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ABSTRACT

Organic photovoltaic (OPV) materials offer a promising avenue toward cost-
effective solar energy utilization. However, optimizing donor-acceptor (D-A)
combinations to achieve high power conversion efficiency (PCE) remains a sig-
nificant challenge. In this work, we propose a framework that integrates large-
scale pretraining of graph neural networks (GNNs) with a GPT-2 (Generative
Pretrained Transformer 2)-based reinforcement learning (RL) strategy to design
OPV molecules with potentially high PCE. This approach produces candidate
molecules with predicted efficiencies approaching 21%, although further exper-
imental validation is required. Moreover, we conducted a preliminary fragment-
level analysis to identify structural motifs recognized by the RL model that may
contribute to enhanced PCE, thus providing design guidelines for the broader re-
search community. To facilitate continued discovery, we are building the largest
open-source OPV dataset to date, expected to include nearly 3,000 donor-acceptor
pairs. Finally, we discuss plans to collaborate with experimental teams on synthe-
sizing and characterizing AI-designed molecules, which will provide new data to
refine and improve our predictive and generative models.

1 INTRODUCTION

Organic photovoltaics (OPVs) have attracted broad attention in the research community because
of their potential to enable lightweight, flexible, and cost-effective solar cells. One of the primary
challenges in advancing OPV technology lies in identifying donor-acceptor pairs with outstanding
power conversion efficiencies (PCEs). In the past, designing new donors and acceptors relied heavily
on labor-intensive trial-and-error experiments and incremental modifications to existing structures.
Machine learning (ML) and data-driven approaches can substantially reduce the time and cost of
this design process by efficiently exploring large chemical design spaces and providing rapid perfor-
mance predictions. However, the success of ML-based molecular design depends on the availability
of high-quality datasets and on models capable of capturing subtle structure-property relationships.
A review of the relevant literature indicates that most prior studies have focused on either a single
system (Sun et al., 2024) or on property prediction alone. In the few instances where molecular
generation or exploration is addressed, methods such as screening and combining existing molecu-
lar structures, variational autoencoders (VAEs), or genetic algorithms are employed. (Greenstein &
Hutchison, 2023)(Sun et al., 2024)(Zhang et al., 2025), these approaches typically optimize known
structures, exhibiting relatively limited capacity to generate and explore genuinely novel molecules.
Furthermore, the majority of these studies employ donor-acceptor datasets of about 500-1,500 en-
tries (Miyake & Saeki, 2021)(Wu et al., 2020)(Greenstein & Hutchison, 2023), covering relatively
narrow material systems and thereby limiting generalizability to out-of-distribution structures.
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In this work, we combine large-scale graph neural network (GNN) pretraining with reinforcement
learning (RL) to optimize donor-acceptor pairs for higher PCE. By integrating quantum-level prop-
erty prediction tasks (specifically, highest occupied molecular orbital (HOMO) and lowest unoc-
cupied molecular orbital (LUMO) energies) with a molecular masking and reconstruction task, we
obtain embeddings that effectively capture multi-level information. We then apply self-attention and
cross-attention modules to fuse the donor and acceptor embeddings, resulting in more accurate PCE
predictions than those produced by methods relying on molecular fingerprints or simple GNN-based
embeddings. These predictions subsequently serve as a reward function within a GPT-2-based RL
strategy to generate new candidate molecules. Through multiple rounds of optimization, the model
converges on structures with progressively higher predicted PCE, thereby demonstrating the feasi-
bility of our end-to-end, AI-driven design pipeline. Concurrently, we are finalizing the release of the
largest curated OPV dataset to date, which is expected to include nearly 3,000 donor-acceptor pairs,
with the aim of accelerating further innovation in the OPV research community.

2 METHODOLOGY

Our research approach begins with constructing effective embeddings for donor and acceptor
molecules. To build robust embeddings, we pretrain a GNN using approximately 51k organic small
molecules (Lopez et al., 2017), each associated with SMILES (Simplified Molecular Input Line
Entry System) notations(Weininger, 1988) and corresponding HOMO and LUMO data.

The pretraining process primarily involves two core tasks. The first task is molecular masking and
reconstruction, similar to the Masked Language Model (MLM) in language models. In this process,
SMILES strings are converted into graph representations, and some structures are masked to en-
courage the model to recover the missing elements. This strategy helps the GNN learn meaningful
chemical features and connectivity patterns. The second task uses the aforementioned data to pre-
dict HOMO and LUMO energies, enabling the model to directly capture the electronic properties
that are vital for OPV performance. Once pretraining is complete, the resulting embeddings are
used for donor-acceptor property prediction. We then incorporate self-attention and cross-attention
mechanisms to capture interactions between donor and acceptor embeddings, thereby highlighting
the significance of specific functional groups and structural motifs. Finally, the fused feature repre-
sentations are fed into a multilayer perceptron (MLP) to output predicted PCE.

Figure 1: The Structure of the Pretrain Model and Predictor Model.

To explore novel molecular designs, we introduce a generator based on the classical autoregressive
language model architecture, GPT-2 (Radford et al., 2019), into the reinforcement learning loop (Hu
et al., 2023). In this process, a partially specified molecule (either a donor or an acceptor) serves
as a prompt, and the generator produces candidate structures for the missing counterpart. The pre-
trained power conversion efficiency predictor acts as a reward function, guiding the generator to
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generate more efficient molecule pairs in successive iterations. Chemical screening methods, such
as basic rule checks and RDKit validations, ensure that the generated molecules are structurally
valid. After multiple rounds of optimization, the generator will converge to a set of donor-acceptor
(D-A) structures with high predicted PCE values. Although these values need to be experimentally
verified, they highlight the potential of combining graph neural network-based property prediction
with reinforcement-learning-driven generation for the discovery of organic photovoltaics.

(a) (b)

Figure 2: (a) The architecture of the GPT. (b) The Structure of the RL model.

The proposed GPT architecture, as illustrated in Fig.2(a), comprises a hierarchical Transformer-
based generator with three core components: 1) Embedding Layer combining SMILES token em-
beddings and learnable positional encodings; 2) Stacked Transformer Blocks featuring masked 8-
head self-attention with causal constraints, layer normalization, and feed-forward networks with
quadruple hidden dimension; 3) Prediction Head generating token probabilities through final layer
normalization and linear projection. The proposed reinforcement learning framework integrates
policy optimization with knowledge preservation through a dual-objective loss formulation. Each
GPT agent, initialized from a shared pre-trained generative prior, optimizes a squared error function
combining reward maximization and policy regularization as

L(x; θ) = [logPPrior(x)− logPAgent(x; θ) + σ · s(x)]2 (1)

where x is the generated molecular SMILES string, logPPrior denotes the pretrained generator’s log-
likelihood, logPAgent represents the learnable agent distribution parameterized by model weights θ.
This design introduces three essential components: 1) The divergence term logPPrior − logPAgent
enforces proximity to the original molecular generation distribution, effectively preventing catas-
trophic forgetting through implicit KL divergence regularization; 2) The reward term s(x) injects
PCE preference signals via learned scoring functions; 3) The quadratic formulation automatically
balances magnitude discrepancies between policy constraints and reward signals. The reward coeffi-
cient σ dynamically decays based on achieved score improvements to stabilize policy optimization.
By simultaneously optimizing syntactic validity through likelihood preservation and chemical desir-
ability through score maximization, this loss architecture enables stable policy improvement while
maintaining fundamental molecular syntax constraints inherited from the pre-trained generator.

3 EXPERIMENTS AND RESULTS

We have curated a dataset of approximately 2,500 donor-acceptor pairs, each featuring experi-
mentally measured PCE values and various related properties (such as Jsc, Voc, fill factor, and
donor/acceptor band energies). This dataset spans a diverse range of polymer and small-molecule
donors, as well as both fullerene and non-fullerene acceptors. We compared our pretrained model
with an unpretrained model and a baseline model built on molecular fingerprints and random
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forests. The results show that knowledge gained from the molecular masking-reconstruction and
HOMO/LUMO prediction tasks substantially reduces the mean squared error (MSE) in PCE predic-
tion.

During the reinforcement learning phase, our model undergoes iterative updates guided by a re-
ward signal based on power conversion efficiency (PCE)(see Fig.4). A chemical validity screening
mechanism ensures that the generated molecules are synthetically feasible. To date, we have de-
signed corresponding donor and acceptor molecules for the widely studied acceptor Y6 (Yuan et al.,
2019) and donor PBDB-TF (Zhang et al., 2015),(see Fig.5, 6). Notably, among the newly generated
donor molecules designed for Y6, the top-ranked candidates exhibit predicted PCE values exceed-
ing 21%, whereas the highest PCE recorded in the dataset for Y6-based systems is approximately
19%. Although experimental validation is still required, these findings underscore the significant
enhancement in virtual screening capabilities.

We also performed a preliminary fragment-level frequency analysis on the generated donors and ac-
ceptors. The analysis revealed recurring aromatic scaffolds and electron-deficient moieties that the
model appears to favor. For donor structures, extended conjugation motifs and electron-rich cores
were particularly common, while in acceptor structures we frequently observed strongly electron-
withdrawing groups, which may contribute to enhanced charge-transfer stability. Frequent halo-
genation and specific substitution patterns suggest that the model has learned key design principles
for balancing energy levels and improving blend morphology. Nonetheless, our fragment-level anal-
ysis remains at an early stage, and further in-depth exploration incorporating expert knowledge is
necessary.

4 CONCLUSION AND FUTURE WORK

We propose a unified approach that integrates graph neural network (GNN) pretraining and rein-
forcement learning to advance the design of organic photovoltaic (OPV) materials. A reinforcement
learning-based generator, built upon the GPT-2 architecture, generates donor and acceptor candi-
dates with predicted power conversion efficiencies potentially exceeding 20%. Equally important,
we will conduct a detailed molecular fragment analysis to elucidate the molecular features under-
lying these high-efficiency predictions, providing valuable insights for further optimization and ex-
perimental validation.

Looking ahead, we plan to collaborate with experimental laboratories to synthesize and test the most
promising candidate materials identified by our reinforcement learning framework. The results from
these experiments will be incorporated into our model, facilitating continuous improvements in both
the performance predictor and the molecular generator. Additionally, we are preparing to release
the largest curated OPV dataset to date, expected to contain nearly 3,000 donor-acceptor pairs, with
the aim of accelerating innovation in the OPV research community. We believe that our approach,
which integrates data-driven embedding representations, attention-based interaction modeling, and
reinforcement learning, represents a significant step toward more efficient and targeted discovery of
high-performance organic photovoltaic materials.
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A APPENDIX

A.1 DATASET DETAILS

Organic Small Molecule Dataset: The dataset used for GNN pretraining consists of approxi-
mately 51,000 organic small molecules, sourced from the dataset published by Lopez et al. (2017).
The molecules were constructed by assembling molecular functional fragments, and their HOMO
and LUMO energy levels were obtained via DFT calculations and subsequently calibrated using
experimental data.

Donor-Acceptor Pair Dataset: This dataset currently contains approximately 2,500 donor-
acceptor pairs, with an expected final dataset size of around 3,000 pairs. The distribution of de-
vice parameters of the current datasets can be seen in Fig.3. During dataset construction, we
first collected open-source datasets published by previous researchers (Greenstein & Hutchison,
2023)(Miyake & Saeki, 2021)(Wu et al., 2020), performed deduplication and calibration, and cor-
rected potential errors in SMILES representations that may have resulted from recording mistakes.
Additionally, we standardized the recording format for various parameters.

Since data collected by different researchers may follow distinct conventions—such as truncating
molecular side chains to ethyl groups or simplifying polymers to trimers or hexamers (Greenstein &
Hutchison, 2023), data from multiple sources could not be directly merged. To address this issue, we
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manually verified each dataset entry and re-recorded the data using a unified methodology. We are
actively collecting additional device data, and each dataset entry includes precise records of power
conversion efficiency (PCE) and related properties, such as (Jsc, Voc, FF, and energy levels), along
with detailed information on data sources.

Figure 3: The distribution of device parameters

A.2 MODEL HYPERPARAMETER SETTINGS

GNN Model: The number of layers in the Graph Neural Network (GNN) is set to 3. Each layer
consists of a GATv2Conv layer (Brody et al., 2021), a non-linear layer, and a Dropout layer. In the
molecular masked reconstruction task, the masking ratio is set to 21%. For the prediction of the
Highest Occupied Molecular Orbital (HOMO) / Lowest Unoccupied Molecular Orbital (LUMO),
AttentionalAggregation is used for attention pooling, and the final results are regressed. For both
tasks, AdamW is used as the optimizer, and the learning rate is dynamically adjusted using Re-
duceLROnPlateau.

PCE Predictor Model: The model employs a dual-encoder architecture in which two pre-trained
graph neural networks independently extract both graph-level and node-level embeddings for donor
and acceptor molecules. Bidirectional cross-attention is then applied to the node-level embeddings
using the Multihead Attention module with 8 heads and dropout, enabling donor-to-acceptor and
acceptor-to-donor interactions. The resulting attention outputs are aggregated via mean pooling and
subsequently concatenated with the corresponding graph-level embeddings to form a fused repre-
sentation. This fused feature vector is processed by a regression head consisting of a linear layer,
a ReLU activation, a dropout, and a final linear layer to generate the prediction. AdamW is uti-
lized as the optimizer, with the learning rate dynamically adjusted through the ReduceLROnPlateau
scheduler.

GPT-2-Based Generator: The fine-tuning phase employs 1000 training iterations with a batch
size of 128. The reinforcement learning framework implements a linear reward modulation strategy
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where the reward coefficient (σ = 100) decays proportionally to training progress, without explicit
reward discount factors. Molecular exploration integrates multinomial sampling-based probabilistic
generation of SMILES with top-5% experience replay from episodic memory.

A.3 SUPPLEMENTARY DETAILS ON MOLECULAR DESIGN

Figure 4: Top-1 PCE Score Trend for Generated Donor-Acceptor Pairs

Fig.4 illustrates the evolution of the top-1 PCE values derived from the donor-acceptor pairs stored
in memory as the GPT-2-Based Generator undergoes fine-tuning. Notably, the trend indicates a
progressive enhancement in the generated pairs’ performance, culminating in a maximal PCE value
that underscores the model’s optimization capabilities. In particular, at training step 800, when using
PBDB-TF as the donor, the maximum observed PCE reaches 14.48%, whereas employing Y6 as the
acceptor yields a maximum of 20.99%.
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Figure 5: Some of the Top Acceptors designed for PBDB-TF

Figure 6: Some of the Top Donors designed for Y6
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