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Abstract

Extracting fine-grained experimental findings001
from literature can provide dramatic utility for002
scientific applications. Prior work has devel-003
oped annotation schemas and datasets for lim-004
ited aspects of this problem, failing to capture005
the real-world complexity and nuance required.006
Focusing on biomedicine, this work presents007
CARE—a new IE dataset for the task of ex-008
tracting clinical findings. We develop a new009
annotation schema capturing fine-grained find-010
ings as n-ary relations between entities and at-011
tributes, which unifies phenomena challenging012
for current IE systems such as discontinuous en-013
tity spans, nested relations, variable arity n-ary014
relations and numeric results in a single schema.015
We collect extensive annotations for 700 ab-016
stracts from two sources: clinical trials and017
case reports. We also demonstrate the general-018
izability of our schema to the computer science019
and materials science domains. We benchmark020
state-of-the-art IE systems on CARE, showing021
that even models such as GPT4 struggle. We022
release our resources to advance research on023
extracting and aggregating literature findings.024

1 Introduction025

It is surely a great criticism of our pro-026

fession that we have not organised a027

critical summary, by specialty or sub-028

specialty, adapted periodically, of all029

relevant randomised controlled trials.030

(Archie Cochrane, 1979)031

Though this critique focused on clinical trials,032

the statement arguably applies to much of sci-033

ence today. There is tremendous potential util-034

ity in extracting, structuring and aggregating fine-035

grained information about experimental findings036

and the conditions under which they were achieved,037

across scientific studies. Once extracted and aggre-038

gated, scientific findings can power many critical039

applications such as producing literature reviews040

ABSTRACT

A therapeutic   trial with verapamil… 12 patients admitted to our coronary 
care unit… oral verapamil 480 mg/day and placebo were administered 
alternately during 4 randomised 48-hour periods ... Transient ischaemic 
attacks were documented... number of attacks during 2 placebo periods 

were 123 , and 130 , and 31 and 23 during the 2 treatment periods ( P less 
than 0.006 and less than 0.003 ) . 

RELATIONS

NUMERICFINDING: P less than 0.006

NUMERICFINDING: 123NUMERICFINDING: 31

MEASUREMENT: ...attacksPOPULATION: 12 patients

TEMPORAL: 48-hour periods

DOSAGE: 480 mg/dayROUTE: oral

TREATMENT: placeboTREATMENT: ...verapamil..
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Figure 1: A partial example of entity, attribute and rela-
tion annotation using our schema for a clinical trial.

(DeYoung et al., 2021), supporting evidence-based 041

decision-making (Naik et al., 2022), and generating 042

new hypotheses (Wang et al., 2023). 043

While there have been efforts on building re- 044

sources and tools to capture findings in various do- 045

mains such as clinical trials (Lehman et al., 2019), 046

computer science (Jain et al., 2020) and social 047

and behavioral sciences (Magnusson and Fried- 048

man, 2021)—a major obstacle has been creating 049

a representation that is expressive enough to cap- 050

ture complex and nuanced information about find- 051

ings. We propose a new representation schema 052

that makes important progress in capturing the real- 053

world complexity of scientific findings in papers, 054

and use it to build a high-quality annotated dataset 055

focusing on biomedical (clinical) findings. Our 056

schema represents fine-grained information about 057

experimental findings and conditions as n-ary rela- 058

tions between entities and attributes, and includes 059

several structural complexities such as discontinu- 060

ous span annotation, variable arity in relations and 061
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nestedness in relations. These aspects have been062

studied individually in previous datasets (Karimi063

et al., 2015; Tiktinsky et al., 2022), but our schema064

is the first to unify them. Our dataset also captures065

numeric findings in addition to their interpretation066

(e.g., significance, utility, etc.); prior datasets typi-067

cally focus solely on the latter (e.g., Lehman et al.068

(2019) captures increases/decreases in outcomes069

but not their magnitudes).070

To build our dataset, named CARE (Clinical071

Aggregation-oriented Result Extraction), we col-072

lect extensive annotations for 700 abstracts (clinical073

trials and case reports). We also conduct annota-074

tion studies demonstrating that our schema gener-075

alizes to computer science and materials science,076

using minor updates based on analogies between077

aspects across experimental domains (e.g., popula-078

tions/interventions → tasks/methods in CS). This079

reflects the expressive power of our schema to080

generalize across domains while capturing gran-081

ular and useful information, making it a strong082

"backbone schema" for research efforts on result-083

oriented scientific IE.084

We achieve good agreement scores (0.74-0.78085

partial F1) comparable to prior work that used sim-086

pler schemas that are easier to annotate (Luan et al.,087

2018; Nye et al., 2018), and at the same time our088

resulting dataset is larger in size than previous cor-089

pora. Our final dataset annotation is extremely rich;090

at 16.23 relations per abstract, our relation den-091

sity is nearly 4x that of prior work on annotating092

findings from clinical trials (Lehman et al., 2019).093

We evaluate a wide range of IE models on our094

dataset, including both extractive systems and gen-095

erative LLMs. Given the high annotation burden,096

we test generative LLMs in both fully supervised097

as well as zero-shot and few-shot settings. Our098

results demonstrate the difficulty of our dataset,099

with even SOTA models such as GPT4 struggling100

to accurately extract clinical findings. As a highly101

challenging new dataset designed to be reflective102

of real-world nuance and informational needs, we103

hope CARE is an important resource for the scien-104

tific NLP and IE research community to pursue.105

2 Related Work106

2.1 Information Extraction from Scientific107

Literature108

Much prior work has focused on information ex-109

traction from scientific papers (Luan et al., 2018;110

Jain et al., 2020), including biomedical literature111

(see (Luo et al., 2022a) for a detailed summary). 112

Most relevant to our goal in this work is prior re- 113

search on extracting findings or results from sci- 114

entific literature, but it has only explored limited 115

aspects of this problem. 116

Gábor et al. (2018) and Luan et al. (2018) an- 117

notate associative relations between entities be- 118

ing compared or producing a result, as part of 119

their broader goal of developing IE resources for 120

computer science, but do not capture any nuance 121

(e.g., directionality, causality, etc. of results). Con- 122

versely, Magnusson and Friedman (2021) develop a 123

schema focused solely on capturing associations be- 124

tween experimental variables and evidence. How- 125

ever, their focus on sentence-level annotation from 126

scientific claims limits how much additional nu- 127

ance about experimental setting can be captured. 128

Some prior efforts have also explored result ex- 129

traction from biomedical literature. The EBM-NLP 130

(Nye et al., 2018) and Evidence Inference (Lehman 131

et al., 2019) corpora contain annotations for ex- 132

perimental findings from clinical trials, following 133

the well-established PICO (participant, interven- 134

tion, comparator, outcome) framework (Richard- 135

son et al., 1995). Sanchez-Graillet et al. (2022) also 136

develop a PICO-inspired schema-based annotation 137

format for diabetes and glaucoma trials. Chen et al. 138

(2022) focuses on aggregating findings, which are 139

already manually organized in structured format in 140

databases such as AACT (Aggregate Analysis of 141

ClinicalTrials.gov) (Tasneem et al., 2012). How- 142

ever, these efforts are tailored to clinical trials and 143

do not translate easily to other domains. Finally, 144

Luo et al. (2022a) conducted novelty annotation for 145

relations, indicating whether they were presented 146

as new observations; however they did not focus 147

on experimental findings. 148

In contrast, we develop a representation schema 149

expressive enough to capture fine-grained experi- 150

mental findings, while generalizing across scien- 151

tific domains. Our schema also contains phenom- 152

ena challenging for SOTA IE models (§3.2). 153

2.2 Extracting Numeric Information 154

Another unique aspect of our schema is our focus 155

on capturing numeric information from experimen- 156

tal findings and setup, which is understudied. Some 157

prior work on open IE has explored extraction and 158

linking of numeric spans (Madaan et al., 2016; 159

Saha et al., 2017), including linking to implied en- 160

tities (Elazar and Goldberg, 2019) (e.g., “it’s worth 161
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Type EBM CTKG Example

Population ✓ ✓ This study compared rizatriptan 5 mg and placebo in 1268 outpatients treating a
single migraine attack

Subpopulation ✓ ✓ We found low-certainty evidence of little or no difference in delirium (RR 1.06,
95% CI 0.55 to 2.06; 2 studies, 800 participants)

Treatment ✓ ✓ Dialysate magnesium was 0.375 mM/L for the hemodialysis
Measurement ✓ ✓ Headache relief rates after rizatriptan 10 mg were higher
Temporal ✗ ✓ After a 48-hour run-in period , oral verapamil 480 mg/day and placebo were

administered
NumericFinding ✗ ✓ The number of attacks during treatment periods were 31 and 23
Qualifier ✗ ✗ Pindolol and metoprolol lowered blood pressure to the same extent

Table 1: Examples of entity types in our schema. EBM and CTKG columns indicate whether these entity types are
present in the EBM-NLP and CTKG schemas respectively. EBM-NLP uses IE to extract information according to
its schema, while CTKG is a database schema not based on IE.

Type EBM CTKG Example

Age ✓ ✗ for those age 60-67
years

Sex ✓ ✗ 210 females
Size ✓ ✓ 12 patients
Condition ✓ ✓ patients getting

hemodialysis
Demographic ✗ ✗ A 40’s Japanese

man

Route ✗ ✗ oral verapamil
Dosage ✗ ✗ verapamil 480

mg/day
Strength ✗ ✗ rizatriptan 5 mg
Duration ✗ ✗ for 4 weeks

Table 2: Examples of attribute types in our schema.
EBM and CTKG columns indicate whether these entity
types are present in the EBM-NLP and CTKG schemas.

two million” can be linked to currency). However,162

these models broadly focused on sentence-level163

extraction and did not evaluate on scientific text.164

Within the scientific domain, some studies have165

focused on numeric information extraction from166

biomedical/clinical text. Kang and Kayaalp (2013)167

and Claveau et al. (2017) extract numeric spans168

from FDA-released descision summaries and clini-169

cal trial eligibility criteria respectively. EBM-NLP170

(Nye et al., 2018) annotates some categories of171

numeric information associated with cohorts partic-172

ipating in a clinical trial, but ignores trial outcomes173

and findings. Among non-medical scientific do-174

mains, numeric span extraction work has mainly175

focused on extraction from tables (Hou et al., 2019).176

None of these studies focus extensively on linking177

numeric spans with entities that can help in inter-178

preting this information, which is key to our work.179

3 Annotation Schema180

We develop a new annotation schema to represent181

fine-grained clinical findings present in biomedical182

abstracts, and later demonstrate its broader applica- 183

bility to domains beyond biomedicine (§6.2). Our 184

schema captures this knowledge via three main 185

elements, commonly used in IE tasks: 186

1. Entities involved in a study, which are spans of 187

text, either contiguous or non-contiguous, belong- 188

ing to one of the seven types listed in Table 1. 189

2. Attributes associated with entities, which are 190

also contiguous or non-contiguous spans of text, 191

belonging to one of the nine types listed in Table 2. 192

The first five attribute types are associated with 193

population and subpopulation entities, while the 194

remaining four types are associated with interven- 195

tion entities. Other entity types do not have any 196

associated attributes. 197

3. N-ary Relations linking together various enti- 198

ties and attributes, where N (relation arity) is vari- 199

able and nesting is allowed. A relation is an n-tuple, 200

where each element can be an entity, attribute or 201

another n-ary relation. Relations are categorized 202

into four types listed in Table 3. 203

3.1 Comparison to Clinical Schemas 204

Prior work such as EBM-NLP (Nye et al., 2018) 205

and Evidence Inference (Lehman et al., 2019; DeY- 206

oung et al., 2020) has focused on developing IE 207

schemas to represent clinical knowledge appearing 208

in the literature in a structured format. In addition, 209

work such as CTKG (Chen et al., 2022) outside the 210

NLP/IE sphere has built schema for representing 211

clinical information in databases. However, these 212

schemas suffer from a few shortcomings: (i) most 213

are designed for clinical trials; their applicability to 214

other types of biomedical literature is untested, (ii) 215

focus on a small set of broad entity types, which 216

leaves out fine-grained details, (iii) follow strict 217

relation formats, which makes it hard to capture ad- 218
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Type Arity EI CTKG Example

AttributeOf N-ary ✗ ✗ (Subpopulation: 144 had the U-type method, Size: 144)
SubpopulationOf N-ary ✗ ✗ (Population: 285 women, Subpopulation: 144 had the U-type method,

Subpopulation: 141 had the H-type method)
InterventionOf Binary ✗ ✓ (Subpopulation: 144 had the U-type method, Intervention: U-type method)
Result N-ary ✓ ✓ (Subpopulation: 144 had the U-type method, Measurement: objective cure

rates, NumericF inding: 87.5%)

Table 3: Examples of relation types in our schema. EI and CTKG columns indicate whether these relation types are
present in the EI and CTKG schemas respectively. While the EI and CTKG datasets contain 4-ary and binary result
relations respectively, our n-ary schema allows fine-grained information to be captured more flexibly.

ditional nuance that might be useful for interpreting219

findings.220

Our schema makes several enhancements to221

tackle these issues. First, it is extensible to other222

categories of biomedical literature beyond clinical223

trials, and we demonstrate this by applying our224

schema to case reports. Second, our schema cap-225

tures more fine-grained information about various226

entities than prior work via attributes (see Table 2).227

Third, allowing for variable arity and nesting in228

relation annotation provides the flexibility which229

makes our schema capable of representing both230

atomic findings (e.g., value of primary outcome ob-231

served for a given intervention) as well as compos-232

ite findings (e.g., outcome improvement observed233

for intervention vs control groups). Tables 1, 2234

and 3 provide a more detailed comparison of our235

schema with EBM-NLP, EI and CTKG.236

3.2 Annotation Complexity237

In addition to using an expanded set of entity, at-238

tribute and relation types, our annotation schema239

supports the following phenomena (also illustrated240

in Figure 1), unifying them all in a single dataset:241

Discontinuous spans: Biomedical abstracts often242

present multiple entities as conjunctive phrases or243

lists of items, so we allow discontinuous span anno-244

tation to capture every entity. For example, given245

the phrase “maximal diameters and volumes”, our246

scheme captures two measurement entities: “maxi-247

mal diameters” and “maximal volumes”, with the248

latter being a discontinuous span.249

Nested/overlapping spans: Attributes, as defined250

in our annotation scheme, are often present within251

an entity span or overlap with an entity span. This252

motivates our decision to allow nested and overlap-253

ping spans to be annotated.254

Variable arity in relations: Owing to variation255

in clinical studies, findings are often described in256

a wide range of formats (e.g., outcome for a sin-257

gle population, outcome for a pair of populations,258

outcome for a single population at different time 259

periods, etc.). This diversity motivated our choice 260

of variable arity for relation annotation, similar to 261

Tiktinsky et al. (2022). 262

Nested relations: In addition to outcomes for in- 263

dividual populations/groups, clinical studies often 264

present comparative findings and analyses, such 265

as improvement on an outcome given a pair of in- 266

terventions. Our scheme allows for annotation of 267

nested relations to link these higher-order observa- 268

tions with their associated atomic findings. 269

Our complete annotation guidelines are included 270

in the supplementary material. Figure 1 presents 271

partial entity, attribute and relation annotations for 272

an example clinical trial abstract. 273

4 Dataset Collection 274

Annotation Tool: We use TeamTat1 (Islamaj et al., 275

2020), a web-based tool for team annotation since 276

it allows for n-ary and nested relation annotation, a 277

core component of our schema. 278

Annotator Background: We recruit two in-house 279

annotators2 with backgrounds in data analytics and 280

data science, both having extensive experience in 281

reading and annotating scientific papers. One of 282

our annotators has a background in biology. Both 283

annotators went through several pilot rounds to 284

gain familiarity with our task and schema. Addi- 285

tionally, we used their feedback and insights from 286

pilots to solidify our schema design (see §4.1). We 287

also solicited feedback from two medical students 288

and an MD to validate our final schema. 289

Data Sources: CARE covers two categories of 290

biomedical literature: (i) clinical trials, and (ii) 291

case reports. Clinical trials are research studies that 292

test a medical, surgical, or behavioral intervention 293

in people to determine whether a new form of treat- 294

ment or prevention or a new diagnostic device is 295

1https://www.teamtat.org
2included as co-authors on this paper
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Category Exact F1 Partial F1

Entity 0.5764 0.7578
Attribute 0.6174 0.7801
Relation 0.4209 0.7414

Table 4: Final inter-annotator agreement scores on a
sample of 28 abstracts, measured during full-scale data
annotation.

effective. Case reports are detailed reports of the296

symptoms, signs, diagnosis, treatment, and follow-297

up of an individual patient, usually motivated by298

unusual or novel occurrences. We sample clini-299

cal trials from the EBM-NLP (Nye et al., 2018)300

dataset, which consists of 4993 abstracts annotated301

with PICO spans, only retaining abstracts contain-302

ing at least one number (4685 in total). To sample303

case reports, we extract all reports with at least one304

number in the abstract from PubMed (907,862 in305

total) and randomly sample from this pool. We sam-306

ple 350 abstracts from each source, resulting in our307

final dataset size of 700 abstracts, which is slightly308

larger than other prior corpora that perform fine-309

grained annotation (§ 4.3). Further characteristics310

of our abstract sample are detailed in Appendix C.311

4.1 Annotation Pilots312

We conducted three pilot rounds with the follow-313

ing goals: (i) training annotators to apply our314

schema, (ii) evaluating agreement, and (iii) assess-315

ing whether our schema captures clinical knowl-316

edge of interest. Annotators worked on a fresh set317

of 5-10 abstracts per round, followed by agreement318

computation and disagreement discussion. For en-319

tity and attribute annotation, agreement is com-320

puted as entity-level F1 between annotators, using321

both strict (entity boundaries match exactly) and322

partial (entity boundaries overlap on at least one323

token) matching. For relations, we first align anno-324

tations from both annotators by linking pairs of re-325

lations which share ≥ 50% of participating entities.326

Agreement is computed as F1 score between anno-327

tators, using both strict (100% of entities match)328

and partial matching. After achieving reasonable329

agreement levels by round 3 (partial F1 scores of330

0.79, 0.68 and 0.79 for entity, attribute and relation331

annotation respectively), we started full-scale data332

annotation (further discussion in Appendix C).333

4.2 Full-Scale Annotation334

The full-scale data annotation process was con-335

ducted in six rounds. To continue monitoring agree-336

ment, a small agreement set of 5 abstracts (not337

Metric Train Dev Test

#Docs 500 100 100
#Tokens 135,363 27,120 25,219
#Entities 12022 2367 2286
#Attributes 3992 804 762
#Relations 8205 1594 1560

Table 5: Statistics for final collected dataset.

Phenomenon Train Dev Test

#Discontinuous Spans 8.9% 10.1% 9.3%
#Nested Spans 3.4% 4.3% 2.5%
#Overlapping Spans 1.6% 2.0% 0.7%
#Nested Relations 11.4% 11.2% 11.9%

Table 6: Prevalence of interesting annotation phenom-
ena in final collected dataset.

identified to the annotators) was included in ev- 338

ery round. Table 9 in the appendix presents inter- 339

annotator agreement during each annotation round, 340

while Table 4 shows overall agreement scores. 341

Overall and per-round agreement scores continued 342

to remain in the same range as agreement scores 343

from later pilot rounds, demonstrating consistency 344

in annotation quality. Despite the complexity of 345

our schema, our agreement scores are comparable 346

to datasets using simpler schemas like EBM-NLP 347

(entity agreement of 0.62-0.71; Cohen’s kappa) and 348

SciERC (relation agreement of 67.8; kappa score). 349

Appendix C provides additional details about our 350

full-scale annotation setup. 351

Consensus Annotation: For all abstracts anno- 352

tated by multiple annotators during pilots or full- 353

scale annotation (55 in total), we construct a “con- 354

sensus” version post disagreement discussion. The 355

final dataset releases consensus annotations for 356

these abstracts. Since this subset has been anno- 357

tated by multiple annotators and discussed exten- 358

sively, we expect annotations to be higher-quality 359

and include all these abstracts in the test set. 360

4.3 Dataset Statistics 361

Table 5 gives an overview of statistics for our fi- 362

nal collected dataset. Our dataset size is compa- 363

rable to other prior biomedical corpora which per- 364

forms exhaustive fine-grained annotation (though 365

not always with a clinical knowledge focus) such 366

as BioRED (Luo et al. (2022a); 600 abstracts) and 367

Sanchez-Graillet et al. (2022) (211 abstracts). Ta- 368

ble 6 presents the proportion of various interest- 369

ing phenomena allowed by our schema in the final 370

dataset. Interestingly, CARE contains 9% discon- 371

tinuous spans, making it one of the rare datasets 372
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containing a large proportion of discontinuous men-373

tions.3 At 11%, the final data also contains a high374

proportion of nested relations.375

5 Benchmarking IE Models376

We benchmark the performance of two categories377

of models on CARE: (i) extractive models, and (ii)378

generative LLMs. We also test generative LLMs in379

two settings: (i) finetuning on the full training set,380

and (ii) zero-shot and in-context learning.381

Experimental Setup: We test each model on the382

three sub-tasks—entity extraction, attribute extrac-383

tion and relation extraction—in isolation. Model384

performance on entity and attribute extraction is385

evaluated using entity-level F1. Relation extrac-386

tion performance is evaluated using a relaxed over-387

lap F1 score metric inspired by Tiktinsky et al.388

(2022), which assigns partial credit to correctly389

identified subsets of entities in a relation, even390

if all identified entities do not match. As with391

agreement score calculation, predicted relations392

are first aligned with gold relations by choosing393

the gold relation with highest overlap per predicted394

relation. Then a partial match score is computed395

as #shared_entities/total_entities and used in396

the F1 computation instead of binary 0/1 score.397

5.1 Extractive IE Baselines:398

We evaluate the following systems:399

• OneIE (Lin et al., 2020): A sentence-level400

joint entity, relation and event extraction sys-401

tem, which extracts an “information network”402

representation of entities and events (nodes), con-403

nected by relations (edges). Beam search is used404

to find the highest-scoring network.405

• PURE (Zhong and Chen, 2021): A sentence-406

level pipelined extraction system, which learns407

separate contextual representations for entity and408

relation extraction, using entity representations409

to further refine relation extraction.410

• LocLabel (Shen et al., 2021): A sentence-level411

two-stage named entity recognition (NER) sys-412

tem capable of extracting nested spans. Inspired413

by object detection work, it produces boundary414

proposals for candidate entities, then labels them415

with correct entity types.416

3Dai et al. (2020) considers 10% discontinuous spans
to be a high proportion, identifying only three biomedical
datasets that satisfy this criterion: CADEC (Karimi et al.,
2015), ShARe 13 (Pradhan et al., 2013) and ShARe 14 (Mow-
ery et al., 2014).

Model Ent F1 Attr F1 Rel F1

Extractive Baselines

OneIE 55.07 48.84 –
PURE 55.94 61.04 –
LocLabel 53.69 55.25 –
W2NER 51.84 57.98 –

Generative Baselines

FLAN-T5 45.08 23.27 33.24
BioGPT 14.43 29.84 33.15
BioMedLM 1.50 10.62 32.76

GPT-3.5 0-shot 11.14 5.06 14.35
GPT-3.5 1-shot 21.40 8.61 31.58
GPT-3.5 3-shot 23.40 8.85 31.58
GPT-3.5 5-shot 8.92 9.92 32.20

GPT-4 0-shot 26.89 9.02 32.04
GPT-4 1-shot 31.07 11.82 42.81
GPT-4 3-shot 16.68 13.16 53.69
GPT-4 5-shot 5.04 13.90 55.04

Table 7: Performance of all extractive and generative
baselines on entity, attribute and relation extraction.

• W2NER (Li et al., 2022): A sentence-level uni- 417

fied NER model, capable of extracting nested 418

and discontinuous spans. It recasts NER as word- 419

word relation classification on a 2-D grid of word 420

pairs, then decodes word pair relations into final 421

span extractions. 422

For comparability and better adaptation to our 423

dataset, we replace BERT-based encoders in all 424

systems with PubmedBERT (Gu et al., 2021), and 425

follow best-reported hyperparameters per system 426

(see Appendix E). Table 7 presents their perfor- 427

mance on entity and attribute extraction. Unfor- 428

tunately, applying these systems to our relation 429

extraction task is infeasible, since none of them 430

are designed for document-level relation extraction 431

or n-ary relations. Tiktinsky et al. (2022) modify 432

PURE for n-ary relation extraction with variable ar- 433

ity. However, given a set of candidate entities, they 434

consider all possible n-ary combinations and pre- 435

dict relationships per cluster. This is tractable for 436

their work on sentence-level extraction of single- 437

type (drug interaction) relations, but not tractable 438

for document-level multi-type n-ary relation extrac- 439

tion.4 Therefore, we do not test extractive models 440

on relation extraction. 441

Another caveat with extractive models is that 442

they do not identify discontinuous spans (except 443

W2NER). To assess how this impacts model perfor- 444

mance, we compute an additional entity-level F1 445

score which merges span predictions linked in gold 446

4On limiting combination size to 10, every abstract pro-
duces 500,000 candidate combinations
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annotation (i.e., we assume oracle span merging),447

and observe that this does not significantly improve448

performance (avg. increase of ∼1.5 F1). Therefore,449

Table 7 reports F1 scores without merging.450

5.2 Generative IE Baselines:451

Motivated by recent work demonstrating LLM ca-452

pabilities on information extraction (Wadhwa et al.,453

2023), we assess the ability of LLMs on our tasks,454

in both finetuning and zero-shot/in-context learning455

settings.456

We evaluate the following finetuned LLMs:457

• FLAN-T5 (Chung et al., 2022): Enhanced ver-458

sion of T5 (Raffel et al., 2020) finetuned on a459

large mixture of tasks, but not specifically pre-460

trained for biomedicine. We use FLAN-T5-XL,461

which has 3B parameters.462
• BioGPT (Luo et al., 2022b): A 1.6B autoregres-463

sive model, pretrained from scratch on 15M ab-464

stracts and titles from PubMed with a custom465

Pubmed-trained tokenizer.466
• BioMedLM5: A 2.7B autoregressive model, pre-467

trained from scratch on all PubMed abstracts and468

full-texts from the Pile (Gao et al., 2020) with a469

custom PubMed-trained tokenizer.470

When training and testing on attribute and re-471

lation extraction, these models are provided gold472

entities and attributes by surrounding them with473

entity markers (< ent >< /ent >) in the input.474

We evaluate GPT3.5 and GPT4 in zero-shot and475

in-context learning settings. We provide our IE476

schema and example outputs and prompt the model477

to produce extractions in a clean JSON format that478

adheres to the schema. Additionally, for our in-479

context learning experiments, we follow (Liu et al.,480

2021) and select the k most similar examples from481

the training set for every test instance according to482

similarity computed by the SPECTER v2.0 (Singh483

et al., 2022) PRX model trained on scientific titles484

and abstracts. Selected examples are appended to485

the prompt in decreasing order of similarity, with486

later examples dropped if they don’t fit. We run487

experiments for the k = 1, 3, 5 most similar exam-488

ples. Further hyperparameter details for all models489

are provided in Appendix E.490

Table 7 shows the performance of all generative491

models. One caveat with GPT3.5/4 is that model492

outputs sometimes contain correct entity/attribute493

spans assigned to the wrong type (e.g., a subpop-494

ulation misclassified as a population entity in a495

5https://crfm.stanford.edu/2022/12/15/
biomedlm.html

result relation). Since we are evaluating the perfor- 496

mance of relation extraction in isolation, we do not 497

consider such mistyping as errors. 498

5.3 End-to-End Evaluation: 499

In addition to evaluating SOTA systems on each 500

sub-task in isolation, we assess the feasibility of 501

end-to-end extraction. Table 7 shows that PURE 502

is the best-performing system on entity and at- 503

tribute extraction. On the other hand, GPT4 5-shot 504

and FLAN-T5 perform best on relation extraction 505

(GPT3.5 5-shot and BioGPT are close). We test 506

out a hybrid end-to-end extraction system in which 507

entities and attributes are detected using PURE, 508

then input text marked up with these extractions is 509

provided to FLAN-T5 for relation extraction. This 510

hybrid system achieves an F1 score of 33.58, very 511

similar to RE performance with gold markup. Hy- 512

pothesizing that this might be an indication that 513

finetuned LLMs ignore entity/attribute markup dur- 514

ing RE, we run an additional experiment in which 515

we train FLAN-T5 to extract relations from raw 516

text (no markup). This setup achieves an F1 score 517

of 33.07, showing that entity/attribute markup does 518

not provide significant benefit. 519

6 Discussion 520

6.1 How much does strict evaluation 521

underestimate LLM performance? 522

Table 7 shows that even fully-supervised generative 523

models severely lag behind much smaller extractive 524

models on entity and attribute extraction. However, 525

prior work (Wadhwa et al., 2023) has observed 526

that strict IE evaluation metrics underestimate the 527

performance of LLMs since their outputs often 528

contain minor variations from gold annotations, 529

which could still be correct. Therefore, we conduct 530

a human evaluation of a subset of FLAN-T5 and 531

GPT4 5-shot predictions on entity and attribute 532

extraction for a more accurate assessment. 533

For every setting, we collect all abstracts with 534

one or more wrong predictions and randomly sam- 535

ple ten to evaluate. We go over all false positives 536

per abstract marking ones that could be considered 537

correct. Our evaluation shows that for FLAN-T5, 538

35 out of 73 entity and 12 out of 32 attribute er- 539

rors are marked correct. For GPT4, these numbers 540

are worse; 38 out of 126 entity and 20 out of 79 541

attribute errors are marked correct. This indicates 542

that LLMs indeed struggle with our span extraction 543

tasks, and their poor performance is not simply a 544
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Original Type Generalized Type Description

Population Research Problem Con-
text

Setting/scenario in which the authors are testing their hypothesis (e.g., task
or dataset being studied in ML/NLP).

Subpopulation Problem Stages/Sub-
parts

Subgroups or subsamples of overall setting (e.g., dataset splits in ML/NLP).

Treatment Technique/Method Key technique being proposed or investigated and other techniques being
compared (e.g., model or metric in ML/NLP).

SubpopulationOf Sub-PartOf Links together problem context entities to stage/sub-part entities (e.g., for
ML/NLP, this relation would link the overall task to low-data and fully
supervised settings).

TreatmentOf AppliedTo Links together a technique to all the problem contexts/sub-parts it is being
tested in.

Table 8: Changes required to construct a generalized version of our original schema developed for clinical finding
extraction, which we use to test whether it applies to other domains such as computer science and materials science

MAT SCI ABSTRACT

Solid oxide fuel cells … ; BECs which are 0.5 and 4 
times thicker than the size of AAO pores are 
tested… thicker BEC ensures far more active mass 
transport than the thinner BEC cell …

RELATIONS

PROBLEM CONTEXT: 
Solid oxide fuel cells

PROBLEM SUBPART: 
thicker BEC

PROBLEM SUBPART: 
thinner BEC cell

TECHNIQUE: 0.5 times 
thicker… than AAO pores

TECHNIQUE: 4 times 
thicker… than AAO pores

MEASUREMENT: active 
mass transportQUALIFIER: far more

SubpartOfSubpartOf

AppliedTo AppliedTo

Result

Figure 2: A partial example of entity, attribute and re-
lation annotation using our generalized schema for a
materials science abstract.

consequence of strict evaluation.545

6.2 How easily can we extend our schema to546

other domains?547

Though we focus on extracting clinical findings548

from biomedical literature during schema design,549

we try to incorporate enough flexibility to allow550

our schema to be easily adapted to other scientific551

domains. To demonstrate this flexibilty, we conduct552

small-scale pilots in two additional domains: (i)553

Computer Science, and (ii) Materials Science.554

We first develop a generalized version of our555

proposed schema for these studies. Of the three556

elements in our schema, entities and relations are557

largely transferable and only require minor renam-558

ing. Table 8 provides an overview of changes made559

to entity/relation nomenclature. Attributes on the560

other hand, were tailored more closely to our goal561

of extracting clinical findings. Therefore, we drop562

all attributes and ask our annotators to propose can-563

didate attributes as they go through the annotation564

process. We use the same annotators who partic- 565

ipated in dataset create, to leverage their existing 566

familiarity with our schema, assigning one anno- 567

tator to each domain. Their task is to annotate ten 568

abstracts each while documenting: (i) potential at- 569

tributes that can be added to the schema, and (ii) 570

important experimental information missed by the 571

generalized schema. 572

After completing the task, annotators reported 573

that it was feasible to apply our proposed schemas 574

to these scientific domains. Computer science 575

posed some difficulty due to the presence of lots of 576

relative results and references in the abstract, which 577

made entity annotation ambiguous. However, there 578

were no important aspects of experimental informa- 579

tion, aside from potential attribute proposals, that 580

our current schema could not account for. 581

7 Conclusion 582

In this work, we presented CARE, a new IE dataset 583

for the task of extracting clinical findings from 584

biomedical literature. To collect this dataset, we 585

first developed a new annotation schema capable 586

of capturing fine-grained information about experi- 587

mental findings, which unified several challenging 588

IE phenomena such as discontinuous spans, nested 589

relations and variable arity n-ary relations. Using 590

this annotation scheme, we collected an extensively 591

annotated dataset of 700 abstracts from clinical tri- 592

als and case reports. Our benchmarking experi- 593

ments showed that state-of-the-art extractive and 594

generative LLMs including GPT4 still struggle on 595

this task, particularly on relation extraction. We 596

release both our annotation schema and CARE as 597

a challenging new resource for the IE community 598

and to encourage further research on extraction and 599

representation of findings from scientific literature. 600
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8 Limitations601

Despite being a cornerstone of our work, the rich-602

ness and complexity of our newly proposed anno-603

tation schema also poses some limitations. An-604

notators needed some prior experience with read-605

ing and understanding complex scientific text, and606

had to undergo multiple rounds of additional train-607

ing before they were able to accurately apply our608

schema and start full-scale annotation. Though609

these stringent expertise and training requirements610

and heavy reliance on human annotators helped us611

collect a high-quality resource in CARE, they si-612

multaneously limit the scalability of our collection613

protocol and make it difficult to construct large-614

scale benchmarks for this task, spanning multiple615

domains/fields of science.616

Our annotated corpus, CARE, is based on RCTs617

and case reports. While our schema is broad and ex-618

pressive enough to generalize to other experimental619

domains with minor adaptations, our generaliza-620

tion annotation studies were comparatively small621

and preliminary, limited to testing the schema on622

computer science and material science papers. In623

addition, while our schema covers many types of624

experimental finding information, the richness and625

huge variety of scientific experiments neccessarily626

means that more types of findings could be added.627

In the future, more studies should be performed on628

using our schema in other domains, and on extend-629

ing our schema with more types of informations630

(entities, attributes, relations). CARE also focuses631

on English-language papers only, and in the future632

it would be interesting and important to extend our633

schema and dataset to cover biomedical/clinical634

studies in other languages, to capture important635

scientific findings that are potentially missed when636

only looking at papers in English.637

Finally, a limitation of our current benchmarking638

effort is the lack of more flexible evaluation metrics,639

particularly when assessing the performance of gen-640

erative LLMs. We try to provide supplementary641

human evaluation for some models to overcome642

this issue, but this is not scalable and would require643

ongoing/continuous evaluation efforts. This is not644

a major focus for our current work, but developing645

more flexible automated evaluation is an important646

future direction for IE research.647
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A Schema Definitions 877

A.1 Entity Types 878

Entities can belong to one of the following seven 879

types: 880

1. Population: Patient groups/cohorts studied in 881

an article. 882
2. Subpopulation: Slices/sub-groups of a popula- 883

tion entity sharing some underlying characteris- 884

tic. 885
3. Treatment: Treatment regimens, procedures, 886

therapies etc. prescribed and/or tested to allevi- 887

ate a population’s conditions/symptoms. 888
4. Measurement: Tests used to assess population 889

status and outcomes of the tested intervention. 890
5. Temporal: Temporal information such as time 891

points at which outcomes are measured. 892
6. NumericFinding: All numeric information as- 893

sociated with study findings (e.g., p-values, haz- 894

ard ratios, etc.). 895
7. Qualifier: Non-numeric information associated 896

with study findings that provides important per- 897

spective for interpreting them (e.g., phrases in- 898

dicating evidence directionality). 899

A.2 Attribute Types 900

Attributes can belong to one of the following nine 901

types: 902

1. Age: Numeric or non-numeric information 903

about the age of the population under study. 904
2. Sex: Reported sex of the population under 905

study. 906
3. Size: Size of the population sample under study. 907
4. Condition: Medical conditions prevalent in the 908

study population, including diseases, symptoms, 909

prior medical history and procedures, etc. 910
5. Demographic: Additional demographic infor- 911

mation reported about the population such as 912

location, race, etc. 913
6. Route: Description of the way an intervention 914

is administered (e.g., a chemical may be admin- 915

istered orally, topically, intravenously, etc.). 916
7. Dosage: Quantity of administration for the in- 917

tervention being studied. This is not necessarily 918

limited to chemical/drug interventions (e.g., for 919

an intervention like educational sessions, num- 920

ber of sessions is considered “dosage”). 921
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8. Strength: Strength of chemical/drug interven-922

tions administered.923

9. Duration: Interval of time over which an inter-924

vention was administered.925

A.3 Relation Types926

Our schema allows for both binary and n-ary re-927

lations (with variable n), to capture four types of928

structure:929

1. AttributeOf: N-ary relations linking population930

and intervention entities with their associated931

attributes.932

2. Subpopulation: N-ary relations capturing933

parent-child relationships between population934

and subpopulation entities.935

3. InterventionOf: Binary relations linking popu-936

lation and subpopulations entities with the inter-937

vention(s) tested on them.938

4. Result: N-ary relations capturing all numeric or939

non-numeric outcome results and comparisons940

reported by linking together the population, sub-941

population, intervention, measurement, numer-942

icfinding and/or qualifier and temporal entities943

involved in each result/comparison.944

All n-ary relations can contain multiple entities945

of a single type. For example, a result relation946

can involve multiple interventions or populations.947

The only cardinality constraints imposed are that948

every result relation should focus on a single mea-949

surement entity and always contain at least one950

population/intervention entity.951

B Additional Annotation Rules952

While using this annotation schema to annotate953

clinical knowledge, we also keep in mind the fol-954

lowing rules:955

• For every entity/attribute span, only annotate its956

first occurrence in the text, unless there is a more957

descriptive span later. We follow this rule to958

avoid conducting an additional coreference anno-959

tation step to link all spans referring to the same960

entity.961

• Ignore misspellings and include all associated962

modifiers and abbreviations while annotating963

spans964

• Do not annotate generic or high-level spans (e.g.,965

genetic disorder), or generic terms (e.g., com-966

plications, deficiency, disease, syndrome, gene,967

drug, protein, nucleotide, etc.).968

• Do not annotate background occurrences of enti-969

ties. For example, if a treatment Y is mentioned970

as “X is usually treated using Y,...”, do not anno- 971

tate Y unless Y was one of the treatments actually 972

given to a population in the current study. 973

C Dataset Construction Details 974

Characteristics of sampled abstracts: Since the 975

EBM-NLP corpus sampled randomized clinical 976

trials from PubMed with an emphasis on cardio- 977

vascular diseases, cancer, and autism, the clinical 978

trials portion of our dataset also heavily features 979

these topics. On the other hand, for case reports, 980

comparing MeSH term distributions across all re- 981

ports (2M abstracts) with case reports containing 982

numeric information (the 900k we sample from), 983

we see a massive reduction (> 30%) in terms as- 984

sociated with the following topics: surgery and 985

post-surgery care, dentistry, ophthalmology, pros- 986

theses and rehab, patient care and nursing, some 987

mental disorders and circulatory diseases/issues. 988

Hence, we expect these topics to be relatively un- 989

dersampled in our pool of case reports. 990

Annotation Pilots: During pilots, we also con- 991

ducted one or more disagreement discussion ses- 992

sions per pilot round. These discussions were help- 993

ful in providing annotators the opportunity to high- 994

light important spans/relations being missed by the 995

schema, which led to the addition of the subpop- 996

ulation entity, demographic attribute, and subpop- 997

ulationof and treatmentof relations. Despite the 998

introduction of some new elements, inter-annotator 999

agreement continued to increase steadily over the 1000

pilot rounds, as shown in Table 9 before plateauing 1001

at the end of round 3. 1002

Full-Scale Annotation: During rounds 1-3 of full- 1003

scale annotation, annotators were provided batches 1004

of 25 abstracts each. As their familiarity with the 1005

annotation schema and ability to handle ambigu- 1006

ous cases improved, we provided larger batches of 1007

100 abstracts each during rounds 4-6. After each 1008

round, agreement was assessed and disagreement 1009

dicussions were conducted to discuss ambiguous 1010

cases, if needed, which ensured that agreement 1011

was maintained across rounds as seen from Ta- 1012

ble 9. Tables 10, 11 and 12 present final agreement 1013

scores per entity type, attribute type and relation 1014

type respectively. From these tables, we can see 1015

that Subpopulation and Intervention entities are the 1016

trickiest to annotate, leading to lower agreement on 1017

SubpopulationOf and InterventionOf relation types 1018

due to error cascading (i.e., if entity annotations 1019

don’t match, relation annotations are unlikely to 1020
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Round Entity F1 Attribute F1 Relation F1

Exact Partial Exact Partial Exact Partial

Pilot 1 0.6240 0.7579 0.7215 0.8163 0.2193 0.6379
Pilot 2 0.7206 0.8818 0.6923 0.7385 0.4997 0.7878
Pilot 3 0.6449 0.7900 0.5370 0.6852 0.4449 0.7960

Batch 1 0.5130 0.7318 0.7611 0.8496 0.3899 0.6979
Batch 2 0.6094 0.7900 0.6216 0.8508 0.6397 0.9137
Batch 3 0.5312 0.7797 0.6364 0.8182 0.3121 0.7595
Batch 4 0.5714 0.7817 0.7347 0.7755 0.5399 0.7343
Batch 5 0.5643 0.6929 0.4717 0.6762 0.3382 0.6766
Batch 6 0.6358 0.7930 0.5417 0.7582 0.3122 0.6890

Overall 0.5764 0.7578 0.6174 0.7801 0.4209 0.7414

Table 9: Evolution of inter-annotator agreement during pilots and full-scale annotation rounds

Type Exact F1 Partial F1

Population 0.4333 0.8665
Subpopulation 0.4299 0.6168
Intervention 0.4333 0.5781

Measurement 0.5230 0.7554
Temporal 0.6230 0.6885

NumericFinding 0.7063 0.8812
Qualifier 0.6911 0.7749

Table 10: Inter-annotator agreement per entity type

Type Exact F1 Partial F1

Age 0.8500 0.9756
Sex 0.9231 0.9231
Size 0.6462 0.7385

Condition 0.5091 0.7429
Demographic 0.6667 0.8000

Route 0.8000 0.8000
Dosage 0.6923 0.9630
Strength - -
Duration 0.0800 0.4800

Table 11: Inter-annotator agreement per attribute type.
Note that the agreement sample did not include any
strength entities.

Type Exact F1 Partial F1

AttributeOf 0.7654 0.7654
InterventionOf 0.3797 0.3797

SubpopulationOf 0.1633 0.5185
Result 0.2561 0.7994

Table 12: Inter-annotator agreement per relation type

match either). 1021

D Inter-Annotator Agreement 1022

Table 9 shows the evolution in inter-annotator 1023

agreement over our initial pilot rounds, as well as 1024

the level of inter-annotator agreement maintained 1025

during each round of the full-scale annotation pro- 1026

cess. We see a large increase in relation agreement 1027

from pilot 1 to pilot 2, and consistent agreement 1028

scores across all tasks in all rounds thereafter. Ta- 1029

bles 10, 11 and 12 present inter-annotator agree- 1030

ment breakdown according to entity, attribute and 1031

relation types in our schema. 1032

E Hyperparameter Details 1033

Extractive Models: 1034

• OneIE: We use an overall learning rate and 1035

weight decay of 1e− 3, and a learning rate and 1036

weight decay of 1e− 5 for the BERT component, 1037

a batch size of 10, and gradient clipping value of 1038

5.0. The model is trained for 60 epochs with a 1039

5-epoch warmup phase. 1040

• PURE: We use a context window size of 300 1041

words, overall learning rate of 1e− 5, task learn- 1042

ing rate of 5e− 4, batch size of 16, and train for 1043

100 epochs. 1044

• LocLabel: We use a learning rate of 5e − 6, 1045

warmup rate of 0.1, weight decay of 0.01, gra- 1046

dient clipping value of 1.0, batch size of 6 1047

and train for 35 epochs. LocLabel also re- 1048

quires word vectors, for which we use the 200- 1049

dimensional Pubmed-trained word2vec embed- 1050

dings (BioWordVec) released by Zhang et al. 1051
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(2019), which are available at https://github.1052

com/ncbi-nlp/BioWordVec.1053

• W2NER: We use an overall learning rate of 1e−1054

3 and a learning rate of 5e − 6 for the BERT1055

component, no weight decay, warmup factor fo1056

0.1, gradient clipping value of 5.0, batch size of1057

8, and train for 10 epochs.1058

Generative Models: All models are trained for 101059

epochs with a learning rate of 1e− 5, input context1060

length of 1024, output length of 128, and a batch1061

size of 2.1062

GPT3.5/GPT4: We test the 16k and 8k context1063

length versions of GPT3.5 and GPT4 respectively1064

since our extraction tasks are abstract-level and re-1065

quire longer input contexts. We use the June 20231066

versions of both models due to their function call-1067

ing capabilities, which leverage a structured JSON1068

output format to improve information extraction1069

capabilities. All experiments are run with a temper-1070

ature of 0 and max output length of 512 tokens.1071

F Computing Infrastructure1072

All LLM experiments are carried out on NVIDIA1073

RTX A6000 GPUs with 48 GB RAM. Each finetun-1074

ing run (FLAN-T5, BioGPT, BioMedLM) requires1075

two GPUs with runtimes ranging from 9-17 hours1076

depending on task size and model size. We use1077

the DeepSpeed integration from Huggingface, with1078

ZeRO-3 optimization, for multi-GPU training.1079
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