(i, \cdot)}$ with class-irrelevant feature directions during training on the majority-voting data.

from Dao & Gu (2024), trained on synthetic datasets that follow the same structured data models as in our theory.

We first evaluated the Mamba2 block, which includes residual connections and RMSNorm. We focused on a 2-block Mamba model with 4 heads and report the cosine similarity of the learned gating vectors and MLP weights with class-relevant and class-irrelevant features in Figures 9 and 10. For a deeper 5-block Mamba model with the same configuration, we summarize the final alignment values in Table 3, which exhibit the same qualitative trends predicted by our analysis.

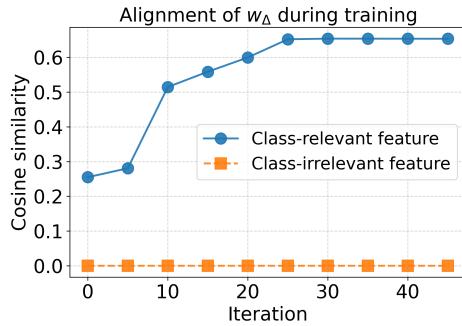


Figure 9: Alignment of the gating vector in the 2-block Mamba model.

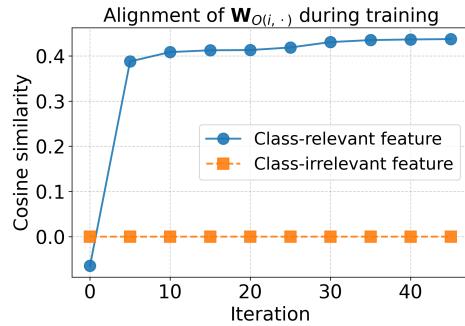


Figure 10: Alignment of the MLP weights in the 2-block Mamba model.

Table 3: Cosine similarity alignment in the 5-block Mamba model

Component	Class-relevant	Class-irrelevant
Gating vector	0.53	0.00
MLP weights	0.73	0.00

Next, we examined the effect of the gating mechanism by comparing models trained with and without gating across both structured data regimes. On the majority-voting data, the gated model consistently outperforms the ungated variant (Figure 11). On the locality-structured data, gating becomes essential: the ungated model fails to learn the task, whereas the gated model converges reliably (Figure 12).

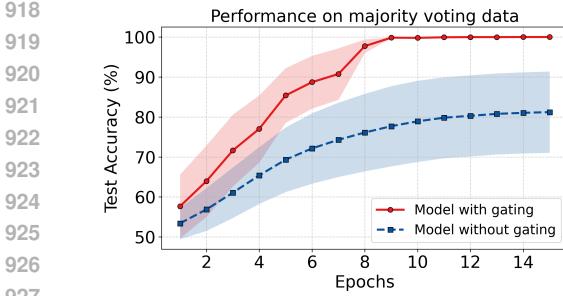


Figure 11: Test accuracy with and without gating on the majority-voting data.

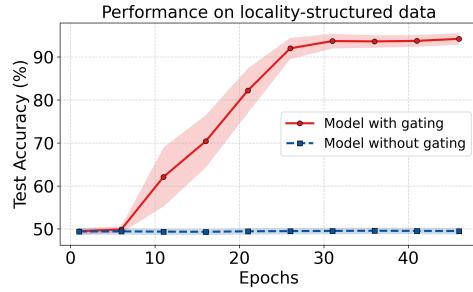


Figure 12: Test accuracy with and without gating on the locality-structured data.

We also conducted two controlled ablations. First, we varied the feature dimension $d \in \{32, 64, 128\}$ and observed that the qualitative behavior of the model remained consistent across all three settings (Figures 13–15). Second, we varied the data distribution parameter α_c , the fraction of confusion tokens in the majority-voting data. Across all three choices of α_c , the empirical results remained closely aligned with the theoretical predictions (Figures 16–18).

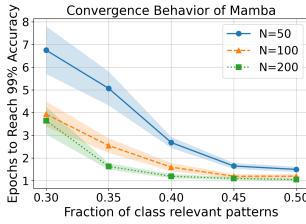


Figure 13: Ablation with feature dimension $d = 32$.

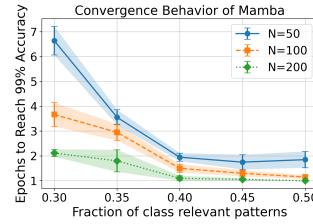


Figure 14: Ablation with feature dimension $d = 64$.

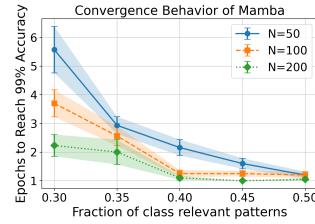


Figure 15: Ablation with feature dimension $d = 128$.

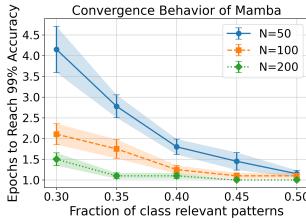


Figure 16: Ablation with confusion fraction $\alpha_c = 0.17$.

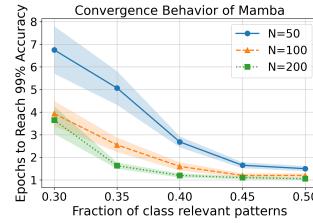


Figure 17: Ablation with confusion fraction $\alpha_c = 0.20$.

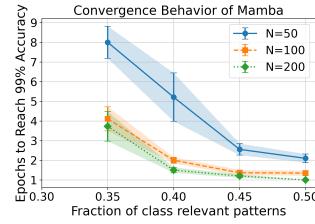


Figure 18: Ablation with confusion fraction $\alpha_c = 0.23$.

B MAJORITY-VOTING DATA

B.1 USEFUL LEMMAS

Lemma B.1 provides bounds on the gradient updates of lucky neurons $i \in \mathcal{W}(t)$ in the directions of both class-relevant features (\mathbf{o}_+ , \mathbf{o}_-) and irrelevant features.

Lemma B.1. Suppose $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1$ and $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle \leq q_1$. Then, for any lucky neuron $i \in \mathcal{W}(t)$ at iteration t , the following bounds hold:

972 **(L1.1)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 973 \mathbf{o}_+ , is given by
 974

$$975 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \geq \frac{1}{\sqrt{mL}} \cdot \sigma(p_1) \Theta(\alpha_r L - \alpha_c L) - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau). \quad (28)$$

978 **(L1.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 979 \mathbf{o}_+ , is given by
 980

$$981 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \Theta(\alpha_r L - \alpha_c L) + \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (29)$$

985 **(L1.3)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 986 \mathbf{o}_- , is given by
 987

$$988 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \geq -\frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \Theta(\alpha_r L - \alpha_c L) - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau). \quad (30)$$

991 **(L1.4)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 992 \mathbf{o}_- , is given by
 993

$$994 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (31)$$

997 **(L1.5)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 998 \mathbf{o}_j , is given by
 999

$$1000 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau), \quad \text{for } j \neq 1, 2. \quad (32)$$

1003 Lemma B.2 shows that, for unlucky neurons associated with the positive class, the gradients in the
 1004 directions of both class-relevant and irrelevant features are small.
 1005

1006 **Lemma B.2.** For any unlucky neuron $i \in \mathcal{K}_+ \setminus \mathcal{W}(t)$ at iteration t , the following bounds hold:

1007 **(L2.1)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1008 \mathbf{o}_+ , is given by
 1009

$$1010 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (33)$$

1013 **(L2.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1014 \mathbf{o}_- , is given by
 1015

$$1016 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (34)$$

1018 **(L2.3)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1019 \mathbf{o}_j , is given by
 1020

$$1021 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau), \quad \text{for } j \neq 1, 2. \quad (35)$$

1024 Lemmas B.3 and B.4, by symmetry, state the analogous results for lucky and unlucky neurons
 1025 associated with the negative class.

1026 **Lemma B.3.** Suppose $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1$ and $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle \leq q_1$. Then, for any lucky
 1027 neuron $i \in \mathcal{U}(t)$ at iteration t , the following bounds hold:
 1028

1029 **(L3.1)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1030 \mathbf{o}_- , is given by

$$1031 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \geq \frac{1}{\sqrt{mL}} \cdot \sigma(p_1) \Theta(\alpha_r L - \alpha_c L) - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau). \quad (36)$$

1035 **(L3.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1036 \mathbf{o}_- , is given by

$$1038 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \Theta(\alpha_r L - \alpha_c L) + \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (37)$$

1041 **(L3.3)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1042 \mathbf{o}_+ , is given by

$$1044 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \geq -\frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \Theta(\alpha_r L - \alpha_c L) - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau). \quad (38)$$

1048 **(L3.4)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1049 \mathbf{o}_+ , is given by

$$1050 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (39)$$

1053 **(L3.5)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1054 \mathbf{o}_j , is given by

$$1056 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau), \quad \text{for } j \neq 1, 2. \quad (40)$$

1059 **Lemma B.4.** For any unlucky neuron $i \in \mathcal{K}_- \setminus \mathcal{U}(t)$ at iteration t , the following bounds hold:

1061 **(L4.1)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1062 \mathbf{o}_- , is given by

$$1063 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (41)$$

1066 **(L4.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1067 \mathbf{o}_+ , is given by

$$1069 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \quad (42)$$

1072 **(L4.3)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1073 \mathbf{o}_j , is given by

$$1075 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau), \quad \text{for } j \neq 1, 2. \quad (43)$$

1078 Lemma B.5 establishes bounds for the gradient updates of \mathbf{w}_Δ in the class-relevant feature directions.

1080
1081 **Lemma B.5.** Suppose $r_1^* \leq \langle \mathbf{W}_{O(i,:)}^{(t+1)\top}, \mathbf{o}_+ \rangle \leq s_1^*$. Let $|\mathcal{W}(t)| = \rho_t^+$ and $|\mathcal{U}(t)| = \rho_t^-$. Then, at
1082 iteration t , the following bounds hold:

1083 **(L5.1)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to \mathbf{w}_Δ at iteration t , in the direction of \mathbf{o}_+ ,
1084 is given by

1085

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_+ \right\rangle \geq \frac{r_1^*}{2\sqrt{mL}} \cdot \rho_t^+ \cdot \Theta(\alpha_r L) - \frac{\sqrt{m}s_1^*}{4L} \cdot \Theta(\alpha_c L) - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau). \quad (44)$$

1086

1087 **(L5.2)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to \mathbf{w}_Δ at iteration t , in the direction of \mathbf{o}_- ,
1088 is given by

1089

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_- \right\rangle \geq \frac{r_1^*}{2\sqrt{mL}} \cdot \rho_t^- \cdot \Theta(\alpha_r L) - \frac{\sqrt{m}s_1^*}{4L} \cdot \Theta(\alpha_c L) - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau) \quad (45)$$

1090

1091 Lemma B.6 establishes bounds for the gradient updates of \mathbf{w}_Δ in the directions of irrelevant features.

1092 **Lemma B.6.** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to \mathbf{w}_Δ at iteration t , in the direction
1093 of \mathbf{o}_j , is given by

1094

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau), \quad \text{for } j \neq 1, 2. \quad (46)$$

1095

1104 B.2 PROOF OF CONVERGENCE

1105

1106 *Proof of Theorem 1.* The proof starts with the base case at $t = 0$ and proceeds to analyze the training
1107 dynamics in a deductive manner, providing additional details in deriving the corresponding conver-
1108 gence and sample complexity bounds.

1109 **(S1) Warm-up (Base case): Training dynamics at the first iteration $t = 0$.**

1110

1111 Recall that we set $\mathbf{w}_\Delta^{(0)} = \mathbf{0}$. Then, we have

1112

$$\langle \mathbf{w}_\Delta^{(0)}, \mathbf{o}_+ \rangle = 0 \quad \text{and} \quad \langle \mathbf{w}_\Delta^{(0)}, \mathbf{o}_- \rangle = 0.$$

1113

1114 **(S1.1) Training dynamics of $\mathbf{W}_{O(i,:)}$ at the first iteration $t = 0$.**

1115

1116 From Lemma B.1, identify $p_1 = 0$ and $q_1 = 0$. Let α_r and α_c denote the average fraction of
1117 label-relevant tokens and confusion tokens, respectively. Then, for any lucky neuron $i \in \mathcal{W}(0)$, we
1118 obtain

1119

1120

$$\begin{aligned} \frac{1}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) &\leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,:)}^{(0)}}, \mathbf{o}_+ \right\rangle \\ 1121 &\leq \frac{1}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \end{aligned} \quad (47)$$

1122

1123

1124

$$\text{and} \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,:)}^{(0)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1. \quad (48)$$

1125

1126

1127 Recall that we set the number of samples in a batch $N = \text{poly}(d)$.

1128

1129 Recall that the initialization is

1130

1131

$$\mathbf{W}_{O(i,:)}(0) = \delta_1 \mathbf{o}_+ + \delta_2 \mathbf{o}_- + \cdots + \delta_d \mathbf{o}_d, \quad \delta_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \xi^2) \quad j = 1, 2, \dots, d. \quad (49)$$

1132

1133

Then, after one gradient descent step, we have

$$\begin{aligned}
& \delta_1 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
& \leq \left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{1}^{(1)}, \mathbf{o}_+ \right\rangle \\
& \leq \delta_1 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)
\end{aligned} \tag{50}$$

$$\text{and } \left\langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1. \quad (51)$$

By applying Lemma B.3, for any lucky neuron $i \in \mathcal{U}(0)$, we obtain

$$\begin{aligned}
& \delta_2 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
& \leq \left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{1}^{(1)}, \mathbf{o}_- \right\rangle \\
& \leq \delta_2 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)
\end{aligned} \tag{52}$$

$$\text{and } \left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{v}^{(1)}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 2. \quad (53)$$

For any unlucky neuron $i \in \mathcal{K}_- \setminus \mathcal{U}(0)$, Lemma B.4 gives

$$\left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}^{(1)}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } \forall j. \quad (54)$$

(S1.2) Training dynamics of W_A at the first iteration $t = 0$.

Now consider the gradient update for w_Δ . Define:

$$\begin{aligned} a &= \delta_1 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ b &= \delta_1 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \end{aligned}$$

Applying Lemma B.5 with $r_1^* = a$, $s_1^* = b$, and $\rho_0^+ = |\mathcal{W}(0)|$, we get

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\lambda^{(0)}}, \mathbf{o}_+ \right\rangle \geq \frac{a}{2\sqrt{mL}} \cdot \rho_0^+ \cdot \Theta(\alpha_r L) - \frac{\sqrt{mb}}{4L} \cdot \Theta(\alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) =: \alpha \quad (55)$$

Let $\delta_1 = \frac{1}{\text{poly}(d)}$. Since $a - b = \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$ that is sufficiently small,

$$\begin{aligned}
\alpha &= \frac{1}{2L} \left[\frac{a}{\sqrt{m}} \cdot \frac{m}{2} \Theta(\alpha_r L) - \frac{\sqrt{mb}}{2} \Theta(\alpha_c L) \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
&= \frac{1}{2L} \left[\frac{\sqrt{ma}}{2} (\Theta(\alpha_r L) - \Theta(\alpha_c L)) \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
&= \frac{\sqrt{m}}{4L} \cdot \frac{\eta}{2\sqrt{m}L} \Theta((\alpha_r L - \alpha_c L)^2) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
&= \frac{\eta}{8L^2} \Theta((\alpha_r L - \alpha_c L)^2) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) > 0
\end{aligned} \tag{56}$$

1188 From Lemma B.6, we also obtain
 1189
 1190
 1191
 1192

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(0)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) =: \gamma \quad \text{for } j \neq 1, 2. \quad (57)$$

1193 **(S2) Induction Step: Training dynamics at a general iteration t .**
 1194

1195 Suppose $\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle = \alpha^* \geq \alpha \cdot t$, $\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle = \beta^* \geq \beta \cdot t$, and $\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_j \rangle = \gamma^* \leq \gamma \cdot t$, where
 1196
 1197
 1198

$$\beta = \frac{a'}{2\sqrt{mL}} \cdot \rho_0^- \cdot \Theta(\alpha_r L) - \frac{\sqrt{mb'}}{4L} \cdot \Theta(\alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) > 0, \quad (58)$$

$$a' = \delta_2 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right), \quad (59)$$

$$b' = \delta_2 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (60)$$

1203 Following the same approach as in (56), we can simplify and obtain
 1204
 1205

$$\beta = \frac{\eta}{8L^2} \Theta((\alpha_r L - \alpha_c L)^2) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) > 0. \quad (61)$$

1207 For any lucky neuron $i \in \mathcal{W}(t)$ at the $(t+1)$ -th iteration, we have
 1208
 1209

$$\begin{aligned} & \frac{1}{\sqrt{mL}} \cdot \sigma(\alpha^*) \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \\ & \leq \frac{1}{\sqrt{mL}} \cdot \sigma(\alpha^*) \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right), \end{aligned}$$

1216 and
 1217

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1 \quad (62)$$

1221 Next, we have $\sigma(\alpha^*) > \frac{1}{2}$ since $\alpha^* > 0$ when $t = 1$. By a simple induction, this further ensures
 1222
 1223

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(0)}}, \mathbf{o}_+ \right\rangle \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(1)}}, \mathbf{o}_+ \right\rangle \leq \dots \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t+1)}}, \mathbf{o}_+ \right\rangle. \quad (63)$$

1226 Thus, we obtain the following bound after the second gradient descent step:
 1227

$$\begin{aligned} & \delta_1 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) [1 + 2\sigma(\alpha^*)] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) =: u \\ & \leq \left\langle (\mathbf{W}_{O(i,\cdot)}^{(2)})^\top, \mathbf{o}_+ \right\rangle \\ & \leq \delta_1 + \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) [1 + 2\sigma(\alpha^*)] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) =: v. \end{aligned} \quad (64)$$

1234 Similarly, applying Lemma B.3 to any lucky neuron $i \in \mathcal{U}(1)$ at iteration 2, we get
 1235
 1236

$$\begin{aligned} & \frac{1}{\sqrt{mL}} \cdot \sigma(\beta^*) \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(1)}}, \mathbf{o}_- \right\rangle \\ & \leq \frac{1}{\sqrt{mL}} \cdot \sigma(\beta^*) \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right), \end{aligned} \quad (65)$$

1242
1243
1244
1245
1246

$$\text{and } \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(1)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 2. \quad (66)$$

1247
1248 Applying Lemma B.5 with $r_1^* = u$, and $s_1^* = v$, we obtain

1249
1250
1251
$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(1)}}, \mathbf{o}_+ \right\rangle \geq \frac{u}{2\sqrt{mL}} \cdot \rho_1^+ \cdot \Theta(\alpha_r L) - \frac{\sqrt{mv}}{4L} \cdot \Theta(\alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) =: \chi. \quad (67)$$

1252

1253
1254 Since $u - v = \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$ that is sufficiently small, we have $\chi \geq 0$.

1255 By applying Lemma B.6, we get

1256
1257
1258
$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(0)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1, 2. \quad (68)$$

1259

1260
1261 **(S3) Induction conclusion: Training dynamics when the algorithm ends.**1262 We proceed by induction on t : the base case $t = 0$ is established in (S1), and the induction step for
1263 general t is shown in (S2). For any lucky neuron $i \in \mathcal{W}(T)$, we obtain

1264
1265
$$\left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_+ \right\rangle \geq aT, \quad (69)$$

1266

1267
1268
1269
$$\text{and } \left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1 \quad (70)$$

1270

1271 For any lucky neuron $i \in \mathcal{U}(T)$, we obtain

1272
1273
$$\left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_- \right\rangle \geq aT, \quad (71)$$

1274

1275
1276
1277
$$\text{and } \left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 2 \quad (72)$$

1278

1279 Also, we obtain

1280

1281
1282
$$\left\langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_+ \right\rangle \geq \alpha T, \quad (73)$$

1283

1284
1285
$$\left\langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_- \right\rangle \geq \beta T, \quad (74)$$

1286

1287
1288
1289
$$\text{and } \left\langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \right\rangle \leq \gamma T. \quad (75)$$

1290

1291 **(S4) Derivation for the generalization bound.**1292 We will demonstrate that once the weights have converged at iteration T , the model accurately
1293 captures the underlying data distribution, which leads to zero generalization error, as shown in (94).1294
1295 Consider $z^{(n)} = +1$ as an example. The sequence $\mathbf{X}^{(n)} = \begin{bmatrix} \mathbf{x}_1^{(n)} & \mathbf{x}_2^{(n)} & \dots & \mathbf{x}_L^{(n)} \end{bmatrix}$ has first $\alpha_r L$
tokens correspond to the feature \mathbf{o}_+ , while the following $\alpha_c L$ tokens correspond to the feature \mathbf{o}_- .

$$\begin{aligned}
1296 \\
1297 \\
1298 \quad F(\mathbf{X}^{(n)}) &= \frac{1}{L} \sum_{l=1}^L \sum_{i=1}^m v_i \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1299 \\
1300 \\
1301 \quad &= \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}^+} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) - \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}^-} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1302 \\
1303 \\
1304 \quad &\geq \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) - \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{U}(0)} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1305 \\
1306 \\
1307 \quad &\quad - \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}^- \setminus \mathcal{U}(0)} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1308 \\
1309 \\
1310 \\
1311 \quad \text{The Mamba output } \mathbf{y}_l^{(n)} \text{ is defined as} \\
1312 \\
1313 \quad \mathbf{y}_l^{(n)} &= \sum_{s=1}^l \left(\prod_{j=s+1}^l \left(1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_j^{(n)}) \right) \right) \cdot \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s^{(n)}) \cdot (\mathbf{x}_s^{(n)\top} \mathbf{x}_l^{(n)}) \mathbf{x}_s^{(n)}. \\
1314 \\
1315 \\
1316 \\
1317 \quad \text{We now derive a lower bound for} \\
1318 \\
1319 \quad \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l). \\
1320 \\
1321 \\
1322 \quad \text{To that end, consider the aggregated projection} \\
1323 \\
1324 \quad \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \mathbf{W}_{O(i,\cdot)} \mathbf{y}_l &= \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \sum_{j=1}^d \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_j \rangle \cdot \langle \mathbf{y}_l, \mathbf{o}_j \rangle. \\
1325 \\
1326 \\
1327 \quad \text{For any } i \in \mathcal{W}(0), \text{ we know that} \\
1328 \\
1329 \quad \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_+ \rangle &\geq aT. \\
1330 \\
1331 \quad \text{Hence, let's obtain a lower bound for } \langle \mathbf{y}_l, \mathbf{o}_+ \rangle. \\
1332 \\
1333 \quad \text{We only need to consider the cases where } \mathbf{x}_s = \mathbf{o}_+ \text{ for some } s \text{ in the range } 1 \leq s \leq l. \\
1334 \\
1335 \quad \langle \mathbf{w}_\Delta, \mathbf{o}_+ \rangle \geq \alpha T, \quad \langle \mathbf{w}_\Delta, \mathbf{o}_- \rangle \geq \beta T, \quad \langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle \leq \gamma T \quad \text{for } j \neq 1, 2. \\
1336 \\
1337 \quad \text{After } T \text{ iterations, we know} \\
1338 \\
1339 \quad \langle \mathbf{y}_l, \mathbf{o}_+ \rangle &= \Theta(\sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_+ \rangle)) = \Theta(\sigma(\alpha T)), \quad \text{for } l = 1, 2, \dots, \alpha_r L. \\
1340 \\
1341 \quad \text{We now lower bound the objective} \\
1342 \\
1343 \quad \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l). \\
1344 \\
1345 \\
1346 \quad \text{Note that} \\
1347 \quad \mathbf{W}_{O(i,\cdot)} \mathbf{y}_l &= \sum_{j=1}^d \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_j \rangle \langle \mathbf{y}_{L_1^+}, \mathbf{o}_j \rangle, \\
1348 \\
1349 \quad \text{and } \mathbf{y}_l \text{ has only } \mathbf{o}_+ \text{ component for } l = 1, 2, \dots, \alpha_r L.
\end{aligned} \tag{76}$$

1350 Therefore,

1351

$$1352 \mathbf{W}_{O(i,\cdot)} \mathbf{y}_l = \left\langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_+ \right\rangle \langle \mathbf{y}_l, \mathbf{o}_+ \rangle \geq aT \cdot \Theta(\sigma(\alpha T)) > 0, \quad \text{for } l = 1, 2, \dots, \alpha_r L.$$

1353

1354 Applying $\phi(z) = z$ for positive z , we obtain

1355

$$1356 \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \geq aT \cdot \Theta(\sigma(\alpha T)), \quad \text{for } l = 1, 2, \dots, \alpha_r L.$$

1357

1358 Hence,

1359

$$1360 \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \geq \sum_{i \in \mathcal{W}(0)} aT \cdot \Theta(\sigma(\alpha T)) \cdot \alpha_r L \quad (82)$$

1361

1362 Next, we derive an upper bound for

1363

$$1364 \sum_{i \in \mathcal{U}(0)} \sum_{l=1}^L \phi\left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}\right).$$

1365

1366 For any $i \in \mathcal{U}(0)$, we know that

1367

$$1368 0 < \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_- \rangle \leq bT. \quad (83)$$

1369

1370 We now derive an upper bound for $\langle \mathbf{y}_l, \mathbf{o}_- \rangle$. We only need to consider the cases where $\mathbf{x}_s = \mathbf{o}_-$ such that $1 \leq s \leq l$.

1371 We have,

1372

$$\langle \mathbf{w}_\Delta, \mathbf{o}_+ \rangle \leq WT, \quad \langle \mathbf{w}_\Delta, \mathbf{o}_- \rangle \leq WT,$$

1373

1374 where

1375

$$1376 W = \frac{\eta}{8L^2} \Theta((\alpha_r L - \alpha_c L)^2) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (84)$$

1377

1378

$$1379 \langle \mathbf{y}_l, \mathbf{o}_- \rangle = \Theta(\sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_- \rangle)) = \Theta(\sigma(WT)), \quad \text{for } l = 1, 2, \dots, \alpha_c L. \quad (85)$$

1380

1381

$$1382 \sum_{l=1}^L \mathbf{W}_{O(i,\cdot)} \mathbf{y}_l \leq bT \cdot \Theta(\sigma(WT)) \cdot \alpha_c L. \quad (86)$$

1383

1384

$$1385 \sum_{i \in \mathcal{U}(0)} \sum_{l=1}^L \phi\left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}\right) \leq \sum_{i \in \mathcal{U}(0)} bT \cdot \Theta(\sigma(WT)) \cdot \alpha_c L. \quad (87)$$

1386

1387 In addition, we have

1388

$$1389 \sum_{i \in \mathcal{K}^- \setminus \mathcal{U}(0)} \sum_{l=1}^L \phi\left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}\right) \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (88)$$

1390

1391 By (76), we can write

1392

$$1393 F(\mathbf{X}^{(n)}) \geq \frac{1}{\sqrt{mL}} \left\{ \frac{m}{2} \cdot aT \cdot \Theta(\sigma(\alpha T)) \cdot \alpha_r L - \frac{m}{2} \cdot bT \cdot \Theta(\sigma(WT)) \cdot \alpha_c L - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \right\}, \quad (89)$$

1394

1395 with

1396

$$1397 a = \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right), \quad (90)$$

1398

1399

$$1400 \text{and } b = \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L) + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (91)$$

1401

1404
 1405
 1406
$$\alpha = \frac{\eta}{8L^2} \Theta((\alpha_r L - \alpha_c L)^2) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$$

 1407
 1408
 1409
$$= W - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (92)$$

 1410

1411 Therefore, we conclude that

1412
 1413
$$F(\mathbf{X}^{(n)}) \geq \frac{\sqrt{m}}{2} \cdot aT \cdot \Theta(\sigma(\alpha T)) \cdot (\alpha_r - \alpha_c) - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad (93)$$

 1414

1415 There, for any positive sample, we can prove that

1416
 1417
$$F(\mathbf{X}^{(n)}) \geq C, \text{ where } C \text{ is some positive constant.} \quad (94)$$

 1418

Similar to the previous analysis, one can show that the negative sample \mathbf{X}_n leads to

(S4.1) Derivation for the convergence rate. Let's find the number of iterations T required such that $F(\mathbf{X}^{(n)}) \geq 1$, since the label is +1. We require

1422
 1423
$$\frac{\sqrt{m}}{2} \cdot aT(\alpha_r - \alpha_c) \geq 1 + \epsilon. \quad (95)$$

 1424

1425 Substituting the value of $a \approx b = \frac{\eta}{2\sqrt{m}L} \Theta(\alpha_r L - \alpha_c L)$, the condition becomes

1427
 1428
$$\frac{\sqrt{m}aT}{2}(\alpha_r - \alpha_c) = \frac{\sqrt{m}}{2} \cdot \frac{\eta}{2\sqrt{m}L} \Theta(\alpha_r L - \alpha_c L)T \cdot (\alpha_r - \alpha_c)$$

 1429
 1430
$$= \frac{\eta T}{4} \Theta((\alpha_r - \alpha_c)^2) \geq 1 + \epsilon. \quad (96)$$

 1431

1432 Solving for T , we obtain

1433
 1434
$$T \geq \frac{4(1 + \epsilon)}{\eta \Theta((\alpha_r - \alpha_c)^2)} \geq \frac{4}{\eta \Theta((\alpha_r - \alpha_c)^2)}. \quad (97)$$

 1435

1436 Now, we additionally require that the sigmoid activation $\sigma(\alpha T)$ be sufficiently large, i.e.,

1437
 1438
$$\sigma(\alpha T) \geq 1 - \epsilon. \quad (98)$$

 1439

1440 When z is sufficiently large we can approximate

1441
 1442
$$\sigma(z) = \frac{1}{1 + e^{-z}} \approx 1 - e^{-z}. \quad (99)$$

 1443

1444 Substituting $z = \alpha T$, condition (98) becomes:

1445
 1446
$$\sigma(\alpha T) \approx 1 - e^{-\alpha T} \geq 1 - \epsilon,$$

 1447
$$e^{-\alpha T} \leq \epsilon,$$

 1448
$$\alpha T \geq -\ln(\epsilon)$$

 1449
 1450
$$T \geq -\frac{\ln(\epsilon)}{\alpha}. \quad (99)$$

 1451

1452 Substituting $\alpha = \frac{\eta}{8L^2} \Theta((\alpha_r L - \alpha_c L)^2)$, we get:

1453
 1454
$$T \geq -\ln(\epsilon) \cdot \frac{8L^2}{\eta \Theta((\alpha_r L - \alpha_c L)^2)}. \quad (100)$$

 1455

1456
 1457
$$T \geq -\ln(\epsilon) \cdot \frac{8}{\eta \Theta((\alpha_r - \alpha_c)^2)}. \quad (101)$$

1458 Hence, by combining (97) and (101), we obtain
 1459

$$1460 \quad T \geq \max \left\{ \frac{4}{\eta \Theta((\alpha_r - \alpha_c)^2)}, -\ln(\epsilon) \cdot \frac{8}{\eta \Theta((\alpha_r - \alpha_c)^2)} \right\}. \quad (102)$$

1462 By combining (95) and (98) with the expression for the model output $F(\mathbf{X}^{(n)})$ in (93), we obtain
 1463

$$1464 \quad F(\mathbf{X}^{(n)}) \geq (1 + \epsilon) \cdot (1 - \epsilon) \\ 1465 \quad \geq 1 - \mathcal{O}(\epsilon^2) \quad (103)$$

1467 Hence, for sufficiently small $\epsilon > 0$, the model output satisfies $F(\mathbf{X}^{(n)}) \geq 1$.
 1468

1469 Similarly, for a negative sample, one can show by symmetry that the model output satisfies
 1470 $F(\mathbf{X}^{(n)}) \leq 1$.
 1471

(S4.2) Derivation for the sample complexity.

1472 Now we derive a sample-complexity bound that guarantees zero generalization error.
 1473

1474 Assuming enough samples, we can write for sufficiently small $\lambda \ll 1$
 1475

$$1476 \quad \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) \leq \lambda \cdot \frac{\eta}{2\sqrt{mL}} \Theta(\alpha_r L - \alpha_c L). \quad (104)$$

1479 From this, we can derive a lower bound on the required sample size,
 1480

$$1481 \quad N \geq \Omega \left(\lambda^{-2} \cdot \frac{4L^2 d}{\eta^2 \Theta((\alpha_r - \alpha_c)^2)} \right) \\ 1482 \quad \geq \Omega \left(\frac{L^2 d}{\eta^2 \Theta((\alpha_r - \alpha_c)^2)} \right), \quad (105)$$

1485 which will be (13) in Theorem 1. □
 1486

C LOCALITY-STRUCTURED DATA

C.1 USEFUL LEMMAS

1492 Lemma C.1 provides bounds on the gradient updates of lucky neurons $i \in \mathcal{W}(t)$ in the directions of
 1493 both class-relevant features $(\mathbf{o}_+, \mathbf{o}_-)$ and irrelevant features.
 1494

1495 **Lemma C.1.** Suppose $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1$, $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle \leq q_1$, and $p_2 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_j \rangle \leq q_2$ for
 1496 $j \neq 1, 2$. Then, for any lucky neuron $i \in \mathcal{W}(t)$ at iteration t , the following bounds hold:
 1497

(L1.1) A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i, \cdot)}$ at iteration t , in the direction of
 1498 \mathbf{o}_+ , is given by
 1499

$$1500 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i, \cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \geq \frac{1}{\sqrt{mL}} \cdot \sigma(p_1) \cdot (1 - \sigma(q_1))^2 \left[(1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] \\ 1501 \quad - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (106)$$

1505 **(L1.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i, \cdot)}$ at iteration t , in the direction of
 1506 \mathbf{o}_+ , is given by
 1507

$$1508 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i, \cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1))^2 \left[(1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] \\ 1509 \quad + \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (107)$$

1512 **(L1.3)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1513 \mathbf{o}_- , is given by
 1514

$$\begin{aligned} 1515 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle &\geq -\frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1))^2 \left[(1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_-}^- - 2} - (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \\ 1516 \quad &\quad - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \end{aligned} \quad (108)$$

1522 **(L1.4)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1523 \mathbf{o}_- , is given by
 1524

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (109)$$

1528 **(L1.5)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1529 \mathbf{o}_j , is given by
 1530

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right), \quad \text{for } j \neq 1, 2. \quad (110)$$

1533 Lemma C.2 shows that, for unlucky neurons associated with the positive class, the gradients in the
 1534 directions of both class-relevant and irrelevant features are small.
 1535

1536 **Lemma C.2.** For any unlucky neuron $i \in \mathcal{K}_+ \setminus \mathcal{W}(t)$ at iteration t , the following bounds hold:

1537 **(L2.1)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1538 \mathbf{o}_+ , is given by
 1539

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (111)$$

1543 **(L2.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1544 \mathbf{o}_- , is given by
 1545

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (112)$$

1548 **(L2.3)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1549 \mathbf{o}_j , is given by
 1550

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right), \quad \text{for } j \neq 1, 2. \quad (113)$$

1554 Lemmas C.3 and C.4, by symmetry, state the analogous results for lucky and unlucky neurons
 1555 associated with the negative class.
 1556

1557 **Lemma C.3.** Suppose $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle \leq q_1$, $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1$, and $p_2 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_j \rangle \leq q_2$ for
 1558 $j \neq 1, 2$. Then, for any lucky neuron $i \in \mathcal{U}(t)$ at iteration t , the following bounds hold:

1559 **(L3.1)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1560 \mathbf{o}_- , is given by
 1561

$$\begin{aligned} 1562 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle &\geq \frac{1}{\sqrt{mL}} \cdot \sigma(p_1) \cdot (1 - \sigma(q_1))^2 \left[(1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_-}^- - 2} - (1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \\ 1563 \quad &\quad - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \end{aligned} \quad (114)$$

1566 **(L3.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1567 \mathbf{o}_- , is given by
 1568

$$\begin{aligned} 1569 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle &\leq \frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1))^2 \left[(1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_-}^- - 2} - (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \\ 1570 \quad &+ \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \end{aligned} \quad (115)$$

1571
 1572 **(L3.3)** A lower bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1573 \mathbf{o}_+ , is given by
 1574

$$\begin{aligned} 1575 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle &\geq -\frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1))^2 \left[(1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] \\ 1576 \quad &- \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \end{aligned} \quad (116)$$

1577
 1578 **(L3.4)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1579 \mathbf{o}_+ , is given by
 1580

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (117)$$

1581
 1582 **(L3.5)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1583 \mathbf{o}_j , is given by
 1584

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right), \quad \text{for } j \neq 1, 2. \quad (118)$$

1585
 1586 **Lemma C.4.** For any unlucky neuron $i \in \mathcal{K}_- \setminus \mathcal{U}(t)$ at iteration t , the following bounds hold:
 1587

1588 **(L4.1)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1589 \mathbf{o}_- , is given by
 1590

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (119)$$

1591
 1592 **(L4.2)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1593 \mathbf{o}_+ , is given by
 1594

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (120)$$

1595
 1596 **(L4.3)** An upper bound on the gradient of $\hat{\mathcal{L}}$ with respect to $\mathbf{W}_{O(i,\cdot)}$ at iteration t , in the direction of
 1597 \mathbf{o}_j , is given by
 1598

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right), \quad \text{for } j \neq 1, 2. \quad (121)$$

1599
 1600 Lemma C.5 establishes bounds for the gradient updates of \mathbf{w}_Δ in the class-relevant feature directions.
 1601

1602 **Lemma C.5.** Suppose $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1$ and $r_1^* \leq \langle \mathbf{W}_{O(i,\cdot)}^{(t+1)}^\top, \mathbf{o}_+ \rangle \leq s_1^*$. Let $|\mathcal{W}(t)| = \rho_t^+$
 1603 and $|\mathcal{U}(t)| = \rho_t^-$. Then, we have:
 1604

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_+ \right\rangle \geq \frac{\sigma(p_1) (1 - \sigma(q_1)) r_1^* \cdot \rho_t^+}{\sqrt{m}} - \frac{\sigma(q_1) (1 - \sigma(p_1)) s_1^* \cdot \sqrt{m}}{2} - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (122)$$

1620 Suppose $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle \leq q_1$ and $r_1^* \leq \langle \mathbf{W}_{O(i,\cdot)}^{(t+1)}^\top, \mathbf{o}_- \rangle \leq s_1^*$. Let $|\mathcal{W}(t)| = \rho_t^+$ and $|\mathcal{U}(t)| = \rho_t^-$.
1621 Then, we have:
1622

$$1624 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_- \right\rangle \geq \frac{\sigma(p_1)(1 - \sigma(q_1))r_1^* \cdot \rho_t^-}{\sqrt{m}} - \frac{\sigma(q_1)(1 - \sigma(p_1))s_1^* \cdot \sqrt{m}}{2} - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right). \quad (123)$$

1627 Lemma C.6 establishes bounds for the gradient updates of \mathbf{w}_Δ in the directions of irrelevant features.

1629 **Lemma C.6.** Suppose $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1$, $p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle \leq q_1$, $\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_j \rangle \leq q_2$ for $j \neq 1, 2$,
1630 and $r_1^* \leq \langle \mathbf{W}_{O(i,\cdot)}^{(t)}^\top, \mathbf{o}_+ \rangle$. Let $\rho_t^+ = |\mathcal{W}(t)|$ and $\rho_t^- = |\mathcal{U}(t)|$. Then we have:
1631

$$1632 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_j \right\rangle \leq -\frac{r_1^*}{2\sqrt{m}} \cdot \sigma(p_1)(1 - \sigma(q_1)) \left[(1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^+} \rho_t^+ + (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_-}^-} \rho_t^- \right] \\ 1633 \quad + \mathcal{O}\left((1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^-}\right) + \mathcal{O}\left((1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_-}^+}\right) + \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right). \quad (124)$$

1638 C.2 PROOF OF CONVERGENCE

1640 *Proof of Theorem 2.* Similar to the proof of Theorem 1, the proof starts with the base case at $t = 0$
1641 and proceeds to analyze the training dynamics in a deductive manner, providing additional details in
1642 deriving the corresponding convergence and sample complexity bounds.

1643 **(S1) Warm-up (Base case):** Training dynamics at the first iteration $t = 0$.

1645 Recall that we set $\mathbf{w}_\Delta^{(0)} = \mathbf{0}$. Then, we have

$$1647 \quad \langle \mathbf{w}_\Delta^{(0)}, \mathbf{o}_+ \rangle = 0, \quad \langle \mathbf{w}_\Delta^{(0)}, \mathbf{o}_- \rangle = 0, \quad \text{and} \quad \langle \mathbf{w}_\Delta^{(0)}, \mathbf{o}_j \rangle = 0 \quad \forall j.$$

1649 **(S1.1) Training dynamics of $\mathbf{W}_{O(i,:)}$ at the first iteration $t = 0$.**

1650 From Lemma C.1, identify $p_1 = 0, q_1 = 0, p_2 = 0$ and $q_2 = 0$. Let $\Delta L_{\mathbf{o}_+}^+$ and $\Delta L_{\mathbf{o}_-}^+$ be the distance
1651 between two \mathbf{o}_+ and \mathbf{o}_- features respectively in the positive sample. Similarly, in a negative sample,
1652 let the distance between the two \mathbf{o}_+ tokens as $\Delta L_{\mathbf{o}_+}^-$, and the distance between the two \mathbf{o}_- tokens
1653 as $\Delta L_{\mathbf{o}_-}^-$. Then, for any lucky neuron $i \in \mathcal{W}(0)$, we obtain
1654

$$1656 \quad \frac{c'^2}{2\sqrt{mL}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^- - 2} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ 1657 \quad \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(0)}}, \mathbf{o}_+ \right\rangle \\ 1658 \quad \leq \frac{1}{2\sqrt{mL}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^-} \right] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad (125)$$

$$1666 \quad \text{and} \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(0)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1. \quad (126)$$

1670 Recall that we set the number of samples in a batch $N = \text{poly}(d)$.

1671 Suppose the initialization is

$$1673 \quad \mathbf{W}_{O(i,\cdot)}(0) = \delta_1 \mathbf{o}_+ + \delta_2 \mathbf{o}_- + \cdots + \delta_d \mathbf{o}_d, \quad \delta_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \xi^2) \quad j = 1, 2, \dots, d. \quad (127)$$

1674 Then, after one gradient descent step, we have
 1675
 1676

$$\begin{aligned}
 \delta_1 + \frac{\eta c'^2}{2\sqrt{m}L} & \left[\left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^- - 2} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
 & \leq \left\langle \mathbf{W}_{O(i,\cdot)}^{\top} \overset{(1)}{\sigma}, \mathbf{o}_+ \right\rangle \\
 & \leq \delta_1 + \frac{\eta}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^- - 2} \right] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)
 \end{aligned} \tag{128}$$

$$\text{and } \left\langle \mathbf{W}_{O(i,\cdot)}^{\top} \overset{(1)}{\sigma}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1. \tag{129}$$

1685 By applying Lemma C.3, for any lucky neuron $i \in \mathcal{U}(0)$, we obtain
 1686
 1687

$$\begin{aligned}
 \delta_2 + \frac{\eta c'^2}{2\sqrt{m}L} & \left[\left(\frac{1}{2}\right)^{\Delta L_{\sigma_-}^- - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\sigma_-}^+ - 2} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
 & \leq \left\langle \mathbf{W}_{O(i,\cdot)}^{\top} \overset{(1)}{\sigma}, \mathbf{o}_+ \right\rangle \\
 & \leq \delta_2 + \frac{\eta}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\sigma_-}^- - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\sigma_-}^+ - 2} \right] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)
 \end{aligned} \tag{130}$$

$$\text{and } \left\langle \mathbf{W}_{O(i,\cdot)}^{\top} \overset{(1)}{\sigma}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 2. \tag{131}$$

1703 For any unlucky neuron $i \in \mathcal{K}_- \setminus \mathcal{U}(0)$, Lemma C.4 gives
 1704
 1705

$$\left\langle \mathbf{W}_{O(i,\cdot)}^{\top} \overset{(1)}{\sigma}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } \forall j. \tag{132}$$

1708 **(S1.2) Training dynamics of \mathbf{W}_Δ at the first iteration $t = 0$.**
 1709

1710 Now consider the gradient update for \mathbf{w}_Δ . Define:

$$\begin{aligned}
 a &= \delta_1 + \frac{\eta c'^2}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^- - 2} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
 b &= \delta_1 + \frac{\eta}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\sigma_+}^- - 2} \right] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)
 \end{aligned}$$

1718 Applying Lemma C.5 with $p_1 = 0$, $q_1 = 0$, $r_1^* = a$, $s_1^* = b$, and $\rho_0^+ = |\mathcal{W}(0)|$, we get
 1719
 1720

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(0)}}, \mathbf{o}_+ \right\rangle \geq \frac{a}{4\sqrt{m}} \cdot \rho_0^+ - \frac{b\sqrt{m}}{8} - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \tag{133}$$

1724 We can relax this lower bound and obtain
 1725

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(0)}}, \mathbf{o}_+ \right\rangle \geq \frac{c'}{4} \left[\frac{2a}{\sqrt{m}} \cdot \rho_0^+ - \sqrt{mb} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) =: \alpha \tag{134}$$

1728 Recall that $\delta_1 = \frac{1}{\text{poly}(d)}$. Since $a - b = \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$ that is sufficiently small,
 1729

$$\begin{aligned} 1730 \quad \alpha &= \frac{c'}{4} \left[\frac{2a}{\sqrt{m}} \cdot \frac{m}{2} - \sqrt{mb} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ 1731 \quad &= \frac{c'}{4} [\sqrt{ma} - \sqrt{mb}] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ 1732 \quad &= 0 - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ 1733 \quad &= -\tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \approx 0 \end{aligned} \quad (135)$$

1740 From Lemma C.6, we also obtain

$$1741 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(0)}}, \mathbf{o}_j \right\rangle \leq \frac{-a}{8\sqrt{m}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} \cdot \rho_0^+ + \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^-} \cdot \rho_0^- \right] \quad (136)$$

1744 where we apply the lemma with the values

$$1745 \quad p_1 = 0, \quad q_1 = 0, \quad q_2 = 0, \quad \text{and} \quad r_1^* = a.$$

1747 We can relax this upper bound and obtain

$$1749 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(0)}}, \mathbf{o}_j \right\rangle \leq \frac{-ac'}{4\sqrt{m}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} \cdot \rho_0^+ + \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^-} \cdot \rho_0^- \right] =: \gamma \quad (137)$$

1752 Taking $\rho_0^+ = \rho_0^- = \frac{m}{2} + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$, we can simplify and write

$$\begin{aligned} 1755 \quad \gamma &= \frac{-ac'}{4\sqrt{m}} \cdot \frac{m}{2} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} + \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^-} \right] \\ 1756 \quad &= -\sqrt{ma} \cdot \frac{c'}{8} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} + \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^-} \right] \\ 1758 \quad &= \frac{-\eta c'^3}{16L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^- - 2} \right] \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} + \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^-} \right] \\ 1760 \quad &\quad - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \end{aligned} \quad (138)$$

1766 **(S2) Induction Step:** Training dynamics at a general iteration t .

1768 Let $\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle = \alpha^* \geq \alpha \cdot t$, $\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle = \beta^* \geq \beta \cdot t$, and $\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_j \rangle = \gamma^* \leq \gamma \cdot t$, where
 1769

$$1770 \quad \beta = \frac{c'}{4} \left[\frac{2a'}{\sqrt{m}} \cdot \rho_0^- - \sqrt{mb'} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) > 0 \quad (139)$$

$$1773 \quad a' = \delta_2 + \frac{\eta c'^2}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^- - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$$

$$1776 \quad b' = \delta_2 + \frac{\eta}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^-} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^+} \right] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$$

1779 Following the same approach as in (135), we can simplify and obtain
 1780

$$1781 \quad \beta = -\tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (140)$$

1782 For any lucky neuron $i \in \mathcal{W}(t)$ at the $(t + 1)$ -th iteration, we have
1783

$$\begin{aligned} 1784 \frac{c'^2}{\sqrt{mL}} \cdot \sigma(\alpha^*) \left[(1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\ 1785 \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \\ 1786 \\ 1787 \leq \frac{1}{\sqrt{mL}} \cdot \sigma(\alpha^*) \cdot (1 - \sigma(\alpha^*))^2 \left[(1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] \\ 1788 \\ 1789 + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \end{aligned} \tag{141}$$

$$\begin{aligned} 1790 \\ 1791 \\ 1792 \\ 1793 \\ 1794 \\ 1795 \\ 1796 \\ 1797 \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(1)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1 \end{aligned} \tag{142}$$

1798 Note that, $\sigma(\alpha^*) > \frac{1}{2}$ and $\sigma(\gamma^*) < \frac{1}{2}$.
1799

1800 Thus, we obtain the following bound after the second gradient descent step.

$$\begin{aligned} 1801 \left\langle (\mathbf{W}_{O(i,\cdot)}^{(2)})^\top, \mathbf{o}_+ \right\rangle \\ 1802 \\ 1803 \geq \delta_1 + \frac{\eta c'^2}{\sqrt{mL}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+ - 1} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^- - 1} \right. \\ 1804 \\ 1805 \left. + \sigma(\alpha^*) \left((1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_+}^- - 2} \right) \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \end{aligned} \tag{143}$$

1806 and

$$\begin{aligned} 1807 \left\langle (\mathbf{W}_{O(i,\cdot)}^{(2)})^\top, \mathbf{o}_- \right\rangle \\ 1808 \\ 1809 \leq \delta_1 + \frac{\eta}{2\sqrt{mL}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^- - 1} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^+ - 1} \right. \\ 1810 \\ 1811 \left. + 2\sigma(\alpha^*) \cdot (1 - \sigma(\alpha^*))^2 \left((1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_-}^+ - 2} - (1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_-}^- - 2} \right) \right] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \end{aligned} \tag{144}$$

1812 For the convenience of presentation, we use u to denote the lower bound in (143), and v to denote
1813 the upper bound in (144).

1814 Similarly, applying Lemma C.3 to any lucky neuron $i \in \mathcal{U}(1)$ at iteration 2, we get
1815

$$\begin{aligned} 1816 \\ 1817 \\ 1818 \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(1)}}, \mathbf{o}_- \right\rangle \geq \frac{c'^2}{\sqrt{mL}} \cdot \sigma(\beta^*) \left[(1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_-}^- - 2} - (1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \\ 1819 \\ 1820 \\ 1821 \\ 1822 \\ 1823 \\ 1824 \\ 1825 - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right), \end{aligned} \tag{145}$$

$$\begin{aligned} 1826 \\ 1827 \\ 1828 \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(1)}}, \mathbf{o}_- \right\rangle \leq \frac{1}{\sqrt{mL}} \cdot \sigma(\beta^*) \cdot (1 - \sigma(\beta^*))^2 \left[(1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_-}^- - 2} - (1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \\ 1829 \\ 1830 \\ 1831 \\ 1832 \\ 1833 + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right), \end{aligned} \tag{146}$$

and

$$\begin{aligned} 1834 \\ 1835 \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(1)}}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1 \end{aligned} \tag{147}$$

1836 Applying Lemma C.5 with $p_1 = \alpha^*$, $q_1 = \alpha^*$, $r_1^* = u$, and $s_1^* = v$, we obtain
 1837

1838
 1839
$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(1)}}, \mathbf{o}_+ \right\rangle \geq \frac{\sigma(\alpha^*)c'}{2} \left[\frac{2u}{\sqrt{m}} \cdot \rho_1^+ - \sqrt{mv} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) =: \chi \quad (148)$$

 1840

1841
 1842 Since $\rho_1^+ = \frac{m}{2}$ and $u - v = \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right)$ that is sufficiently small,, we have $\chi \approx 0$.
 1843

1844 By applying Lemma C.6 with

1845
 1846
$$p_1 = \alpha^*(\beta^*), \quad q_1 = \alpha^*(\beta^*), \quad q_2 = \gamma^*, \text{ and } \quad r_1^* = u, \text{ we have}$$

 1847

1848
 1849
$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_j \right\rangle \leq -\frac{c'u}{2\sqrt{m}} \sigma(\alpha^*) \left[(1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_+}^+} \rho_t^+ + (1 - \sigma(\gamma^*))^{\Delta L_{\mathbf{o}_-}^-} \rho_t^- \right] =: \iota \quad (149)$$

 1850

1851 Note that here we assumed the distribution of ΔL^+ is identical to ΔL^- to have $\alpha^* = \beta^*$.
 1852

1853 (S3) Induction conclusion: Training dynamics when the algorithm ends.

1854 We proceed by induction on t : the base case $t = 0$ is established in (S1), and the induction step for
 1855 general t is shown in (S2). For, any lucky neuron $i \in \mathcal{W}(T)$, we obtain
 1856

1857
 1858
$$\left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_+ \right\rangle \geq aT \quad (150)$$

 1859

1860
 1861
$$\left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 1 \quad (151)$$

 1862

1863 For any lucky neuron $i \in \mathcal{U}(T)$, we obtain
 1864

1865
 1866
$$\left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_- \right\rangle \geq aT \quad (152)$$

 1867

1868
 1869
$$\left\langle \mathbf{W}_{O(i,\cdot)}^\top \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \right\rangle \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad \text{for } j \neq 2 \quad (153)$$

 1870

1871 Also, we obtain
 1872

1873
 1874
$$\left\langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_+ \right\rangle \geq \alpha T, \quad (154)$$

 1875

1876
 1877
$$\left\langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_- \right\rangle \geq \beta T, \quad (155)$$

 1878

1879
 1880 and
$$\left\langle \mathbf{w}_\Delta^{(T)}, \mathbf{o}_j \right\rangle \leq \gamma T. \quad (156)$$

 1881

1882 (S4) Derivation for the generalization bound.
 1883

1884 We will demonstrate that once the weights have converged at iteration T , the model accurately
 1885 captures the underlying data distribution, which leads to zero generalization error, as shown in (180).
 1886

1887 Consider $z^{(n)} = +1$ as an example. The sequence $\mathbf{X}^{(n)} = \begin{bmatrix} \mathbf{x}_1^{(n)} & \mathbf{x}_2^{(n)} & \dots & \mathbf{x}_L^{(n)} \end{bmatrix}$ contains two
 1888 \mathbf{o}_+ at L_1^+ and L_2^+ and two \mathbf{o}_- at L_1^- and L_2^- .
 1889

$$\begin{aligned}
1890 \\
1891 \\
1892 \quad F(\mathbf{X}^{(n)}) &= \frac{1}{L} \sum_{l=1}^L \sum_{i=1}^m v_i \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1893 \\
1894 \\
1895 \quad &= \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}^+} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) - \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}^-} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1896 \\
1897 \\
1898 \quad &\geq \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) - \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{U}(0)} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1899 \\
1900 \\
1901 \quad &\quad - \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}^- \setminus \mathcal{U}(0)} \sum_{l=1}^L \phi \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \\
1902 \\
1903
\end{aligned} \tag{157}$$

1904
1905 The Mamba output $\mathbf{y}_l^{(n)}$ is defined as

$$\begin{aligned}
1906 \\
1907 \quad \mathbf{y}_l^{(n)} &= \sum_{s=1}^l \left(\prod_{j=s+1}^l \left(1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_j^{(n)}) \right) \right) \cdot \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s^{(n)}) \cdot (\mathbf{x}_s^{(n)\top} \mathbf{x}_l^{(n)}) \mathbf{x}_s^{(n)}. \\
1908 \\
1909
\end{aligned} \tag{158}$$

1910
1911 We now derive a lower bound for

$$\begin{aligned}
1912 \\
1913 \quad \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l). \\
1914
\end{aligned}$$

1915
1916 To that end, consider the aggregated projection

$$\begin{aligned}
1917 \\
1918 \quad \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \mathbf{W}_{O(i,\cdot)} \mathbf{y}_l &= \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \sum_{j=1}^d \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_j \rangle \cdot \langle \mathbf{y}_l, \mathbf{o}_j \rangle. \\
1919 \\
1920
\end{aligned} \tag{159}$$

1921 For any $i \in \mathcal{W}(0)$, we know that

$$\langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_+ \rangle \geq aT. \tag{160}$$

1924 Hence, let's obtain a lower bound for $\langle \mathbf{y}_l, \mathbf{o}_+ \rangle$

1925 We only need to consider the cases where $\mathbf{x}_s = \mathbf{o}_+$ for some s in the range $1 \leq s \leq l$. In particular,
1926 we will focus on the following instances:
1927

$$s = L_1^+ \text{ and } l \in \{L_1^+, L_2^+\}, \quad s = L_2^+ \text{ and } l = L_2^+.$$

1928 After T iterations, we know
1929

$$\langle \mathbf{w}_\Delta, \mathbf{o}_+ \rangle \geq \alpha T, \quad \langle \mathbf{w}_\Delta, \mathbf{o}_- \rangle \geq \beta T, \quad \langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle \leq \gamma T \quad \text{for } j \neq 1, 2. \tag{161}$$

1930
1931 Therefore,

$$\langle \mathbf{y}_{L_1^+}, \mathbf{o}_+ \rangle = \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_+ \rangle) \geq \sigma(\alpha T). \tag{162}$$

1932
1933 We have,

$$\langle \mathbf{w}_\Delta, \mathbf{o}_+ \rangle \leq W_1 T, \quad \langle \mathbf{w}_\Delta, \mathbf{o}_- \rangle \leq W_2 T,$$

1934
1935 where

$$W_1 = \tilde{\mathcal{O}} \left(\frac{1}{\text{poly}(d)} \right), \tag{163}$$

$$W_2 = \tilde{\mathcal{O}} \left(\frac{1}{\text{poly}(d)} \right). \tag{164}$$

1944 Then we obtain the following:
 1945

$$\begin{aligned}
 1946 \quad \langle \mathbf{y}_{L_2^+}, \mathbf{o}_+ \rangle &\geq \sigma(\alpha T) + (1 - \sigma(W_1 T)) (1 - \sigma(W_2 T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} \cdot \sigma(\alpha T) \\
 1947 \quad &= \sigma(\alpha T) \left[1 + (1 - \sigma(W_1 T)) (1 - \sigma(W_2 T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} \right]. \quad (165)
 \end{aligned}$$

1950 We now lower bound the objective
 1951

$$\sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l).$$

1955 We begin with
 1956

$$\sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \geq \sum_{i \in \mathcal{W}(0)} \left[\phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_{L_1^+}) + \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_{L_2^+}) \right].$$

1960 Note that
 1961

$$\mathbf{W}_{O(i,\cdot)} \mathbf{y}_{L_1^+} = \sum_{j=1}^d \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_j \rangle \langle \mathbf{y}_{L_1^+}, \mathbf{o}_j \rangle,$$

1964 and $\mathbf{y}_{L_1^+}$ has only \mathbf{o}_+ component.
 1965

1966 Therefore,

$$\mathbf{W}_{O(i,\cdot)} \mathbf{y}_{L_1^+} = \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_+ \rangle \langle \mathbf{y}_{L_1^+}, \mathbf{o}_+ \rangle \geq aT \cdot \sigma(\alpha T) > 0.$$

1968 Similarly, we can write
 1969

$$\mathbf{W}_{O(i,\cdot)} \mathbf{y}_{L_2^+} \geq aT \cdot \sigma(\alpha T) \left[1 + (1 - \sigma(W_1 T)) (1 - \sigma(W_2 T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} \right] > 0.$$

1972 Applying $\phi(z) = z$ for positive z , we obtain
 1973

$$\begin{aligned}
 1974 \quad \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_{L_1^+}) &\geq aT \cdot \sigma(\alpha T), \\
 1975 \quad \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_{L_2^+}) &\geq aT \cdot \sigma(\alpha T) \left[1 + (1 - \sigma(W_1 T)) (1 - \sigma(W_2 T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} \right].
 \end{aligned}$$

1978 Hence,
 1979

$$\begin{aligned}
 1980 \quad \sum_{i \in \mathcal{W}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) &\geq \sum_{i \in \mathcal{W}(0)} aT \cdot \sigma(\alpha T) \cdot \\
 1981 \quad &\quad \left[2 + (1 - \sigma(W_1 T)) (1 - \sigma(W_2 T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} \right]. \quad (166)
 \end{aligned}$$

1984 Next, we derive an upper bound for
 1985

$$\sum_{i \in \mathcal{U}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}).$$

1990 For any $i \in \mathcal{U}(0)$, we know that
 1991

$$0 < \langle \mathbf{W}_{O(i,\cdot)}^\top, \mathbf{o}_- \rangle \leq bT. \quad (167)$$

1993 We now derive an upper bound for $\langle \mathbf{y}_l, \mathbf{o}_- \rangle$. We need to focus on the following instances:
 1994

$$s = L_1^- \text{ and } l \in \{L_1^-, L_2^-\}, \quad s = L_2^- \text{ and } l = L_2^-.$$

1996

$$\langle \mathbf{y}_{L_1^-}, \mathbf{o}_- \rangle = \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_- \rangle) \leq \sigma(W_2 T). \quad (168)$$

$$\begin{aligned}
1998 & \\
1999 & \\
2000 & \left\langle \mathbf{y}_{L_2^-}, \mathbf{o}_- \right\rangle \leq \sigma(W_2 T) + (1 - \sigma(\alpha T)) (1 - \sigma(\beta T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \cdot \sigma(W_2 T) \\
2001 & \\
2002 & = \sigma(W_2 T) \left[1 + (1 - \sigma(\alpha T)) (1 - \sigma(\beta T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right]. \quad (169) \\
2003 & \\
\end{aligned}$$

2004 Hence,

$$\begin{aligned}
2006 & \sum_{i \in \mathcal{U}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \leq \sum_{i \in \mathcal{U}(0)} b T \cdot \sigma(W_2 T) \cdot \\
2007 & \quad \left[2 + (1 - \sigma(\alpha T)) (1 - \sigma(\beta T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right]. \\
2008 & \\
2009 & \\
2010 & \\
\end{aligned}$$

2011 In addition, we have

$$\begin{aligned}
2013 & \sum_{i \in \mathcal{K}^- \setminus \mathcal{U}(0)} \sum_{l=1}^L \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \leq \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (170) \\
2014 & \\
2015 & \\
2016 & \\
\end{aligned}$$

2017 By (157), we can write

$$\begin{aligned}
2019 & F(\mathbf{X}^{(n)}) \geq \frac{1}{\sqrt{m}L} \left\{ \frac{m}{2} \cdot a T \cdot \sigma(\alpha T) \left[2 + (1 - \sigma(W_1 T)) (1 - \sigma(W_2 T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} \right] \right. \\
2020 & \quad - \frac{m}{2} \cdot b T \cdot \sigma(W_2 T) \left[2 + (1 - \sigma(\alpha T)) (1 - \sigma(\beta T)) (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \\
2021 & \quad \left. - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \right\}, \\
2022 & \\
2023 & \\
2024 & \\
2025 & \\
2026 & \quad (171) \\
2027 & \\
2028 & \text{with} \\
\end{aligned}$$

$$a = \frac{\eta c'^2}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^- - 2} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right), \quad (172)$$

$$\text{and } b = \frac{\eta}{2\sqrt{m}L} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+ - 2} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_-}^- - 2} \right] + \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right). \quad (173)$$

$$\begin{aligned}
2036 & \alpha = \frac{c'}{4} \left[\frac{2a}{\sqrt{m}} \cdot \rho_0^+ - \sqrt{mb} \right] - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
2037 & = -\tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \\
2038 & \\
2039 & \\
2040 & \\
2041 & \\
\end{aligned}
\quad (174)$$

2042 Therefore, we conclude that

$$\begin{aligned}
2043 & F(\mathbf{X}^{(n)}) \geq \frac{1}{\sqrt{m}L} \left\{ \frac{m}{2} \cdot a T \cdot \sigma(\alpha T) (1 - \sigma(W_1 T)) (1 - \sigma(W_2 T)) \right. \\
2044 & \quad \left. \left[(1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \right\} - \tilde{\mathcal{O}}\left(\frac{1}{\text{poly}(d)}\right) \quad (175) \\
2045 & \\
2046 & \\
2047 & \\
2048 & \\
2049 & \\
\end{aligned}$$

2050 If we can show $\left[(1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] > 0$, then we can prove
2051 $F(\mathbf{X}^{(n)}) \geq C$ for some positive constant C .

2052 First define a random variable $\psi_1 = \langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle$. Then, we have from the definition of our locality-
 2053 structured data type

2054

$$2055 \mathbb{E}_n \left[(1 - \sigma(\psi_1))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\psi_1))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] = k' > 0 \quad (176)$$

2056

2057 for some positive constant k' .

2058 The random variable $\psi_2 = (1 - \sigma(\psi_1))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\psi_1))^{\Delta L_{\mathbf{o}_-}^+ - 2}$ is bounded above by 1.

2059 Applying Hoeffding's bound, for any $q > 0$,

2060

$$2061 \mathbb{P} \left(|\psi_2 - \mathbb{E}\psi_2| \gtrsim \sqrt{\frac{q \log N}{N}} \right) \leq N^{-q}. \quad (177)$$

2062

2063 From this we can conclude that,

2064

2065

$$2066 \psi_2 = \left[(1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] \geq k' - \mathcal{O} \left(\sqrt{\frac{q \log N}{N}} \right), \quad (178)$$

2067

2068 with probability at most N^{-q} .

2069

2070 Hence, for sufficiently large N , we have from (176)

2071

2072

$$2073 \left[(1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(\langle \mathbf{w}_\Delta, \mathbf{o}_j \rangle))^{\Delta L_{\mathbf{o}_-}^+ - 2} \right] > 0 \quad (179)$$

2074

2075 Therefore,

2076

2077

$$2078 F(\mathbf{X}^{(n)}) \geq C, \text{ where } C \text{ is some positive constant.} \quad (180)$$

2079

2080 Similarly, for a negative sample, one can show by symmetry that the model output satisfies
 2081 $F(\mathbf{X}^{(n)}) \leq 1$.

2082 (S4.1) Derivation for the convergence rate. Let's find the number of iterations T required such that
 2083 $F(\mathbf{X}^{(n)}) \geq 1$, since the label is +1. We require

2084

2085

$$2086 \frac{1}{\sqrt{mL}} \cdot \frac{m}{2} \cdot aT \cdot \sigma(\alpha T) \geq 1 + \epsilon. \quad (181)$$

2087

2088 Substituting the value of $a = \frac{\eta}{2\sqrt{mL}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^-} \right]$ and $\sigma(\alpha T) \approx \frac{1}{2}$ since $\alpha \approx 0$, the
 2089 condition becomes

2090

2091

$$2092 \frac{\sqrt{maT}}{4L} = \frac{\sqrt{m}}{4L} \cdot \frac{\eta}{2\sqrt{mL}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^-} \right] T$$

2093

$$2094 = \frac{\eta T}{8L^2} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^-} \right] \geq 1 + \epsilon. \quad (182)$$

2095

2096

2097 Solving for T , we obtain

2098

2099

$$2100 T \geq \frac{8L^2(1 + \epsilon)}{\eta \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^-} \right]} \geq \frac{8L^2}{\eta \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}_+}^-} \right]}. \quad (183)$$

2101

2102 By combining (181) with the expression for the model output $F(\mathbf{X}^{(n)})$ in (175), we obtain

2103

2104

$$2105 F(\mathbf{X}^{(n)}) \geq (1 + \epsilon) \quad (184)$$

2106 Hence, the model output satisfies $F(\mathbf{X}^{(n)}) \geq 1$.
 2107

2108 **(S4.2) Derivation for the sample complexity.** Now we derive a sample-complexity bound that guarantees zero generalization error.
 2109

2110 Assuming enough samples, we can write for sufficiently small $\lambda \ll 1$
 2111

$$2112 \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) \leq \lambda \cdot \frac{\eta}{2\sqrt{mL}} \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}+}^-} \right]. \quad (185)$$

2115 From this we can derive a lower bound on the required sample size,
 2116

$$2117 N \geq \Omega\left(\lambda^{-2} \cdot \frac{4L^2d}{\eta^2 \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}+}^-} \right]^2}\right) \\ 2118 \\ 2119 \\ 2120 \\ 2121 \\ 2122 \\ 2123 \\ 2124 \\ 2125 \\ 2126 \geq \Omega\left(\frac{L^2d}{\eta^2 \left[\left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}+}^+} - \left(\frac{1}{2}\right)^{\Delta L_{\mathbf{o}+}^-} \right]^2}\right), \quad (186)$$

2127 which will be (19) in Theorem 2.
 2128 \square
 2129

2130 D PROOF OF LEMMAS IN APPENDIX B

2131 Please refer to the supplementary material for this section. We defer all proofs to the supplementary
 2132 material, as the high-level ideas underlying the lemmas overlap with those presented in Appendix
 2133 C for locality data. However, the case of locality-structured data presents additional challenges.
 2134 Appendix E provides the complete proofs for the locality-structured data, which contain the main
 2135 technical ideas.
 2136

2138 E PROOF OF LEMMAS IN APPENDIX C

2141 E.1 PROOF OF LEMMA C.1

2142 *Proof.* We know that the gradient of the loss function for the n^{th} sample is
 2143

$$2144 \frac{\partial \ell}{\partial \mathbf{W}_{O(i,\cdot)}} = \frac{\partial \ell}{\partial F(\mathbf{X}^{(n)})} \cdot \frac{\partial F(\mathbf{X}^{(n)})}{\partial \mathbf{W}_{O(i,\cdot)}} \\ 2145 \\ 2146 = -\frac{z^{(n)}}{L} \sum_{l=1}^L v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)}. \quad (187)$$

2147 If we consider the gradient for the population loss,
 2148

$$2149 \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}} = -\mathbb{E} \left[\frac{z^{(n)}}{L} \sum_{l=1}^L v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right] \quad (188)$$

$$2150 \\ 2151 \\ 2152 \\ 2153 \\ 2154 \\ 2155 \\ 2156 \\ 2157 \\ 2158 \\ 2159 = -\mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right] \\ + \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right]. \quad (189)$$

2160 We are given that
 2161

$$2162 \quad p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1, \quad p_2 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_- \rangle \leq q_2, \quad \text{and} \quad p_3 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_j \rangle \leq q_3 \quad \text{for } j \neq 1, 2. \quad (190)$$

2165 The Mamba output can be written as
 2166

$$2167 \quad \mathbf{y}_l(t) = \sum_{s=1}^l \left(\prod_{j=s+1}^l \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{x}_j) \right) \right) \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{x}_s) \cdot (\mathbf{x}_s^\top \mathbf{x}_l) \mathbf{x}_s \quad (191)$$

2170 We have to consider FOUR cases.
 2171

2172 **Case I:** $l = s = L_1^+$

$$2173 \quad \mathbf{x}_s = \mathbf{x}_l = \mathbf{o}_+ \quad (192)$$

$$2175 \quad \langle \mathbb{E} \mathbf{y}_{L_1^+}, \mathbf{o}_+ \rangle = \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \geq \sigma(p_1) \pm \mathcal{O}(\tau) = \frac{1}{1 + e^{-p_1}} \pm \mathcal{O}(\tau). \quad (193)$$

2177 **Case II:** $l = s = L_2^+$

$$2179 \quad \langle \mathbb{E} \mathbf{y}_{L_2^+, L_2^+}, \mathbf{o}_+ \rangle = \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \pm \mathcal{O}(\tau). \quad (194)$$

2182 **Case III:** $l = L_2^+, s = L_1^+$

$$2184 \quad \langle \mathbb{E} \mathbf{y}_{L_2^+, L_1^+}, \mathbf{o}_+ \rangle = \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \\ 2186 \quad \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_+}^+ - 2} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \pm \mathcal{O}(\tau). \quad (195)$$

2189 Combining (194) and (195), we obtain
 2190

$$2191 \quad \langle \mathbb{E} \mathbf{y}_{L_2^+}, \mathbf{o}_+ \rangle = \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \\ 2193 \quad + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \\ 2196 \quad \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_+}^+ - 2} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \pm \mathcal{O}(\tau). \quad (196)$$

2198 **Case IV:** Others

2199 For the other token positions, $\mathbf{x}_l \neq \mathbf{o}_+$. Since we assume orthogonality among the features, $\mathbf{y}_l = 0$.
 2200

2201 From our initialization, for the lucky neuron $i \in \mathcal{W}(0)$, $v_i = +\frac{1}{\sqrt{m}}$. For $i \in \mathcal{W}(0)$, and $z^{(n)} = +1$,
 2202 we have
 2203

$$2205 \quad \left\langle \mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_+ \right\rangle \\ 2208 \quad = \frac{1}{\sqrt{m}L} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \right. \\ 2211 \quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_+}^+ - 2} \right] \pm \mathcal{O}(\tau). \quad (197)$$

2213 Similarly for $z = -1$, we can obtain
 2214

$$\begin{aligned}
& \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_+ \right\rangle \\
&= \frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \right. \\
&\quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_+}^+ - 2} \right] \pm \mathcal{O}(\tau).
\end{aligned} \tag{198}$$

Therefore, combining (197) and (198),

$$\begin{aligned}
\left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle &= \left\langle \mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_+ \right\rangle \\
&\quad - \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_+ \right\rangle \\
&= \frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \cdot \\
&\quad \left[\left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_+}^+ - 2} - \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_+}^- - 2} \right] \pm \mathcal{O}(\tau).
\end{aligned} \tag{199}$$

We aim to bound the deviation between the gradient of the population loss and that of the empirical loss. Specifically, $\left\| \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} - \frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} \right\|_2 = \left\| \frac{1}{N} \sum_{n=1}^N \gamma_n - \mathbb{E} \gamma_n \right\|_2$, where

$$\gamma_n = \frac{z^{(n)}}{L} \sum_{l=1}^L v_i \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \mathbf{y}_l^{(n)}. \tag{200}$$

Consider a fixed vector α with $\|\alpha\|_2 = 1$. We will show that $\alpha^\top \gamma_n$ is a sub-Gaussian random variable.

$$|\alpha^\top \gamma_n| \leq \|\alpha\|_2 \cdot \|\gamma_n\|_2 = \|\gamma_n\|_2. \tag{201}$$

By the problem setup, we know that

$$|v_i| = \frac{1}{\sqrt{m}}, \quad |z^{(n)}| = 1, \quad \left| \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \right| \leq 1. \tag{202}$$

Recall the Mamba output,

$$\mathbf{y}_l^{(n)}(t) = \sum_{s=1}^l \left(\prod_{j=s+1}^l \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{x}_j) \right) \right) \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{x}_s) \cdot (\mathbf{x}_s^\top \mathbf{x}_l) \mathbf{x}_s. \tag{203}$$

Since $\|\mathbf{x}_s\|_2 = 1$, we get

$$\begin{aligned}
\left\| \mathbf{y}_l^{(n)} \right\|_2 &\leq \sum_{s=1}^l |a^{l-s+1} \cdot (\mathbf{x}_s^\top \mathbf{x}_l)| \cdot \|\mathbf{x}_s\|_2 \\
&\leq \sum_{s=1}^l \frac{a}{1-a} \cdot 1 \cdot 1 = a' \quad (\text{where } a' \text{ denotes a constant}).
\end{aligned} \tag{204}$$

2268 Therefore, the norm of γ_n satisfies
 2269

$$\begin{aligned}
 2270 \|\gamma_n\|_2 &\leq \frac{1}{L} \sum_{l=1}^L |v_i| \cdot \left| \phi' \left(\mathbf{W}_{O(i,:)} \mathbf{y}_l^{(n)} \right) \right| \cdot \left\| \mathbf{y}_l^{(n)} \right\|_2 \\
 2271 &\leq \frac{1}{L} \cdot \frac{1}{\sqrt{m}} \sum_{l=1}^L \left\| \mathbf{y}_l^{(n)} \right\|_2 \\
 2272 &\leq \frac{1}{L} \cdot \frac{1}{\sqrt{m}} \cdot \sum_{l=1}^L a' = \frac{a'}{\sqrt{m}}. \tag{205}
 \end{aligned}$$

2273 Hence,
 2274

$$|\alpha^\top \gamma_n| \leq \frac{a'}{\sqrt{m}} \quad (\text{bounded}). \tag{206}$$

2283 This implies that $\alpha^\top \gamma_n$ is sub-Gaussian with variance proxy
 2284

$$\sigma^2 = \mathcal{O} \left(\frac{1}{m} \right). \tag{207}$$

2288 Now consider the independent sub-Gaussian variables $\alpha^\top \gamma_1, \dots, \alpha^\top \gamma_N$, each bounded as
 2289

$$-\frac{1}{\sqrt{m}} \leq \alpha^\top \gamma_n \leq \frac{1}{\sqrt{m}}. \tag{208}$$

2292 Applying Hoeffding's inequality, for any $q > 0$,
 2293

$$\mathbb{P} \left(\left| \frac{1}{N} \sum_{n=1}^N \alpha^\top \gamma_n - \mathbb{E} \alpha^\top \gamma_n \right| \gtrsim \sqrt{\frac{q \log N}{mN}} \right) \leq N^{-q}. \tag{209}$$

2297 Observe that this can be written as
 2298

$$\frac{1}{N} \sum_{n=1}^N \alpha^\top \gamma_n - \mathbb{E} \alpha^\top \gamma_n = \alpha^\top \left(\frac{1}{N} \sum_{n=1}^N \gamma_n - \mathbb{E} \gamma_n \right) := \alpha^\top \zeta. \tag{210}$$

2302 Therefore, by Hoeffding's inequality (cf. (209)),
 2303

$$\mathbb{P} \left(|\alpha^\top \zeta| \gtrsim \sqrt{\frac{q \log N}{mN}} \right) \leq N^{-q}. \tag{211}$$

2308 To bound $\|\zeta\|_2$, we use the dual norm identity
 2309

$$\|\zeta\|_2 = \sup_{\|\alpha\|_2=1} \alpha^\top \zeta. \tag{212}$$

2312 We apply an ε -cover argument to obtain
 2313

$$\begin{aligned}
 2314 \sup_{\|\alpha\|_2=1} \alpha^\top \zeta &\leq \frac{1}{1-\varepsilon} \max_{\alpha \in \mathcal{C}_\varepsilon} \alpha^\top \zeta \\
 2315 &\leq 2 \max_{\alpha \in \mathcal{C}_{1/2}} \alpha^\top \zeta. \tag{213}
 \end{aligned}$$

2318 We have shown that for any fixed α ,
 2319

$$\mathbb{P} \left(|\alpha^\top \zeta| \gtrsim \sqrt{\frac{q \log N}{mN}} \right) \leq N^{-q}. \tag{214}$$

2322 Therefore, for all fixed $\alpha \in \mathcal{C}_{1/2}$,

$$2324 \quad |\alpha^\top \zeta| \gtrsim \sqrt{\frac{q \log N}{mN}} \quad \text{with probability at most } N^{-q}. \quad (215)$$

2327 Then,

$$2329 \quad \max_{\alpha \in \mathcal{C}_{1/2}} |\alpha^\top \zeta| \gtrsim \sqrt{\frac{q \log N}{mN}} \quad \text{with probability at most } |\mathcal{C}_{1/2}| N^{-q}. \quad (216)$$

2332 Recall that the covering number satisfies

$$2333 \quad |\mathcal{C}_\varepsilon| \leq \left(\frac{3B}{\varepsilon} \right)^d. \quad (217)$$

2337 For $B = 1$ and $\varepsilon = \frac{1}{2}$, we have

$$2338 \quad |\mathcal{C}_{1/2}| \leq 6^d. \quad (218)$$

2340 We can therefore write

$$2342 \quad \mathbb{P} \left(\|\zeta\|_2 \gtrsim \sqrt{\frac{q \log N}{mN}} \right) \leq 6^d \cdot N^{-q}. \quad (219)$$

2345 We want this probability to be sufficiently small. Set $q = d$, so that

$$2347 \quad \mathbb{P} \left(\|\zeta\|_2 \gtrsim 2 \sqrt{\frac{d \log N}{mN}} \right) \leq \left(\frac{N}{6} \right)^{-d}. \quad (220)$$

2350 Hence, the deviation is bounded with high probability:

$$2352 \quad \|\zeta\|_2 > \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) \quad \text{with probability at most } \mathcal{O}(N^{-d}). \quad (221)$$

2356 Or equivalently, with probability at most $\mathcal{O}(N^{-d})$,

$$2358 \quad \left\| \frac{1}{N} \sum_{n=1}^N \gamma_n - \mathbb{E} \gamma_n \right\|_2 > \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (222)$$

2362 That is, with high probability $1 - \mathcal{O}(N^{-d})$, we have

$$2364 \quad \left\| \frac{1}{N} \sum_{n=1}^N \gamma_n - \mathbb{E} \gamma_n \right\|_2 \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (223)$$

2367 Using the identities

$$2369 \quad -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} = \frac{1}{N} \sum_{n=1}^N \gamma_n, \quad -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} = \mathbb{E} \gamma_n, \quad (224)$$

2372 we conclude that, with high probability,

$$2374 \quad \left\| \left(-\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} \right) - \left(-\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} \right) \right\|_2 = \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} - \frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} \right\|_2 \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \quad (225)$$

Using the Cauchy–Schwarz inequality, we have

$$\begin{aligned}
 \left| \left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} - \frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \right| &\leq \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} - \frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} \right\|_2 \cdot \|\mathbf{o}_+\|_2 \\
 &= \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} - \frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}} \right\|_2 \quad (\text{since } \|\mathbf{o}_+\|_2 = 1) \\
 &\leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \tag{226}
 \end{aligned}$$

Therefore, we obtain

$$\begin{aligned}
 \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) &\leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \\
 &\leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle + \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \tag{227}
 \end{aligned}$$

By pairing (199) with the given the conditions on \mathbf{w}_Δ in (190), we can write

$$\begin{aligned}
 &\left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \\
 &\geq \frac{1}{\sqrt{mL}} \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) \cdot (1 - \sigma(q_2)) \left[(1 - \sigma(q_3))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(p_3))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] - \mathcal{O}(\tau) \tag{228}
 \end{aligned}$$

and

$$\begin{aligned}
 &\left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \\
 &\leq \frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) \cdot (1 - \sigma(p_2)) \left[(1 - \sigma(p_3))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(q_3))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] + \mathcal{O}(\tau) \tag{229}
 \end{aligned}$$

Therefore, we can obtain the lower bound and the upper bound of $\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle$ as

$$\begin{aligned}
 &\frac{1}{\sqrt{mL}} \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) \cdot (1 - \sigma(q_2)) \left[(1 - \sigma(q_3))^{\Delta L_{\mathbf{o}_+}^+ - 2} \right. \\
 &\quad \left. - (1 - \sigma(p_3))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) - \mathcal{O}(\tau) \\
 &\leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \tag{230}
 \end{aligned}$$

and

$$\begin{aligned}
 &\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \\
 &\leq \frac{1}{\sqrt{mL}} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) \cdot (1 - \sigma(p_2)) \left[(1 - \sigma(p_3))^{\Delta L_{\mathbf{o}_+}^+ - 2} - (1 - \sigma(q_3))^{\Delta L_{\mathbf{o}_+}^- - 2} \right] \\
 &\quad + \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) + \mathcal{O}(\tau). \tag{231}
 \end{aligned}$$

2430 This concludes the proof of (106) and (107) in Lemma C.1.
 2431

2432 To obtain $\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle$, we have to consider $\mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right]$.
 2433

2434 If $\mathbf{W}_{O(i,\cdot)}^{(t)} \mathbf{o}_- > 0$,
 2435

$$\begin{aligned}
 & \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle \\
 &= \frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \right. \\
 &\quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_-} - 2} \right] \pm \mathcal{O}(\tau). \tag{232}
 \end{aligned}$$

2446 If $\mathbf{W}_{O(i,\cdot)}^{(t)} \mathbf{o}_- \leq 0$,
 2447

$$\left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle = 0 \pm \mathcal{O}(\tau). \tag{233}$$

2453 From (189), We know that
 2454

$$\begin{aligned}
 & \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle = \left\langle \mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle \\
 & \quad - \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle. \tag{234}
 \end{aligned}$$

2462 Hence, combining both cases, we conclude
 2463

$$\begin{aligned}
 & -\frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \right. \\
 &\quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_-} - 2} \right] - \mathcal{O}(\tau) \\
 & \leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O}(\tau). \tag{235}
 \end{aligned}$$

2473 From (225), similar to (227), we can write
 2474

$$\begin{aligned}
 & \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) \\
 & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \\
 & \leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle + \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \tag{236}
 \end{aligned}$$

2484 Hence, we have

$$\begin{aligned}
 & -\frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \right. \\
 & \quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_-} - 2} \right] - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) - \mathcal{O}(\tau) \\
 & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) + \mathcal{O}(\tau). \tag{237}
 \end{aligned}$$

2494 This concludes the proof of (108) and (109) in Lemma C.1.

2495 Now consider $\left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle$ for $j \neq 1, 2$.

$$\begin{aligned}
 & \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle = \left\langle \mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_j \right\rangle \\
 & \quad - \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_j \right\rangle \\
 & \quad := \langle I_1, \mathbf{o}_j \rangle - \langle I_2, \mathbf{o}_j \rangle. \tag{238}
 \end{aligned}$$

2505 Because \mathbf{o}_j for $j \neq 1, 2$ is identical in both I_1 and I_2 , $\langle I_1, \mathbf{o}_j \rangle - \langle I_2, \mathbf{o}_j \rangle = 0 \pm \mathcal{O}(\tau)$. Hence,

2506 $\left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle = 0 \pm \mathcal{O}(\tau)$. From (225), similar to (227), we can write

$$\begin{aligned}
 & \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle - \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) \\
 & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \\
 & \leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle + \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) + \mathcal{O}(\tau). \tag{239}
 \end{aligned}$$

2518 Therefore,

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) \text{ for } j \neq 1, 2. \tag{240}$$

2522 This concludes the proof of (110) in Lemma C.1. \square

E.2 PROOF OF LEMMA C.2

2527 *Proof.* By definition, for any unlucky neuron $i \in \mathcal{K}_+ \setminus \mathcal{W}(0)$, we have

$$\mathbf{W}_{O(i,\cdot)} \mathbf{o}_+ \leq 0. \tag{241}$$

2530 We first consider the alignment with \mathbf{o}_+ . That is,

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle. \tag{242}$$

2534 The gradient is given in (188). We only need to consider the cases where $\langle \mathbf{y}_l^{(n)}, \mathbf{o}_+ \rangle > 0$. However, since $\mathbf{W}_{O(i,\cdot)} \mathbf{o}_+ \leq 0$, we have

$$\phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) = 0. \tag{243}$$

$$\begin{aligned}
& \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle = \left\langle \mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_+ \right\rangle \\
& \quad - \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_+ \right\rangle \\
& = 0 \pm \mathcal{O}(\tau). \tag{244}
\end{aligned}$$

We know by (227),

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle + \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right). \tag{245}$$

Hence,

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_+ \right\rangle \leq \mathcal{O} \left(\sqrt{\frac{d \log N}{mN}} \right) + \mathcal{O}(\tau). \tag{246}$$

We now analyze the alignment with \mathbf{o}_- . To obtain the bound on $\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle$, we consider the expectation $\mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right]$.

If $\mathbf{W}_{O(i,\cdot)}^{(t)} \mathbf{o}_- > 0$, the inner product satisfies

$$\begin{aligned}
& \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle \\
& = \frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \right. \\
& \quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_-}^{(t)} - 2} \right] \pm \mathcal{O}(\tau). \tag{247}
\end{aligned}$$

If $\mathbf{W}_{O(i,\cdot)}^{(t)} \mathbf{o}_- \leq 0$, then

$$\left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle = 0 \pm \mathcal{O}(\tau). \tag{248}$$

From (189), We know that

$$\begin{aligned}
& \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle = \left\langle \mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle \\
& \quad - \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_- \right\rangle. \tag{249}
\end{aligned}$$

Hence, combining both cases, we conclude

$$\begin{aligned}
& -\frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \right. \\
& \quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_-}^{(t)} - 2} \right] - \mathcal{O}(\tau). \\
& \leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O}(\tau). \tag{250}
\end{aligned}$$

2592 From (225), similar to (227), we can write
 2593

$$\begin{aligned}
 2594 \quad & \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) \\
 2595 \quad & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \\
 2596 \quad & \leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle + \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right). \tag{251}
 \end{aligned}$$

2603 Hence,

$$\begin{aligned}
 2604 \quad & -\frac{1}{\sqrt{mL}} \cdot \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \left[2 + \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_-) \right) \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_+) \right) \right. \\
 2605 \quad & \quad \left. \cdot \left(1 - \sigma(\mathbf{w}_\Delta^{(t)\top} \mathbf{o}_j) \right)^{\Delta L_{\mathbf{o}_-} - 2} \right] - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau) \\
 2606 \quad & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_- \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \tag{252}
 \end{aligned}$$

2607 Now consider $\left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle$ for $j \neq 1, 2$.

$$\begin{aligned}
 2608 \quad & \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle = \left\langle \mathbb{E}_{z=+1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_j \right\rangle \\
 2609 \quad & \quad - \left\langle \mathbb{E}_{z=-1} \left[\sum_{l=1}^L \frac{1}{L} v_i \cdot \phi' \left(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)} \right) \cdot \mathbf{y}_l^{(n)} \right], \mathbf{o}_j \right\rangle \\
 2610 \quad & \quad := \langle I_1, \mathbf{o}_j \rangle - \langle I_2, \mathbf{o}_j \rangle. \tag{253}
 \end{aligned}$$

2611 Because \mathbf{o}_j for $j \neq 1, 2$ is identical in both I_1 and I_2 , $\langle I_1, \mathbf{o}_j \rangle - \langle I_2, \mathbf{o}_j \rangle = 0 \pm \mathcal{O}(\tau)$. Hence,
 2612 $\left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle = 0 \pm \mathcal{O}(\tau)$. From (225), similar to (227), we can write
 2613

$$\begin{aligned}
 2614 \quad & \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) \\
 2615 \quad & \leq \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \\
 2616 \quad & \leq \left\langle -\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle + \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) + \mathcal{O}(\tau). \tag{254}
 \end{aligned}$$

2617 Therefore,

$$\left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{W}_{O(i,\cdot)}^{(t)}}, \mathbf{o}_j \right\rangle \leq \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) \text{ for } j \neq 1, 2. \tag{255}$$

□

E.3 PROOF OF LEMMA C.3

2644 By symmetry, the proof is analogous to that of Lemma C.1; Please see Appendix E.1.
 2645

2646 E.4 PROOF OF LEMMA C.4
26472648 By symmetry, the proof is analogous to that of Lemma C.2; Please see Appendix E.2.
26492650 E.5 PROOF OF LEMMA C.5
26512652 *Proof.* The gradient of the loss with respect to \mathbf{w}_Δ for the n^{th} sample is given by
2653

$$\begin{aligned}
\frac{\partial \ell}{\partial \mathbf{w}_\Delta} &= -\frac{z^{(n)}}{L} \cdot \sum_{i=1}^m \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \cdot \sum_{s=1}^l (\mathbf{W}_B^\top \mathbf{x}_s^{(n)})^\top (\mathbf{W}_C^\top \mathbf{x}_l^{(n)}) (\mathbf{W}_{O(i,\cdot)} \mathbf{x}_s^{(n)}) \\
&\quad \cdot \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s^{(n)}) \cdot \prod_{r=s+1}^l (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_r^{(n)})) \\
&\quad \cdot \left[(1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s^{(n)})) \mathbf{x}_s^{(n)} - \sum_{j=s+1}^l (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_j^{(n)})) \mathbf{x}_j^{(n)} \right] \\
&:= -\frac{z^{(n)}}{L} \cdot \sum_{i=1}^m \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \cdot \sum_{s=1}^l \mathbf{I}_{l,s}^{(n)}. \tag{256}
\end{aligned}$$

2666 We define the gradient summand $\mathbf{I}_{l,s}^{(n)}$ as
2667

$$\mathbf{I}_{l,s}^{(n)} = \beta_{s,s} \cdot \mathbf{x}_s^{(n)} - \sum_{j=s+1}^l \beta_{s,j} \mathbf{x}_j^{(n)}, \tag{257}$$

2672 where the coefficients $\beta_{s,s}$ and $\beta_{s,j}$ are given by
2673

$$\begin{aligned}
\beta_{s,s} &= (\mathbf{W}_B^\top \mathbf{x}_s^{(n)})^\top (\mathbf{W}_C^\top \mathbf{x}_l^{(n)}) (\mathbf{W}_{O(i,\cdot)} \mathbf{x}_s^{(n)}) \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s^{(n)}) \\
&\quad \times \left[\prod_{r=s+1}^l (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_r^{(n)})) \right] (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s^{(n)})). \tag{258}
\end{aligned}$$

2680 and
2681

$$\begin{aligned}
\beta_{s,j} &= (\mathbf{W}_B^\top \mathbf{x}_s^{(n)})^\top (\mathbf{W}_C^\top \mathbf{x}_l^{(n)}) (\mathbf{W}_{O(i,\cdot)} \mathbf{x}_s^{(n)}) \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_s^{(n)}) \\
&\quad \times \left[\prod_{r=s+1}^l (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_r^{(n)})) \right] (1 - \sigma(\mathbf{w}_\Delta^\top \mathbf{x}_j^{(n)})). \tag{259}
\end{aligned}$$

2686 If we consider the gradient of the empirical loss,
2687

$$\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta} = -\frac{1}{N} \sum_{n=1}^N \frac{z^{(n)}}{L} \cdot \sum_{i=1}^m \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \cdot \sum_{s=1}^l \mathbf{I}_{l,s}^{(n)}. \tag{260}$$

2692 We are given that
2693

$$p_1 \leq \langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle \leq q_1, \quad \text{and} \quad r_1^* \leq \langle \mathbf{W}_{O(i,\cdot)}^{(t+1)\top}, \mathbf{o}_+ \rangle \leq s_1^*. \tag{261}$$

2696 From our initialization, for all $i \in \mathcal{K}^+$, we have $v_i = \frac{1}{\sqrt{m}}$. This gives
2697

$$\left\langle -\frac{\partial \ell}{\partial \mathbf{w}_\Delta}, \mathbf{o}_+ \right\rangle = \frac{z^{(n)}}{L} \sum_{i=1}^m \sum_{l=1}^L \frac{1}{\sqrt{m}} \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle. \tag{262}$$

2700 Averaging over the training samples, the inner product of the empirical gradient becomes
 2701

$$\begin{aligned}
 2702 \quad & \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta}, \mathbf{o}_+ \right\rangle = \frac{1}{N} \sum_{n=1}^N \frac{z^{(n)}}{L} \cdot \sum_{i=1}^m \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \cdot \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \\
 2703 \quad & = \frac{1}{N} \sum_{n:z^{(n)}=+1} \frac{1}{L} \left[\sum_{i \in \mathcal{K}_+} \sum_{l=1}^L \frac{1}{\sqrt{m}} \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \right. \\
 2704 \quad & \quad \left. + \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L \left(-\frac{1}{\sqrt{m}} \right) \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \right] \\
 2705 \quad & + \frac{1}{N} \sum_{n:z^{(n)}=-1} \frac{-1}{L} \left[\sum_{i \in \mathcal{K}_+} \sum_{l=1}^L \frac{1}{\sqrt{m}} \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \right. \\
 2706 \quad & \quad \left. + \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L \left(-\frac{1}{\sqrt{m}} \right) \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \right]. \quad (263)
 \end{aligned}$$

2719 First, we focus on the contribution from the samples where $z^{(n)} = +1$, for which we seek a lower
 2720 bound. We analyze the inner terms by considering four cases.

2721 **Case I:** $l = L_1^+, s = L_1^+$

2723 Since $l = s$ and $\mathbf{x}_s = \mathbf{o}_+$, it follows from (257) that

$$2724 \quad \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle = \beta_{s,s}. \quad (264)$$

2726 Using (258), with $\mathbf{W}_B = \mathbf{W}_C = I$ and $\mathbf{x}_l = \mathbf{x}_s = \mathbf{o}_+$, we obtain

$$2728 \quad \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle = \beta_{s,s} = \langle \mathbf{W}_{O(i,\cdot)}^{(t+1)\top}, \mathbf{o}_+ \rangle \cdot \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle) \cdot \left(1 - \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle) \right). \quad (265)$$

2730 Given the conditions in (261), we can write

$$2732 \quad \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \geq (r_1^* - \mathcal{O}(\tau)) \cdot \sigma(p_1 - \mathcal{O}(\tau)) \cdot (1 - \sigma(q_1 + \mathcal{O}(\tau))). \quad (266)$$

2734 We can approximate $\sigma(p_1 - \mathcal{O}(\tau)) \approx \sigma(p_1) - \mathcal{O}(\tau)$ and $1 - \sigma(q_1 + \mathcal{O}(\tau)) \approx 1 - \sigma(q_1) - \mathcal{O}(\tau)$,
 2735 since $\mathcal{O}(\tau) < \mathcal{O}(\frac{1}{d})$.

2736 Therefore, we obtain

$$\begin{aligned}
 2738 \quad & \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \geq (r_1^* - \mathcal{O}(\tau)) \cdot (\sigma(p_1) - \mathcal{O}(\tau)) \cdot (1 - \sigma(q_1) - \mathcal{O}(\tau)) \\
 2739 \quad & \geq r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) - \mathcal{O}(\tau). \quad (267)
 \end{aligned}$$

2742 **Case II:** $l = L_2^+, s = L_2^+$

2743 This configuration yields the same result as in Case I. We again obtain

$$2745 \quad \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle \geq r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) - \mathcal{O}(\tau). \quad (268)$$

2747 **Case III:** $l = L_2^+, s = L_1^+$ Comparing (258) with (259), we see that the two expressions differ only
 2748 in their last term. In this setting, \mathbf{x}_j equals \mathbf{o}_+ only when $j = L_2^+$. Consequently, $\mathbf{x}_s = \mathbf{x}_j = \mathbf{o}_+$,
 2749 which implies $\beta_{s,s} = \beta_{s,j}$. Hence,

$$2751 \quad \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \right\rangle = \beta_{s,s} - \beta_{s,j} = 0 \pm \mathcal{O}(\tau). \quad (269)$$

2753 **Case IV:** Others

2754 For the other token positions, $\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle = 0$ due to orthogonality among the features.
 2755

2756 Combining the above, the total contribution becomes
 2757

$$2758 \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \geq 2r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) - \mathcal{O}(\tau). \quad (270)$$

2760

2761 We now bound the entire sum over all tokens:
 2762

$$2763 \frac{1}{L} \sum_{l=1}^L \frac{1}{\sqrt{m}} \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \geq \frac{1}{L} \sum_{l=1}^L \frac{1}{\sqrt{m}} \cdot 1 \cdot 2r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) - \mathcal{O}(\tau). \quad (271)$$

2765

2766 Let $\rho_t^+ = |\mathcal{W}(t)|$ be the number of contributing neurons. Then the total contribution from the active
 2767 neurons is lower bounded as
 2768

$$2769 \frac{1}{L} \sum_{i \in \mathcal{K}_+} \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \geq \frac{2r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1))}{\sqrt{m}} \cdot \rho_t^+ - \mathcal{O}(\tau). \quad (272)$$

2771

2772 Next, we consider $z^{(n)} = -1$ for $i \in \mathcal{K}_+$. For $z^{(n)} = -1$, the negative sample also contains two \mathbf{o}_+
 2773 features.
 2774

2775 Similar to the above, we have to consider 4 cases.
 2776

2777 **Case I:** $l = L_1^+, s = L_1^+$
 2778

2779 Since $l = s$, it follows from (257) that
 2780

$$\mathbf{I}_{l,s}^{(n)} = \beta_{s,s} \cdot \mathbf{x}_l. \quad (273)$$

2781 Since $\mathbf{x}_l = \mathbf{o}_+$, we have
 2782

$$\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle = \beta_{s,s}. \quad (274)$$

2783 We now seek an upper bound for this contribution. From the initial conditions in (261), we know
 2784

$$2785 \langle \mathbf{W}_{O(i,\cdot)}^{(t+1)}, \mathbf{o}_+ \rangle \leq s_1^* + \mathcal{O}(\tau). \quad (275)$$

2786

2787 Hence, we obtain
 2788

$$2789 \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq (s_1^* + \mathcal{O}(\tau)) \cdot \sigma(q_1 + \mathcal{O}(\tau)) \cdot (1 - \sigma(p_1 - \mathcal{O}(\tau))). \quad (276)$$

2790

2791 We can approximate $\sigma(q_1 + \mathcal{O}(\tau)) \approx \sigma(q_1) + \mathcal{O}(\tau)$ and $1 - \sigma(p_1 - \mathcal{O}(\tau)) \approx 1 - \sigma(p_1) + \mathcal{O}(\tau)$,
 2792 since $\mathcal{O}(\tau) < \mathcal{O}(\frac{1}{d})$.
 2793

2794 Therefore, we obtain
 2795

$$2796 \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq (s_1^* + \mathcal{O}(\tau)) \cdot (\sigma(q_1) + \mathcal{O}(\tau)) \cdot (1 - \sigma(p_1) + \mathcal{O}(\tau)) \quad (277)$$

2797

$$\leq s_1^* \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) + \mathcal{O}(\tau).$$

2798

2799 **Case II:** $l = L_2^+, s = L_2^+$
 2800

2801 This configuration yields the same result as in Case I. We again obtain
 2802

$$\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq s_1^* \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) + \mathcal{O}(\tau). \quad (278)$$

2803

2804 **Case III:** $l = L_2^+, s = L_1^+$
 2805

2806 In this case, the contribution vanishes:
 2807

$$\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle = 0 \pm \mathcal{O}(\tau). \quad (279)$$

2808 **Case IV: Others**2809 For the other token positions, $\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle = 0$ due to orthogonality among the features.2810 The maximum number of such contributing neurons is $\frac{m}{2}$. Therefore, the total contribution is
2811 bounded above by
2813

2814
$$\frac{1}{L} \sum_{i \in \mathcal{K}_+} \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq \frac{2s_1^* \cdot \sigma(q_1) \cdot (1 - \sigma(p_1))}{\sqrt{m}} \cdot \frac{m}{2} + \mathcal{O}(\tau) \quad (280)$$

2815
2817
$$= \sqrt{m} \cdot s_1^* \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) + \mathcal{O}(\tau).$$

2818

2819 Thirdly, let us consider the contribution for $z^{(n)} = +1$ from $i \in \mathcal{K}_-$. From our initialization, for
2820 $i \in \mathcal{K}_-$, $v_i = -\frac{1}{\sqrt{m}}$. For $z^{(n)} = +1$, we seek an upper bound on the contribution from such
2821 neurons.2822 Let $z^{(n)} = +1$. To maximize the term $\mathbf{W}_{O(i,\cdot)} \mathbf{x}_s^{(n)}$ in (258), we can consider the token locations
2823 which contain \mathbf{o}_- features since $\mathbf{W}_{O(i,\cdot)}$ has a large component in the \mathbf{o}_- direction. Then $\mathbf{x}_l = \mathbf{o}_- \Rightarrow \mathbf{y}_l$ contains the \mathbf{o}_- feature.
28242825 However, in this case, $\mathbf{x}_s = \mathbf{o}_- = \mathbf{x}_l$, and due to orthogonality,
2826

2827
$$\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle = 0. \quad (281)$$

2828

2829 Hence, we only need to consider time steps $l = L_1^+, L_2^+$, where \mathbf{o}_+ features appear.
2830

2831 Recall that

2832
$$\left\langle -\frac{\partial \ell}{\partial \mathbf{w}_\Delta}, \mathbf{o}_+ \right\rangle = \frac{1}{L} \sum_{i=1}^m \sum_{l=1}^L -\frac{1}{\sqrt{m}} \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle. \quad (282)$$

2833
2834

2835 We analyze the inner contributions case by case.
28362837 **Case I:** $l = L_1^+, s = L_1^+$
2838

2839 Given that

2840
$$\mathbf{W}_{O(i,\cdot)} \mathbf{o}_+ \leq \delta_1 + \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) =: c, \quad (283)$$

2841

2842 we obtain

2843
$$\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq c \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) + \mathcal{O}(\tau). \quad (284)$$

2844

2845 **Case II:** $l = L_2^+, s = L_2^+$
2846

2847 This configuration yields the same bound:

2848
$$\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq c \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) + \mathcal{O}(\tau). \quad (285)$$

2849

2850 **Case III:** $l = L_2^+, s = L_1^+$
2851

2852 In this case, the contribution vanishes:

2853
$$\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle = 0 \pm \mathcal{O}(\tau). \quad (286)$$

2854

2855 **Case IV: Others**
28562857 For the other token positions, $\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle = 0$ due to orthogonality among the features.
28582859 Thus, the total contribution from each $i \in \mathcal{K}_-$ satisfies

2860
$$\sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq 2c \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) + \mathcal{O}(\tau). \quad (287)$$

2861

2862 The maximum number of such contributing neurons is $\frac{m}{2}$, so the full contribution is bounded by
 2863

$$\begin{aligned} 2864 \quad & \frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \leq \frac{2c \cdot \sigma(q_1) \cdot (1 - \sigma(p_1))}{\sqrt{m}} \cdot \frac{m}{2} + \mathcal{O}(\tau) \quad (288) \\ 2865 \quad & = \sqrt{mc} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) + \mathcal{O}(\tau). \\ 2866 \end{aligned}$$

2869 Therefore, the overall contribution is
 2870

$$2871 \quad -\frac{1}{\sqrt{mL}} \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \geq -\sqrt{mc} \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) - \mathcal{O}(\tau). \quad (289)$$

2874 Finally, we consider $z^{(n)} = -1$ for $i \in \mathcal{K}_-$. For $z^{(n)} = -1$, we want a lower bound since
 2875 $v_i = -\frac{1}{\sqrt{m}}$.
 2876

2877 We could consider $l = L^+ \Rightarrow \mathbf{x}_l = \mathbf{o}_+$, and write
 2878

$$2879 \quad \langle \mathbf{W}_{O(i,\cdot)}, \mathbf{o}_+ \rangle \geq \delta_1 - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right). \quad (290)$$

2882 However, the minimum number of such contributing neurons is not tractable. Thus, if we consider
 2883 the worst case where $\mathbf{W}_{O(i,\cdot)}$ for $i \in \mathcal{K}_-$ does not learn the \mathbf{o}_+ feature, the obvious lower bound is
 2884 zero:

$$2885 \quad \frac{1}{L} \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L \frac{1}{\sqrt{m}} \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_+ \rangle \geq 0. \quad (291)$$

2888 We now combine the bounds for the four terms identified in (263), corresponding to the contributions
 2889 from: (i) \mathcal{K}_+ with $z^{(n)} = +1$ as shown in (272), (ii) \mathcal{K}_+ with $z^{(n)} = -1$ as shown in (280), (iii)
 2890 \mathcal{K}_- with $z^{(n)} = +1$ as shown in (289), and (iv) \mathcal{K}_- with $z^{(n)} = -1$ as shown in (291). We assume
 2891 the batch is balanced, so the number of positive and negative samples is equal, with each class
 2892 contributing $\frac{N}{2}$ samples. Then we have
 2893

$$\begin{aligned} 2894 \quad & \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta}, \mathbf{o}_+ \right\rangle \geq \frac{1}{2} \left[\frac{2r_1^* \cdot \sigma(p_1) (1 - \sigma(q_1))}{\sqrt{m}} \cdot \rho_t^+ - \sqrt{m} \cdot c \cdot \sigma(q_1) (1 - \sigma(p_1)) \right. \\ 2895 \quad & \quad \left. - \sqrt{m} \cdot s_1^* \cdot \sigma(q_1) (1 - \sigma(p_1)) + 0 \right] - \mathcal{O}(\tau) \\ 2896 \quad & = \frac{\sigma(p_1) (1 - \sigma(q_1)) r_1^* \cdot \rho_t^+}{\sqrt{m}} - \frac{\sigma(q_1) (1 - \sigma(p_1)) s_1^* \cdot \sqrt{m}}{2} \quad (292) \end{aligned}$$

$$2900 \quad - \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right) - \mathcal{O}(\tau). \quad (293)$$

2904 where we have used the fact $\frac{\sqrt{m}}{2} \cdot \sigma(q_1) (1 - \sigma(p_1)) \cdot c = \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right)$ since $c = \mathcal{O}\left(\sqrt{\frac{d \log N}{mN}}\right)$.
 2905 \square
 2906

2908 E.6 PROOF OF LEMMA C.6

2910 *Proof.* The gradient is given in (256).
 2911

2912 Let's consider the alignment with \mathbf{o}_k for $k \neq 1, 2$.
 2913

$$2914 \quad \left\langle -\frac{\partial \ell}{\partial \mathbf{w}_\Delta}, \mathbf{o}_k \right\rangle = \frac{z^{(n)}}{L} \sum_{i=1}^m \sum_{l=1}^L v_i \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \rangle \quad (294)$$

2916 From our initialization, for all $i \in \mathcal{K}^+$, we have $v_i = \frac{1}{\sqrt{m}}$.
 2917

2918 We first consider the case $z^{(n)} = +1$ for $i \in \mathcal{K}^+$. Since $\mathbf{W}_{O(i,\cdot)}$, for $i \in \mathcal{K}^+$ has a large \mathbf{o}_+
 2919 component, we have to consider the token features with \mathbf{o}_+ . For $z^{(n)} = +1$, only when $l =$
 2920 L_2^+ , $s = L_1^+$ we have $\mathbf{x}_l = \mathbf{x}_s = \mathbf{o}_+$. Therefore, $\mathbf{W}_{O(i,\cdot)} \mathbf{x}_s$ is significant. Hence, we have
 2921

$$\begin{aligned} & \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \\ &= - \sum_{j=s+1}^l \beta_{s,j} \langle \mathbf{x}_j^{(n)}, \mathbf{o}_k \rangle \\ &\leq -\beta_{s,s+1} \quad \text{(Assuming W.L.O.G. } \mathbf{x}_{s+1}^{(n)} = \mathbf{o}_k) \\ &\leq -\langle \mathbf{W}_{O(i,\cdot)}^{(t+1)\top}, \mathbf{o}_+ \rangle \cdot \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle) \cdot \left(1 - \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle)\right) \cdot \left(1 - \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_k \rangle)\right)^{\Delta L_{\mathbf{o}_+}^+}. \end{aligned} \quad (295)$$

2930 Using the the conditions in (261), we can write
 2931

$$\left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \leq (-r_1^* + \mathcal{O}(\tau)) \cdot \sigma(p_1 + \mathcal{O}(\tau)) \cdot (1 - \sigma(q_1 - \mathcal{O}(\tau))) \cdot (1 - \sigma(q_2 - \mathcal{O}(\tau)))^{\Delta L_{\mathbf{o}_+}^+}. \quad (296)$$

2932 We can approximate $\sigma(p_1 + \mathcal{O}(\tau)) \approx \sigma(p_1) + \mathcal{O}(\tau)$, $1 - \sigma(q_1 - \mathcal{O}(\tau)) \approx 1 - \sigma(q_1) + \mathcal{O}(\tau)$ and
 2933 $1 - \sigma(q_2 - \mathcal{O}(\tau)) \approx 1 - \sigma(q_2) + \mathcal{O}(\tau)$, since $\mathcal{O}(\tau) < \mathcal{O}(\frac{1}{d})$.
 2934

2935 Hence, we obtain
 2936

$$\begin{aligned} & \frac{1}{L} \sum_{l=1}^L \frac{1}{\sqrt{m}} \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \\ &\leq \frac{1}{L} \sum_{l=1}^L \frac{1}{\sqrt{m}} \cdot 1 \cdot \left[-r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) \cdot (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^+} \right] + \mathcal{O}(\tau). \end{aligned} \quad (297)$$

2937 Let $\rho_t^+ = |\mathcal{W}(t)|$ be the number of contributing neurons. Then the total contribution from \mathcal{K}_+
 2938 neurons is bounded as
 2939

$$\begin{aligned} & \frac{1}{L} \sum_{i \in \mathcal{K}_+} \sum_{l=1}^L v_i \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \leq -\frac{r_1^*}{\sqrt{m}} \cdot \sigma(p_1) (1 - \sigma(q_1)) \\ &\quad \cdot (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^+} \cdot \rho_t^+ + \mathcal{O}(\tau). \end{aligned} \quad (298)$$

2940 Next, we consider $z^{(n)} = -1$ for $i \in \mathcal{K}_+$. Since $\left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle < 0$, we require a lower bound for this.
 2941

$$\begin{aligned} & \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \\ &= - \sum_{j=s+1}^l \beta_{s,j} \langle \mathbf{x}_j^{(n)}, \mathbf{o}_k \rangle \\ &\gtrsim -\langle \mathbf{W}_{O(i,\cdot)}^{(t+1)\top}, \mathbf{o}_+ \rangle \cdot \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle) \cdot \left(1 - \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_+ \rangle)\right) \cdot \left(1 - \sigma(\langle \mathbf{w}_\Delta^{(t)}, \mathbf{o}_k \rangle)\right)^{\Delta L_{\mathbf{o}_+}^-}. \end{aligned} \quad (299)$$

2942 Using the the conditions in (261), we can write
 2943

$$\left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \gtrsim -s_1^* \cdot \sigma(q_1) \cdot (1 - \sigma(p_1)) \cdot (1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^-}. \quad (300)$$

$$\begin{aligned} & \frac{1}{L} \sum_{i \in \mathcal{K}_+} \sum_{l=1}^L v_i \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \\ &\gtrsim -\frac{s_1^*}{\sqrt{m}} \cdot \sigma(q_1) (1 - \sigma(p_1)) (1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^-} \cdot \rho_t^+. \end{aligned} \quad (301)$$

2970 Since $\Delta L_{\sigma+}^- \gg \Delta L_{\sigma+}^+$, this term is negligible which leads to
 2971

2972

$$2973 \frac{1}{L} \sum_{i \in \mathcal{K}_+} \sum_{l=1}^L v_i \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \rangle \geq -\mathcal{O}((1 - \sigma(p_2))^{\Delta L_{\sigma+}^-}) \approx 0. \quad (302)$$

2974

2975

2976 Thirdly, we consider the case $i \in \mathcal{K}^-$, for $z^{(n)} = -1$. Similar to (295) and (296), when $l = L_2^-$, $s = L_1^-$ the contribution is significant.
 2977

2978

$$2979 \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \rangle \leq -r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) \cdot (1 - \sigma(q_2))^{\Delta L_{\sigma-}^-} + \mathcal{O}(\tau). \quad (303)$$

2980

2981

2982

2983 Hence, we obtain
 2984

2985

$$2986 \frac{1}{L} \sum_{l=1}^L \frac{1}{\sqrt{m}} \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \rangle \quad (304)$$

2987

$$\leq \frac{1}{L} \sum_{l=1}^L \frac{1}{\sqrt{m}} \cdot 1 \cdot [-r_1^* \cdot \sigma(p_1) \cdot (1 - \sigma(q_1)) \cdot (1 - \sigma(q_2))^{\Delta L_{\sigma-}^-}] + \mathcal{O}(\tau)$$

2988

2989

2990 Let $\rho_t^- = |\mathcal{U}(t)|$ be the number of contributing neurons. Then the total contribution from \mathcal{K}_-
 2991 neurons is bounded as
 2992

2993

$$2994 \frac{1}{L} \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \rangle \leq -\frac{r_1^*}{\sqrt{m}} \sigma(p_1) (1 - \sigma(q_1)) (1 - \sigma(q_2))^{\Delta L_{\sigma-}^-} \rho_t^-$$

2995

$$+ \mathcal{O}(\tau). \quad (305)$$

2996

3000

3001 Finally, we consider $i \in \mathcal{K}_-$ for $z^{(n)} = +1$. Following the same approach as in (299) to (301), we
 3002 can write
 3003

3004

$$3005 \frac{1}{L} \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L v_i \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \rangle \quad (306)$$

3006

$$\gtrsim -\frac{s_1^*}{\sqrt{m}} \cdot \sigma(q_1) (1 - \sigma(p_1)) (1 - \sigma(p_2))^{\Delta L_{\sigma-}^+} \cdot \rho_t^-.$$

3007

3008

3009 Since $\Delta L_{\sigma-}^+ \gg \Delta L_{\sigma-}^-$, this term is negligible which leads to
 3010

3011

$$3012 \frac{1}{L} \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L v_i \cdot \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \rangle \geq -\mathcal{O}((1 - \sigma(p_2))^{\Delta L_{\sigma-}^+}) \approx 0. \quad (307)$$

3013

3024 Putting it together, We know
 3025

$$\begin{aligned}
 3026 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta}, \mathbf{o}_k \right\rangle &= \frac{1}{N} \sum_{n=1}^N \frac{z^{(n)}}{L} \cdot \sum_{i=1}^m \sum_{l=1}^L v_i \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \cdot \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \\
 3027 \\
 3028 \quad &= \frac{1}{N} \sum_{n:z^{(n)}=+1} \frac{1}{L} \left[\sum_{i \in \mathcal{K}_+} \sum_{l=1}^L \frac{1}{\sqrt{m}} \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \right. \\
 3029 \\
 3030 \quad &\quad \left. + \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L \left(-\frac{1}{\sqrt{m}} \right) \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \right] \\
 3031 \\
 3032 \quad &+ \frac{1}{N} \sum_{n:z^{(n)}=-1} \frac{-1}{L} \left[\sum_{i \in \mathcal{K}_+} \sum_{l=1}^L \frac{1}{\sqrt{m}} \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \right. \\
 3033 \\
 3034 \quad &\quad \left. + \sum_{i \in \mathcal{K}_-} \sum_{l=1}^L \left(-\frac{1}{\sqrt{m}} \right) \phi'(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l^{(n)}) \sum_{s=1}^l \left\langle \mathbf{I}_{l,s}^{(n)}, \mathbf{o}_k \right\rangle \right]. \tag{308}
 \end{aligned}$$

3042 We now combine the bounds for the two terms identified in equation (308), corresponding to the
 3043 contributions from: (i) \mathcal{K}_+ with $z^{(n)} = +1$ (298), (ii) \mathcal{K}_+ with $z^{(n)} = -1$ (306), (iii) \mathcal{K}_- with
 3044 $z^{(n)} = +1$ (301), and (iv) \mathcal{K}_- with $z^{(n)} = -1$ (305). We assume the batch is balanced, so the
 3045 number of positive and negative samples is equal, with each class contributing $\frac{N}{2}$ samples. Then we
 3046 have
 3047

$$\begin{aligned}
 3048 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_k \right\rangle \\
 3049 \\
 3050 \quad \leq -\frac{r_1^*}{2\sqrt{m}} \sigma(p_1) (1 - \sigma(q_1)) \left[(1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^+} \rho_t^+ + (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_-}^-} \rho_t^- \right] \\
 3051 \\
 3052 \quad + \frac{s_1^*}{\sqrt{m}} \cdot \sigma(q_1) (1 - \sigma(p_1)) \left[\mathcal{O}((1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_-}^+}) \cdot \rho_t^- + \mathcal{O}((1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^-}) \cdot \rho_t^+ \right] \\
 3053 \\
 3054 \quad + \mathcal{O}(\tau)) \tag{309}
 \end{aligned}$$

$$\begin{aligned}
 3055 \\
 3056 \quad + \mathcal{O}(\tau)) \tag{310}
 \end{aligned}$$

$$\begin{aligned}
 3058 \\
 3059 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_k \right\rangle \\
 3060 \\
 3061 \quad \leq -\frac{r_1^*}{2\sqrt{m}} \sigma(p_1) (1 - \sigma(q_1)) \left[(1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^+} \rho_t^+ + (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_-}^-} \rho_t^- \right] \\
 3062 \\
 3063 \quad + \mathcal{O}((1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_+}^-}) + \mathcal{O}((1 - \sigma(p_2))^{\Delta L_{\mathbf{o}_-}^+}) + \mathcal{O}(\tau)) \tag{311}
 \end{aligned}$$

3066 From (302) and (307), we can conclude
 3067

$$\begin{aligned}
 3068 \quad \left\langle -\frac{\partial \hat{\mathcal{L}}}{\partial \mathbf{w}_\Delta^{(t)}}, \mathbf{o}_k \right\rangle &\leq -\frac{r_1^*}{2\sqrt{m}} \sigma(p_1) (1 - \sigma(q_1)) \left[(1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_+}^+} \rho_t^+ + (1 - \sigma(q_2))^{\Delta L_{\mathbf{o}_-}^-} \rho_t^- \right] \\
 3069 \\
 3070 \quad + \mathcal{O}(\tau)). \tag{312}
 \end{aligned}$$

3072 \square
 3073

3074 F EXTENSION TO MULTI-CLASS CLASSIFICATION

3075 Consider the classification problem with four classes, where each example is assigned a label $\mathbf{z} =$
 3076 $(z_1, z_2) \in \{+1, -1\}^2$ representing four distinct classes. Similarly to the binary setting, there exist
 3077

3078 four orthogonal discriminative patterns. In the output layer, the scalar coefficient v_i associated with
 3079 hidden neuron i is replaced by a two-dimensional vector $\mathbf{v}_i \in \mathbb{R}^2$.
 3080

3081 Hence, we define the model output as

$$3082 \quad \mathbf{F}(\mathbf{X}) = \frac{1}{L} \sum_{l=1}^L \sum_{i=1}^m \mathbf{v}_i \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l(\mathbf{X})). \quad (313)$$

$$3085 \quad F_1(\mathbf{X}^{(n)}) = \frac{1}{L} \sum_{l=1}^L \sum_{i=1}^m (\mathbf{v}_i)_1 \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l(\mathbf{X}^{(n)})), \quad (314)$$

$$3088 \quad F_2(\mathbf{X}^{(n)}) = \frac{1}{L} \sum_{l=1}^L \sum_{i=1}^m (\mathbf{v}_i)_2 \phi(\mathbf{W}_{O(i,\cdot)} \mathbf{y}_l(\mathbf{X}^{(n)})). \quad (315)$$

3091 The dataset can be divided into four groups as

$$3092 \quad \mathcal{D}_1 = \{(\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \mid \mathbf{z}^{(n)} = (1, 1)\}, \\ 3093 \quad \mathcal{D}_2 = \{(\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \mid \mathbf{z}^{(n)} = (1, -1)\}, \\ 3094 \quad \mathcal{D}_3 = \{(\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \mid \mathbf{z}^{(n)} = (-1, 1)\}, \\ 3095 \quad \mathcal{D}_4 = \{(\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \mid \mathbf{z}^{(n)} = (-1, -1)\}. \quad (316)$$

3098 The loss function for data $(\mathbf{X}^{(n)}, \mathbf{z}^{(n)})$ is

$$3100 \quad \text{Loss}(\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) = \max \left\{ 1 - \mathbf{z}^{(n)\top} \mathbf{F}(\mathbf{X}^{(n)}), 0 \right\}. \quad (317)$$

3102 Since $\mathbf{v}_i \in \{\pm \frac{1}{\sqrt{m}}\}^2$, we divide neurons into four groups:

$$3104 \quad \mathcal{W}_1 = \left\{ i : \mathbf{v}_i = \frac{1}{\sqrt{m}}(1, 1) \right\}, \\ 3105 \quad \mathcal{W}_2 = \left\{ i : \mathbf{v}_i = \frac{1}{\sqrt{m}}(1, -1) \right\}, \\ 3106 \quad \mathcal{W}_3 = \left\{ i : \mathbf{v}_i = \frac{1}{\sqrt{m}}(-1, 1) \right\}, \\ 3107 \quad \mathcal{W}_4 = \left\{ i : \mathbf{v}_i = \frac{1}{\sqrt{m}}(-1, -1) \right\}. \quad (318)$$

3110 For neuron i , the gradient decomposes as

$$3111 \quad \frac{\partial \text{Loss}}{\partial \mathbf{W}_{O(i,\cdot)}} = -z_1^{(n)} \frac{\partial F_1(\mathbf{X}^{(n)})}{\partial \mathbf{W}_{O(i,\cdot)}} - z_2^{(n)} \frac{\partial F_2(\mathbf{X}^{(n)})}{\partial \mathbf{W}_{O(i,\cdot)}}. \quad (319)$$

3114 Let $\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3, \mathbf{o}_4$ denote the four discriminative directions. Consider $i \in \mathcal{W}_2$, i.e. $\mathbf{v}_i = \frac{1}{\sqrt{m}}(1, -1)$.

3115 Projecting the gradient onto \mathbf{o}_2 , for any $(\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \in \mathcal{D}_2$ we obtain

$$3117 \quad -\left\langle \frac{\partial \text{Loss}}{\partial \mathbf{W}_{O(i,\cdot)}}, \mathbf{o}_2 \right\rangle \approx \frac{2}{\sqrt{m}} \|\mathbf{o}_2\|^2 > 0, \quad (320)$$

3119 showing GD moves $\mathbf{W}_{O(i,\cdot)}$ toward \mathbf{o}_2 .

3120 For samples from the other classes:

$$3122 \quad (\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \in \mathcal{D}_1 : \quad -\left\langle \frac{\partial \text{Loss}}{\partial \mathbf{W}_{O(i,\cdot)}}, \mathbf{o}_1 \right\rangle \approx 0, \\ 3123 \\ 3124 \quad (\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \in \mathcal{D}_3 : \quad -\left\langle \frac{\partial \text{Loss}}{\partial \mathbf{W}_{O(i,\cdot)}}, \mathbf{o}_3 \right\rangle \approx -\frac{2}{\sqrt{m}} \|\mathbf{o}_3\|^2, \\ 3125 \\ 3126 \quad (\mathbf{X}^{(n)}, \mathbf{z}^{(n)}) \in \mathcal{D}_4 : \quad -\left\langle \frac{\partial \text{Loss}}{\partial \mathbf{W}_{O(i,\cdot)}}, \mathbf{o}_4 \right\rangle \approx 0. \quad (321)$$

3127 Thus, for $i \in \mathcal{W}_2$, the update direction aligns with \mathbf{o}_2 , and similarly neurons in $\mathcal{W}_1, \mathcal{W}_3, \mathcal{W}_4$ align
 3128 with $\mathbf{o}_1, \mathbf{o}_3, \mathbf{o}_4$ respectively. Similarly, we can analyze the gradient dynamics of the gating vector
 3129 \mathbf{w}_Δ .