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Figure 1: Text-to-image synthesis by CLIP inversion. CLIP−1 inverts CLIP’s image encoder using implicit
neural representations, enabling text-to-image synthesis without any fine-tuning of CLIP or dedicated gener-
ative decoder. All samples are generated with CLIP ViT-B/32 Radford et al. (2021), with top rows showing
generic scene prompts and bottom rows illustrating complex captions from MS-COCO Lin et al. (2014).

ABSTRACT

CLIP is a discriminative model trained to align images and text in a shared em-
bedding space. Due to its multimodal structure, it serves as the backbone of
many generative pipelines, where a decoder is trained to map from the shared
space back to images. We show that image synthesis is nevertheless possible us-
ing CLIP alone—without a pre-trained generative decoder or CLIP tuning. Our
approach optimizes a frequency-aware implicit neural representation that encour-
ages coarse-to-fine generation by stratifying frequencies across network layers. To
stabilize this inverse mapping, we introduce adversarially robust initialization, a
lightweight Orthogonal Procrustes projection to align local text and image embed-
dings, and a blending loss that anchors outputs to natural image statistics. With
CLIP frozen, this framework unlocks capabilities such as text-to-image genera-
tion, style transfer, and image reconstruction. Our findings suggest that discrimi-
native models may hold untapped generative potential, hidden in plain sight.

1 INTRODUCTION

Text-to-image generation has progressed from a challenge to a widely accessible technology, with
recent models achieving photorealistic results and remarkable creative abilities (Betker et al., 2023;
Saharia et al., 2022; Nichol et al., 2022; Chang et al., 2023). Among these, latent diffusion mod-
els (Rombach et al., 2022) currently define the state-of-the-art by relying on an encoder–decoder
architecture, where the encoder maps the input text into a latent representation, and the decoder re-
constructs an image from it. Foundational vision-language models like CLIP (Radford et al., 2021)
are often used as text encoders (Betker et al., 2023; Wang et al., 2022; Tao et al., 2023), whereas the
decoder is typically a diffusion model – by far one of the most computationally demanding stages.
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In this paper, we show that CLIP alone can perform text-to-image generation, without a pretrained
generative decoder. We achieve this by inverting the CLIP vision encoder: rather than mapping an
image to its latent embedding, we start from a CLIP embedding and reconstruct the corresponding
image. Although prior work has attempted this through direct pixel space optimization (Kazemi
et al., 2024; Ganz & Elad, 2023; 2024), such approaches produce low-quality output with visible
artifacts (Kazemi et al., 2024) or require additional training (Ganz & Elad, 2023; 2024). In contrast,
we introduce CLIP−1, a pretrained-decoder-free and CLIP-tuning-free solution based on Implicit
Neural Representations (INRs) (Liu et al., 2024). Fig. 1 offers our results on generic prompts and
longer, more complex prompts from MS-COCO (Lin et al., 2014).

We first retrieve a low-frequency seed INR whose caption is most similar to the prompt. Because
this INR was pre-trained on a blurred version of its image with Adversarial Weight Perturbations
(AWP) (Wu et al., 2020), its low-frequency weights are stable and provide a robust anchor. We then
refine the INR layer by layer: a peaked learning-rate schedule moves from low- to high-frequency
layers, progressively adding details in a coarse-to-fine manner. During refinement, we encourage
on-manifold solutions using cosine losses against a style prompt and a few retrieved natural images,
eventually resulting in more aesthetic generations. Without pixel-space optimization, our approach
avoids structural artifacts and results in a coarse-to-fine generation akin to diffusion models.

Despite the stability of the INR backbone, inversion still suffers from CLIP’s modality gap (Liang
et al., 2022b; Mistretta et al., 2025; Zhang et al., 2024): text and image embeddings fall on slightly
offset sub-manifolds, making the raw prompt embedding an unreliable target. We bridge this gap by
seeking an optimal orthogonal transformation via Procrustes analysis (Wang & Mahadevan, 2008;
Maiorca et al., 2023), using the k nearest caption–image pairs to align the prompt embedding with
the image manifold and produce a well-conditioned target for optimization.

We benchmark our pipeline on 10k MS-COCO (Lin et al., 2014) captions, reporting Fréchet In-
ception Distance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al., 2016), and
CLIPSIM metric (Hessel et al., 2021). Compared with DAS (Fort & Whitaker, 2025), a concur-
rent inversion-based approach that similarly requires no pretrained decoder or CLIP fine-tuning,
our method achieves half the FID while almost doubling IS, producing crisper, more faithful im-
ages. The same frozen model transfers zero-shot to image reconstruction, controlled image edits,
and neural style transfer, confirming the versatility of the INR backbone. Ablations show that (i)
adversarially robust INRs boost quality, (ii) Procrustes alignment yields sharper, more semantically
aligned images, and (iii) frequency-steered optimization suppresses high-frequency artifacts.

In summary, our contributions are: (1) Text-to-image synthesis by inversion, without pretrained
decoders or CLIP tuning. We repurpose a frozen CLIP as a text-to-image generator by optimizing
a frequency-aware Implicit Neural Representation instead of generating images directly. Our
pipeline (i) retrieves an adversarial-robust, blur-initialized INR that anchors low-frequency con-
tent, and (ii) refines its weights with a coarse-to-fine, layer-wise schedule guided solely by CLIP
losses—eliminating the need for external decoders or re-training. (2) Modality-gap reduction with
orthogonal Procrustes. We bridge the mismatch between CLIP’s text and image sub-manifolds
with a lightweight orthogonal transformation on the k nearest caption–image pairs, projecting the
prompt embedding into the image manifold to stabilize inversion. (3) Extensive empirical valida-
tion. We extensively evaluate our pipeline, outperforming prior work while demonstrating zero-shot
transfer to reconstruction, controlled edits, and style transfer, with ablations confirming each com-
ponent’s benefit. We publicly release all code and models to promote future research.

2 RELATED WORK

Image generative models. Modern image generators fall into three broad families: GANs, diffusion
models, and normalizing flows. GANs train a generator to fool a discriminator with realistic sam-
ples, a strategy refined from early DCGANs (Radford et al., 2015) to StyleGAN-T (Sauer et al.,
2023) and BigGAN (Brock et al.). Diffusion models begin with pure noise and iteratively denoise
it back to an image; latent diffusion (Rombach et al., 2022), GLIDE (Nichol et al., 2022), DALL-E
2 (Ramesh et al., 2022) and DALL-E 3 (Betker et al., 2023) differ mainly in how they compress
the signal and guide it with text. Normalizing flows (e.g., (Kingma & Dhariwal, 2018; Esser et al.,
2024)) learn a chain of invertible transforms so that sampling the base Gaussian and running the
reverse pass yields data in a few steps. Despite these distinct mechanics, every approach relies on
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a latent-to-image decoder: the generator in GANs, the denoising network in diffusion, or the re-
verse flow in normalizing-flow models. Our work bypasses the need for a pretrained latent-to-image
decoder by directly inverting a frozen discriminative encoder (CLIP).

Model inversion. Several recent works attempt to repurpose CLIP for image generation by inverting
its embeddings. The earliest approach (Kazemi et al., 2024) directly optimises randomly initialised
pixels to minimise the cosine distance between the CLIP embedding of the image and that of a
target text prompt. GALIP (Tao et al., 2023) introduces a CLIP-conditioned GAN framework, train-
ing both a generator and discriminator to enable fast, controllable synthesis with fewer parameters
and less data than large-scale diffusion models. CLIPAG (Ganz & Elad, 2023) does not rely on
a pretrained decoder but applies adversarial fine-tuning to CLIP itself to improve generation qual-
ity. EB-CLIP (Ganz & Elad, 2024) further extends this idea, where the generation is formulated
as energy minimisation in CLIP’s joint image-text space. Concurrently with our work, DAS (Fort
& Whitaker, 2025) shows that a frozen CLIP can be inverted by optimising at multiple spatial res-
olutions in a coarse-to-fine manner. Like us, DAS reveals generative priors within discriminative
models, but differs by operating directly in pixel space rather than through a frequency-aware im-
plicit representation.

Adversarial robustness. Adversarial training has become a core strategy for improving model robust-
ness, with (Madry et al., 2018) introducing the first widely adopted method using input perturbations.
TRADES (Zhang et al., 2019) extended this by leveraging KL divergence to balance accuracy and
robustness, later refined by Cui et al. (2023) to address its asymmetry. Beyond input-space attacks,
AWP (Wu et al., 2020) proposed perturbing model weights during training, improving generalisa-
tion by flattening the loss landscape. While primarily used for classification, recent work (Mirza
et al., 2024) suggests robust models also encode stronger generative priors.

Image modeling with INRs. Implicit Neural Representations model images as continuous functions
that map spatial coordinates (i, j) to RGB values via a neural network, typically an MLP. To cap-
ture fine detail, they rely on frequency-aware components such as positional encodings (Tancik
et al., 2020) or periodic activation functions like SIREN (Sitzmann et al., 2020). However, fixed-
frequency activations limit adaptability, motivating FINER (Liu et al., 2024), which introduces
variable-periodic activations that dynamically adjust to local frequency content. We adopt FINER
for its efficient representation, well-suited to our inversion task, and to mitigate the spectral bias that
hampers high-fidelity reconstruction in standard INRs.
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Figure 2: CLIP−1 text-to-image inversion pipeline. The image is represented with an Implicit Neural
Representation (INR) fϕ(i, j), optimizing weights to match an input text prompt. The inversion starts from
a robust INR trained with Adversarial Weight Perturbation (AWP). The optimization updates the INR layer-
wise so that the embedding of its rendering aligns with the text prompt embedding. The procedure includes
augmentations, CLIP embeddings averaging, and projection onto the unit sphere. To align text and image
embeddings, we apply an orthogonal Procrustes transformation to address the modality gap in CLIP.
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Given an input text prompt, our approach aims to generate images by inverting the corresponding
CLIP embeddings. The pipeline consists of three main stages: (i) a data preparation step (performed
once offline), (ii) an initialization step leveraging preprocessed data to retrieve a suitable starting
point, (iii) an optimization procedure refining the initial image to match the target text.

3.1 PRELIMINARIES

Implicit Neural Representations. INRs represent images as functions mapping spatial coordinates
(i, j) to RGB values fϕ(i, j) = (r, g, b), where ϕ are parameters of a neural network. The architec-
ture is typically a Multilayer Perceptron (MLP), using positional encoding or frequency-aware acti-
vations for compact, efficient representation, crucial for image synthesis via iterative optimization.
We adopt FINER (Liu et al., 2024), which enhances fine-detail modeling using variable periodic
activations. It is based on SIREN (Sitzmann et al., 2020), which uses fixed-frequency activation
zi = sin (ω(Wizi− 1 + bi)). FINER improves adaptability by introducing an additional coeffi-
cient:

zi = sin
(
ωαi(Wizi−1 + bi)

)
, αi = |Wizi−1 + bi|+ 1 , (1)

where αi dynamically sets local frequency based on input magnitude. We leverage FINER’s bias
initialization, which stratifies frequencies across layers, capturing low frequencies early and high
frequencies deeper, leading to better convergence and reconstruction. See Fig. 6a for an illustration.

3.2 DATA PREPARATION

The computation of the CLIP embedding of both images and captions of the chosen dataset is per-
formed offline once and stored in a lightweight index using FAISS (Johnson et al., 2019), which is
then used to retrieve the dataset sample closest to the input prompt. We used images from LAION
Aesthetics, a subset of LAION-5B by Schuhmann et al. (2022). This data serves two purposes:
(i) training INRs for initializing text-to-image optimization and (ii) computing natural image CLIP
embeddings to act as anchor points in the latent space.

Each image is first blurred using a Gaussian filter to suppress high frequencies, providing a smoother
starting point for inversion. An INR is then trained to reconstruct the blurred image, and its weights
are stored. For the i-th image, the predicted pixel values from the INR are fϕi , with weights ϕi.
The INR images are then encoded via CLIP to obtain visual embeddings θI

(
fϕi

)
. The CLIP text

embeddings θT

(
yi
)

of the corresponding captions are also stored. This results in a dataset D =

{θI

(
fϕi

)
, fϕi ,θT

(
yi
)
}, containing CLIP image embeddings, INRs, and CLIP text embeddings for

each training sample.

Robust INR initialization. The INR weights ϕi can be viewed as representations of the i-th image –
each uniquely capturing its content, like the RGB representation in pixels. However, small pertur-
bations in these weights can significantly alter the reconstructed image, making them sensitive and
potentially unstable for downstream tasks. To address this, we propose a training method that im-
proves INR weights robustness by incorporating adversarial perturbations during training. Given an
INR with weights ϕ, we define an adversarial weight perturbation (AWP) ∆ϕ ∈ Ω, where Ω bounds
the perturbation range. The training objective is to make the model resilient to such perturbations
by solving the following min-max optimization:

min
ϕ

max
∆ϕ∈Ω

L (fϕ+∆ϕ, blur(x)) , (2)

where fϕ+∆ϕ is the perturbed INR output and L is the reconstruction loss function w.r.t. the blurred
target image x. Unlike standard adversarial training in the input space (Wu et al., 2020), our ap-
proach perturbs only the model weights. The perturbation set is constrained by a relative norm
bound Ω = {∆ :

∥∥∆∥∥ ≤ γ
∥∥ϕ∥∥}, with γ controlling the allowed perturbation magnitude. This

robust training is applied only once, during the construction of the initial INR at the inversion step
n = 0. It ensures that early optimization steps do not cause the weights to drift too far from the
frequency content of the initialization, improving stability during inversion. The supplementary ma-
terial details the training procedure using the AWP algorithm (§A.3). Since training a single INR is
fast, it can be fit on the fly, eliminating the need to store weights for the entire dataset. The resulting
weights can be cached and reused for reproducibility and faster consecutive generations with the
same initialization, or discarded to encourage more diverse samples.
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3.3 INITIALIZATION AND MODALITY GAP HANDLING

Inversion initialization. Text-to-image generation begins with a text prompt y, which is encoded
using the CLIP text encoder to obtain et = θT (y) ∈ Rd. To initialize the inversion, we search our
dataset D for the INR whose associated caption has the highest cosine similarity to et. This serves
as the starting point for the optimization.

Bridging the modality gap. CLIP aligns text and image embeddings globally, projecting them onto the
unit sphere. However, local differences between modalities persist: text embeddings tend to encode
abstract semantics, while image embeddings reflect concrete visual features. Directly optimizing an
image to match a text embedding often causes artifacts or textual hallucinations – the model overfits
to abstract concepts and produces unrealistic visuals (Liang et al., 2022a).

To address this, we learn a local transformation to align text and image embeddings more precisely.
We retrieve the k nearest neighbors of the input text embedding et from our dataset D, forming
two matrices: ET ∈ Rd×k, encoding the k closest text embeddings, and EI ∈ Rd×k encoding their
corresponding image embeddings. Solving the orthogonal Procrustes problem we find an orthogonal
matrix R that best aligns these two sets:

min
R
||RET −EI ||F s.t. R⊤R = I , (3)

where ∥ · ∥F is the Frobenius norm. This is performed for each input prompt. The resulting or-
thogonal matrix R aligns the local structure of text embeddings with that of image embeddings. We
then transform the input text embedding into the image modality as et2i = Ret, which becomes the
target embedding for the CLIP inversion process.

3.4 INVERTING CLIP WITH IMPLICIT NEURAL REPRESENTATIONS

Text-To-Image via CLIP Inversion. Our pipeline, shown in Fig. 2, inverts a CLIP text embedding
to synthesize an image using an INR. Given a text prompt y, we obtain the projected image-space
embedding et2i = RθT (y). The INR fϕ is optimized so that its output image matches et2i when
passed through the frozen CLIP image encoder θI . This is formalized as:

ϕ = argmin
ϕ
L(θI

(
fϕ

)
, et2i) where et2i = RθT (y) . (4)

Here, L is the cosine distance, and gradients flow from CLIP back to the INR parameters ϕ.

Layer-wise frequency optimization. Instead of optimizing pixel values , we update the INR weights,
leveraging FINER’s property that network layers correspond to different frequency bands. The
INR is structured as an L-layer MLP, with each layer representing a specific frequency range. To
guide the optimization process, we apply Gaussian learning rate scheduling: at each iteration, we
focus the optimization on a specific layer by assigning it a peak learning rate, while attenuating the
rates of neighboring layers according to a Gaussian curve (see Fig. 7 in the Appendix). This helps
reconstruct coarse features before fine details, improving stability and fidelity.

Augmentations for stable optimization. Following CLIPDraw (Frans et al., 2022) and CLIPAG (Ganz
& Elad, 2023), we apply color, scale, and shear augmentations during optimization. Augmentations
are CLIP-encoded, averaged, and projected onto the unit sphere: e⋆i = 1

n

∑n
k=1 θI

(
augment(fϕk)

)
,

enforcing robustness to distortions.

Blending natural image priors. To further guide generation toward realistic outputs, we incorporate
information from natural images. For a given prompt y, we retrieve the k most similar image
embeddings from a reference dataset using cosine similarity. These are linearly combined into a
blended target embedding e⋆img , with weights given by the softmax of the similarity scores. A
blending loss Lblend then encourages the output embedding e⋆i to remain close to the manifold.

Final optimization formulation. The complete CLIP−1 optimization pipeline updates the INR pa-
rameters ϕ to generate realistic images, leveraging both augmented embeddings and natural image
priors, with no CLIP retraining or modification. The full procedure is described in Eq. (5)

(a) e⋆i = 1
n

∑n
k=1 θI

(
augment(fϕk)

)
(b) ϕ0 = minϕ max∆ϕ∈Ω L

(
fϕ+∆ϕ, blur(x)

)
(c) ϕn = ϕn−1 −∇ϕ

[
L(e⋆i , et2i) + βLblend

(
e⋆i , e

⋆
img

) ] (5)
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Table 1: MS-COCO text-to-image generation results. FID (lower is better), CLIPSIM and IS (both higher
are better), along with model sizes.

Betker et al.
(2023)

Nichol et al.
(2022)

Rombach et al.
(2022)

Ganz & Elad
(2023)

Ganz & Elad
(2024)

Ganz & Elad
(2024)

Kazemi et al.
(2024)

Fort & Whitaker
(2025)

Fort & Whitaker
(2025) Ours

DALL-E GLIDE LDM-KL-8 CLIPAG EB-CLIP EB-CLIP CLIP-Inv DAS DAS CLIP−1

ViT ViT XXL ViT ViT Ensemble

Synthesis by inversion × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tuning-free × × × × × × ✓ ✓ ✓ ✓
# Train params (M) 12000 6000 1450 88 88 1200 0 0 0 0
# Tot params (M) 12000 6000 1450 150 150 846 150 150 3x150 150
FID(↓) 27.5 12.2 23.3 42.3 68.3 23.4 140.1 161.8 121.6 72.5
CLIPSIM(↑) – – – 34.7 34.5 33.5 61.4 22.7 36.9 38.6
IS(↑) 17.9 – 20.03 18.7 – – 4.8 5.7 8.36 9.5

CLIPAG
Ganz & Elad

(2023)

CLIP-JEM
Ganz & Elad

(2024)

DAS
Fort &

Whitaker
(2025)

CLIP-Inv
Kazemi
et al.
(2024)

CLIP−1

(ViT-B/32)
CLIP−1

(RESNET)

CLIP−1

w/Ganz &
Elad (2023)

CLIP−1

w/Ganz &
Elad (2024)

(XXL)

«Meteor streaking through the night sky»

«A mist-covered field at daybreak with wildflowers glistening in early rays.»

Figure 3: Qualitative comparison of prior pixel-based methods against different CLIP−1 configurations.

Step (a) computes the CLIP embedding from the augmented INR outputs; step (b) initializes the
INR with adversarial weight perturbations to enhance robustness, and (c) updates the INR weights
via backpropagation using both alignment and blending losses.

4 EXPERIMENTS

We evaluate our inversion pipeline across a range of tasks. We begin with text-to-image genera-
tion on MS-COCO (Lin et al., 2014), comparing against both standard generative models and prior
inversion-based approaches, along with experiments to prove robustness to out-of-distribution sam-
ples (§4.1). Next, we demonstrate the generality of our method through zero-shot transfer to down-
stream tasks, including reconstruction, controlled modification, and style transfer (§4.2). Lastly, we
quantify the effect of each component through an ablation study (§4.3). Additional experiments in
the Appendix (§A.1) further validate the generative behavior of CLIP−1, showing consistent align-
ment while capturing natural pixel-level variability across runs.

4.1 TEXT-TO-IMAGE SYNTHESIS BY INVERSION

Setting. The goal is to generate visually realistic images that are semantically aligned with a natural
language description. To assess the visual fidelity of our method, we compute the Fréchet Inception
Distance (FID) (Heusel et al., 2017) and the Inception Score (IS) (Salimans et al., 2016) over a subset
of 10, 000 captions from MS-COCO (Lin et al., 2014). Since these metrics do not capture semantic
alignment with the prompt, we also report CLIPSIM (Hessel et al., 2021), which measures the cosine
similarity between the CLIP embeddings of generated images and their corresponding captions. We
compare our method against prior and concurrent inversion-based approaches, including those that
require CLIP fine-tuning (Ganz & Elad, 2023; Ganz et al., 2023) and those that do not (Fort &
Whitaker, 2025; Kazemi et al., 2024). As our method uses a frozen CLIP and no pretrained decoder,
we regard tuning-free baselines as the most relevant points of comparison. For completeness, we
also report results from state-of-the-art generative models that rely on both training and a dedicated

6
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Original Rec. 1 Rec. 2

(a) Reconstruction

Original Prompt 1 Prompt 2

(b) Controlled Modification

Original Reference Result

(c) Neural Style Transfer

Figure 4: Downstream Tasks. (a) Recreates the input image from its corresponding CLIP encoding. (b)
Alters the input image based on a specified prompt. Prompt 1: «Snowy peaceful landscape»
; Prompt 2: «Torrential rainfall, lightning bolts». (c) Applies the visual style of a
reference image to the input.

decoder (Betker et al., 2023; Nichol et al., 2022; Rombach et al., 2022). The implementation details
can be found in the supplementary material.

Results. Table 1 reports our results along with model sizes and architectural requirements. Among
inversion-based methods without pretrained decoders or CLIP tuning, CLIP−1 achieves the lowest
FID (72.5 vs. 161.8 for DAS-ViT (Fort & Whitaker, 2025)) and highest IS (9.5 vs. 5.7), marking a
substantial improvement in visual quality. Although diffusion-based models still attain lower FID,
they require orders of magnitude more parameters and full training pipelines, whereas our method
uses a frozen backbone and a lightweight INR. Finally, our method achieves a CLIPSIM of 38.6,
outperforming both training-free and fine-tuned baselines—except for CLIPInvert (Kazemi et al.,
2024), whose higher CLIPSIM can be attributed to overfitting to the target embedding, as evidenced
by its elevated FID and low IS. Taken together, these results indicate that Procrustes alignment and
frequency-aware INR optimization effectively improve text-image consistency without modifying
CLIP’s weights. Figure 3 further provides qualitative examples: compared to other training-free
baselines, our generations exhibit fewer structural artifacts and sharper details, and visually ap-
proach the quality of tuned approaches (Ganz & Elad, 2023; 2024). We also apply our pipeline in
a plug-and-play fashion to tuned CLIP variants, such as CLIPAG (Ganz & Elad, 2023) and CLIP-
JEM (Ganz & Elad, 2024), showing broader compatibility of our method with discriminatively
trained models. Additional results are available in the Appendix in Figure 8.

Robustness to distribution shift. We ablate initialization, Procrustes alignment, and blending loss,
forcing the Plain CLIP−1 variant to start from random INR weights. Despite this, it consistently out-
performs the DAS baseline on MS-COCO and Flickr30k (Table 3). Since all init/anchor embeddings
derive from LAION-Aesthetics, these benchmarks constitute a strict out-of-distribution evaluation.
Both Plain and Full CLIP−1 retain strong performance under this shift, with initialization serving
only as an optimization accelerator. Cross-dataset Fréchet distances (Table 2) confirm COCO and
Flickr lie far from LAION in CLIP space, underscoring the OOD nature of these benchmarks.

4.2 ZERO-SHOT TASK GENERALIZATION

To assess the versatility of our approach, we explore several downstream tasks, demonstrating that
the same inversion framework can successfully generate images in different settings without requir-
ing task-specific modifications or additional optimization.

Image reconstruction. The goal is to reconstruct a given input image using our inversion pipeline.
We treat the image as a target whose CLIP embedding is known, and optimize an INR to produce an
output that matches this embedding. The INR is initialized from a blurred version of the image, and
refined to align with the embedding of the full-resolution input, effectively operating as a decoder
recovering semantic content from latent space. Unlike text-to-image generation, this task provides
well-defined ground truth and serves as a controlled setting to evaluate inversion precision. Figure 4a
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Model MS-COCO Flickr30k

FID↓ CLIPSIM↑ IS↑ FID↓ CLIPSIM↑ IS↑
DAS (ViT) 161.8 22.7 5.7 220.5 38.1 6.5
DAS (Ensemble) 121.6 36.9 8.3 161.1 39.3 7.1
Plain CLIP−1 92.7 46.9 9.5 119.2 44.4 6.6
CLIP−1 (Full) 72.5 38.6 9.5 86.4 41.1 7.3

Table 3: Out of distribution eval-
uation on MS-COCO/Flickr30k.
Even without initialization, CLIP−1

surpasses DAS across all metrics.

(a)

Variant FID↓ CLIPSIM↑ IS↑
i. CLIP−1 107.1 38.8 7.7
ii. w/o Freq. Opt (F.O.) 185.1 30.5 7.8
iii. w/o AWP 121.0 43.0 7.3
iv. w/o F.O. w/o Proc. 111.3 46.4 9.1
v. w/o F.O. w/o Lblend 119.7 49.5 7.9

(b)

i. ii. iii. iv. v.

Figure 5: Quantitative ablation study. (a) Results on 1,000 MS-
COCO captions. (b) Samples for each case within the same prompt;
columns show: – i. full model – ii. frequency scheduling – iii. AWP
– iv. F.O. + Procrustes – v. F.O. + blending loss.

shows qualitative results on both artistic and photographic inputs. Across all examples, high-level
semantic content, such as facial identity or scene composition, is consistently preserved. Fine-
grained spatial details, especially in structured regions like faces or buildings, are approximated
with some distortion or shift, reflecting the inherent ambiguity of CLIP’s embedding space.

Table 2: Cross-dataset Fréchet Dis-
tances (mean± std, 10 runs) on CLIP
embeddings of 30k images and cap-
tions. High distances confirm COCO
and Flickr lie outside LAION’s embed-
ding space.

Metric Images Captions

Baseline (LAION split) 0.0034 ± 0.0001 0.0068 ± 0.0001
Baseline (COCO split) 0.0042 ± 0.0001 0.0034 ± 0.0001
Baseline (Flickr split) 0.0040 ± 0.0001 0.0040 ± 0.0001
COCO vs. LAION 0.3653 ± 0.0007 0.4639 ± 0.0007
Flickr vs. LAION 0.3669 ± 0.0009 0.5034 ± 0.0012

Controlled image modification. The goal is to modify an input
image according to a natural language prompt that specifies
a targeted change in content or style. The image is first en-
coded via an INR fitted to its original form. A text prompt
is then provided to guide the modification (e.g., “snowy land-
scape” or “torrential rainfall”). The INR is optimized to align
the CLIP embedding of the generated image with that of the
prompt, while starting from the original image representation.
This setup encourages localized, semantically consistent trans-
formations without disrupting the broader structure or identity
of the scene. Figure 4b shows three examples for the task. In
each row, the left-most column is the original image; the next two columns show the edits for “snow”
and “storm”. The road, the Great Wall, and the city keep their geometry and colour palette, while
only the requested weather effects (snow cover, rain streaks, lightning) are added. This confirms that
CLIP−1 can act as a prompt-driven image editor, producing targeted edits without explicit masks or
additional training.

Neural style transfer. We supply two images: a content photo and a style reference. The content
image is represented by an INR initialized to exactly reproduce the original photo; the style image
is fed only through the frozen CLIP encoder. Optimization minimizes a weighted sum of two CLIP-
based losses: (i) a style loss that pulls the INR’s embedding towards that of the reference painting,
and (ii) a content loss (weight 0.5) that keeps the embedding close to the original photo. Figure 4c
illustrates the outcome. In each case, the brush-stroke texture and overall palette of the reference
painting are transferred, while object layout and scene geometry remain intact. The method therefore
separates appearance from semantics without hand-crafted losses or additional training, indicating
that the inversion pipeline can exploit CLIP’s latent space to disentangle style from content.

4.3 ABLATION STUDY

We now perform a controlled ablation over the four key components: layerwise frequency schedul-
ing, adversarial weight perturbation (AWP), orthogonal Procrustes alignment, and the natural-image
blending loss; the corresponding ablated variants are referred to as (i), (ii), (iii), (iv). We run every
variant in the same 1000 captions from MS-COCO and report FID (Heusel et al., 2017), CLIP-
SIM (Hessel et al., 2021), and IS (Salimans et al., 2016); Better FID/IS and higher CLIPSIM show
better perceptual realism and stronger text–image agreement, respectively. In parallel, we visualize
representative generations so that the numerical shifts can be linked to visual outcomes. Additional
results can be found in the supplementary material.

The ablation shows that each proposed component plays a distinct, complementary role. When the
layer-wise learning-rate schedule is removed (ii) the INR is forced to optimize all frequency bands
simultaneously; high-frequency layers overfit first, so fine textures emerge before the coarse layout
has stabilized; the premature detail introduces stripe-like artifacts and drives FID to its worst value.
Dropping AWP (iii) preserves the coarse-to-fine dynamic but does not constrain weights to remain
on the manifold defined by the robust anchor, introducing neural artifacts; this allows the uncon-
strained result to align more closely with the caption, increasing CLIPSIM at the expense of realism
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«Panoramic view of a vast desert landscape at sunset with dramatic lighting and detailed
dunes»

(a) Qualitative ablation. Text-to-image synthesis of a desert landscape over 400 iterations, comparing our full
method (top row) with ablations: without AWP, without frequency-based optimization, and without both.

(FID ↑). Similarly, eliminating the orthogonal Procrustes projection (iv) pushes the optimization
toward the raw text embedding, i.e. slightly outside the image sub-manifold: CLIP rewards the
closer alignment (CLIPSIM ↑), but the outputs become noticeably busier, with sharper outlines,
cluttered details, and occasional duplicated elements. Finally, disabling the blending loss (v) stops
the optimizer from referencing real-photo statistics; colors turn harsher and small objects appear in
duplicate, which degrades FID yet inflates CLIPSIM as the model over-expresses caption tokens. In
the full model (i), frequency scheduling suppresses glitches, AWP keeps the solution near a stable
anchor, and both Procrustes and the blending loss guide the search along the natural-image manifold,
trading a few points of raw caption similarity for substantially higher visual quality. The qualita-
tive grid mirrors the numbers: (i) is the only variant that is simultaneously aesthetic, coherent, and
semantically faithful.

Figure 6a traces a prompt through 400 inversion steps to show how the most critical components
influence the optimization. Two broad patterns emerge. (i) Frequency scheduling governs the re-
finement path: when it is present (top two rows) the image is generated in a coarse-to-fine order
where color appears first, then shapes, then texture; without it (rows 3 & 4) high-frequency stripes
appear almost immediately and persist. (ii) AWP mitigates cumulative drift: when it is present (rows
1 & 3) the global scene layout stays stable throughout optimization, whereas its absence (rows 2 and
4) lets distortions and noise grow with every iteration. The variant lacking both safeguards shows
the combined failure modes, underscoring their complementary roles.

5 CONCLUSION

We present CLIP−1, an inversion-based approach that uses a frozen CLIP image encoder and no
pretrained decoder for text-to-image synthesis via implicit neural representations (INRs). Rather
than relying on a generative decoder, we show that CLIP, combined with a frequency-aware INR
and a lightweight alignment mechanism, can guide image synthesis directly from text prompts. Our
goal is not to compete with state-of-the-art generative models, but to highlight an underexplored
capability: a frozen discriminative model like CLIP can be coaxed into producing coherent, seman-
tically aligned images without any additional training or generative backbone. The same framework
supports zero-shot tasks such as image reconstruction, controlled edits, and neural style transfer
within a unified setup. These findings suggest new directions for repurposing pretrained models
for generation and broader implications for interpretability and robustness. Current limitations stem
from relying solely on the INR and associated losses to stay near the natural image manifold. Incor-
porating a projection step back onto the manifold could improve fidelity and regularization, offering
a promising direction for future work and deeper insight into CLIP’s embedding space.
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ETHICS, LIMITATIONS AND REPRODUCIBILITY

Ethics. We assert that this work does not raise identifiable ethical concerns or foreseeable negative
societal consequences. Rather, our contributions point toward improving the explainability of clas-
sifier models and their hidden biases, and toward future extensions enabling image generation on
commodity hardware and controllable image editing. Our generator, however, is guided by a frozen
CLIP model and therefore inherits its known societal biases, potential misuse risks (Kazemi et al.,
2024), and conceptual limits. To mitigate these issues, we performed preliminary experiments with
Safe-CLIP (Poppi et al., 2024), which successfully blocked harmful content, providing encouraging
evidence that safety-aware integrations can be effective.

Limitations. Our method’s quality is inherently tied to the representations encoded in CLIP: per-
formance may degrade for prompts that are abstract, rare in CLIP’s training data, or require fine
compositional detail (e.g., “a woman wearing planet-shaped earrings”). These challenges are in-
trinsic to classifier-inversion approaches, and we plan to address them more systematically in future
work.

Reproducibility. For reproducibility, we carefully document our full pipeline in (§A.4), along with
the complete AWP algoritm (§A.3), providing a step-by-step description of the inversion process.
Detailed implementation settings, including all hyperparameters used in our experiments, are further
reported in (§A.5).

LLM Usage. Large language models were used exclusively for text polishing and minor exposi-
tion refinements. All substantive research content, methodology, and scientific conclusions were
developed entirely by the authors.
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A APPENDIX

This appendix expands on key aspects of our work by providing additional technical details and
extended qualitative results. It is organized into eight sections, each addressing a specific area that
complements the main paper. Section Section A.1 examines the generative capability of CLIP−1,
highlighting its ability to synthesize diverse yet semantically consistent images. Section Section A.2
analizes runtime and resource efficiency, comparing memory usage against prior baselines. Sec-
tion A.3 offers a detailed explanation of the adversarial weight perturbation (AWP) training proce-
dure, including how the perturbation is computed and integrated into the overall training pipeline.
Section A.4 outlines the complete algorithm used for the text-to-image task. Section A.5 describes
the implementation setup, including model configurations, training parameters, and data preprocess-
ing choices. Section A.8 presents the best and worst 500 generations from MS-COCO prompts, the
same samples used in the paper’s evaluation. Section A.6 provides qualitative examples generated
with different pre-trained ViT-B/32 models, illustrating the variability introduced by different back-
bone initializations. Finally, Section A.7 includes additional qualitative results from the ablation
study, offering visual comparisons that highlight the contributions of individual components. This
appendix is intended to support reproducibility and provide a deeper insight into our methodology
and experimental findings.

A.1 GENERATIVE CAPABILITY AND INHERENT STOCHASTICITY

While our full pipeline leverages an informative initialization to improve convergence and quality,
the generative capability of CLIP−1 does not depend on it. The inversion framework can synthesize
images directly from a randomly initialized INR, which effectively acts as a noise input.

In generative models (GMs), GANs sample z ∼ U [0, 1] and diffusion models z ∼ N [0, 1]. In our
case, fixing the FINER INR’s inductive bias, each weight Wi is drawn from U

[
−
√
6/n,

√
6/n

]
and

each bias bi ∼ U [−p, p], where n is the neuron input count, p the initial high-frequency capacity.

This defines a tractable high-dimensional prior (d ≫ k × k) over the INR weight space, refined by
inversion on the text prompt. Different z produce distinct optimizations and outputs. This is novel
in our setting but similar to the multivariate Gaussian in DDPM with d = k×k or sampling in GAN
where d < k × k. Thus, our noise sources are tractable and sufficient for diversity.

To further assess generative behavior, we fixed a text prompt and generated multiple samples. We
measured (i) pixel-space variance across runs and (ii) the mean ± std of CLIP similarity between
each generated image and the prompt. Results in Table 4 indicate that CLIP−1 achieves substantially
higher pixel-space variance than DAS while maintaining comparable CLIP alignment. This confirms
that our method produces semantically consistent yet visually diverse outputs. The per-channel
variances closely match those of natural images, further validating the realism of the diversity.

Table 4: Intra-prompt stochasticity. CLIP−1 achieves higher pixel variance while keeping semantic align-
ment stable.

Metric CLIP−1 DAS

Variance ℓ2 in the pixel space 0.0447 0.0060
Variance ℓ2 in the pixel space (per channel) [0.0432, 0.0442, 0.0467] [0.0052, 0.0070, 0.0057]
Alignment to prompt (mean ± std) 0.3151 ± 0.0058 0.3033 ± 0.0078
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A.2 RUNTIME AND RESOURCE ANALYSIS

We report the resource usage in Table 5, compared to DAS. The higher VRAM of full CLIP−1 is
due to training the Init INR on-the-fly, an overhead removed when cached INRs are reused.

Table 5: Hardware usage comparison Average inference time and peak VRAM. (NVIDIA RTX A6000)

Model Time (s) Peak VRAM

DAS Ensemble 44.88 5.3 GB
CLIP−1 (cached INR) 22.88 3.2 GB
CLIP−1 (on-the-fly) 29.19 4.3 GB

Additionally, when using a mid-range consumer GPU, the complete text-to-image synthesis pipeline
executes in approximately 1 minute and 18 seconds on a single NVIDIA RTX 4060. In comparison,
DAS required 1 minute and 26 seconds.

A.3 FURTHER DETAILS ON THE AWP ALGORITHM

We provide a detailed breakdown of the Adversarial Weight Perturbation (AWP) procedure and its
integration into the INR training loop. Algorithm 1 outlines the core AWP mechanism: given the
weights of the INR model ϕ and the input coordinates (i, j) and a temporary clone ϕ̂ is optimized
to maximize the negative structural similarity index (SSIM) loss between the predicted output and a
blurred version of the ground-truth image x. The resulting adversarial perturbation ∆ϕ is computed,
normalized, and applied to the original weights ϕ to obtain the perturbed weights ϕadv.

Algorithm 1: Adversarial Weight Perturbation (COMPUTE_AWP)

1 Inputs: INR model weights ϕ, input coordinates (i, j), target image x

2 ϕ̂← clone(ϕ) // proxy model initialization
3 Lawp ← −LSSIM

(
fϕ̂((i, j)), blur(x)

)
// maximize the loss

4 Optimize ϕ̂ w.r.t. Lawp

5 ∆ϕ← ϕ̂− ϕ // compute perturbation

6 ∆ϕ← γ · ∥ϕ∥
∥∆ϕ∥+ϵ

·∆ϕ // normalize and scale perturbation

7 Return: ∆ϕ

Algorithm 2 illustrates the incorporation of AWP into INR training. At each iteration, adversarial
perturbations are computed using Algorithm 1 and then applied to the network. The overall training
loss is a weighted combination of mean squared error (MSE), SSIM, and ℓ1 loss. This adversarial
training scheme improves the robustness and generalization of the INR by encouraging consistency
under weight-level perturbations, which are the gradients received by inverting CLIP when generat-
ing.

Algorithm 2: INR Training with AWP

1 Inputs: target image x, initial weights ϕ0, input coordinates (i, j)
2 Hyperparameters: learning rate η, perturbation scale γ, iterations N
3 for k = 1, . . . , N do
4 ∆ϕ← COMPUTE_AWP(ϕk, (i, j),x)
5 ϕadv ← ϕk +∆ϕ // apply perturbation
6 fϕadv ← model with weights ϕadv
7 x̂← fϕadv((i, j))
8 L ← α1LMSE(x̂, blur(x)) + α2LSSIM(x̂, blur(x)) + α3LL1(x̂− blur(x))
9 Update ϕadv via optimizer step minimizing L

10 ϕk+1 ← ϕadv −∆ϕ // restore original weights for next iteration

11 Return: trained weights ϕN
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A.4 TEXT-TO-IMAGE FULL PIPELINE

We optimize an implicit neural representation (INR) to synthesize an image that aligns with a given
text prompt using CLIP. The procedure includes text and image retrieval, feature alignment, and iter-
ative gradient-based optimization. Procrustes alignment and natural image constraints are enabled.
Algorithm 3 shows the detailed pipeline.

Algorithm 3: Text-to-Image Synthesis
1 Input: Text prompt y,
2 Output: Synthesized image x = fϕN ((i, j))
3

/* Input pre-processing and alignment */
4 Encode the input prompt et = θT (y)

5 Select top-k matches to et in D to build ET ,EI ∈ Rd×k

6 Compute on the fly the orthogonal Procrustes rotation matrix
R = minR ||RET −EI ||F s.t. R⊤R = I

7 Project et to visual domain: et2i = RθT (y)
8

/* Retrieve Initialization: */
9 From dataset D, retrieve image embedding θI

(
x̂
)

of x̂ with caption closest to et2i
10 Initialize INR weights ϕ0 ← INIT_INR_AWP(x̂)—see Algorithm 2
11

/* Natural Image Constraints: */
12 Retrieve top-k natural images {x⋆

j} near et in CLIP space
13 Encode them to features {e⋆img,j}
14 Store the similarity to the input prompt wj = CLIPSIM(x⋆

j , et)

15 Compute weighted average: e⋆img =
∑

j wje
⋆
img,j where wj are normalized w/ softmax

16

/* Optimizer Setup: */
17 Initialize layer-wise optimizers with Gaussian learning rates (peak is γ) over INR depth.
18 Schedule shifting of Gaussian center every k steps—see Fig. 7
19

20 for i = 1 to T do
21 if learning rate schedule triggers then
22 Shift Gaussian center layer
23 Encode via CLIP the augmentations of the rendered INR:

e⋆i =
1

n

n∑
k=1

θI

(
augment(fϕk)

)

24 Compute total loss:L(e⋆i , et2i) + βLblend

(
e⋆i , e

⋆
img

)
25 Update ϕ:

ϕn = ϕn−1 −∇ϕ

[
L(e⋆i , et2i) + βLblend

(
e⋆i , e

⋆
img

) ]
26 Return: Final image x = fϕN ((i, j))

A.5 IMPLEMENTATION DETAILS

A.5.1 INR PARAMETERS AND INITIALIZATION

We initialize our implicit neural representations (INRs) with in_features = 2 and
out_features = 3, using five hidden layers of 256 units each. Sinusoidal pa-
rameterization is applied with first_omega = 25 and hidden_omega = 25 to
enable high-frequency signal modeling. Training is performed using the Adam op-
timizer with a learning rate of 1 × 10−4, and a cosine annealing schedule via
torch.optim.lr_scheduler.CosineAnnealingWarmRestarts with a restart
period of 100 iterations.
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Figure 7: Gaussian Scheduling. Each layer represents a frequency interval (b) for fϕ. The learning
rate is centered on a specific layer and gradually shifted (c), decreasing with a Gaussian attenuation
across neighboring layers (a).

We apply Adversarial Weight Perturbation (AWP) using a proxy optimizer with the same learning
rate and a perturbation strength of α = 0.01. The ground-truth image x is preprocessed using a
Gaussian blur with kernel_size = 101 and σ ∈ (10.0, 20.0) to provide a smoother supervision
signal.

The training loss combines mean squared error (MSE), structural similarity (SSIM), and ℓ1 recon-
struction loss, weighted, respectively, by α1 = 0.85, α2 = 0.25, and α3 = 0.25.

A.5.2 TEXT-TO-IMAGE INVERSION PARAMETERS

Our method is built upon a ViT-B/32 backbone initialized with the default OpenAI weights. We
perform 400 inversion steps using the AdamW optimizer (without AMSGrad) and a learning rate of
2 × 10−4. During INR optimization, we employ a Gaussian scheduling strategy focused on layers
[0, 1, 2], with gradient norm clipping thresholds set to [1.0, 0.5, 0.2] respectively. This schedule is
refreshed every 70 iterations to preserve both stability and optimization efficiency over time.

The loss function incorporates hyperparameters β = 0.5 and k = 8, balancing the trade-offs be-
tween reconstruction fidelity and robustness. To promote generalization, we apply data augmenta-
tion by generating 32 variations per input sample. For spatial alignment, we use Orthogonal Pro-
crustes analysis over the nearest p = 256 elements. Following Stable Diffusion (Jagielski et al.,
2023), we guide the CLIP inversion process by appending auxiliary textual prompts that explicitly
describe desired image characteristics. This strategy improves the fidelity and perceptual quality of
the generated outputs.
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A.6 QUALITATIVE SAMPLES UNDER DIFFERENT CLIP MODELS

CLIPAG
Ganz & Elad

(2023)

CLIP-JEM
Ganz & Elad

(2024)

DAS
Fort &

Whitaker
(2025)

CLIP-Inv
Kazemi
et al.
(2024)

CLIP−1

(ViT-B/32)
CLIP−1

(RESNET)

CLIP−1

w/Ganz &
Elad (2023)

CLIP−1

w/Ganz &
Elad (2024)

(XXL)

«Sleigh Ride On A Sunny Day»

«Milky Way Over a Street»

«Man standing near a cattle»

«Sunset seen from the creek»

«View of a lake from a hiking trail»

«Abandoned old barn»

«Streets of London in winter»

«View of the Chateau de Chillon»

Figure 8: Qualitative comparison of additional samples extending Figure 4 in the main paper.
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A.7 QUALITATIVE SAMPLES OF THE ABLATION STUDY

CLIP−1 w/o Freq.
Opt w/o AWP w/o F.O. +

Procrustes
w/o F.O. +
Blending

Left: CLIP−1 Ablation Rows 1-10

CLIP−1 w/o Freq.
Opt w/o AWP w/o F.O. +

Procrustes
w/o F.O. +
Blending

Right: CLIP−1 Ablation Rows 11-20

Figure 9: Ablation Study additional samples of the ablation study shown in Figure 6 of the main paper.
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A.8 BEST VS. WORST MS-COCO GENERATIONS USING CLIP SCORE AS METRIC

To qualitatively assess model’s performance, this section presents the 500 highest and 500 lowest
scoring generations based on CLIP Score, using prompts from the MS-COCO captions dataset.
Fig. 10 shows the best generations that achieved CLIP scores between 45.5 and 53.9 (mean: 47.2).
Fig. 11 shows the worst, ranging from 23.0 to 32.2 (mean: 30.6). These examples illustrate the range
of output quality, from strong semantic alignment to notable failure cases.

Figure 10: Best generations on MS-COCO prompts. CLIP Score ranging from 45.5 to 53.9 (mean: 47.2)
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Figure 11: Worst generations on MS-COCO prompts. CLIP Score ranging from 23.0 to 32.2 (mean: 30.6)
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