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Abstract. Vertical Federated Learning (VFL) focuses on handling ver-
tically partitioned data over FL participants. Recent studies have discov-
ered a significant vulnerability in VFL to backdoor attacks which specif-
ically target the distinct characteristics of VFL. Therefore, these attacks
may neutralize existing defense mechanisms designed primarily for Hor-
izontal Federated Learning (HFL) and deep neural networks. In this
paper, we present the first backdoor defense, called VFLIP, specialized
for VFL. VFLIP employs the identification and purification techniques
that operate at the inference stage, consequently improving the robust-
ness against backdoor attacks to a great extent. VFLIP first identifies
backdoor-triggered embeddings by adopting a participant-wise anomaly
detection approach. Subsequently, VFLIP conducts purification which
removes the embeddings identified as malicious and reconstructs all the
embeddings based on the remaining embeddings. We conduct extensive
experiments on CIFAR10, CINIC10, Imagenette, NUS-WIDE, and Bank-
Marketing to demonstrate that VFLIP can effectively mitigate backdoor
attacks in VFL. https://github.com/blingcho/VFLIP-esorics24

Keywords: Vertical Federated Learning · Backdoor Attack · AI
Security

1 Introduction

Federated learning (FL) is a privacy-preserving machine learning framework that
enables multiple participants to collaboratively train a model without directly
sharing their private data. Instead, participants exchange local computations,
such as model weights, gradients, and embeddings. FL can be categorized into
two types based on the distribution of data among participants: Horizontal Fed-
erated Learning (HFL) and Vertical Federated Learning (VFL) [20]. In HFL,
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Fig. 1. An illustration of VFL with the split neural network

each participant has distinct sets of samples that share the same features. How-
ever, in VFL, participants handle the same samples, but each possesses a unique
subset of features for these samples. In sectors where data privacy is of utmost
importance, such as finance and healthcare, it is common for subsets of fea-
tures to be distributed across multiple organizations [13]. In such situations,
VFL offers a compelling solution by employing a split neural network archi-
tecture [1,6,15,30]. As illustrated in Fig. 1, each participant operates a bottom
model tailored to its unique subset of features. The subsets are disjoint across
participants yet pertain to the same set of samples (e.g., IDs 1,2,3). Instead of
sharing the raw features with sensitive information, participants compute and
share embeddings derived from the bottom model. The central server hosts a top
model, which uses the embeddings to infer the labels of the samples.

FL confronts a range of security threats arising from the involvement of
unreliable or malicious participants who deviate from the majority’s intention
[18,25,28,30]. During the training stage, some participants may send malicious
local computations to the server to manipulate the model’s behavior. Relatively
much work has been done to reduce the impact of such malicious computations
in HFL [2,5,21]. However, little has been conducted to defend against malicious
participants in VFL. One of the most well-known security threats posed by the
malicious participants in VFL is the backdoor attack [1,30], where an attacker
subtly manipulates the training data by planting a backdoor trigger during the
model’s training stage. The trigger is carefully designed to alter the predictions to
a target label of the attacker’s choice during inference. Sadly, we have discovered
that the unique characteristics inherent in VFL make it difficult to apply the HFL
defense mechanisms, which deal with computations derived from samples that
share the same features [2,23]. Moreover, these challenges cannot be effectively
mitigated by existing backdoor defense mechanisms designed for DNNs [1,16,17,
19,29]. Consequently, there is an urgent need for a defense mechanism tailored
to countering backdoor attacks specialized for VFL.
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Fig. 2. A brief summary of VFLIP. VFLIP identifies the backdoor-triggered embed-
dings and purifies all the embeddings through removal and reconstruction.

The first challenge (C1) in designing the defense mechanism for VFL is
that the server aggregates embeddings from the participants to predict the label
of a given sample in the inference stage [20]. This unique aspect of the split
neural network architecture inherent in VFL introduces a new attack surface
that can be exploited by attackers. By exploiting the newly exposed attack
surface, a recent work [1] proposed a novel backdoor attack with embedding-level
backdoor triggers. They demonstrated that such attacks can be both effective
and stealthy, creating a robust backdoor trigger that manipulates the model’s
prediction to a targeted label. The second challenge (C2) stems from the unique
nature of vertically partitioned feature configuration in VFL. Such configuration
significantly complicates the process of detecting attackers among participants.
In HFL, each local update (e.g., model weights or gradients) is computed from
data with the same feature space. This allows direct comparison of local updates
to identify attackers who deviate from the majority of participants [2,5,23]. In
contrast, VFL presents a different setting where each participant only possesses
a subset of features. Each embedding computed from a different feature subset
is difficult to compare. Thus, it is necessary to design a new approach to identify
malicious embeddings, which differ from most embeddings.

To address these challenges, we propose a backdoor defense for VFL via
Identification and Purification (VFLIP) at the inference stage, which employs
a Masked Auto-Encoder (MAE) as a key component. VFLIP consists of two
phases: identification and purification. In the identification phase, we introduce
a participant-wise anomaly detection method with the majority voting to resolve
the above challenges (C1-2). This approach is inspired by the attack strategy
of the previous study [1,30]. In these studies, as the participants lack the ability
to manipulate the labels on the server, a two-fold approach is employed. During
training, the trigger is injected into samples with the target label establishing
a connection between the trigger and the target label. In contrast, for inducing
misclassification during inference, the trigger is introduced into samples associ-
ated with non-target labels. Given the inter-participant correlations within the
sample, as highlighted in previous studies [8,15,18], the embedding correlation
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among participants during training inevitably diverges from that observed dur-
ing the inference stage. Such discrepancy allows the training of MAE to incor-
porate an anomaly detection approach during the inference stage, facilitating
the identification of abnormal relations caused by malicious participants. Thus,
VFLIP identifies the embeddings that show abnormal relationships from most
other embeddings. Subsequently, we conduct the purification phase using the
MAE to minimize the impact of the backdoor-triggered embeddings. This pro-
cess removes the identified backdoor-triggered embeddings and reconstructs all
of the embeddings based on the remaining embeddings.

Capitalizing on the denoising capability of the MAE [27], VFLIP adeptly
reconstructs all the embeddings, minimizing the influence of malicious embed-
dings with stealthy triggers. Figure 2 presents a brief summary of VFLIP, show-
ing that even when an attacker attempts to manipulate the model prediction
by providing a backdoor-triggered embedding, the VFL model with VFLIP can
predict the correct label. Our main contributions are as follows.

1. We propose VFLIP, a simple yet powerful method for defending against back-
door attacks in VFL, which conducts participant-wise anomaly detection with
majority voting. To the best of our knowledge, this is the first study to defend
against the backdoor attacks specialized for VFL with split architecture.

2. We conduct extensive experiments on CIFAR10, CINIC10, Imagenette, NUS-
WIDE, and Bank-Marketing. This demonstrates that VFLIP effectively
defends against the state-of-the-art attack methods by reducing the attack
success rate from 84.4% to 7.57% on average.

3. We design an adaptive attack strategy for compromising the VFLIP’s MAE.
Through this, we demonstrate that it is hard for the attackers to compromise
the MAE without significantly decreasing their attack performance.

2 Preliminaries

2.1 Vertical Federated Learning

The fundamental concept of VFL with a split neural network is dividing the
model into two parts: bottom models that take local data as inputs and produce
embeddings, and a top model that makes a final decision based on the embed-
dings from the participants [1,6]. Each participant has a bottom model and a
subset of the joint features, while the server holds the top model and the labels.
Following the previous VFL setup [1,6], we suppose that there are N participants
and a server, with the collaborative goal of training a model and subsequently
performing inference on a sample using the trained model. VFL model training
is conducted on a dataset D = {(xk, yk)}K

k=1 where x represents a joint data
sample, y is the corresponding label, K is the total number of data samples,
and k is the index for each data sample. In the feature-partitioned environment,
a joint data sample can be expressed as x = [x1, · · · , xn]. The i-th participant
holds a vertically partitioned local dataset, denoted as Di = {xk

i }K
k=1. The i-th

participant’s bottom model Bi maps local data xi to the embedding hi. For
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simplicity, the parameters of the bottom models are denoted as θB1,...,BN
. The

server owns the top model T (h1, · · · , hN ) parameterized as θT . We denote the
loss function of VFL as L. The objective function can be formulated as follows:

argmin
θB1,...,BN

,θT

K∑

k=1

L(T ([B1(xk
1), · · · , BN (xk

N )]), yk) (1)

The training stage for VFL consists of five main steps: 1) Batch index
selection: The server selects indices, denoted as idx, from D and shares it
with the VFL participants; 2) Bottom model forward pass: Each participant
computes their embeddings hidx

i with Bi(xidx
i ) and sends it to the server; 3) Top

model forward pass: The server concatenates all embeddings from participants
corresponding to idx and computes model prediction through T (hidx

1 , · · · , hidx
N );

4) Top model backward propagation: The server calculates the loss with
labels. Using the loss, the server computes the gradients of the top model and
updates it. Afterward, the server sends back the gradients associated with the
participants’ embeddings; 5) Bottom model backward propagation: Each
participant performs backward propagation using the gradients received from
the server and updates their bottom models. This process is repeated during the
training stage. For the inference stage, steps 1 to 3 are executed, and in step 1,
idx is chosen from the test set, not the training set D. We note that VFLIP can
be applied in scenarios where the server possesses features and participates in
training with their own bottom model. This paper focuses on scenarios where
the server cannot access the features of the training data.

2.2 Backdoor Attacks in VFL

The objective of a backdoor attack is to manipulate the model so that it correctly
predicts clean samples but misclassifies backdoor-triggered samples as the target
label [1,9,30]. Depending on whether the attacker can manipulate the labels of
the training set, backdoor attacks can be divided into clean-label attacks and
dirty-label attacks. The clean-label backdoor attack injects a trigger only into
the samples of the target label [12,24]. On the other hand, the dirty-label attack
injects a trigger into the samples of non-target labels and manipulates the labels
to the target label [9]. Since the labels on the server cannot be manipulated by
the attackers in VFL, it is only susceptible to clean-label backdoor attacks [1,30].

Recent studies have proposed backdoor attacks tailored for VFL. Xuan et
al. [30] propose BadVFL, a data-level backdoor attack where the attacker plants
backdoor triggers in their local data to manipulate the top model. To strengthen
the connection between the trigger and the target label, the attacker replaces
the local data of the target label with that of non-target labels before injecting
a trigger. Bai et al. [1] introduce VILLAIN, which proposes an additive back-
door trigger on the embedding level, aiming for a stealthy backdoor attack. By
adjusting the magnitude of this trigger, the attacker can control the trade-off
between stealthiness and attack power. The details of the attack methods are
provided in Appendix A.1.



296 Y. Cho et al.

Fig. 3. An overview of VFLIP. VFLIP calculates the anomaly scores for each embed-
ding with the MAE. The voting mechanism is conducted based on the anomaly scores
to determine whether an embedding is malicious. Embeddings identified as malicious
are removed, and then all the embedding is reconstructed through MAE.

2.3 Threat Model

We follow the threat model of previous studies [1,30], but introduce a few modi-
fications to consider strong attackers. There are one or more attackers among the
VFL participants, but the number of attackers is limited to less than half of the
total number of participants based on previous FL studies [2,18]. The attacker
can modify their local data or embedding. This potentially allows the attacker
to poison a substantial portion of the training set. However, they cannot modify
any operation on the server or the benign participants. The attacker either has
or does not have the label knowledge for their training set. The attacker with-
out the label knowledge owns a small amount of labeled auxiliary data to infer
labels about their training set [1,6,30]. We note that even if the attacker knows
the labels for the training set, they cannot change the labels in the server. The
defender is the server that owns the top model and the labels. The server cannot
access participants’ operations.

3 Method

This section introduces VFLIP, a novel backdoor defense method for VFL. The
primary objective of VFLIP is to diminish the influence of attackers who upload
a backdoor-triggered embedding during the inference stage. VFLIP achieves this
by identifying the backdoor-triggered embedding and purifying the concatenated
embedding before feeding them to the top model. Leveraging the capability of
the MAE for both tasks, VFLIP exhibits a mechanism illustrated in Fig. 3.

Identification. Using the discrepancy between the embedding correlation of
training and inference stage made by conducting backdoor attacks in VFL,
VFLIP detects the abnormal relationships between the embeddings of partic-
ipants for each sample that are not observed during training. Here, the anomaly
detection approach is applied by training the MAE with embeddings from the
training stage. Subsequently, during the inference stage, the trained MAE is used
to identify the backdoor-triggered embeddings that exhibit abnormal relation-
ships with the majority of other embeddings.
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Algorithm 1: VFLIP MAE Training
Input : Masked Auto-Encoder MAE, Training set Htrain, Training epoch

Emae, Learning rates β1 (for "N -1 to 1") and β2 (for "1 to 1"),
Masks m filled with 1 for each local embedding, Number of
participants N

Output: Trained MAE, Threshold t for the anomaly score

1 Initialize weights and bias for MAE
2 for each train epoch e = 1, 2, ..., Emae do
3 for each minibatch B from Htrain do

/* "N-1 to 1" strategy */
4 LN-1 ← 0
5 for each embedding h from B do
6 hi ← randomly draw one local embedding from h
7 mi ← Mask filled with 1 for hi

8 m̃i ← 1 − mi

9 ĥ ← MAE(m̃i � h)

10 LN-1 ← LN-1 + ||mi � (h − ĥ)||2
11 Update MAE to minimize LN-1 with learning rate β1

/* "1 to 1" strategy */
12 L1 ← 0
13 for each embedding h from B do
14 hi, hj ← randomly draw two local embeddings from h
15 mi, mj ← Mask filled with 1 for hi, hj

16 ĥ ← MAE(mj � h)

17 L1 ← L1 + ||mi � (h − ĥ)||2
18 Update MAE to minimize L1 with learning rate β2

19 Compute the thresholds t = [t1, ..., tN ] for each participant over the Htrain

20 return Trained MAE, Threshold t

Purification. The purification phase aims to mitigate the impact of the
backdoor-triggered embedding by leveraging the identification results. To achieve
this goal, VFLIP removes the embeddings identified as backdoor-triggered. Sub-
sequently, VFLIP feeds the remaining embeddings to the MAE and reconstructs
all the embeddings. Leveraging the denoising capability of the MAE [27], this
process is particularly effective in alleviating the influence of malicious partici-
pants employing small-magnitude triggers.

The following subsections describe the MAE training and provide details
about the identification and purification phase that utilizes the MAE.

3.1 MAE Training

Initially, VFLIP trains the MAE, parameterized as θMAE, with the poisoned
training set after the training stage of VFL. The training set for the MAE is
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embeddings gathered from the last epoch of the VFL training stage, denoted
as Htrain. The input of the MAE is the concatenated embedding, denoted as
h = [h1, · · · , hN ]. The MAE outputs the reconstructed concatenated embedding,
which is represented as ĥ = [ĥ1, · · · , ĥN ]. The architecture of MAE is composed
of an encoder and a decoder. Both of them use a fully connected network.

Training Strategies. VFLIP employs two MAE training strategies: “N -1 to
1” and “1 to 1”. The “N -1 to 1” strategy randomly chooses one embedding hi

to be restored (Line 4-6 in Algorithm 1). The selected hi is masked from h, and
MAE reconstructs ĥi using the masked h (Line 7-9 in Algorithm 1). Next, the
“1 to 1" strategy randomly selects two embeddings, denoted as hi and hj (Line
14 in Algorithm 1). hi is the target to restore, and hj is used as the input for
restoration. Here, all the embeddings except hj are masked from h, and MAE
reconstructs ĥi using the masked h (Line 15-17 in Algorithm 1).

Following the above strategies, the loss is calculated only for the selected
embedding hi (Line 10, 17 in Algorithm 1). MAE is trained by alternately opti-
mizing the loss for the two strategies (Line 11, 18 in Algorithm 1). The objective
functions for each strategy are as follows:

argmin
θMAE

||mi � (h − MAE(m̃i � h))||2 (2)

argmin
θMAE

||mi � (h − MAE(mj � h)))||2 (3)

Here, mi represents a masking value where only the part corresponding to
hi is filled with 1, while the rests are filled with 0. m̃i represents the opposite of
mi, where 0 s and 1 s are reversed. Equation 2 and Eq. 3 are for “N -1 to 1” and
“1 to 1” strategy, respectively. The ablation study for these training strategies is
provided in Subsect. 4.5.

Standardization and Drop-Out. To enhance the MAE performance, VFLIP
employs standardization and drop-out. Standardization is a data preprocessing
technique where, instead of directly using h as input, MAE uses standardized h.
VFLIP’s standardization is based on the mean and standard deviation of Htrain.
Additionally, drop-out is used for data augmentation. During training, randomly
generated masks partially remove h to prevent MAE from overfitting to specific
dimensions.

3.2 VFLIP Mechanism

Identification. In the identification phase, VFLIP conducts the participant-
wise anomaly detection with majority voting. In this process, anomaly scores for
one participant’s embedding are calculated from other participants’ embeddings.
Then, based on these anomaly scores, the participant’s embedding is determined
whether it is malicious or benign through majority voting. This process is con-
ducted for each participant’s embedding.
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Algorithm 2: VFLIP mechanism
Input : Concatenated embedding h, Trained Masked Auto-Encoder MAE,

Masks m filled with 1 for each embedding, Number of participants
N , Thresholds {ti}N

i=1 for the anomaly score, VFL top model T
Output: VFL model prediction P

1 Initialize votes[N ] with 0
/* votes is an array for counting votes */

2 Initialize mmal with [0, ..., 0]
/* mmal is a mask for malicious participants’ part */

/* Identifying the backdoor-triggered embedding */
3 for each local embedding hi = h1, ..., hN do
4 for each local embedding hj = h1, ..., hN do
5 if hi is not hj then
6 sj→i ← ||mi � (h − MAE(mj � h)||2
7 if sj→i > ti then
8 votes[i] ← votes[i] + 1

9 if votes[i] > N
2

then
10 mmal ← mmal + mi

/* Purifying the concatenated embedding */
11 hremoved ← (1 − mmal) � h

12 ĥpurified ← MAE(hremoved)

13 P ← T (ĥpurified)

14 return VFL model prediction P

Anomaly Score Calculation. For an embedding of one participant, VFLIP
calculates N-1 anomaly scores based on the embeddings of other N-1 participants
(Line 6 in Algorithm 2). To be specific, for hi, VFLIP masks all the embeddings
except for hj in the concatenated embedding and reconstructs ĥ using the MAE.
The part of ĥ corresponding to hi, based on hj , is denoted as ĥj→i. VFLIP defines
the anomaly score sj→i as follows:

ĥj→i = mi � MAE(mj � h) (4)

sj→i = ||ĥj→i − hi||2 (5)

To understand this anomaly score, it is essential to delve into the characteris-
tics of VFL backdoor attacks [1,30]. The attacker injects a backdoor trigger only
into the target label samples during the training stage. Therefore, at the inference
stage, if the attacker inserts the backdoor trigger into non-target label samples
to manipulate the VFL model predictions, it results in a relatively high anomaly
score for the attacker’s embedding because the MAE incorrectly generates the
attacker’s embedding as the MAE did not learn about the relationships between
the backdoor-triggered embedding and the embeddings of the non-target labels.
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Majority Voting. If the anomaly score sj→i exceeds the threshold ti, hi gets a
vote (Line 7-8 in Algorithm 2). The threshold ti is determined by the μi + ρ ·σi,
where μi and σi represent the mean and standard deviation of all anomaly
scores from Htrain for i-th participant. Since VFLIP aims to detect abnormal
cases that are not observed in the VFL training stage, it is reasonable to set
the threshold based on the distribution of anomaly scores obtained from Htrain.
ρ is the hyper-parameter for controlling the threshold. If the number of votes
hi received is greater than half of the number of total participants (N

2 ), it is
considered as a backdoor-triggered embedding (Line 9-10 in Algorithm 2).

Purification. VFLIP removes the malicious embeddings from the concatenated
embedding (Line 11 in Algorithm 2) and feeds them into MAE to obtain the
purified ĥ (Line 12 in Algorithm 2). Subsequently, the top model uses ĥ as input
to obtain the final prediction (Line 13 in Algorithm 2).

4 Experiments

4.1 Experiments Setup

Dataset descriptions. Following the previous VFL studies [1,18,30], we eval-
uate the effectiveness of VFLIP using five datasets: three image datasets (i.e.,
CIFAR10 [14], CINIC10 [4], Imagenette [11]), one image-text combined dataset
(i.e., NUS-WIDE [3]), and one financial dataset (i.e., Bank Marketing (BM) [22]).
CIFAR10 and CINIC10 have 10 classes consisting of 32 × 32 pixel images. Ima-
genette is a 10-class subset of the Imagenet dataset. Each image is resized by
224× 224 pixels. NUS-WIDE has 81 classes with 634 image features and 1000
text features. We select the five classes following the previous study [18]. BM
has two classes with 40 features.

Default Training Setup. We validate VFLIP under a four-participant sce-
nario with a single attacker and an eight-participant scenario with three attack-
ers. Based on previous VFL studies [1,6], the data features are vertically split
among the participants. The optimization method is Stochastic Gradient Descent
(SGD). The bottom model architecture is VGG19 [26] for the image datasets
and a 4-layer fully connected network (FCN) for NUS-WIDE and BM. The top
model uses a 3-layer FCN. The VFL training epoch is set to 50 for CIFAR10,
CINIC10, Imagenette, and NUS-WIDE, and is set to 40 for BM.

Attacks. We evaluate VFLIP on two SOTA attacks: BadVFL [30] and VIL-
LAIN [1]. The attacker without label knowledge conducts the label inference
attack proposed by the previous study [1]. The attacker injects a backdoor trig-
ger after Ebkd epoch. For the attacker without label knowledge, the poisoning
budget is set to 10% and Ebkd is set to 20. For the attacker with label knowledge,
the poisoning budget is set to 50% and Ebkd is set to 5. The attacker’s target
label is set to 0. The details for attack settings are provided in Appendix A.2.



VFLIP: A Backdoor Defense for Vertical Federated Learning 301

Table 1. Evaluation for a single attacker on five datasets. No DEF (no defense): Result
without any defense mechanism.

Dataset Label Knowledge Attack Defense
Accuracy (%) ↑ (Higher is better) Attack Success Rate (%) ↓ (Lower is better)
NO DEF DP-SGD MP ANP BDT VFLIP NO DEF DP-SGD MP ANP BDT VFLIP

CIFAR10 w/o BadVFL 77.34 78.04 75.35 75.53 73.28 75.14 30.58 30.81 25.55 28.14 29.20 13.95
VILLAIN76.84 75.04 75.34 73.40 73.15 75.22 86.96 20.40 79.17 64.83 83.00 3.19

with BadVFL 76.85 77.30 74.83 75.41 72.46 75.46 97.50 99.99 87.13 96.49 95.51 5.52
VILLAIN 75.46 75.52 74.94 74.11 74.33 73.86 99.84 64.13 99.76 99.80 99.77 2.79

CINIC10 w/o BadVFL 64.60 64.43 64.37 64.34 61.94 62.45 21.13 28.27 18.05 17.89 19.52 13.90
VILLAIN63.66 63.14 63.30 63.33 60.88 62.27 75.65 11.53 64.30 65.03 70.36 3.74

with BadVFL 64.37 62.46 62.22 63.88 60.40 63.21 99.46 80.31 91.51 96.82 99.25 4.92
VILLAIN62.43 61.73 61.93 62.09 60.91 61.05 99.97 85.41 99.91 99.94 99.97 2.34

Imagenette w/o BadVFL 75.48 74.98 72.54 75.07 71.22 73.37 61.02 78.01 54.37 60.21 58.46 14.41
VILLAIN74.11 73.83 72.55 73.12 71.25 71.60 96.66 23.80 93.95 96.50 96.50 2.87

with BadVFL 74.02 74.97 70.84 73.64 69.43 71.70 92.21 93.20 73.36 92.08 90.62 3.79
VILLAIN 72.31 73.27 69.50 71.37 69.45 69.32 97.38 89.29 96.70 97.33 97.42 1.87

NUS-WIDE w/o BadVFL 83.55 83.32 82.99 81.42 81.66 81.26 72.65 57.68 68.66 61.82 73.12 9.28
VILLAIN83.74 83.16 81.78 80.75 81.21 81.39 89.34 23.73 80.13 72.33 88.75 7.65

with BadVFL 82.79 81.45 80.72 82.52 81.76 79.93 99.99 95.55 95.11 99.98 99.97 12.45
VILLAIN82.44 80.50 80.47 79.26 80.68 80.51 100.00 96.75 99.91 99.22 100.006.30

BM w/o BadVFL 93.74 93.70 88.06 93.58 93.44 90.35 26.90 22.25 15.38 31.39 27.20 10.45
VILLAIN94.39 92.77 91.41 94.28 90.23 91.13 45.98 52.60 31.24 45.03 44.94 5.59

with BadVFL 93.50 93.67 90.1993.91 87.92 91.75 92.14 64.41 78.52 94.30 88.67 12.54
VILLAIN 93.73 92.51 90.5093.75 89.51 90.94 99.98 55.93 99.86 100.00 99.94 9.43

Table 2. Evaluation for multiple attackers with label knowledge on five datasets.

Dataset Attack Defense
Accuracy (%) ↑ (Higher is better) Attack Success Rate (%) ↓ (Lower is better)
NO DEF DP-SGD MP ANP BDT VFLIP NO DEF DP-SGD MP ANP BDT VFLIP

CIFAR10 BadVFL 74.57 74.31 70.29 72.99 72.98 70.59 99.37 100.00 96.24 99.16 99.06 8.12
VILLAIN71.58 70.56 70.61 71.30 69.36 68.44 100.00 94.57 98.86 100.00 100.005.68

CINIC10 BadVFL 61.95 60.45 58.65 61.67 57.87 58.66 99.88 99.98 91.07 99.64 99.81 5.37
VILLAIN 58.52 55.98 56.4658.55 56.14 55.98 100.00 98.09 99.97 100.00 100.002.24

Imagenette BadVFL 71.77 71.20 70.85 70.54 67.04 67.54 98.50 98.85 96.85 98.15 97.96 3.00
VILLAIN69.71 69.01 67.90 69.03 67.52 66.13 99.84 96.20 98.97 99.69 99.70 3.06

NUS-WIDE BadVFL 81.81 78.80 79.11 81.44 80.04 78.67 99.83 97.50 98.69 99.85 99.82 14.12
VILLAIN82.76 75.54 79.47 81.35 80.37 80.62 99.97 80.21 99.63 99.57 99.95 7.90

BM BadVFL 93.51 93.73 90.4393.95 89.10 91.01 99.98 99.09 99.79 100.00 99.92 17.65
VILLAIN 93.64 92.07 93.6393.83 92.41 90.28 100.00 96.88 100.00 100.00 100.0017.12

Defense Baselines. To the best of our knowledge, there are no backdoor
defenses specialized for VFL with split architecture. Following the previous
study [1], we apply the existing backdoor defenses designed for DNNs, such
as Model Pruning (MP) [19], Adversarial Neural Pruning (ANP) [29], and Back-
door Defense via Transform (BDT) [17] to defend against backdoor attacks in
VFL and compare them with VFLIP. For applying BDT to the VFL scenario,
we add noise to the embeddings following the previous study [1]. Moreover, as
DP-SGD [1] is known for improving the robustness against backdoor attacks
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to some extent [7], we analyze the ability of DP-SGD to defend against VFL
backdoor attacks.

Defense Settings. To find the defense hyperparameter for MP, ANP, and BDT
in VFL, we explore various security-utility trade-off hyperparameters in a wide
range like the previous study [21], and report the results with the lowest ASR
while maintaining accuracy. For MP, we vary the pruning ratios from 10% to
90%. For ANP, similar to MP, we vary the ANP ratio from %0.1 to 2%. For
BDT, we increase the noise level until the accuracy is no longer maintained.

In the case of DP-SGD, we select the lowest ε values among those showing
stable model convergence: 6.35 for CIFAR10 and CINIC10, 4.65 for Imagenette
and NUS-WIDE, and 8.84 for BM. The clipping value is determined based on
the median of gradients’ magnitude when DP-SGD is not applied, as guided by
the previous study [1].

In VFLIP, the architecture of MAE employs a 3-layer FCN for both the
encoder and the decoder. We set the learning rate of the “N -1 to 1” strategy to
0.01 and the “1 to 1” strategy’s learning rate to 0.1. For identification, ρ is set to 2
for CIFAR10, CINIC10, NUS-WIDE, and BM, and 2.5 for Imagenette. Dropout
is set to 10%. The MAE training epoch is set to 20 for CIFAR10, CINIC10,
NUS-WIDE, and BM, and it is set to 50 for Imagenette.

Metrics. We employ two metrics to assess the robustness of VFLIP: clean accu-
racy (ACC) and attack success rate (ASR). ACC is the probability of correctly
predicting the true label in the absence of backdoor triggers. ASR represents
the probability of the model misclassifying the labels of the backdoor-triggered
samples as the attacker’s target label.

4.2 Main Results

Table 1 presents the results of a four-participant scenario with a single attacker.
The results for label inference accuracy are provided in Appendix A.3. Each
experiment is repeated five times with different seeds, and the average result
is reported. In most cases, other defense techniques fail to mitigate backdoor
attacks in VFL. On the other hand, VFLIP achieves the average ASR decrease
of 85.56%, 80.50%, 91.84%, 89.97%, and 81.19%, and the average ACC drop
of 2.21%, 2.38%, 3.37%, 2.84%, and 3.36% in CIFAR10, CINIC10, Imagenette,
NUS-WIDE, and BM, respectively. Even though there is a slight accuracy drop
compared with no defense, VFLIP demonstrates that it can effectively mitigate
backdoor attacks in VFL.

4.3 Multiple Attackers

To demonstrate the defense capabilities of VFLIP under multiple attackers,
we conduct experiments in an eight-participant scenario with three label-
knowledgable attackers, as presented in Table 2. Each experiment is repeated
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five times with different seeds, and the average result is reported. The attackers
share the information they possess, their objective, and their attack strategy
and carry out all malicious actions simultaneously. Thus, the malicious portion
in the concatenated embeddings is increased, making the attack more power-
ful. While other defense techniques fail to mitigate the backdoor attacks, for
ASR, VFLIP achieves 6.9%, 3.8%, 3.03%, 11.01%, and 17.39% on average for
CIFAR10, CINIC10, Imagenette, NUS-WIDE, and BM, respectively. This indi-
cates that VFLIP has the capacity to defend against multiple attackers. The
ACC drop of VFLIP is 4.86%, 4.83%, 5.51%, 3.21%, and 3.13% on average for
CIFAR10, CINIC10, Imagenette, NUS-WIDE, and BM, respectively. Although
there is a slight increase in ACC drop compared to the four-participant scenario,
we note that VFL typically involves collaboration with a small number of partic-
ipants [28,31], so situations resulting in an accuracy drop greater than observed
in these experiments are rare.

Fig. 4. Anomaly score distribution with BadVFL on five datasets.

Fig. 5. Anomaly score distribution with VILLAIN on five datasets.

4.4 Anomaly Score Distribution

To demonstrate VFLIP’s ability to identify backdoor-triggered embeddings
based on the anomaly score, we visualize the anomaly score distribution of clean
embeddings and backdoor-triggered embeddings. Figure 4 and Fig. 5 present the
distribution of the anomaly scores for each type of attack on five datasets. While
there may be a slight overlap between the distributions, most backdoor-triggered
embeddings are clearly separated from clean embeddings.
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4.5 Ablation Study

In this subsection, we assess how different factors affect the robustness of
VFLIP. The default attack setting is the same as the main results with label-
knowledgable attackers.

Fig. 6. Impact of poisoning budget with BadVFL on five datasets.

Fig. 7. Impact of poisoning budget with VILLAIN on five datasets.

Impact of Poisoning Budget. In VFL, the backdoor attacker can easily
adjust their poisoning budget. Therefore, considering an attacker who uses a
large poisoning budget is essential. Figure 6 and Fig. 7 presents the results of
increasing the poisoning budget from 10% to 90%. DP-SGD mitigates VILLAIN
to some extent when the poisoning budget is small, but as the poisoning bud-
get increases, the ASR significantly rises. Other defenses fail to mitigate both
of the attacks in most cases. On the other hand, VFLIP shows stable defense
performance across poisoning budgets.
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Impact of Trigger Magnitude. Since there is no limit to the magnitude of
the embeddings in VFL [18], VILLAIN can largely perturb the embeddings to
increase the attack performance. Moreover, VILLAIN can attempt to evade iden-
tification mechanisms by sending a backdoor-triggered embedding that closely
resembles a clean embedding using a small trigger magnitude. This requires the
capability to defend against attacks with various trigger magnitudes. Figure 8
presents experiments against VILLAIN with trigger magnitude ranging from
0.1 to 4.5. VFLIP outperforms other defense techniques in all datasets. This
indicates that VFLIP can effectively mitigate attacks regardless of trigger mag-
nitudes. Notably, VFLIP maintains the defensive performance even against the
small-magnitude triggers (below scale 2). This is attributed to the purification
phase which denoises the trigger by reconstructing all the embeddings.

Impact of Bottom Model Architectures. The bottom model architecture
can change depending on the attacker. Therefore, we evaluate various bottom
model architectures. For image datasets, Resnet-20 [9] and MobileNet [10] are
evaluated. For NUS-WIDE and BM, 5-layer FCN and 3-layer FCN are eval-
uated. The results are provided in Appendix A.4. In the experiments, VFLIP
outperforms all other defenses. It indicates that VFLIP demonstrates the defense
capability without relying on a specific bottom model architecture.

Impact of the Anomaly Score Threshold ρ for VFLIP. Most defense
techniques face a trade-off between security and utility. In VFLIP, the threshold
ρ for the anomaly score introduces a trade-off between robustness and accu-
racy. Figure 9 illustrates the performance with respect to ρ. The results show
that when ρ is set to 2 or 2.5, there is a negligible decrease in ACC while ASR
is still low. It indicates that there exists a proper trade-off point in VFLIP.

Impact of the MAE Training Strategies. VFLIP uses two MAE training
strategies. To evaluate each strategy individually, experiments are conducted
by training MAE with only one strategy at a time. The results are provided

Fig. 8. Impact of trigger magnitude on five datasets.
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Fig. 9. Impact of anomaly score threshold ρ for VFLIP on five datasets.

in Appendix A.5. While using a single training strategy shows slightly better
performance in some cases, using two training strategies shows more stable and
better performance in most cases.

5 Adaptive Attack

To demonstrate the robustness of VFLIP against the attacker who knows the
VFLIP mechanism, we design and evaluate an adaptive backdoor attack strategy.
This strategy aims to poison Htrain so that the MAE learns relationships between
the backdoor trigger and non-target embedding, reducing the anomaly scores.
For this, at the last epoch, they insert backdoor triggers into samples of non-
target labels with a certain probability. Thus, the abnormal cases are included
in Htrain. It makes VFLIP difficult to identify backdoor-triggered embeddings.
Conversely, this weakens the connection between the backdoor trigger and the
target label in the top model, reducing the attack success rate. To balance this
trade-off, the attacker adjusts the probability of inserting triggers into non-target
samples, denoted as η.

Figure 10 and Fig. 11 indicates that as η increases, the ASR for VFLIP
slightly increases. On the other hand, the ASR significantly declines when there is
no defense. This implies that the connection between the backdoor trigger and

Fig. 10. Evaluation for the adaptive attacks with BadVFL against VFLIP.
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Fig. 11. Evaluation for the adaptive attacks with VILLAIN against VFLIP.

the target label in the top model is substantially weakened before completely
compromising the VFLIP’s MAE. This demonstrates that to compromise the
MAE, the attacker must sacrifice their ASR.

6 Conclusion

In this paper, we propose VFLIP, a novel backdoor defense for VFL. VFLIP
identifies the backdoor-triggered embedding and purifies their malicious influ-
ences. Additionally, we demonstrate that to compromise VFLIP’s MAE, the
attacker has to significantly sacrifice their ASR. Through extensive experiments,
we demonstrate that VFLIP is robust and effective for defending against the
backdoor attacks in the VFL. While this paper focuses on backdoor attacks in
VFL, future research will need to explore these backdoor attacks in the broader
context of VFL, considering additional complex problems such as non-IID issues.
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A Appendix

A.1 VFL Backdoor Attacks

BadVFL [30] is a data-level backdoor attack that consists of label inference
and backdoor injection. For backdoor injection, BadVFL first replaces the tar-
get label local data with non-target label local data. Subsequently, the trig-
ger is injected into the replaced data. BadVFL employs the pre-defined static
trigger like the previous study [9].VILLAIN [1] is an embedding-level back-
door attack. Initially, VILLAIN conducts a label inference attack during the
training stage. For backdoor injection, VILLAIN utilizes trigger fabrication,
backdoor augmentation, and learning rate adjustment. For trigger fabrication,
VILLAIN chooses an additive trigger in the embedding level, rather than a
replacement trigger. First, VILLAIN chooses M dimensions with the highest
standard deviation as the trigger area. Next, the trigger value is designed by
using the average standard deviation of the selected dimension, denoted by σ.
Ultimately, a repeating pattern of σ serves as a backdoor trigger, represented
as γ · [σ, σ, −σ,−σ, · · · , σ, σ,−σ,−σ] where γ is a hyperparameter for the trig-
ger magnitude. Next, the trigger undergoes two types of augmentation, during
backdoor injection. One method involves randomly deleting parts of the trig-
ger, and the other involves multiplying the trigger by a random value within
the range of [λ, λ̄]. Moreover, before the backdoor injection, VILLAIN amplifies
their local learning rate, causing the top model to be more dependent on the
attacker’s embeddings. Once the backdoor injection begins, the local learning
rate is decreased to a smaller value. The backdoor injection process is conducted
after training for Ebkd epochs. They empirically show that the existing backdoor
defense for DNNs cannot mitigate VILLAIN.

A.2 Attack Settings

For the label inference attack [1], the label inference module [6] uses a batch size
of 64 and a learning rate of 0.002. For swapping, the number of candidates in the
minibatch is 3 × poisoning budget × batch size. If the gradient magnitude of the
previous embedding is smaller than the average and the gradient magnitude of
the swapped embedding is less than 10 times the previous gradient magnitude, it
is identified as a sample having the target label. Following previous studies [1,6],
the attacker increases their local learning rate to enhance their malicious actions.
For datasets other than Imagenette, the attacker’s learning rate is multiplied by
two, whereas it is increased by 1.2 times for Imagenette. The BadVFL trigger
size is set to 5 × 5 for CIFAR10 and CINIC10, 40 × 40 for Imagenette, 60 for
NUS-WIDE, and 8 for BM. The VILLAIN trigger size is 75% of the attacker’s
embedding dimension. The trigger magnitude γ for VILLAIN is set to 3 for
CIFAR10, CINIC10, NUS-WIDE, and BM, and 4 for Imagenette. We select the
attacker as a participant holding features in the middle of the sample following
the previous study [1].
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Table 3. Evaluation for various bottom model architectures.

Dataset Architecture Attack Defense
Accuracy (%) ↑ (Higher is better) Attack Success Rate (%) ↓ (Lower is better)

NO DEF DP-SGD MP ANP BDT VFLIP NO DEF DP-SGD MP ANP BDT VFLIP

CIFAR10 Resnet-20 BadVFL 67.53 66.38 66.10 65.86 65.28 65.03 97.52 95.33 96.95 92.36 96.85 5.70
VILLAIN 63.77 62.00 63.78 62.97 61.52 62.00 100.00 81.93 100.00 100.00 100.003.74

MobileNet BadVFL 67.48 68.60 65.36 65.65 62.07 66.05 99.26 99.92 88.46 94.93 98.15 7.88
VILLAIN 64.39 65.10 62.98 62.86 61.84 62.10 100.00 51.25 100.00 100.00 100.002.22

CINIC10 Resnet-20 BadVFL 54.70 53.50 50.18 54.00 52.42 53.45 99.37 98.59 97.03 99.68 99.62 12.00
VILLAIN52.73 50.48 49.33 52.14 49.74 51.26 100.00 99.77 99.97 100.00 100.002.28

MobileNet BadVFL 56.94 57.20 56.24 56.26 54.64 55.36 99.92 99.96 99.79 99.88 99.89 5.55
VILLAIN53.39 52.23 52.84 52.90 51.77 51.67 100.00 100.00 100.00 100.00 100.002.92

Imagenette Resnet-20 BadVFL 70.67 67.08 66.66 64.99 68.27 66.75 87.19 93.56 80.67 75.85 86.48 24.36
VILLAIN67.82 63.32 63.17 65.74 63.95 63.37 100.00 99.83 99.61 99.91 99.88 1.62

MobileNet BadVFL 68.94 69.78 64.35 69.23 66.47 65.44 96.13 80.31 68.73 96.28 95.62 12.47
VILLAIN69.36 67.37 61.77 62.50 63.54 66.67 99.74 69.23 99.70 99.85 99.82 2.90

NUS-WIDE 5-layer FCN BadVFL 80.03 79.57 75.08 80.49 76.86 75.68 98.69 100.00 68.73 99.17 98.81 24.28
VILLAIN 81.32 75.82 81.97 81.54 81.12 77.62 100.00 37.71 100.00 100.00 100.005.84

3-layer FCN BadVFL 82.54 81.91 76.98 82.49 81.58 80.65 99.60 96.66 99.88 99.90 99.94 9.47
VILLAIN 82.75 83.32 76.66 82.82 81.29 80.69 100.00 93.45 88.19 100.00 99.98 5.07

BM 5-layer FCN BadVFL 93.64 93.72 89.03 94.00 86.93 92.01 89.80 71.74 71.15 91.91 84.82 14.96
VILLAIN 93.72 92.73 91.71 94.05 87.78 91.81 99.90 62.57 99.66 99.93 99.55 14.80

3-layer FCN BadVFL 93.96 93.36 87.43 94.37 87.48 91.34 93.03 64.50 68.72 94.75 88.40 17.61
VILLAIN 94.00 91.68 87.70 94.33 86.53 89.28 99.97 85.33 99.60 100.00 99.86 16.41

Table 4. Evaluation for each training strategy.

Dataset Label Knowledge Attack Defense
Accuracy (%) ↑ (Higher is better) Attack Success Rate (%) ↓ (Lower is better)
1 to 1 N-1 to 1 VFLIP 1 to 1 N-1 to 1 VFLIP

CIFAR10 w/o BadVFL 76.32 73.48 75.62 19.52 8.93 13.50
VILLAIN 74.46 71.09 75.33 3.94 4.76 3.67

with BadVFL 75.79 71.45 75.56 3.75 4.65 3.30
VILLAIN 73.33 66.41 73.82 4.42 1.99 2.78

CINIC10 w/o BadVFL 63.42 62.60 63.18 17.74 13.35 12.95
VILLAIN 62.18 60.75 62.80 2.94 3.31 2.84

with BadVFL 63.04 60.51 63.39 6.32 5.57 5.23
VILLAIN61.18 59.62 60.74 2.59 2.13 1.17

Imagenette w/o BadVFL 71.74 35.79 72.94 16.76 42.49 14.00
VILLAIN 71.01 25.05 71.32 3.77 26.42 2.68

with BadVFL 72.73 41.28 71.82 10.79 22.91 1.31
VILLAIN71.01 28.73 70.35 1.62 0.00 1.28

BM w/o BadVFL 81.35 79.46 81.65 9.39 29.83 9.80
VILLAIN 80.45 80.23 81.51 8.64 10.64 6.38

with BadVFL 79.00 78.54 80.31 17.67 21.44 14.54
VILLAIN 79.62 79.80 80.83 4.82 8.28 5.65

NUS-WIDE w/o BadVFL 93.47 49.97 91.27 15.97 0.00 14.71
VILLAIN 89.74 49.97 91.91 10.32 8.28 7.31

with BadVFL 89.01 50.00 92.13 21.26 100.00 10.78
VILLAIN 90.80 50.00 91.30 11.07 100.00 9.82
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A.3 Results for Label Inference Attacks

Table 5. Accuracy of label inference attacks on five datasets.

Label Inference Attack Label Inference Accuracy ↑ (Higher is better)
CIFAR10 CINIC10 Imagenette NUS-WIDE BM

DP-SGD Others DP-SGD Others DP-SGD Others DP-SGD Others DP-SGD Others

[1] 88.16 89.27 94.59 93.15 98.97 95.20 94.16 94.85 83.63 89.14

A.4 Impact of Bottom Model Architecture

Table 3 presents the results for various bottom architectures.

A.5 Impact of the MAE Training Strategies

Table 4 presents the results for each training strategy in VFLIP (Table 5).
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