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Abstract

Relational Deep Learning (RDL) is a promising approach for build-
ing state-of-the-art predictive models on multi-table relational data
by representing it as a heterogeneous temporal graph. However,
commonly used Graph Neural Network models suffer from funda-
mental limitations in capturing complex structural patterns and
long-range dependencies that are inherent in relational data. While
Graph Transformers have emerged as powerful alternatives to
GNNs on general graphs, applying them to relational entity graphs
presents unique challenges: (i) Traditional positional encodings
fail to generalize to massive, heterogeneous graphs; (ii) existing
architectures cannot model the temporal dynamics and schema
constraints of relational data; (iii) existing tokenization schemes
lose critical structural information. Here we introduce the Rela-
tional Graph Transformer (RelGT), the first graph transformer
architecture designed specifically for relational tables. RelGT em-
ploys a novel multi-element tokenization strategy that decomposes
each node into five components (features, type, hop distance, time,
and local structure), enabling efficient encoding of heterogeneity,
temporality, and topology without expensive precomputation. Our
architecture combines local attention over sampled subgraphs with
global attention to learnable centroids, incorporating both local and
database-wide representations. Across 21 tasks from the RelBench
benchmark, RelGT consistently matches or outperforms GNN base-
lines by up to 18%, establishing Graph Transformers as a powerful
architecture for Relational Deep Learning.
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1 Introduction

Real-world enterprise data, such as financial transactions, supply
chain data, e-commerce records, product catalogs, customer inter-
actions, and electronic health records, are predominantly stored in
relational databases [8]. These databases typically consist of multi-
ple tables, each dedicated to different entity types, interconnected
through primary and foreign key links. This abstraction underpins
large quantities of complex, dynamically updated data that scale
with business volume, storing potentially immense, unexploited
knowledge [13]. However, extracting predictive patterns from such
data has traditionally depended on manual feature engineering
within complex machine learning pipelines, requiring the transfor-
mation of multi-table records into flat feature vectors suitable for
models like deep neural networks and decision trees [5].

Relational Deep Learning. To enable end-to-end deep learning,
relational databases can be represented as relational entity graphs
[13], where nodes correspond to entities and edges capture primary-
foreign key relationships. This graph-based representation allows
Graph Neural Networks (GNNs) to learn abstract features directly
from the underlying data structure, effectively modeling complex
dependencies for various downstream prediction tasks. With this
setup, which is termed as Relational Deep Learning (RDL), GNNs re-
duce or eliminate the need for manual feature engineering and often
lead to improved performance [42], at a fraction of the traditional
model development cost.

Existing gaps. Despite their effectiveness, standard message-
passing GNN architectures [15, 18, 29, 48] have notable limitations,
such as insufficient structural expressiveness [34, 37, 52] and re-
stricted long-range modeling capabilities [1]. For example, consider
an e-commerce database with three tables: customers, transactions,
and products, which can be represented as a relational entity graph
as in Figure 1. In a standard GNN, transactions are always two hops
away from each other, connected only through shared customers.
This creates an information bottleneck: transaction-to-transaction
patterns require multiple layers of message passing, while product
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relationships remain entirely indirect in shallow networks. Further-
more, products would never directly interact in a two-layer GNN
[42], as their messages must pass through both a transaction and a
customer, highlighting the inherent structural constraints of GNN
architectures that restrict capturing long-range dependencies.

Graph Transformers (GTs) have emerged as more expressive
models for graph learning, utilizing self-attention in the full graph
to increase the range of information flow and additionally, incor-
porating positional and structural encodings (PEs/SEs) to better
capture graph topology [9, 41, 53]. These advances have produced
strong results across domains [38], including foundation models for
molecular graphs [46]. However, many GT designs are limited to
non-temporal, homogeneous, and small-scale graphs, assumptions
that do not hold for relational entity graphs (REGs) [13], which
are typically (i) heterogeneous, with different tables representing
distinct node types; (ii) temporal, with entities often associated
with timestamps and requiring careful handling to prevent data
leakage; (iii) large-scale, containing millions or more records across
multiple interconnected tables. In particular, existing PEs often
require precomputation, depend on graph size, and typically do
not scale well to large, heterogeneous, or dynamic graphs [3, 26].
For instance, node2vec [17], while more efficient than Laplacian or
random walk PEs, can become prohibitively expensive and imprac-
tical to compute on massive graphs [40]. These limitations, along
with the inability to capture the multi-dimensional complexity of
relational structures, render current GTs inadequate for relational
databases.

Present work. We introduce theRelationalGraphTransformer

(RelGT), the first Graph Transformer specifically designed for re-
lational entity graphs. RelGT addresses key gaps in existing meth-
ods by enabling effective graph representation learning within the
RDL framework. It is a unified model that explicitly captures the
temporality, heterogeneity, and structural complexity inherent to
relational graphs. We summarize the architecture as follows (Figure
1):

• Tokenization: We develop a multi-element tokenization
scheme that converts each node into structurally enriched
tokens. By sampling fixed-size subgraphs as local context
windows and encoding each node’s features, type, hop dis-
tance, time, and local structure, RelGT captures fine-grained
graph properties without expensive precomputation at the
subgraph or graph level.

• Attention: We develop a transformer network that com-
bines local and global representations, adapting existing GT
architectures [41]. The model extracts features from the local
tokens while simultaneously attending to learnable global
tokens that act as soft centroids, effectively balancing fine-
grained structural modeling with database-wide patterns
[30].

• Validation: We showcase RelGT’s effectiveness through a
comprehensive evaluation on 21 tasks from RelBench [42].
RelGT consistently outperforms GNN baselines, with gains
of up to 18%, establishing transformers as a powerful ar-
chitecture for relational deep learning. Compared to HGT
[20], a strong GT baseline for heterogeneous graphs, RelGT
achieves better results without added computational cost,

even when HGT uses Laplacian eigenvectors for positional
encoding.

2 Background

2.1 Relational Deep Learning

Relational Deep Learning (RDL) is an end-to-end representation
learning framework that converts relational databases into graph
structures, enabling neural networks to be applied directly and
eliminating the need for manual feature extraction in multi-table
data pipelines [13].

Definitions. Formally, we can define a relational database as
the tuple (𝑇, 𝑅) comprising a collection of tables 𝑇 = {𝑇1, . . . ,𝑇𝑛}
connected through inter-table relationships 𝑅 ⊆ 𝑇 × 𝑇 . A link
(𝑇fkey,𝑇pkey) ∈ 𝑅 denotes a foreign key in one table referenc-
ing a primary key in another. Each table contains entities (rows)
{𝑣1, . . . , 𝑣𝑛𝑇 }, with each entity typically consisting of: (1) a unique
identifier (primary key), (2) references to other entities (foreign
keys), (3) entity-specific attributes, and (4) timestamp information
indicating when the entity was created or modified. The structure of
relational databases inherently forms a graph representation, called
as relational entity graphs (REGs). An REG is formally defined
as a heterogeneous temporal graph𝐺 = (𝑉 , 𝐸, 𝜙,𝜓, 𝜏), where nodes
𝑉 represent entities from the database tables, edges 𝐸 represent
primary-foreign key relationships, 𝜙 maps nodes to their respective
types based on source tables,𝜓 assigns relation types to edges, and
𝜏 captures the temporal dimension through timestamps [13].

Challenges. Relational entity graphs exhibit three distinctive
properties that set them apart from conventional graph data. First,
their structure is fundamentally schema-defined, with topology
shaped by primary-foreign key relationships rather than arbitrary
connections, creating specific patterns of information flow that
require specialized modeling approaches. Second, they incorporate
temporal dynamics, as relational databases track events and interac-
tions over time, necessitating techniques like time-aware neighbor
sampling to prevent future information from leaking into past pre-
dictions. Third, they display multi-type heterogeneity, as different
tables correspond to different entity types with diverse attribute
schemas and data modalities, presenting challenges in creating uni-
fied representations that effectively integrate information across
diverse node and edge types [44, 49]. These characteristics create
both challenges and opportunities for GNN architectures, requiring
models that can simultaneously address temporal evolution, het-
erogeneous information, and schema-constrained structures while
processing potentially massive multi-table datasets.

2.2 RDL Methods

The baseline GNN approach introduced by [42] for RDL uses a het-
erogeneous GraphSAGE [18] model with temporal-aware neighbor
sampling, which demonstrates significant improvements compared
to traditional tabular methods like LightGBM [27] across all tasks
in the RelBench benchmark. This baseline architecture leverages
PyTorch Frame’s multi-modal feature encoders [19] to transform
diverse entity attributes into initial feature embeddings that serve
as input to the GNN. Several specialized architectures have been
developed to address specific challenges in relational entity graphs.
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Figure 1: Overview of the RelGT architecture. First, the input relational entity graph (REG) is converted into tokens where

each training seed node (such as the customer node in this example) gets a fixed number of neighboring nodes, which are

encoded with a multi-element tokenization strategy. These tokens are then passed through a Transformer network that builds

both local and global representations, which are then fed to downstream prediction layers.

RelGNN [6] introduces composite message-passing with atomic
routes to facilitate direct information exchange between neighbors
of bridge and hub nodes, commonly found in relational structures.
Similarly, ContextGNN [55] employs a hybrid approach, combining
pair-wise and two-tower representations, specifically optimized for
recommendation tasks in RelBench.

Beyond pure GNN approaches, retrieval-augmented generation
techniques [51] and hybrid tabular-GNN methods [32] have also
demonstrated comparable or slightly superior performance to the
standard GNN baseline, while showing the use of LLMs [16] and
inference speedups, respectively. These approaches confirm the
effectiveness of graph, tabular, and LLM-based methods for down-
stream predictions in relational databases. However, these methods
typically optimize specific aspects of the problem, failing to incor-
porate broader advances from GTs in general graph learning.

2.3 Graph Transformers

Graph Transformers extend the self-attention mechanism from
sequence modeling [47] to graph-structured data, offering pow-
erful alternatives to traditional GNNs [9]. These models typically
restrict attention to local neighborhoods, functioning as message-
passing networks with attention-based aggregation [2, 24], while
positional encodings are developed based on Laplacian eigenvectors
[10]. Subsequent Graph Transformers incorporate global attention
mechanisms, allowing all nodes to attend to one another [31, 36, 53].
This moves beyond the local neighborhood limitations of standard
GNNs [1], albeit at the cost of significantly increased computational
complexity.

Modern GT architectures have improved the aforementioned
early works by creating effective structural encodings and ensur-
ing scalability to medium and large-scale graphs. For structural
expressiveness of the node tokens, several positional and structural
encoding methods have been developed [3, 12, 22, 26, 33] to inject
the input graph topology. For scalability, various strategies have
emerged including hierarchical clustering that coarsens graphs
[57, 59], sparse attention mechanisms that reduce computational
cost [41, 45], and neighborhood sampling techniques for processing
massive graphs [4, 11, 30, 58]. Models like GraphGPS [41] combine
these advances through hybrid local-global designs that maintain

Transformers’ global context advantages while ensuring practi-
cal efficiency when scaling to medium and large graph datasets.
However, these approaches exhibit several key limitations: they are
largely confined to static graphs, and lack mechanisms to handle
multiple node and edge types. While specialized Transformers for
heterogeneous graphs exist [20, 35, 56, 59], integrating them, along-
side other aforementioned methods, into the RDL pipeline remains
challenging. This is primarily because adapting positional encod-
ings under precomputation constraints is difficult, compounded by
the complexity of modeling large-scale, temporal, and heteroge-
neous relational entity graphs (REGs).

3 RelGT: Relational Graph Transformer

3.1 Tokenization

3.1.1 Setup and Challenges. Traditional Transformers in natural
language processing represent text through tokens with two pri-
mary elements: (i) token identifiers (or features) that denotes
the token from a vocabulary set and (ii) positional encodings
that represent sequential structure [47]. For example, a token can
correspond to a word and its positional encoding can correspond
to its order in the input sentence. Similarly, Graph Transformers
generally adapt this two-element representation to graphs, where
nodes are tokens with features, and graph positional encodings pro-
vide structural information [9, 28, 41]. Although this two-element
approach works well for homogeneous static graphs, it becomes
computationally inefficient when trying to encode multiple aspects
of graph structural information for REGs.

In particular, capturing heterogeneity, temporality, and schema-
defined structure (as defined in Section 2.1) through a single posi-
tional encoding scheme would either require complex, multi-stage
encoding or result in significant information loss about the rich re-
lational context. For instance, if we were to extend existing PEs for
REGs, several practical challenges emerge: (i) standard Laplacian or
random walk-based PEs would need significant modification to dif-
ferentiate between multiple node types (e.g., customers vs. products
vs. transactions), (ii) these encodings lack mechanisms to incorpo-
rate temporal dynamics critical for time-sensitive predictions (e.g.,
capturing that a user’s recent purchases are more relevant than
older ones), and (iii) the scale of relational databases makes global
PE computation in REGs prohibitively expensive. With millions of
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Figure 2: The tokenization procedure. A temporal-aware subgraph sampling step extracts a fixed set of local tokens for each

training seed node, denoted by the node in black. Each token incorporates its respective graph structure information, which

are element-wise transformed to a common embedding space and combined to form the effective token representation to be

fed to the Transformer network.

records across tables, precomputation would only be feasible on
small subgraphs, resulting in incomplete structural context.

3.1.2 Proposed Approach. RelGT overcomes these limitations through
a multi-element token representation approach, without any com-
putational overhead concerning the dependency on the number of
nodes in the input REG. Rather than trying to compress all struc-
tural information into a single positional encoding, we decompose
the token representation into distinct elements that explicitly model
different aspects of relational data. This decoupled design allows
each component to capture a specific characteristic of REGs: node
features represent entity attributes, node types encode table-based
heterogeneity, hop distance preserves relative distances among
nodes in a local context, time encodings capture temporal dynamics,
and GNN-based positional encodings preserve local graph struc-
ture.

Sampling and token elements. The tokenization process in RelGT
converts a REG 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓, 𝜏) into sets of tokens suitable for
processing by the Transformer network. Specifically, as shown in
Figure 2, for each training seed node 𝑣𝑖 ∈ 𝑉 , we first sample a
fixed set of 𝐾 neighboring nodes 𝑣 𝑗 from within 2 hops of the local
neighborhood using temporal-aware sampling1, ensuring that only
nodes with timestamps 𝜏 (𝑣 𝑗 ) ≤ 𝜏 (𝑣𝑖 ) are included to prevent tem-
poral leakage. Each token in this set is represented by a 5-tuple:
(𝑥𝑣𝑗 , 𝜙 (𝑣 𝑗 ), 𝑝 (𝑣𝑖 , 𝑣 𝑗 ), 𝜏 (𝑣 𝑗 ) − 𝜏 (𝑣𝑖 ),GNN-PE𝑣𝑗 ), where, (i) node fea-
tures (𝑥𝑣𝑗 ) denotes the raw features derived from entity attributes
in the database, (ii) node type (𝜙 (𝑣 𝑗 )) is a categorical identifier
corresponding to the entity’s originating table, (iii) relative hop dis-
tance (𝑝 (𝑣𝑖 , 𝑣 𝑗 )) captures the structural distance between the seed
node 𝑣𝑖 and the neighbor node 𝑣 𝑗 , (iv) relative time (𝜏 (𝑣 𝑗 ) − 𝜏 (𝑣𝑖 ))
represents the temporal difference between the neighbor and seed

1When fewer than 𝐾 neighbors are available within 2 hops, we use randomly selected
nodes as fallback tokens to maintain the fixed size 𝐾 , ensuring consistent computa-
tional complexity regardless of local structure.

node, and (v) finally, subgraph based PE (GNN-PE𝑣𝑗 ) provides a
graph positional encoding for each node within the sampled sub-
graph, generated by applying a lightweight GNN to the subgraph’s
adjacency matrix with random node feature initialization [26, 43].

3.1.3 Encoders. Each element in the 5-tuple is processed by a spe-
cialized encoder before being combined into the final token repre-
sentation, as illustrated in Figure 2.

1. Node Feature Encoder: The node features 𝑥𝑣𝑗 , representing
the columnar attributes of the node 𝑣 𝑗 in REG (which corresponds
to a table row in a database), are encoded into a 𝑑-dimensional
embedding. Each modality, such as numerical, categorical, multi-
categorical, text, and image data, is encoded separately usingmodality-
specific encoders following [19], and the resulting representations
are then aggregated into a unified 𝑑-dimensional embedding.

ℎfeat (𝑣 𝑗 ) = MultiModalEncoder(𝑥𝑣𝑗 ) ∈ R𝑑 (1)

where MultiModalEncoder(·) is unified feature encoder adapted
from [19].

2. Node Type Encoder: The node type encoding steps converts
each table-specific entity type 𝜙 (𝑣 𝑗 ) to a 𝑑-dimensional representa-
tion, incorporating the heterogeneous information from the input
data.

ℎtype (𝑣 𝑗 ) =𝑊type · onehot(𝜙 (𝑣 𝑗 )) ∈ R𝑑 (2)

where 𝜙 (𝑣 𝑗 ) is the node type of 𝑣 𝑗 ,𝑊type ∈ R𝑑×|𝑇 | is the learnable
weight matrix, |𝑇 | is the number of node types, and onehot(·) is
the one-hot encoding function.

3. Hop Encoder: The relative hop distance 𝑝 (𝑣𝑖 , 𝑣 𝑗 ), that captures
the structural proximity between the seed node 𝑣𝑖 and a neighbor
node 𝑣 𝑗 , is encoded into a 𝑑-dimensional embedding as:

ℎhop (𝑣𝑖 , 𝑣 𝑗 ) =𝑊hop · onehot(𝑝 (𝑣𝑖 , 𝑣 𝑗 )) ∈ R𝑑 (3)
4
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with 𝑝 (𝑣𝑖 , 𝑣 𝑗 ) being the relative hop distance between seed node
𝑣𝑖 and neighbor node 𝑣 𝑗 , and𝑊hop ∈ R𝑑×ℎmax the learnable matrix
mapping hop distances (up to ℎmax).

4. Time Encoder: The time encoder linearly transforms the time
difference 𝜏 (𝑣 𝑗 ) − 𝜏 (𝑣𝑖 ) between a neighbor node 𝑣 𝑗 and the seed
node 𝑣𝑖 :

ℎtime (𝑣𝑖 , 𝑣 𝑗 ) =𝑊time · (𝜏 (𝑣 𝑗 ) − 𝜏 (𝑣𝑖 )) ∈ R𝑑 (4)

where 𝜏 (𝑣 𝑗 )−𝜏 (𝑣𝑖 ) is the relative time difference, and𝑊time ∈ R𝑑×1

are learnable parameters.

5. Subgraph PE Encoder: Finally, for capturing local graph struc-
ture that can otherwise not be represented by other elements of the
token, we apply a light-weight GNN to the subgraph. This GNN
encoder effectively preserves important structural relationships,
such as complex cycles and quasi-cliques between entities [25], as
well as parent-child relationships (e.g., a product node within the
local subgraph corresponding to specific transactions), and can be
written as:

ℎpe (𝑣 𝑗 ) = GNN(𝐴local, 𝑍random) 𝑗 ∈ R𝑑 (5)

where GNN(·, ·) 𝑗 is a light-weight GNN applied to the local sub-
graph yielding the encoding for node 𝑣 𝑗 , 𝐴local ∈ R𝐾×𝐾 is the adja-
cency matrix of the sampled subgraph of 𝐾 nodes, and 𝑍random ∈
R𝐾×𝑑init are randomly initialized node features for the GNN (with
𝑑init as the initial feature dimension).

One key advantage of using random node features in this GNN
encoder is that it breaks structural symmetries between the sub-
graph topology and node attributes, thereby increasing the expres-
sive power of GNN layers [43]. However, a fixed random initial-
ization would destroy permutation equivariance which is a critical
property for generalization. To address this challenge, we resam-
ple 𝑍random independently at every training step. This ‘stochastic
initialization’ approach can be viewed as a relaxed version of the
learnable PE method described in [26], thus approximately pre-
serving permutation equivariance while retaining the expressivity
gains afforded by the randomization.

At last, the effective token representation is formed by combining
all encoded elements:

ℎtoken (𝑣 𝑗 ) =
𝑂 ·

[
ℎfeat (𝑣 𝑗 ) | | ℎtype (𝑣 𝑗 ) | | ℎhop (𝑣𝑖 , 𝑣 𝑗 ) | | ℎtime (𝑣𝑖 , 𝑣 𝑗 ) | | ℎpe (𝑣 𝑗 )

]
where | | denotes the concatenation of the individual encoder out-
puts, and 𝑂 ∈ R5𝑑×𝑑 is a learnable matrix to mix the embeddings.
This multi-element approach provides a comprehensive token rep-
resentation that explicitly captures node features, type information,
structural position, temporal dynamics, and local topology without
requiring expensive computation on the graph structure.

3.2 Transformer Network

The Transformer network in RelGT, shown in Figure 3, processes
the tokenized relational entity graph using a combination of local
and global attention mechanisms, following the successful design
components used in modern GTs [11, 30, 41, 50].

pooling 
per seed 

nodeLocal Tokens

Global Centroids
Local 

Features

+

x L layers

all-pair attention

Transformer Network
Output 
Nodes

Input 
Nodes

Global 
Features

Attention

Figure 3: The Transformer network which processes the in-

put tokens by first building local representations using the

local tokens, then incorporating global context by attending

to centroids that are dynamically updated during training.

The final node representations combine both local structural

details and global database context, enabling effective pre-

diction across downstream tasks.

3.2.1 Local module. The local attention mechanism allows each
seed node to attend to its 𝐾 local tokens selected during tokeniza-
tion, capturing the fine-grained relationships defined by the data-
base schema. This mechanism is different from a GNN used in
RDL [42] in two key aspects: self-attention is used as the message-
passing scheme and the attention is all-pair, i.e., all nodes in the
local K set attend to each other. This is implemented using an L

layer Transformer network [47] and provides a broader structural
coverage compared to a baseline GNN [42]. A practical application
of this improvement can be seen in the e-commerce example intro-
duced in Section 1, where the proposed full-attention mechanism
can directly connect seemingly unrelated products by identifying
relationships through shared transactions or customer behaviors.
This capability enables the model to capture subtle associations,
such as customers frequently purchasing unexpected combinations
of items.

The local node representation ℎlocal (𝑣𝑖 ) is obtained as:

ℎlocal (𝑣𝑖 ) = Pool(FFN(Attention(𝑣𝑖 , {𝑣 𝑗 }𝐾𝑗=1))𝐿) (6)

where, 𝐿 denotes the layers, FFN and Attention are standard com-
ponents in a Transformer [47], and Pool denotes the aggregation
of {𝑣 𝑗 }𝐾𝑗=1 and 𝑣𝑖 using a learnable linear combination.

3.2.2 Global module. The global attention mechanism enables
each seed node to attend to a set of 𝐵 global tokens represent-
ing centroids of all nodes in the graph, conceptually and is adapted
from prior works [11, 30]. These centroids are updated during
training using an Exponential Moving Average (EMA) K-Means
algorithm applied to seed node features in each mini-batch, provid-
ing a broader contextual view beyond the local neighborhood. The
global representation is formulated as:

ℎglobal (𝑣𝑖 ) = Attention(𝑣𝑖 , {𝑐𝑏 }𝐵𝑏=1) (7)

The final output representation of each node 𝑣𝑖 is obtained by
combining local and global embeddings:

ℎoutput (𝑣𝑖 ) = FFN( [ℎlocal (𝑣𝑖 ) | | ℎglobal (𝑣𝑖 )]) (8)

with FFN being a feed forward network. The components of the
Transformer in all stages follow standard instantiations with nor-
malization and residual connections.
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For downstream prediction, the combined representation of the
seed node is passed through a task-specific prediction head. The
model is trained end-to-end using suitable task specific loss func-
tions. By leveraging multi-element token representations within
a hybrid local-global Transformer architecture, RelGT effectively
addresses the challenges of heterogeneity, temporal dynamics, and
schema-defined structures inherent in relational entity graphs.

4 Experiments

RelGT is evaluated on the recently introduced Relational Deep
Learning Benchmark (RelBench) [42]. RelBench consists of 7 datasets
from diverse relational database domains, including e-commerce,
clinical records, social networks, and sports, among others. These
datasets are curated from their respective source domains and con-
sist a wide range of sizes, from 1.3K to 5.4M records in the training
set for the prediction tasks, with a total of 47M training records.
For each dataset, multiple predictive tasks are defined, such as pre-
dicting a user’s engagement with an advertisement within the next
four days or determining whether a clinical trial will achieve its
primary outcome within the next year. In total, RelBench has 30
tasks across the 7 datasets, covering entity classification, entity
regression, and recommendation. For our evaluation, we focus on
21 tasks on entity classification and regression2.

4.1 Setup and Baselines

We implement RelGT within the RDL pipeline [42] by replacing
the original GNN component, while preserving the learning mech-
anisms, database loaders, and task evaluators. The model has be-
tween 10-20 million parameters, and we use a learning rate of 1𝑒−4.
For tasks with fewer than one million training nodes, we tune the
number of layers 𝐿 ∈ {1, 4, 8} and use dropout rates of {0.3, 0.4, 0.5}.
For tasks with more than one million training nodes, we fix the
number of layers to 𝐿 = 4 due to compute budgets. For the sampling
during the token preparation stage, we use 𝐾 = 300 local neighbors
and set 𝐵 = 4096 as the number of tokens for global centroids. For
smaller datasets (under one million training nodes), we use a batch
size of 256 to ensure sufficient training steps. For larger datasets,
we use a batch size of 1024. We do not perform exhaustive hyperpa-
rameter tuning; rather, our goal is to showcase the benefits of using
RelGT in place of GNNs within the RDL framework. As shown in
our ablation of the multi-element tokenization and global module
in RelGT (Table 2), and context size (Figure 4), careful tuning may
further improve performance across different tasks.

In addition to the HeteroGNN baseline used in RDL, we report
results for two variants of the Heterogeneous Graph Transformer
(HGT) [20] to highlight the advantages of RelGT over existing GT
models. Notably, many GTs, such as GraphGPS [41], are not directly
applicable to heterogeneous graphs. Therefore, we adopt HGT and
an enhanced version, HGT+PE, which incorporates Laplacian posi-
tional encodings (LapPE). These positional encodings are computed
on the sampled subgraphs rather than the entire graph. Additional
implementation details are included in Appendix A.3.

2We exclude recommendation tasks in this work since they involve specific considera-
tions, such as identifying target nodes [54] or using pair-wise learning architectures
[55] and using RelGT trivially in RDL is sub-optimal.

Table 1: Test set results on the entity regression and clas-

sification tasks in RelBench. Best values are in bold. RDL:

HeteroGNN baseline [42], HGT: Heterogeneous GT [20], PE:

Laplacian Positional Encodings [10]. Relative gains are ex-

pressed as percentage improvement over RDL baseline.

(a) MAE for entity regression. Lower is better

Dataset Task RDL HGT

HGT

+PE

RelGT

(ours)

% Rel.

Gain

rel-f1 driver-position 4.022 4.1598 4.2358 3.9170 2.61

rel-avito ad-ctr 0.041 0.0441 0.0494 0.0345 15.85

rel-event user-attendance 0.258 0.2635 0.2562 0.2502 2.79

rel-trial
study-adverse 44.473 43.3253 42.4622 43.9923 1.08
site-success 0.400 0.4374 0.4431 0.3263 18.43

rel-amazon
user-ltv 14.313 15.3804 15.9296 14.2665 0.32
item-ltv 50.053 56.1384 55.6211 48.9222 2.26

rel-stack post-votes 0.065 0.0679 0.0680 0.0654 -0.62

rel-hm item-sales 0.056 0.0655 0.0641 0.0536 4.29

(b) AUC for entity classification. Higher is better.

Dataset Task RDL HGT

HGT

+PE

RelGT

(ours)

% Rel.

Gain

rel-f1
driver-dnf 0.7262 0.7142 0.7109 0.7587 4.48
driver-top3 0.7554 0.6389 0.8340 0.8352 10.56

rel-avito
user-clicks 0.6590 0.6584 0.6387 0.6830 3.64
user-visits 0.6620 0.6426 0.6507 0.6678 0.88

rel-event
user-repeat 0.7689 0.6717 0.6590 0.7609 -1.04
user-ignore 0.8162 0.8348 0.8161 0.8157 -0.06

rel-trial study-outcome 0.6860 0.5679 0.5691 0.6861 0.01

rel-amazon
user-churn 0.7042 0.6608 0.6589 0.7039 -0.04
item-churn 0.8281 0.7824 0.7840 0.8255 -0.31

rel-stack
user-engagement 0.9021 0.8898 0.8852 0.9053 0.35
user-badge 0.8986 0.8652 0.8518 0.8632 -3.94

rel-hm user-churn 0.6988 0.6773 0.6491 0.6927 -0.87

4.2 Results and Discussion

RelGT improves over GNN in RDL. The experimental results in
Tables 1a and 1b demonstrate that RelGT consistently matches or
outperforms the standard GNN baseline used in RDL [42] across
multiple datasets and tasks. We observe the largest improvements
in rel-trial site-success (18.43%), rel-avito ad-ctr (15.85%),
and rel-f1 driver-top3 (10.56%), while on rel-stack user-badge,
RelGT performs below the RDL baseline by a margin of -3.94%. For
all other tasks, RelGT consistently improves or matches the perfor-
mance of the baseline GNN. We attribute the overall performance
improvement to two key factors: (i) the broader structural coverage
enabled by RelGT’s attention mechanisms as described in Section
3.2, and (ii) the fine-grained encodings employed in our tokeniza-
tion scheme, which are further studied as follows and presented in
Table 2.

Subgraph GNN PE is critical in RelGT. In Table 2, we highlight
the importance of several components in RelGT by conducting abla-
tion studies. We remove one component at a time while preserving
all others, and report the relative performance drop compared to
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Figure 4: Left: Epoch runtime comparison of HGT [20] and HGT+PE, with Laplacian PE (see Figure 5 in Appendix for all tasks).

The red portion shows the additional time consumed by the precomputation of Laplacian PE against the base HGT time (blue).

Right: Ablation for different 𝐾 values as the local context size in RelGT. Results using 𝐾 = 300 serve as the baseline (100%

performance), with 𝐾 = 100 and 𝐾 = 500 runs measured as % of performance relative to 𝐾 = 300.

Table 2: Relative drop (%) in performance in RelGT after

removing a model component. Negative scores suggest the

component is critical in RelGT, and vice-versa. Full results

in Table 7.

Dataset Task

No Global

Module

No GNN

PE

No Node

Type

No Hop

Distance

No Relative

Time

rel-avito ad-ctr −6.00 −1.14 −7.14 −3.43 −9.14
rel-avito user-clicks 7.85 −15.15 5.01 5.77 8.37
rel-avito user-visits −0.35 −2.38 −0.11 0.39 −0.75
rel-event user-ignore −1.30 0.12 −0.11 0.66 −0.09
rel-trial study-outcome −2.14 −1.72 3.74 −0.43 2.48
rel-trial site-success −19.01 −9.17 −2.88 −21.49 −0.71
rel-amazon user-churn −0.64 −0.78 0.16 0.06 −2.20
rel-hm item-sales −9.33 −17.35 −12.69 0.93 −77.24

Average −3.87 −5.95 −1.75 −2.19 −9.91

the full RelGT model. Our results show that removing the sub-
graph GNN (PE), which encodes local subgraph structure (Section
3.1), leads to consistent performance degradation across all tasks.
This component proves critical for disambiguating parent-child
relationships when full-attention is applied, thanks to the random
node features initialization [26, 43]. For instance, without the GNN
(PE), products belonging to specific transactions (Figure 1) cannot
be effectively captured, even when other encodings remain.

Global module can bring gains depending on the task. In the same
Table 2, our results of removing the global attention to the learn-
able centroids (Section 3.2) reveal task-dependent patterns that
align with the findings reported in [11, 30]. For some tasks, such as
rel-trial site-success, removing the attention to the centroids
tokens leads to a substantial performance drop (-19.08%), indicating
that the global database-wide context provides crucial information
beyond the local neighborhood. However, for certain tasks such as
rel-avito user-clicks, removing the global module actually im-
proves performance (7.79% relative gain), suggesting that for some
prediction targets, local information is sufficient, and the global
context might introduce noise. These mixed results highlight the

complementary nature of local and global information in relational
graphs, with the latter being optional depending on the task.

Ablation of other encodings. The remaining ablations in Table
2 reveal mixed results across different components. While remov-
ing explicit fine-grained encodings (node type, hop distance, and
relative time) degrades performance on some tasks, it improves
performance on others. For tasks with specific temporal dependen-
cies (as detailed in Appendix A.1), our current temporal encodings
may inadvertently introduce noise. Similarly, for node type and hop
distance encodings, their information might already be partially
captured by other model components. Despite these variations, the
full RelGT model still shows consistently superior results when av-
eraged across all tasks. However, our findings suggest that RelGT’s
performance could be further enhanced by careful tuning of these
encoding components based on their task-specific importance. In
particular, additional improvements can be achieved by incorporat-
ing more effective temporal encoding methods [7, 21, 23].

HGT, a GT baseline, underperforms with significant computational

overhead. As shown in Tables 1a and 1b, HGT [20] underperforms
compared to the HeteroGNN baseline of RDL [42] across most
tasks, with only two exceptions: rel-trial study-adverse and
rel-event user-ignore. Notably, the integration of Laplacian
eigenvectors as PEs in HGT improves performance in just 5 out
of 21 tasks. Moreover, as illustrated in Figure 4, the computational
overhead required for precomputing the Laplacian PEs substantially
increases per-epoch runtime across various tasks. These empirical
findings clearly reveal the difficulties of directly applying exist-
ing GT architectures to relational entity graphs, emphasizing the
importance and need for our contributions with RelGT.

Local context size K. In our main RelGT experiments, we set the
local context size at 300 nodes (Section 3.1), however, we study
its variability in Figure 4 for context sizes 𝐾 ∈ {100, 300, 500}. Al-
though 𝐾 = 300 generally produces the best results, optimal values
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vary across specific tasks. For instance, rel-avito ad-ctr bene-
fits from a larger context size, whereas rel-trial study-outcome
achieves better performance with a smaller context window. These
findings suggest that RelGT’s performance could be further en-
hanced by task-specific tuning of the context size, allowing for
better model expressivity based on the structural characteristics of
each dataset.

5 Conclusion

In this work, we introduce the first Graph Transformer designed
specifically for relational entity graphs: the Relational Graph Trans-
former RelGT. It addresses key challenges faced by existing models,
such as incorporating heterogeneity, temporality, and comprehen-
sive structural modeling within a unified GT framework. RelGT rep-
resents nodes as multi-element tokens enriched with fine-grained
graph context and combines local attention over sampled subgraph
tokens with global attention to learnable centroids, enabling effec-
tive representation learning on relational data. Experiments on the
RelBench benchmark show that RelGT consistently outperforms
GNN and GT baselines across multiple tasks. Moreover, our analysis
highlights the critical role of subgraph-based positional encodings
as a lightweight and effective alternative to traditional graph po-
sitional encodings. This work establishes RelGT as a powerful
architecture for relational deep learning and opens new avenues
for advancing and scaling such architectures toward foundation
models tailored for relational data.
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A Appendix

A.1 Benchmark Details

In this section, we include the details on the datasets and the tasks in
RelBench [42] which we use for our evaluation. RelBench consists
of 7 datasets from diverse relational database domains, including
e-commerce, clinical records, social networks, and sports, among
others. These datasets are curated from their respective source do-
mains and consist a wide range of sizes, from 1.3K to 5.4M records in
the training set for the prediction tasks, with a total of 47M training
records. For each dataset, multiple predictive tasks are defined, such
as predicting a user’s engagement with an advertisement within the
next four days or determining whether a clinical trial will achieve
its primary outcome within the next year. In total, RelBench has
30 tasks across the 7 datasets, covering entity classification, entity
regression, and recommendation. For our evaluation, we focus on
21 tasks on entity classification and regression as RelGT primarily
serves as a node representation learning model in RDL. We exclude
recommendation tasks in this work since they involve specific con-
siderations, such as identifying target nodes [54] or using pair-wise
learning architectures [55] and using RelGT trivially in RDL is
sub-optimal. We detail the dataset and task statistics in Table 3.

A.1.1 Datasets.

rel-amazon. The Amazon E-commerce dataset consists of prod-
uct details, user information, and review interactions from Ama-
zon’s platform, including metadata like pricing and categories,
along with review ratings and content.

rel-avito. Avito’s marketplace dataset contains search queries,
advertisement characteristics, and contextual information from this
major online trading platform that facilitates transactions across
various categories including real estate and vehicles.

rel-event. The Event Recommendation dataset from Hangtime
mobile app tracks users’ social planning, capturing interactions,
event details, demographic data, and social connections to reveal
how relationships impact user behavior.

rel-f1. The F1 dataset provides comprehensive Formula 1 rac-
ing information since 1950, documenting drivers, constructors, man-
ufacturers, and circuits with detailed records of race results, stand-
ings, and specific data on various racing sessions and pit stops.

rel-hm. H&M’s dataset contains customer-product interactions
from their e-commerce platform, featuring customer demographics,
product descriptions, and purchase histories.

rel-stack. The Stack Exchange dataset documents activity from
this network of Q&A websites, including user biographies, posts,
comments, edits, votes, and question relationships where users earn
reputation through contributions.

rel-trial. The clinical trial dataset from the AACT initiative
has study protocols and outcomes, containing trial designs, partici-
pant information, intervention details, and results metrics, serving
as a key resource for medical research.

A.1.2 Tasks. The following entity classification and regression
tasks are defined in RelBench for the above datasets.

(1) rel-amazon
(a) user-churn: Predict whether a user will discontinue re-

viewing products within the next three months.
(b) item-churn: Predict if a product will have no reviews in

the next three months.
(c) user-ltv: Estimate the total monetary value of merchan-

dise in dolloar that a user will purchase and review within
the next three months.

(d) item-ltv: Estimate the total monetary value of purchases
and reviews a product will receive during the next three
months.

(2) rel-avito
(a) user-visits: Predict if a user will engage with several

(advertisements) ads within the upcoming four days.
(b) user-clicks: Predict whether a user will interact with

multiple ads through clicking within the upcoming four
days.

(c) ad-ctr: Estimate the interaction probability for an ad,
assuming it receives an interaction within four days.

(3) rel-event
(a) user-attendance: Estimate the number of of events a

user will confirm attendance to (RSVP yes or maybe)
within the upcoming seven days.

(b) user-repeat: Predict whether a user will join an event
(RSVP yes or maybe) within the upcoming seven days,
provided they attended in an event during the previous
fourteen days.

(c) user-ignore: Predict whether a user will disregard or
ignore more than two events invitations within the up-
coming seven days.

(4) rel-f1
(a) driver-dnf: Predict if a driver will not finish a race within

the upcoming month.
(b) driver-top3: Determine if a driver will achieve a top-

three qualifying position in a race within the upcoming
month.

(c) driver-position: Estimate a driver’s average finishing
placement across all races in the upcoming two months.

(5) rel-hm
(a) user-churn: Predict whether a customer will not perform

any transactions in the upcoming week.
(b) item-sales: Estimate total revenue generated by a prod-

uct in the upcoming week.
(6) rel-stack
(a) user-engagement: Predict whether a user will contribute

through voting, posting, or commenting within the up-
coming three months.

(b) user-badge: Predict whether a user will secure a new
badge within the upcoming three months.

(c) post-votes: Estimate the number of votes a user’s post
will accumulate over the upcoming three months.

(7) rel-trial
(a) study-outcome: Predict whether a clinical trial will achieve

its principal outcome within the upcoming year.
(b) study-adverse: Estimate the number of patients who

will experience significant adverse effects or mortality in
a clinical trial over the upcoming year.

10
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Table 3: Dataset and task statistics from RelBench used for our evaluation.

Dataset Task Task type

#Rows of training table #Unique %train/test
Train Validation Test Entities Entity Overlap

rel-amazon

user-churn classification 4,732,555 409,792 351,885 1,585,983 88.0
item-churn classification 2,559,264 177,689 166,842 416,352 93.1
user-ltv regression 4,732,555 409,792 351,885 1,585,983 88.0
item-ltv regression 2,707,679 166,978 178,334 427,537 93.5

rel-avito

user-clicks classification 59,454 21,183 47,996 66,449 45.3
user-visits classification 86,619 29,979 36,129 63,405 64.6
ad-ctr regression 5,100 1,766 1,816 4,997 59.8

rel-event
user-repeat classification 3,842 268 246 1,514 11.5
user-ignore classification 19,239 4,185 4,010 9,799 21.1
user-attendance regression 19,261 2,014 2,006 9,694 14.6

rel-f1
driver-dnf classification 11,411 566 702 821 50.0
driver-top3 classification 1,353 588 726 134 50.0
driver-position regression 7,453 499 760 826 44.6

rel-hm
user-churn classification 3,871,410 76,556 74,575 1,002,984 89.7
item-sales regression 5,488,184 105,542 105,542 105,542 100.0

rel-stack

user-engagement classification 1,360,850 85,838 88,137 88,137 97.4
user-badge classification 3,386,276 247,398 255,360 255,360 96.9
post-votes regression 2,453,921 156,216 160,903 160,903 97.1

rel-trial

study-outcome classification 11,994 960 825 13,779 0.0
study-adverse regression 43,335 3,596 3,098 50,029 0.0
site-success regression 151,407 19,740 22,617 129,542 42.0

(c) site-success: Estimate the success rate of a clinical trial
site in the upcoming year.

A.2 Node initialization for Subgraph GNN PE in

RelGT

As described in Section 3.1, we employ a lightweight GNN PE to
capture local graph structures that cannot be represented by other
elements of the token, particularly the parent-child relationships
among nodes in the local subgraph. The GNN is implemented as:

ℎpe (𝑣 𝑗 ) = GNN(𝐴local, 𝑍random) 𝑗 ∈ R𝑑 (9)

whereGNN(·, ·) 𝑗 is a lightweight GNN applied to the local subgraph,
yielding the encoding for node 𝑣 𝑗 . Here, 𝐴local ∈ R𝐾×𝐾 represents
the adjacency matrix of the sampled subgraph containing 𝐾 nodes,
and 𝑍random ∈ R𝐾×𝑑init denotes randomly initialized node features
for the GNN (with 𝑑init as the initial feature dimension). In RelGT,
we set 𝑑init = 1.

The randomly initialized node features (𝑍random) provide en-
hanced properties as discussed in Section 3.1. We investigate the
alternative approach of using Laplacian PE (𝑍LapPE) computed over
the subgraph instead of random initialization and report these re-
sults in Table 4. For these results, we utilized a positional encoding
dimension size of 4. Our findings indicate that 𝑍LapPE consistently
underperforms compared to 𝑍random, while also introducing addi-
tional computational overhead ranging from 1.02× to 3.38× across
the 8 selected tasks in our study. This shows the challenges of using

existing PEs such as Laplacian PE in relational entity graphs and
signify the use of GNN PE as part of RelGT’s tokenization strategy.

A.3 HGT Baseline

In the main experiments (Section 4), we use the Heterogeneous
Graph Transformer (HGT) [20] as a graph transformer (GT) base-
line, and report results for two variants to demonstrate the advan-
tages of RelGT over existing GT models. Specifically, we consider
the standard HGT model and an enhanced version, HGT+PE, which
incorporates Laplacian positional encodings (LapPE). These posi-
tional encodings are computed on sampled subgraphs rather than
the full graph.

For implementation, we use the HGTConv layer from PyTorch
Geometric [14] and integrate it into the RDL pipeline [42] by replac-
ing the default GNN module. Both variants use 4 attention heads
and 2 layers, similar to the configuration of the GNNmodule in RDL,
with residual connections and layer normalization applied between
layers. For the HGT+PE variant, we use LapPE of dimension 4 for all
tasks, except for rel-amazon item-ltv and rel-hm item-sales,
where we use dimension 2. Notably, because the relational entity
graphs are heterogeneous, the Laplacian positional encodings is
computed multiple times for each node type, unlike the original
homogeneous setting for which LapPE was designed [10].

In addition to the main results in Table 1, we report per-epoch
runtimes in Figure 5 and Table 5. We observe a significant computa-
tional overhead from precomputing Laplacian positional encodings,
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Table 4: Study of node initialization in Subgraph GNN PE. Relative drop is expressed as percentage drop of using 𝑍LapPE vs.

𝑍
random

and runtime ratio compares the time for 𝑍LapPE vs. 𝑍
random

.

Performance Epoch time (m)

Dataset Task (# train) MAE ↓ 𝑍
random

𝑍LapPE

% Rel

Drop

𝑍
random

𝑍LapPE

Runtime

Ratio

rel-avito ad-ctr
Test 0.035 0.0369 -5.43 0.76 2.57 3.38
Val 0.0314 0.0314

rel-trial site-success
Test 0.326 0.3452 -5.89 32.88 36.09 1.1
Val 0.359 0.3683

rel-hm item-sales
Test 0.0536 0.0573 -6.9 49.26 53.8 1.09
Val 0.0627 0.0667

Dataset Task (# train) AUC ↑ 𝑍
random

𝑍LapPE

% Rel

Drop

𝑍
random

𝑍LapPE

Runtime

Ratio

rel-avito
user-clicks

Test 0.607 0.583 -3.95 6.42 7.43 1.16
Val 0.656 0.6564

user-visits
Test 0.664 0.6626 -0.21 9.26 10.50 1.13
Val 0.699 0.7002

rel-event user-ignore
Test 0.8 0.7988 -0.15 1.85 2.77 1.5
Val 0.881 0.8916

rel-trial study-outcome
Test 0.674 0.6532 -3.09 1.41 1.52 1.08
Val 0.689 0.6719

rel-amazon user-churn
Test 0.7039 0.7044 0.07 168.00 170.55 1.02
Val 0.7036 0.7036
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Figure 5: Runtime Comparison of HGT andHGT+PE baseline.

Adding the Laplacian Positional Encoding increases compu-

tational overhead, with penalties on average training time

per epoch. The overhead for PE reaches up to 761% relative

to the training time of HGT on the same dataset.

with slowdowns ranging from 1.8× to 8.62×, highlighting the chal-
lenge of directly applying existing graph PE techniques as is to
relational entity graphs, and signifying the contributions of RelGT.

A.4 Detailed Results

In Table 6, we report the full results of different configurations we
tuned for RelGT, particularly on the smaller datasets with lesser
than a million training nodes. Table 7 provides the full scores for
the RelGT component study in Table 2, while Table 8 provides the
supporting results for Figure 4. Finally, we provide the elaborated
version of the Tables 1a and 1b in Tables 9 and 9, respectively.

A.5 Resource Information.

We implement RelGT using PyTorch framework [39], PyTorch
Geometric framework [14] and adapt the codebase of relational
deep learning [42] https://github.com/snap-stanford/relbench. All

Table 5: Relative performance drop (%) when position encod-

ing (PE) is removed from HGT+PE models and average train-

ing time per epoch of HGT and HGT+PE. Negative scores

suggest the PE is critical, and vice-versa. HGT+PE consis-

tently requires more training time per epoch compared to

HGT without PE across all datasets.

Dataset Task No PE HGT(s) HGT+PE(s)

rel-f1 driver-position 1.79 1.47 4.56
rel-avito ad-ctr 10.73 1.63 4.00
rel-event user-attendance −2.85 4.36 37.57
rel-trial study-adverse −2.03 9.72 15.02
rel-trial site-success 1.29 45.73 63.41
rel-amazon user-ltv 3.45 73.59 106.21
rel-amazon item-ltv −0.93 73.68 110.33
rel-stack post-votes 0.15 191.23 528.25
rel-hm item-sales −2.18 94.66 135.05
rel-f1 driver-dnf 0.46 2.54 6.84
rel-f1 driver-top3 −23.39 0.38 1.38
rel-avito user-clicks 3.08 11.09 24.66
rel-avito user-visits −1.24 17.16 40.07
rel-event user-repeat 1.93 1.35 5.16
rel-event user-ignore 2.29 4.49 651.10
rel-trial study-outcome −0.21 4.09 4.83
rel-amazon user-churn 0.29 78.56 115.53
rel-amazon item-churn −0.20 75.51 152.06
rel-stack user-engagement 0.52 175.16 356.07
rel-stack user-badge 1.57 153.68 212.21
rel-hm user-churn 4.34 77.73 127.04

Average −0.05 52.28 128.64

our experiments are conducted on an NVIDIA A100 GPU server
with 8 GPU nodes.
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Table 6: RelGT results using 𝐿 ∈ 1, 4, 8 and dropout ∈ 0.3, 0.4, 0.5 for the smaller datasets with less than a million training nodes.

Dataset Task (# train) MAE ↓ L1

0.3

L1

0.4

L1

0.5

L4

0.3

L4

0.4

L4

0.5

L8

0.3

L8

0.4

L8

0.5

rel-f1 driver-position (7k) Test 4.942 5.6431 3.917 4.6316 4.0851 4.0042 5.5273 5.5569 4.6085
Val 3.1897 3.1817 3.3257 3.1046 3.3352 3.1276 3.1589 3.2907 3.1843

rel-avito ad-ctr (5k) Test 0.0358 0.0352 0.0345 0.035 0.0366 0.038 0.0354 0.0358 0.0356
Val 0.0322 0.0313 0.0314 0.0314 0.0322 0.0335 0.0317 0.0322 0.0324

rel-event user-attendance (19k) Test 0.2635 0.2595 0.2635 0.2502 0.2543 0.2584 0.2635 0.2637 0.2635
Val 0.2618 0.2558 0.2618 0.2548 0.2534 0.253 0.2618 0.2599 0.2618

rel-trial
study-adverse (43k) Test 44.8553 44.2260 44.848 44.8893 44.4310 43.9923 44.2245 44.5878 44.5013

Val 46.3538 46.3193 46.2056 46.1031 45.9498 46.2148 46.1804 46.1381 46.4332

site-success (151k) Test 0.3490 0.3652 0.3830 0.4019 0.386 0.3262 0.3783 0.3431 0.3644
Val 0.3493 0.3455 0.3550 0.3771 0.392 0.3593 0.3848 0.3643 0.3669

Dataset Task (# train) AUC ↑ L1

0.3

L1

0.4

L1

0.5

L4

0.3

L4

0.4

L4

0.5

L8

0.3

L8

0.4

L8

0.5

rel-f1
driver-dnf (11k) Test 0.7434 0.7587 0.7521 0.7587 0.745 0.6957 0.7349 0.7393 0.741

Val 0.6877 0.6761 0.6896 0.6804 0.6762 0.6768 0.6702 0.6803 0.6865

driver-top3 (1k) Test 0.7845 0.8203 0.8 0.8171 0.8157 0.8352 0.7871 0.8217 0.8222
Val 0.7775 0.783 0.7764 0.7841 0.79 0.7958 0.7893 0.7847 0.7829

rel-avito
user-clicks (59k) Test 0.6524 0.6233 0.6212 0.6067 0.5893 0.596 0.6245 0.683 0.6507

Val 0.6649 0.6616 0.6501 0.6564 0.6608 0.6579 0.6587 0.6649 0.6648

user-visits (86k) Test 0.6627 0.6663 0.665 0.6615 0.6584 0.6642 0.6647 0.6678 0.664
Val 0.7005 0.6993 0.7001 0.6954 0.6958 0.699 0.6995 0.7024 0.7011

rel-event
user-repeat (3k) Test 0.6981 0.7403 0.7452 0.7563 0.7236 0.7432 0.7609 0.7316 0.7418

Val 0.7172 0.7386 0.7319 0.7245 0.7207 0.736 0.7285 0.7209 0.7064

user-ignore (19k) Test 0.8006 0.802 0.7986 0.799 0.787 0.8002 0.7956 0.8076 0.8157

Val 0.8739 0.8721 0.8729 0.878 0.8731 0.881 0.8757 0.8801 0.8868

rel-trial study-outcome (11k) Test 0.6808 0.6753 0.6837 0.6488 0.6818 0.6744 0.6861 0.6562 0.6649
Val 0.6815 0.6792 0.6751 0.6737 0.676 0.689 0.6678 0.6746 0.6768

Table 7: Relative drop (%) in performance in RelGT after removing a model component. Negative scores suggest the component

is critical in RelGT, and vice-versa.

Dataset Task (# train) MAE ↓ RelGT

(Full)

RelGT

(No Global)

% Rel.

Drop

RelGT

(No GNN)

% Rel.

Drop

RelGT

(No Type)

% Rel.

Drop

RelGT

(No Hop)

% Rel.

Drop

RelGT

(No Time)

% Rel.

Drop

rel-avito ad-ctr
Test 0.0350 0.0371 -6.0 0.0354 -1.14 0.0375 -7.14 0.0362 -3.43 0.0382 -9.14
Val 0.0314 0.0323 0.0315 0.0328 0.0322 0.0337

rel-trial site-success Test 0.3262 0.3882 -19.01 0.3561 -9.17 0.3356 -2.88 0.3963 -21.49 0.3285 -0.71
Val 0.3593 0.3342 0.3637 0.3655 0.3614 0.3615

rel-hm item-sales
Test 0.0536 0.0586 -9.33 0.0629 -17.35 0.0604 -12.69 0.0531 0.93 0.095 -77.24
Val 0.0627 0.0676 0.073 0.0696 0.0623 0.1025

Dataset Task (# train) AUC ↑ RelGT

(Full)

RelGT

(No Global)

% Rel.

Drop

RelGT

(No GNN)

% Rel.

Drop

RelGT

(No Type)

% Rel.

Drop

RelGT

(No Hop)

% Rel.

Drop

RelGT

(No Time)

% Rel.

Drop

rel-avito
user-clicks Test 0.6067 0.6543 7.85 0.5148 -15.15 0.6371 5.01 0.6417 5.77 0.6575 8.37

Val 0.6564 0.6496 0.6551 0.6559 0.6482 0.6579

user-visits Test 0.6642 0.6619 -0.35 0.6484 -2.38 0.6635 -0.11 0.6668 0.39 0.6592 -0.75
Val 0.699 0.6892 0.6879 0.6991 0.7016 0.7005

rel-event user-ignore Test 0.8002 0.7898 -1.3 0.8012 0.12 0.7993 -0.11 0.8055 0.66 0.7995 -0.09
Val 0.881 0.8575 0.8637 0.8873 0.8852 0.8789

rel-trial study-outcome Test 0.6744 0.66 -2.14 0.6628 -1.72 0.6996 3.74 0.6715 -0.43 0.6911 2.48
Val 0.689 0.664 0.6775 0.6728 0.6705 0.6578

rel-amazon user-churn
Test 0.7039 0.6994 -0.64 0.6984 -0.78 0.705 0.16 0.7043 0.06 0.6884 -2.2
Val 0.7036 0.6994 0.6994 0.7042 0.704 0.6882
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Table 8: Ablation of context size 𝐾 in RelGT.

Dataset Task (# train) MAE ↓ RelGT

K=100

RelGT

K=300

RelGT

K=500

rel-avito ad-ctr
Test 0.0375 0.0374 0.0351

Val 0.0329 0.0319 0.031

rel-trial site-success
Test 0.3739 0.3674 0.3842
Val 0.3708 0.372 0.376

rel-hm item-sales
Test 0.055 0.0532 0.052

Val 0.0643 0.0619 0.061

Dataset Task (# train) AUC ↑ RelGT

K=100

RelGT

K=300

RelGT

K=500

rel-avito
user-clicks

Test 0.6628 0.6491 0.6334
Val 0.6437 0.6622 0.6632

user-visits
Test 0.6664 0.6653 0.6627
Val 0.7013 0.701 0.7005

rel-event user-ignore
Test 0.7674 0.8105 0.8068
Val 0.8682 0.8853 0.8843

rel-trial study-outcome
Test 0.7078 0.6526 0.666
Val 0.6575 0.663 0.6877

rel-amazon user-churn
Test 0.7038 0.7054 0.7043
Val 0.7033 0.7044 0.7042

Table 9: Results on the entity regression tasks in RelBench. Lower is better. Best values are in bold. Relative gains are expressed

as percentage improvement over RDL baseline.

Dataset Task MAE ↓ RDL

Baseline

HGT

HGT

+PE

RelGT

(ours)

% Rel.

Gain

rel-f1 driver-position
Test 4.022 4.1598 4.2358 3.9170 2.61
Val 3.193 3.3517 2.9894 3.3257

rel-avito ad-ctr
Test 0.041 0.0441 0.0494 0.0345 15.85
Val 0.037 0.0409 0.0456 0.0314

rel-event user-attendance
Test 0.258 0.2635 0.2562 0.2502 2.79
Val 0.255 0.2617 0.2574 0.2548

rel-trial
study-adverse

Test 44.473 43.3253 42.4622 43.9923 1.08
Val 46.290 45.9957 45.7966 46.2148

site-success
Test 0.400 0.4374 0.4431 0.3263 18.43
Val 0.401 0.4198 0.4245 0.3593

rel-amazon
user-ltv

Test 14.313 15.3804 15.9296 14.2665 0.32
Val 12.132 13.1017 13.5599 12.1151

item-ltv
Test 50.053 56.1384 55.6211 48.9222 2.26
Val 45.1401 51.2139 50.3468 43.8161

rel-stack post-votes
Test 0.065 0.0679 0.0680 0.0654 -0.62
Val 0.059 0.0617 0.0618 0.0592

rel-hm item-sales
Test 0.056 0.0655 0.0641 0.0536 4.29
Val 0.065 0.0749 0.0735 0.0627
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Table 10: Results on the entity classification tasks in RelBench. Higher is better. Best values are in bold. Relative gains are

expressed as percentage improvement over RDL baseline.

Dataset Task AUC ↑ RDL

Baseline

HGT

HGT

+PE

RelGT

(ours)

% Rel.

Gain

rel-f1
driver-dnf

Test 0.7262 0.7142 0.7109 0.7587 4.48
Val 0.7136 0.7678 0.7318 0.6804

driver-top3
Test 0.7554 0.6389 0.8340 0.8352 10.56
Val 0.7764 0.6659 0.6079 0.7958

rel-avito
user-clicks

Test 0.6590 0.6584 0.6387 0.6830 3.64
Val 0.6473 0.5977 0.5656 0.6649

user-visits
Test 0.6620 0.6426 0.6507 0.6678 0.88
Val 0.6965 0.6696 0.6732 0.7024

rel-event
user-repeat

Test 0.7689 0.6717 0.6590 0.7609 -1.04
Val 0.7125 0.6247 0.5974 0.7285

user-ignore
Test 0.8162 0.8348 0.8161 0.8157 -0.06
Val 0.9170 0.8896 0.8940 0.8868

rel-trial study-outcome
Test 0.6860 0.5679 0.5691 0.6861 0.01
Val 0.6818 0.5985 0.5925 0.6678

rel-amazon
user-churn

Test 0.7042 0.6608 0.6589 0.7039 -0.04
Val 0.7045 0.6639 0.6622 0.7036

item-churn
Test 0.8281 0.7824 0.7840 0.8255 -0.31
Val 0.8239 0.7845 0.7846 0.8220

rel-stack
user-engagement

Test 0.9021 0.8898 0.8852 0.9053 0.35
Val 0.9059 0.8914 0.8847 0.9033

user-badge
Test 0.8986 0.8652 0.8518 0.8632 -3.94
Val 0.8886 0.8760 0.8691 0.8741

rel-hm user-churn
Test 0.6988 0.6773 0.6491 0.6927 -0.87
Val 0.7042 0.6814 0.6502 0.6988
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