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Figure 1: We present the Any-Shape Differentiable Material Point Method (AS-DiffMPM),
a particle-based framework for simulating collisions with arbitrarily shaped rigid bodies. When
integrated with Gaussian-based rendering, it enables physically plausible animation and system
identification (estimation of object physical parameters from visual observations).

Abstract

System identification involving the geometry, appearance, and physical properties
from video observations is a challenging task with applications in robotics and
graphics. Recent approaches have relied on fully differentiable Material Point
Method (MPM) and rendering for simultaneous optimization of these properties.
However, they are limited to simplified object-environment interactions with planar
colliders and fail in more challenging scenarios where objects collide with non-
planar surfaces. We propose AS-DiffMPM, a differentiable MPM framework
that enables physical property estimation with arbitrarily shaped colliders. Our
approach extends existing methods by incorporating a differentiable collision
handling mechanism, allowing the target object to interact with complex rigid
bodies while maintaining end-to-end optimization. We show AS-DiffMPM can be
easily interfaced with various novel view synthesis methods as a framework for
system identification from visual observations.

1 Introduction

Bending but not breaking, a branch dances with the wind—yielding to its force yet never surrendering.
From the gentle drift of a balloon to the violent shatter of glass, the world reveals its hidden
truths through motion. We, too, learn not only by seeing but by understanding—tracing back from
movement to the forces that shaped it. In this work, we give machines this same power: to see, reason,
and uncover the physical essence of objects through their dance with the world, recovering their
hidden properties from mere pixels.

Estimating the physical parameters of objects from visual observations is a challenging task in
computer vision, with applications in robotics, virtual reality, and graphics. While existing methods
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such as PhysGaussian [1] can animate static scenes by simulating plausible dynamics, they do not
support the identification of object properties from dynamic scenes. Humans naturally infer an
object’s geometry and dynamics through a two-step process. First, they recognize and understand
its shape (e.g., a ball). Then, by observing its interactions with the environment (e.g., let the ball
fall on the ground), they deduce its physical properties. Inspired by this intuition, modern system
identification methods follow a similar paradigm, combining two components: a rendering model to
reconstruct geometry from images and a physics engine to simulate motion, enabling the estimation
of physical properties from video sequences.

Recent advances in scene representations — particularly point-based models [2]—and particle-based
physics simulation [3], have facilitated the animation of static geometry with physics-grounded
motion. This process involves establishing correspondences between the points used for rendering
and the particles in simulation, allowing the radiance field to be animated by applying the motion
derived from simulated particle trajectories. As a result, for physical properties estimation, this
approach can be applied by reconstructing the object’s geometry, initializing an estimate of its
physical parameters, and refining them through gradient-based optimization, comparing simulated
motion against real-world observations.

PAC-NeRF [4] is a pioneering model for system identification from visual observations; combining
voxel-based radiance fields [5] with a Differentiable Material Point Method (DiffMPM) [6] to enable
gradient-based optimization of physical parameters from images. However, this approach, along with
other recent works [7, 8, 9], share a significant limitation: they perform system identification only
when the object interacts with simple boundaries such as the ground. While effective, this setup fails
to capture more complex scenarios, where objects interact with arbitrarily shaped rigid bodies.

In this work, we extend system identification beyond simple boundary interactions, enabling estima-
tion of physical properties in more complex settings. To the best of our knowledge, this problem has
not been previously addressed, primarily due to two key limitations: (i) existing system identification
methods are restricted to interactions with a planar boundary [4, 7, 8, 9], and (ii) available MPM-based
simulators that accurately handle arbitrarily shaped colliders are not differentiable [10], thus not
suitable for physical parameters optimization. Our contribution is threefold:

1. Any-Shape Differentiable MPM. We propose AS-DiffMPM, a Differentiable MPM capable
of handling collisions between the target object and arbitrarily shaped colliders. Quantitative
experiments on Newtonian, non-Newtonian and granular materials demonstrate the necessity
of an ad hoc solution for rigid body interactions, which previous system identification
methods have overlooked.

2. Versatile Collision Handling Framework. We design a general interface to integrate
colliders of various formats (i.e., mesh and 2D Gaussians [11]) into AS-DiffMPM.

3. Rendering-Physics Integration for System Identification. We combine our AS-DiffMPM
with multiple rendering models and establish a benchmark for system identification from
visual observations when the object collides with arbitrarily shaped rigid bodies.

2 Related Work
Scene Representations for Photorealistic Rendering. The topic of scene reconstruction and
synthesizing photorealistic novel views has been studied in the computer vision community for
decades [12, 13, 14]. Recently, there has been a growing interest in using learning-based differentiable
rendering or rasterization for such a purpose [2, 15, 16, 17, 18]. These methods are often categorized
into implicit rendering methods based on ray-marching queries [15, 16, 17, 18] or explicit rasterization
methods [2, 11]. To manipulate and animate these static scene representations, researchers have shown
that it is possible to edit both implicit methods (often via remapping voxel-based representations [4,
19]) and explicit methods (via direct manipulation of explicit units [8, 1, 20]). Our method is mostly
orthogonal to the development in scene representations. The AS-DiffMPM is a plug-and-play module
to both NeRF- and 3DGS-based methods, as quantitatively shown in the experiment.

Physics-integrated Scene Synthesis. While high-quality reconstruction methods offer a pathway to
synthesize static scenes from a set of images in novel viewpoints, they are limited to understanding
static appearances. Humans, on the other hand, have the ability to picture physically plausible
interactions with the scenes. To equip machines with such an intelligence, researchers have sought to
animate static scenes with physics simulators to generate animated scenes that are both visually and
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Figure 2: Overview. Given multi-view input images, we separately reconstruct the continuum object
using a rendering model (e.g., [5, 11]) and the rigid body collider with 2DGS [11]. Particle trajectories
are subsequently advected using AS-DiffMPM. Finally, the updated particle positions are mapped
back to rendering primitives for photorealistic and physically plausible animation.

physically appealing [1, 21, 20, 22, 4, 23, 24]. Due to the indirection caused by implicitness, few
methods animate implicit NeRFs [23]. Many researchers have combined Material Point Method [3]
with Gaussian Splatting [2] due to their naturally aligned point-based representations. These methods
have shown to provide photorealistic animations [1, 25] with extensions to VR applications [22],
language-driven animations [20], and complex fluid dynamics [21]. However, these methods provide
physically plausible animations of static scenes rather than estimating physical parameters of objects.
Another line of work leverages object dynamics priors from video generative models to endow
static 3D objects with interactive behaviors [26, 27, 28, 29]. While effective for visually realistic
interactions—useful in applications such as content creation—they may fail in domains like robotics,
where precise physical understanding is necessary. In contrast, our work aims to recover accurate
physical parameters of objects from visual observations.

System Identification from Videos. The identification of dynamic systems goes beyond simple
animation, as it requires not only visually plausible animations but also accurate physical properties
that replicate the behavior of the reference system. Prior to the introduction of photorealistic
differentiable rendering [15], system identifications from videos have been difficult due to the
coupling of appearance and dynamics [30]. Recent works have leveraged gradient-based optimization
of physical parameters through differentiable rendering and simulation for system identification.
PAC-NeRF [4] is a representative method that combines a voxel-based NeRF [5] and DiffMPM for
this task. Following up to this work, GIC [8] introduces a novel scene representation method upon
3DGS [2] to improve the supervisory signal from visual observations. Additionally, [9] replaces
MPM with a Spring-Mass representation to model elastic objects. However, these methods focus
on system identification under the assumption of object interactions with planar surfaces, as the
underlying physics simulator does not support complex colliders. Our AS-DiffMPM bridges this gap
by supporting system identification under more realistic conditions, such as collisions with complex
colliders.

3 Preliminary

3.1 Material Point Method

The Material Point Method (MPM) [31, 32, 3] is a widely adopted approach to simulate the dynamics
of continuum materials. It combines the strengths of both Lagrangian particles and Eulerian grid
by discretizing the continuum as a set of particles carrying physical information such as position,
velocity, and mass. For every update step, these properties are transferred to the Eulerian background
grid to solve the equations of motion on the grid nodes. Finally, the resulting nodal velocities
on the grid nodes are interpolated back to the Lagrangian particles, thus updating the state of the
material. MPM operates in three stages: Particle-to-Grid (P2G) transfer, Grid Operations (G-OP),
and Grid-to-Particle (G2P) transfer.

Specifically, considering a toy example where an object is subject to gravity, we represent the object
as a set of particles carrying the following Lagrangian quantities: the particle position xp, velocity
vp, and mass mp. These particles interact with an Eulerian grid, which stores nodal quantities: the
position xg , mass mg and velocity vg at the grid node g.
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At each time step, the simulation proceeds through the following stages:

• Particle-to-Grid (P2G): Physical quantities from particles are transferred to nearby grid
nodes using a weighting function wg(xg − xp). The mass and momentum of each particle
contribute to the grid:

mg =
∑
p

mpwg(xg − xp), vg =
1

mg

∑
p

mpvpwg(xg − xp). (1)

• Grid Operations (G-OP): Once the mass and momentum fields are constructed on the grid,
forces such as gravity g are applied to update velocities at the grid nodes: vg ← vg +∆tg.
Next, boundary conditions are enforced to ensure that the object correctly interacts with
obstacles in the scene. In this example, we consider a sticky ground, meaning any particle
colliding with the surface loses velocity upon impact. The ground is represented as a plane
defined by a point xb and a normal nb. A grid node g is in contact with the ground if
(xg − xb) · nb ≤ 0, in which case its velocity is set to zero, i.e., vg = 0.

• Grid-to-Particle (G2P): The velocity field from the grid nodes is interpolated back to the
particles to update their state. Each particle gathers velocity from the surrounding grid
nodes:

vp =
∑
g

vgwg(xg − xp). (2)

The particle positions are then updated: xp ← xp +∆tvp.

3.2 System identification

System identification aims to estimate the geometric structure and physical properties of dynamic
objects from multi-view video sequences. Following prior works [4, 7, 8], we assume that the object
material (e.g., Newtonian) is known and that its behavior adheres to continuum mechanics [32, 33].

4 Rigid Body Colliders

4.1 Collision Resolution in MPM

A common approach for handling collisions between the continuum material and a rigid body is to
apply velocity corrections during the G-OP stage, as introduced in Sec. 3.1. Specifically, level sets
(or signed distance functions) are used to classify each grid node as inside or outside the collider and
adjust the nodal velocity accordingly [31]. Although straightforward and effective, this method fails
with complex geometries (e.g., open surfaces, sharp boundaries), since all the particles in the same
grid-cell region share a single velocity field. In contrast, Compatible Particle-in-Cell (CPIC) [10]
handles collisions in a particle-wise manner during the P2G and G2P steps. It partitions grid nodes
and particles into compatible or incompatible sets relative to the boundary’s surface, allowing more
precise velocity corrections for each particle colliding with the rigid body.

Hereafter, we detail the CPIC [10] method to project the rigid body onto a grid-based distance field
(Sec. 4.1.1). This information is transferred to the continuum material (Sec. 4.1.2) and used to
possibly apply velocity corrections on particles based on their relationship with neighboring grid
nodes (Sec. 4.1.3).

4.1.1 Project Rigid Body to Collision Grid

Following prior work [10], we represent the rigid body collider as a mesh and project it onto a grid
that encodes properties for collision handling. We define a Collision Grid with the same resolution as
the MPM Eulerian grid and store the following quantities at each grid node: (i) the affinity flag Ag

indicating whether the grid node g is near the boundary, (ii) the unsigned distance dg from the grid
node to the boundary, (iii) a tag Tg denoting which side of the boundary the grid node is on and (iv) a
normal ng retrieved from the boundary. The projection process follows three key steps: sampling
rigid particles, identifying affinity nodes and reconstructing the Collision Grid.

Sampling rigid particles. To map the rigid body’s surface onto nearby grid nodes, the collider is
treated as a collection of primitives, thus, we sample a predefined number of rigid particles on each
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face ξi of the mesh representing the rigid body. Moreover, we define ξ(xrp) as the face to which the
rigid particle xrp belongs.

Identifying affinity nodes. In order to identify all the grid nodes surrounding the rigid body, we
map each xrp to the 3×3×3 grid of neighboring grid nodes denoted as N (xrp). For each grid node
g ∈ N (xrp), its position xg is projected onto the plane defined by the face ξ(xrp). If the projection
falls inside the face, we store the

(
xg, ξ(xrp)

)
pair and set Ag = 1 (otherwise, we set Ag = 0).

Reconstructing the Collision Grid. Since there may be multiple faces in proximity to the same
affinity grid node, i.e., {

(
xg, ξ

i
)
}, i ∈ {1, . . . , l}, we select the one with minimum unsigned point-

plane distance:
ξ∗g = argmin

i∈{1,...,l}
|dist(xg, ξ

i)|, (3)

and store its normal in ng, the sign of the distance in Tg = sign(dist(xg, ξ
∗
g)) and the unsigned

distance in dg .

In summary, for each grid node g, the Collision Grid carries the following properties: Ag , dg , Tg , ng .

4.1.2 Transfer Collision Grid to Material Particles

The Collision Grid is used to transfer properties to material particles, ensuring accurate interactions
with the boundary and possibly correcting undesired behaviors (e.g., penetration).

Particle affinity. Given the material particle position xp, we set Ap = 1 if at least one of the 3×3×3
neighboring grid nodes g ∈ N (xp) has Ag = 1.

Particle distance, tag, and normal. For each material particle xp in affinity with the Collision Grid,
we retrieve the collision properties through interpolation over N (xp):

dp =
∑

g∈N (xp)

wg(xg − xp)AgTgdg, np =
∑

g∈N (xp)

wg(xg − xp)Agng, (4)

where w is a nodal weighting function (e.g., B-spline [31, 34]). Then, we set Tp = sign(dp).
However, if a particle penetrates the boundary, an incorrect Tp may be reconstructed. Therefore, each
particle’s tag Tp retains its first acquired value until the particle loses affinity, i.e., moves away from
the boundary. As a result, if a particle penetrates the boundary due to simulation errors, it will have
an incorrect dp (i.e., wrong sign) while still retaining a correct Tp. This allows penetrations to be
fixed: fp = −khdpnp, where fp is the penalty force to apply to the material particle p and kh is the
penalty stiffness parameter.

Particle-grid compatibility. When a material particle approaches the boundary, its tag Tp is
compared with the neighboring nodes g ∈ N (xp): p and g are incompatible if Tp = 1 and Tg = −1,
or vice versa. In other words, they are on two different sides of the boundary. This condition is used
during the P2G and G2P (Sec. 4.1.3) to identify the particles that are about to collide and adjust their
velocities in a particle-wise manner, rather than applying nodal velocities during the G-OP stage.

4.1.3 P2G and G2P with CPIC

During the P2G stage, material particles transfer velocities only to compatible grid nodes. Conse-
quently, no collision handling occurs during the G-OP stage, as nodal velocities receive contributions
solely from particles away from the boundary. In the G2P stage, however, material particles gather
velocities from both compatible and incompatible grid nodes. For each incompatible node, we
directly reuse the particle’s current velocity vp, enabling particle-wise collision handling with the
surface. For instance, assuming a slippery surface, the velocity is projected onto the surface as
vproj
p = vp − (vp · np)np.

4.2 Representing Rigid Body as 2D Gaussians

As discussed in Sec. 4.1.1, previous work represents the rigid body collider as a mesh [10]. In
contrast, we design a generalized interface for our framework, enabling seamless integration of both
meshes and 2D Gaussians [11] as colliders. By utilizing the Collision Grid as a proxy for transferring
collision properties from the rigid body to the material particles, our framework can accommodate
any collider represented as a set of primitives ξi with associated normals ni.

5



We reconstruct the rigid body from multi-view images using 2D Gaussian Splatting [11]. Thus, in
this case, the rigid body primitive ξi corresponds to a planar disk (i.e., 2D Gaussian) rather than a
mesh face. The collider is imported into AS-DiffMPM following the procedure in Sec. 4.1, with
minimal adaptation required for identifying the affinity grid nodes (Sec. 4.1.1).

Sampling rigid particles. We follow the previously described procedure to sample rigid particles
xrp on the primitives ξi.

Identifying affinity nodes. The 3×3×3 neighboring grid nodes N (xrp) of rigid particle xrp are
projected onto the plane defined by the planar disk ξi. If the projection falls inside the disk, we store
the

(
xg, ξ(xrp)

)
and set the affinity flag Ag accordingly.

From this stage onward, the procedure adheres to the presented approach for transferring collision
properties to material particles and resolving collisions during the P2G and G2P stages.

4.3 System Identification

We integrate our AS-DiffMPM with multiple rendering methods to enable system identification from
visual observations.

Voxel-based NeRF. We follow [4] to integrate a voxel-based NeRF [5] with AS-DiffMPM. Both
MPM and voxel-based NeRFs rely on a grid view (G) for computation and rendering, respectively.
However, while MPM uses a Lagrangian view (P ) to advect particles representing the continuum
material, voxel-based NeRFs lack an equivalent point-based representation. Thus, a mapping between
voxels and Lagrangian particles is required to enable dynamic rendering. This process involves: (i)
mapping voxel fields FG

i to Lagrangian particle fields FP
p , (ii) advecting particles using MPM and

(iii) mapping the updated particle positions back to voxels for dynamic rendering. The following
interconverters for G and P views are used:

FP
p ≈

∑
i

wipFG
i , FG

i ≈
∑

p wipFP
p∑

p wip
, (5)

where p and i indicate the index of the particle and grid node, respectively; and wip is a weighting
function defined on i and evaluated at p. As a result, this mapping mechanism enable bidirectional
transfer between the voxel grid and Lagrangian particles, allowing for gradient-based optimization of
physical parameters from visual observations.

Point-based methods. Point-based rendering methods [8, 2, 11] naturally integrate with MPM
as they both utilize the Lagrangian view (P ) for rendering and particle advection. By employing
differentiable point-based primitives [2, 11], the gradient of the photometric loss with respect to
each rendering primitive is computed and propagated to its corresponding Lagrangian particle,
thereby supporting gradient-based optimization of the physical parameters from visual observations.
Formally:

∂L
∂θ

=
∑
r

∑
p

(
∂L
∂I
· ∂I

∂xr

)
︸ ︷︷ ︸

Rendering

· ∂xr

∂xr
p︸︷︷︸

Mapping

·
∂xr

p

∂θ︸︷︷︸
MPM

, (6)

where L is the photometric loss comparing the rendered image I with the ground truth, xr denotes
the location of the rendering primitive r, xr

p indicates the position of the Lagrangian particle p
associated with primitive r and θ represents the physical parameters (e.g., stiffness, viscosity). The
final gradient is the product of three components: (i) rendering, (ii) primitive-particle mapping, and
(iii) differentiable MPM. For simplicity, each Lagrangian particle is initialized from—and tied to—a
rendering primitive (i.e., xr

p = xr), reducing the gradient flow to:

∂L
∂θ

=
∑
p

(
∂L
∂I
· ∂I

∂xp

)
· ∂xp

∂θ
. (7)
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Figure 3: Qualitative examples of reference frames used in experiments. Note that previous works [4,
7, 8, 9] perform system identification only with a planar surface and do not support such colliders.

5 Experiments

Physical Parameters. Our analysis focuses on material types that undergo noticeable deformation
upon collision with rigid bodies, specifically Newtonian fluids, non-Newtonian fluids, and granular
media. For Newtonian fluids, we estimate fluid viscosity (µ) and bulk modulus (κ). For non-
Newtonian fluids, we recover shear modulus (µ), bulk modulus (κ), yield stress (τY ), and plasticity
viscosity (η). For granular media, we estimate the friction angle (θfric). For a comprehensive
overview of physical parameters and constitutive models, we refer to [4].

Dataset. We follow the protocol in [4] and generate ground-truth simulation rollouts using the
cross-shaped object from [4] as our continuum material, with the physical parameter values provided
in Appendix E. The object undergoes free fall and collides with a static rigid body (Box, Bunny, or
Armadillo) having sticky surfaces. For each rollout, we collect both the 3D particle trajectories (i.e.,
point clouds over time) of the continuum material and the corresponding rendered frames (see Fig. 3),
captured from 11 cameras placed around the scene. These data are used in Sec. 5.1 and Sec. 5.2
for experiments on system identification. Following the protocol in [4], we generate 10 rollouts per
collider for each material type, except for granular media, where 5 videos are generated, resulting in
a total of 75 rollouts. Each rollout is 16 timesteps long.

Training and Evaluation. Our training setup also adheres to [4], including the use of the Adam
optimizer [35] and the initial guesses for the physical parameters. Unlike [4], we do not optimize the
initial velocity vector during the free-fall phase; instead, we use the ground truth values, as our focus
is on system identification during collisions. Finally, we report the results of physical parameters
estimation using the mean and standard deviation of absolute errors, scaled by a factor of 100.

5.1 System Identification from Particle Trajectories

Training. This experiment evaluates system identification performance by estimating the physical
parameters of the continuum material using the 3D particle trajectory as supervision. Specifically, we
compute a particle-wise Mean Squared Error (MSE) loss between the reference trajectory and the one
simulated by the MPM using the current parameter estimates. The loss is backpropagated through
the differentiable simulator to iteratively optimize the physical parameters. We emphasize that this
experiment does not involve visual observations or rendering models, as the focus is exclusively on
evaluating the effectiveness of different collision handling strategies for system identification.

Baselines. As discussed in Sec. 4.1, a straightforward approach for collision handling in MPM is
during the G-OP stage, where a Signed Distance Function (SDF) is reconstructed from the rigid body
collider [27]. Assuming sticky surfaces, the nodal velocities for grid nodes inside the collider are set
to zero. We refer to this baseline as GOP-DiffMPM. Additionally, following prior works [1, 36], the
rigid collider can be represented as a set of rigid particles. We denote this approach as RP-DiffMPM.

Results. Tab. 1 compares the performance of AS-DiffMPM with baselines. Notably, no consistent
trend is observed across colliders: even geometrically simpler shapes like the Box can present
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Material Collider Parameters RP-DiffMPM GOP-DiffMPM AS-DiffMPM (Ours)

Newtonian

Box log10(µ)
log10(κ)

4.82 ± 5.15
37.97 ± 21.8

2.73 ± 3.95
17.09 ± 19.9

5.08 ± 2.73
27.81 ± 33.49

Bunny log10(µ)
log10(κ)

6.69 ± 5.97
35.04 ± 37.35

0.43 ± 0.3
11.52 ± 15.97

4.35 ± 5.24
31.37 ± 50.02

Armadillo log10(µ)
log10(κ)

5.67 ± 3.98
34.61 ± 46.52

0.83 ± 1.14
13.08 ± 10.66

0.4 ± 0.76
0.22 ± 0.24

Non-Newtonian

Box

log10(µ)
log10(κ)
log10(τY )
log10(η)

42.01 ± 32.76
99.55 ± 98.64
20.13 ± 25.83
52.38 ± 27.63

41.11 ± 27.78
136.04 ± 78.32

5.86 ± 3.21
53.22 ± 42.22

23.51 ± 30.07
27.06 ± 19.12
7.28 ± 3.75

17.7 ± 15.17

Bunny

log10(µ)
log10(κ)
log10(τY )
log10(η)

53.02 ± 47.05
82.83 ± 86.55
31.86 ± 50.01
56.01 ± 31.13

20.29 ± 13.96
134.82 ± 75.71

7.10 ± 2.72
53.36 ± 36.15

21.92 ± 36.89
26.77 ± 25.09
2.48 ± 1.87
39.1 ± 36.2

Armadillo

log10(µ)
log10(κ)
log10(τY )
log10(η)

36.67 ± 20.92
192.43 ± 76.69

13.72 ± 4.58
64.40 ± 40.39

36.81 ± 34.27
176.31 ± 73.89
12.10 ± 5.29
54.47 ± 38.32

7.14 ± 6.64
56.26 ± 76.97
5.07 ± 5.79

44.98 ± 41.34

Granular

Box θfric 1.58 ± 0.65 1.16 ± 0.84 1.22 ± 0.71

Bunny θfric 1.91 ± 0.42 0.11 ± 0.15 0.06 ± 0.07

Armadillo θfric 2.28 ± 0.66 0.26 ± 0.16 0.51 ± 0.96

Table 1: System identification from particle trajectories. We compare AS-DiffMPM with two
differentiable baselines for collision handling with arbitrarily shaped rigid bodies. Each method is
evaluated based on its ability to recover physical parameters using particle trajectories as supervision.
Best (light red) and second best (very light red) results are highlighted.

challenges due to sharp corners, while more complex shapes like the Bunny and Armadillo have
intricate surfaces leading to complex particle trajectories. Overall, AS-DiffMPM achieves comparable
or superior performance, due to its particle-wise collision handling. In contrast, GOP-DiffMPM
may be less accurate with complex geometries, as it assigns a single velocity field to all particles
within the same grid cell. Finally, RP-DiffMPM consistently underperforms, suggesting that accurate
system identification requires tailored collision resolution strategies.

5.2 System Identification from Visual Observations

Training. We follow the system identification pipeline outlined in [4]. Given a multi-view video,
we first segment the continuum object using video matting techniques [37]. Moreover, since our
setting involves interactions with a rigid body, we import the mesh-based collider into AS-DiffMPM
following the procedure described in Sec. 4.2. The static geometry of the continuum object is then
reconstructed from the multi-view images at the initial timestep. With the scene setup complete, we
initialize the physical parameters with an initial guess and start the optimization process.

Rendering Models. To the best of our knowledge, existing system identification methods [4, 7, 8, 9]
do not account for scenarios involving continuum materials interacting with arbitrarily shaped
rigid bodies. To address this limitation, we integrate AS-DiffMPM with several rendering models
and establish a benchmark for this novel setting. Specifically, we combine AS-DiffMPM with
the voxel-based NeRF from [5] (DVGO), the point-based 2D Gaussian Splatting method from [11]
(2DGS), and the Motion-factorized Dynamic 3D Gaussian Splatting model (MDyn-3DGS) introduced
in [8]. Unlike the first two methods, MDyn-3DGS performs dynamic scene reconstruction prior to
optimization. This reconstructed information is then used during physical parameter optimization to
constrain particles within the rendered dynamic scene.

Results. The results presented in Tab. 2 are summarized as follows:

• Newtonian fluid: MDyn-3DGS [8] generally provides more accurate estimates of physical pa-
rameters compared to 2DGS [11] and DVGO [5]. It also matches or exceeds the performance
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Material Collider Parameters DVGO [5] 2DGS [11] MDyn-3DGS [8]

Newtonian

Box log10(µ)
log10(κ)

6.71± 4.4
120.94± 73.37

6.68± 4.55
112.13± 85.89

5.58± 3.25
40.07± 39.47

Bunny log10(µ)
log10(κ)

3.55± 4.36
53.34± 64.94

7.37± 5.91
99.16± 68.65

3.29± 2.08
22.38± 17.32

Armadillo log10(µ)
log10(κ)

1.99± 1.59
32.94± 42.24

5.28± 2.55
49.66± 35.79

0.97± 0.86
14.99± 17.13

Non-Newtonian

Box

log10(µ)
log10(κ)
log10(τY )
log10(η)

23.83± 14.77
52.76± 51.68
5.84± 4.34
26.10± 19.21

28.88± 50.41
70.78± 88.13
12.77± 16.22
58.02± 41.46

67.55± 128.49
32.10± 49.97
8.8± 2.86

51.25± 28.81

Bunny

log10(µ)
log10(κ)
log10(τY )
log10(η)

55.38± 31.85
68.84± 38.11
11.43± 6.25
62.06± 49.71

10.05± 7.95
44.44± 33.39
3.30± 2.15
46.05± 27.02

15.91± 25.49
23.16± 18.29
4.97± 5.7

43.37± 22.43

Armadillo

log10(µ)
log10(κ)
log10(τY )
log10(η)

79.23± 82.24
107.90± 95.32
63.01± 148.55
83.60± 50.2

12.34± 13.32
33.30± 20.60
2.34± 2.41
55.18± 37.20

12.62± 10.30
19.75± 13.67
4.32± 1.82
39.74± 23.07

Granular

Box θfric 4.16± 0.76 0.62± 0.75 3.16± 1.04

Bunny θfric 4.02± 0.68 0.50± 0.29 3.33± 0.62

Armadillo θfric 4.11± 1.05 0.36± 0.13 2.89± 0.78

Table 2: System identification from visual observations. We evaluate our AS-DiffMPM combined
with three rendering methods on the task of physical parameter estimation from multi-view videos.
Best (light red) and second best (very light red) results are highlighted.

obtained using particle trajectories as supervision (see Tab. 1), demonstrating that visual
supervision provides meaningful additional information for system identification [4, 8].

• Non-Newtonian fluid: Consistent with prior work [4, 8], this material presents the greatest
challenges, and no single rendering method consistently outperforms others across all
colliders.

• Granular: lower absolute errors are generally observed for this material, indicating rela-
tively simpler deformation behavior compared to fluids. Despite underperforming on fluid
simulations, the explicit point-based representation of 2DGS [11] achieves superior results
for granular media without relying on additional dynamic reconstruction supervision, as
required by MDyn-3DGS [8].

Overall, MDyn-3DGS [8] typically outperforms 2DGS [11] and DVGO [5], highlighting the advan-
tages of incorporating dynamic reconstruction into the rendering pipeline. However, the choice of
method may ultimately depend on the complexity of the specific material-collider interactions being
modeled. Finally, while prior work [4, 8] has shown promising results for system identification with
planar surfaces, our findings indicate that handling more complex interactions is inherently more
challenging—yet essential for advancing toward models that operate under fewer assumptions.

6 Real-World Application: Parameter Estimation of a Dough Sample

To further validate the proposed framework, we conduct a real-world experiment using a dough
sample approximately the size of a football. The dough is modeled as a non-Newtonian material due
to its viscoelastic behavior, which combines solid-like elasticity with fluid-like viscosity.

Experimental Setup. The dough is released in free fall and collides with the edge of a box, creating
a non-planar contact scenario. Upon impact, part of the dough adheres to the horizontal surface,
while the rest deforms and gradually flows along the vertical edge. The experiment is recorded using
five cameras placed around the scene, and in each frame the dough is segmented using SAM2 [38].
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Experiment Pipeline. The procedure consists of three stages:

1. Static geometry reconstruction. We reconstruct the scene without the dough in view
using 2DGS [11] and import it into AS-DiffMPM as a collider. Then, we reconstruct the
initial dough geometry using the multi-view images of the first timestep. We use isotropic
Gaussians to ensure an even distribution along the surface. To avoid structural collapse
upon collision during the simulation, we apply the internal infilling strategy from [1]. The
resulting Gaussians are then fine-tuned, with densification and pruning disabled to preserve
their distribution. These adjustments lead to more realistic MPM simulations.

2. Initial motion estimation. We estimate the initial velocity and gravity vectors from the
free-fall phase and keep them fixed in subsequent stage.

3. System identification. With geometry and motion initialization in place, we optimize the
dough’s physical parameters over the full sequence.

Results. The estimated physical parameters are: µ = 57, 033.1, κ = 139, 650.4, τY = 7, 919.1, η =
25.1. We further assess visual reconstruction quality over three seconds after collision. Tab. 3 shows
the metrics averaged over 60 frames and five cameras. We observe a degradation in reconstruction
quality in the later frames (see also Fig. 4). As the dough undergoes significant deformation, the
Gaussians deviate from their original positions, introducing visual artifacts. A potential remedy is to
incorporate time-dependent Gaussian attributes, which we leave for future work.

Time after collision PSNR (↑) SSIM (↑) LPIPS (↓)
1 s 33.2 ± 4.1 0.994 ± 0.004 0.019 ± 0.001
2 s 28.9 ± 6.6 0.988 ± 0.011 0.024 ± 0.011
3 s 25.3 ± 7.8 0.966 ± 0.013 0.035 ± 0.012

Table 3: Evaluation of image reconstruction quality for the dough over time.
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Figure 4: Example visualization of the dough experiment.

7 Conclusion

Limitation. One limitation of our work is the preliminary rigid body reconstruction-and-import
into AS-DiffMPM, prior to start the system identification optimization. This restricts our approach
to static colliders. Although the extension to moving rigid bodies is trivial in our framework, we
leave the system identification analysis under such conditions as future work. Indeed, as significant
deformation of the continuum material may occur, a carefully designed dynamic reconstruction
method—similar to the one proposed in [8]—is required to mitigate visual artifacts.

In conclusion, we proposed AS-DiffMPM, a differentiable Material Point Method supporting arbitrar-
ily shaped colliders. We validated our method quantitatively and combined it with various rendering
models to perform system identification from visual observations, providing extensive results in
a novel scenario where the continuum material undergoes deformations against complex colliders
rather than planar surfaces.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and and introduction reflect the paper’s
contributions and objectives.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper presents a Conclusion section where limitations are discussed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not contain theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We did our best to include all the details for reproducibility. Moreover, we will
release the code of our framework.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: Instructions on how to download the data and run scripts are not included
in the paper, however, we will rely on a project page (linked to our paper) to provide
instructions for reproducibility. We well release ready-to-use data and scripts (e.g., no data
pre-processing required).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We both described our training/test details (in the Experiments section) and
referred to priors works [4] when the settings are unchanged.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We reported tables for quantitative analysis in the Experiments section

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We described this in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The used assets are properly cited throughout the paper and more specifically
in the Experiments section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology and contributions of this paper do not involve LLM
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
This supplementary material provides additional results that both complement the main paper and
preliminarily explore more scenarios. We invite the reader to also refer to the supplementary media
attached to this paper and the project page for additional visualizations.

A Additional Results on System Identification

This section complements the results in Tab. 1 and Tab. 2 with additional quantitative metrics and
qualitative visualizations.

A.1 System Identification from Particle Trajectories

A.1.1 Quantitative Results on Geometric Error

Beyond the results reported in Tab. 1, we quantify the geometric accuracy of the simulated particle
trajectories (after convergence of the physical parameter optimization) by comparing them against
the reference trajectory used for supervision. Following [8, 9], we report the Chamfer Distance (CD)
and Earth Mover’s Distance (EMD). The Chamfer Distance is computed using the squared distance
and is expressed in units of 103 mm2. Each metric is averaged over all timesteps across the dataset.
Results are presented in Tab. 4

Material Collider Metrics RP-DiffMPM GOP-DiffMPM AS-DiffMPM (Ours)

Newtonian

Box CD ↓
EMD ↓

3.903± 2.603
0.066± 0.018

3.879± 2.625
0.066± 0.019

3.925± 2.590
0.066± 0.019

Bunny CD ↓
EMD ↓

2.948± 2.060
0.059± 0.017

2.946± 2.059
0.059± 0.017

2.955± 2.059
0.059± 0.017

Armadillo CD ↓
EMD ↓

2.977± 2.515
0.064± 0.025

2.964± 2.512
0.064± 0.025

2.960± 2.521
0.064± 0.024

Non-Newtonian

Box CD ↓
EMD ↓

16.566± 6.847
0.108± 0.023

16.492± 6.854
0.107± 0.023

16.558± 6.868
0.107± 0.022

Bunny CD ↓
EMD ↓

12.858± 5.323
0.098± 0.023

12.822± 5.308
0.098± 0.023

12.826± 5.353
0.098± 0.023

Armadillo CD ↓
EMD ↓

15.576± 10.921
0.121± 0.045

15.571± 10.909
0.121± 0.045

15.519± 10.936
0.121± 0.045

Granular

Box CD ↓
EMD ↓

3.478± 1.054
0.064± 0.005

3.485± 1.090
0.064± 0.006

3.448± 1.043
0.063± 0.005

Bunny CD ↓
EMD ↓

3.084± 0.820
0.058± 0.006

3.067± 0.847
0.058± 0.005

3.055± 0.851
0.058± 0.005

Armadillo CD ↓
EMD ↓

2.896± 0.857
0.056± 0.006

2.860± 0.845
0.056± 0.006

2.858± 0.902
0.056± 0.006

Table 4: Evaluation of geometric error using CD and EMD for different materials and colliders.
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A.1.2 Qualitative Visualizations

We provide example visualizations of the 3D particle trajectories used in our experiments (see Fig. 5).
Please refer to the supplementary material attached to this paper for more videos.

Figure 5: Particle trajectories of a Newtonian material colliding with the Armadillo rigid body.

A.2 System Identification from Visual Observations

A.2.1 Quantitative Results on Image Reconstruction

In addition to the results shown in Tab. 2, we assess the image reconstruction quality of all models
after convergence of the physical parameter optimization. We report in Tab. 5 the standard metrics
used in radiance field evaluation: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). Each metric is averaged
over all views and timesteps across the dataset.

Material Collider Metrics DVGO [5] 2DGS [11] MDyn-3DGS [8]

Newtonian

Box
PSNR ↑
SSIM ↑
LPIPS ↓

35.318± 4.901
0.985± 0.010
0.023± 0.016

35.669± 6.779
0.978± 0.022
0.022± 0.019

41.300± 2.130
0.997± 0.002
0.017± 0.007

Bunny
PSNR ↑
SSIM ↑
LPIPS ↓

36.491± 4.217
0.987± 0.009
0.021± 0.014

36.949± 6.083
0.981± 0.019
0.019± 0.017

41.537± 1.856
0.998± 0.001
0.015± 0.006

Armadillo
PSNR ↑
SSIM ↑
LPIPS ↓

36.905± 3.409
0.987± 0.008
0.021± 0.012

37.484± 5.340
0.982± 0.017
0.019± 0.015

41.888± 1.395
0.998± 0.001
0.015± 0.005

Non-Newtonian

Box
PSNR ↑
SSIM ↑
LPIPS ↓

28.331± 5.462
0.973± 0.014
0.037± 0.014

29.468± 6.658
0.980± 0.015
0.023± 0.015

48.521± 2.291
0.998± 0.001
0.011± 0.003

Bunny
PSNR ↑
SSIM ↑
LPIPS ↓

28.871± 5.077
0.975± 0.012
0.035± 0.012

31.718± 5.184
0.986± 0.011
0.018± 0.011

48.659± 2.278
0.998± 0.001
0.010± 0.003

Armadillo
PSNR ↑
SSIM ↑
LPIPS ↓

27.196± 5.573
0.971± 0.013
0.038± 0.014

32.176± 4.459
0.986± 0.009
0.018± 0.010

48.762± 1.814
0.998± 0.001
0.010± 0.002

Granular

Box
PSNR ↑
SSIM ↑
LPIPS ↓

31.338± 5.558
0.967± 0.023
0.046± 0.028

31.055± 7.419
0.957± 0.040
0.035± 0.029

40.527± 3.951
0.992± 0.006
0.022± 0.009

Bunny
PSNR ↑
SSIM ↑
LPIPS ↓

32.487± 4.841
0.972± 0.018
0.042± 0.024

32.063± 6.870
0.963± 0.034
0.031± 0.026

42.522± 2.127
0.994± 0.003
0.018± 0.007

Armadillo
PSNR ↑
SSIM ↑
LPIPS ↓

32.204± 4.577
0.970± 0.018
0.044± 0.024

31.361± 6.936
0.959± 0.035
0.034± 0.027

41.900± 2.122
0.993± 0.003
0.021± 0.008

Table 5: Evaluation of image reconstruction using PSNR, SSIM, and LPIPS for different materials
and colliders.
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A.2.2 Qualitative Visualizations

We provide example visualizations of the models at convergence (see Fig. 6 and Fig. 7). We remind
that, prior to the physical parameters optimization, the rigid collider is imported into AS-DiffMPM for
collision handling and the continuum material is segmented out from the ground truth views. During
physical parameters optimization, the visual observations containing the segmented-out continuum
object are used for supervision. Please refer to the supplementary material attached to this paper for
videos, along with the reconstruction metrics and estimated physical parameters.

Figure 6: Non-Newtonian material colliding with the Bunny rigid body.

Figure 7: Sand material colliding with the Box rigid body.
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B Mesh vs. 2DGS as Rigid Body Collider

In contrast to the experiments presented in the main paper (Sec.5), where the collider imported into
AS-DiffMPM is represented as a mesh, in this analysis we segment and reconstruct the collider
using 2DGS[11], and import it into AS-DiffMPM as described in Sec. 4.2. We then perform the
same system identification experiment based on particle trajectories to evaluate the impact of using a
mesh compared to 2DGS as rigid body collider representation. Results are presented in Tab. 6 and
Tab. 7. As expected, 2DGS-based colliders obtains lower accuracy. This is due to the reconstructed
Gaussians not being as precise as a mesh, which introduce noise into the Collision grid (Sec. 4.1.1)
and result in less accurate collision handling. However, we remark that our AS-DiffMPM is versatile
enough to support both mesh and 2DGS-based colliders. This flexibility is particularly valuable for
real-world scenarios, where colliders may need to be reconstructed on-the-fly using 2DGS to enable
simulation.

Material Collider Parameters AS-DiffMPM w/ 2DGS AS-DiffMPM w/ Mesh

Newtonian

Box log10(µ)
log10(κ)

4.36 ± 2.66
36.26 ± 24.63

5.08 ± 2.73
27.81 ± 33.49

Bunny log10(µ)
log10(κ)

7.03 ± 4.09
81.30 ± 31.53

4.35 ± 5.24
31.37 ± 50.02

Armadillo log10(µ)
log10(κ)

8.75 ± 6.17
86.74 ± 47.68

0.4 ± 0.76
0.22 ± 0.24

Non-Newtonian

Box

log10(µ)
log10(κ)
log10(τY )
log10(η)

55.51 ± 42.28
126.10 ± 99.60
11.18 ± 8.63

56.71 ± 35.83

23.51 ± 30.07
27.06 ± 19.12

7.28 ± 3.75
17.7 ± 15.17

Bunny

log10(µ)
log10(κ)
log10(τY )
log10(η)

53.12 ± 44.90
110.70 ± 73.58
16.40 ± 5.74

56.57 ± 35.17

21.92 ± 36.89
26.77 ± 25.09

2.48 ± 1.87
39.1 ± 36.2

Armadillo

log10(µ)
log10(κ)
log10(τY )
log10(η)

25.22 ± 24.02
124.88 ± 75.89
28.43 ± 19.45
51.76 ± 30.75

7.14 ± 6.64
56.26 ± 76.97

5.07 ± 5.79
44.98 ± 41.34

Granular

Box θfric 1.86 ± 1.14 1.22 ± 0.71

Bunny θfric 0.91 ± 1.15 0.06 ± 0.07

Armadillo θfric 1.38 ± 1.08 0.51 ± 0.96

Table 6: System identification from particle trajectories. Evaluation (reported as absolute error) of
physical parameter estimation when using mesh and 2DGS [11] as collider.
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Material Collider Metrics AS-DiffMPM w/ 2DGS AS-DiffMPM w/ Mesh

Newtonian

Box CD ↓
EMD ↓

3.893 ± 2.586
0.066 ± 0.018

3.925 ± 2.590
0.066 ± 0.019

Bunny CD ↓
EMD ↓

2.955 ± 2.049
0.059 ± 0.017

2.937 ± 2.059
0.059 ± 0.017

Armadillo CD ↓
EMD ↓

2.962 ± 2.515
0.064 ± 0.024

2.960 ± 2.521
0.064 ± 0.024

Non-Newtonian

Box CD ↓
EMD ↓

16.629 ± 6.882
0.108 ± 0.023

16.558 ± 6.868
0.107 ± 0.022

Bunny CD ↓
EMD ↓

12.867 ± 5.355
0.098 ± 0.023

12.826 ± 5.353
0.098 ± 0.023

Armadillo CD ↓
EMD ↓

15.538 ± 10.854
0.121 ± 0.045

15.519 ± 10.936
0.121 ± 0.045

Granular

Box CD ↓
EMD ↓

3.468 ± 1.042
0.064 ± 0.005

3.448 ± 1.043
0.063 ± 0.005

Bunny CD ↓
EMD ↓

3.094 ± 0.867
0.057 ± 0.005

3.055 ± 0.851
0.058 ± 0.005

Armadillo CD ↓
EMD ↓

2.872 ± 0.886
0.056 ± 0.006

2.858 ± 0.902
0.056 ± 0.006

Table 7: System identification from particle trajectories. Evaluation of geometric error when using
mesh or 2DGS as collider.

C Exploring More Conditions for System Identification

We further benchmark our AS-DiffMPM framework under more conditions, both in terms of colliders
and materials. This section is not intended to provide an in-depth analysis for each condition, but
rather to explore a wide range of possibilities, aiming to possibly identify which ones deserve more
thorough analysis in future work. All experiments are conducted using the pipeline described in
Sec. 5.1 for system identification from particle trajectories.

C.1 Same Colliders in Different Conditions

We use the three colliders (Box, Bunny and Armadillo) of our analysis in the main paper but changing
characteristics. For each case, results are reported per material type, averaging over the colliders (see
Tab. 8)

• Condition 1. The collider is moved to the side (instead of being underneath the object) such
that the continuum material first impacts the ground and then interacts with the collider as it
spreads. We perform nine experiments—comprising three material types and three colliders.

• Condition 2. Each collider is tested at two scales (0.5 and 1.5), for all material types and
colliders, resulting in 18 experiments.

• Condition 3. We combine all the colliders at once, placing them side by side, so that the
material interacts with all of them upon collision. This results in three experiments, one per
material type

Overall, Condition 1 appears to be the one with more significant challenges in physical parameter
estimation, likely due to this ground-first-collider-next complex interactions between the material and
the collider.
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Material Parameter Cond. 1 Cond. 2 Cond. 3

Newtonian log10(µ) 10.51 ± 12.09 5.21 ± 7.02 6.85
log10(κ) 39.82 ± 9.65 26.88 ± 25.91 47.34

Non-Newtonian

log10(µ) 23.02 ± 10.31 22.17 ± 12.81 3.41
log10(κ) 50.34 ± 7.78 23.15 ± 15.64 41.98
log10(τY ) 9.56 ± 5.90 5.34 ± 4.26 7.59
log10(η) 34.41 ± 12.74 21.03 ± 7.98 32.02

Granular θfric 4.02 ± 1.70 1.09 ± 0.93 3.04

Table 8: System identification errors across three conditions.

Material Parameter S-MPM RP-DiffMPM GOP-DiffMPM AS-DiffMPM (Ours)

Newtonian log10(µ) 7.51 8.03 7.63 7.98
log10(κ) 31.98 35.21 32.45 33.21

Non-Newtonian

log10(µ) 24.09 24.57 24.91 24.03
log10(κ) 19.01 21.12 20.19 19.03
log10(τY ) 4.91 5.12 4.78 4.54
log10(η) 30.53 32.10 31.05 31.21

Granular θfric 0.15 0.56 0.22 0.12

Table 9: System identification errors for planar collider.

C.2 More Colliders and Material Types

In this section, we focus both on different colliders and material types, comparing our AS-DiffMPM
framework with baselines. For the former, we first explore a comparison using the condition adopted
in previous works [4, 7, 8, 9], i.e., a planar collider, and then with a bowl-shaped collider. Instead, for
the latter, we explore both further material types and shapes.

Planar Collider. We conduct experiments comparing our AS-DiffMPM with both the baselines used
in our main paper (GOP-DiffMPM and RP-DiffMPM) and the Standard MPM (S-MPM) collision
strategy adopted by previous works [4, 7, 8, 9]. In S-MPM, collisions are resolved at the Grid
Operations stage (Sec. 3.1): for a planar surface defined by point xb and normal nb, the nodal velocity
vg is set to zero for all grid nodes xg such that (xg − xb) · nb ≤ 0. In contrast, AS-DiffMPM
represents the same planar collider as a mesh surface positioned at xb, and applies particle-wise
collision handling during both P2G and G2P steps. We performed three experiments, one per material
type (see Tab. 9). The S-MPM achieves slightly lower errors for some parameters, likely due to its
use of analytically defined boundary conditions, which may offer improved numerical stability in
simple geometries.

Bowl Collider. We import a bowl-shaped collider into our framework and place it such that the falling
material impacts its open surface—causing some particles to enter the bowl while others fall outside.
We conducted three experiments, one per material type (see Tab. 10). The general trend observed in
the main paper appears to be consistent here, with our method outperforming the baselines.

More material types. While the main focus of our work is on Newtonian, non-Newtonian and
granular materials, we explore here also with elastic and plasticine materials. For elastic material, we
consider Young’s modulus (E) and Poisson’s ration (ν), while for plasticine material, we consider
also yield stress (τY ). We refer the reader to [4] for the constitutive models. Each method was
evaluated on six experiments: two material types and with three colliders. The results are presented in
Tab. 11, averaged over the colliders. Interestingly, all methods generally perform well on the elastic
material. This may be due to the simpler nature of the interaction between the elastic material and the
collider—since the material tends to bounce away upon contact, the particle-wise collision handling
mechanism of AS-DiffMPM has less impact. Indeed, in these scenarios, no fine-grained interaction
(e.g., material flowing around sharp corners) occurs.
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Material Parameter RP-DiffMPM GOP-DiffMPM AS-DiffMPM (Ours)

Newtonian log10(µ) 7.84 7.29 6.01
log10(κ) 30.12 28.45 25.67

Non-Newtonian

log10(µ) 19.31 20.05 15.03
log10(κ) 38.22 35.79 29.84
log10(τY ) 7.31 6.98 5.15
log10(η) 26.78 28.45 20.94

Granular θfric 3.01 1.17 1.41

Table 10: System identification errors for bowl collider.

Material Parameter RP-DiffMPM GOP-DiffMPM AS-DiffMPM (Ours)

Elastic log10(E) 2.01 ± 0.45 2.87 ± 1.18 1.91 ± 0.96
ν 0.36 ± 0.43 1.23 ± 0.32 0.49 ± 0.12

Plasticine
log10(E) 28.45 ± 3.12 16.88 ± 1.84 12.07 ± 2.21

ν 9.29 ± 5.04 10.24 ± 3.03 8.21 ± 1.02
log10(τY ) 9.44 ± 2.05 8.76 ± 1.88 6.23 ± 1.47

Table 11: System identification errors for elastic and plasticine material types.

Shape Material Parameter RP-DiffMPM GOP-DiffMPM AS-DiffMPM (Ours)

Droplet Newtonian log10(µ) 7.81 ± 3.52 6.94 ± 4.41 5.87 ± 3.37
log10(κ) 32.33 ± 3.25 21.91 ± 8.13 24.50 ± 3.98

Letter Newtonian log10(µ) 8.12 ± 3.49 7.22 ± 2.38 6.05 ± 1.35
log10(κ) 31.01 ± 5.40 23.12 ± 2.17 22.36 ± 6.04

Cream Non-Newtonian

log10(µ) 19.42 ± 7.61 18.67 ± 2.53 14.73 ± 5.12
log10(κ) 46.50 ± 12.09 44.12 ± 3.88 38.08 ± 4.65
log10(τY ) 6.92 ± 0.58 6.58 ± 0.47 4.97 ± 0.34
log10(η) 54.88 ± 12.72 46.41 ± 5.85 40.01 ± 7.43

Toothpaste Non-Newtonian

log10(µ) 20.05 ± 5.45 19.18 ± 1.29 15.30 ± 1.06
log10(κ) 44.44 ± 4.33 44.99 ± 3.04 39.72 ± 3.89
log10(τY ) 7.35 ± 1.61 6.97 ± 0.52 5.12 ± 0.38
log10(η) 62.19 ± 19.06 47.55 ± 21.95 41.17 ± 9.01

Torus Elastic log10(E) 1.85 ± 0.83 2.87 ± 0.75 2.69 ± 0.62
ν 0.22 ± 0.02 0.25 ± 0.02 0.19 ± 0.01

Bird Elastic log10(E) 2.31 ± 0.90 2.94 ± 0.81 2.51 ± 0.69
ν 0.22 ± 0.02 0.26 ± 0.02 0.21 ± 0.01

Playdoh Plasticine
log10(E) 17.38 ± 1.14 15.89 ± 1.03 11.62 ± 0.89

ν 8.31 ± 3.03 9.27 ± 2.02 6.22 ± 2.01
log10(τY ) 9.91 ± 1.46 8.70 ± 0.62 6.74 ± 0.51

Cat Plasticine
log10(E) 18.11 ± 1.20 16.32 ± 1.05 12.01 ± 0.95

ν 8.30 ± 2.71 8.28 ± 1.02 6.23 ± 1.98
log10(τY ) 10.02 ± 0.84 9.14 ± 0.71 7.20 ± 0.57

Trophy Granular θfric 2.19 ± 0.15 1.95 ± 0.12 1.24 ± 0.09

Table 12: System identification errors for different material shapes.

27



More material shapes. We use the 9 shapes and their associated material types introduced in [4].
Each method is tested on all 9 shapes, with each shape colliding against the three colliders, resulting
in 27 experiments per method. The results are presented in Tab. 12, averaged over the colliders.

D Extensions of AS-DiffMPM

Due to our collision handling mechanism integrated into the P2G and G2P stages, the AS-DiffMPM
framework can accommodate additional physical constraints. In the following, we present two
illustrative examples.

D.1 Material Cutting

We consider a thin surface intersecting with a continuum material. We implement a separating
surface behavior where we adjust the velocity of the particle vp based on its relative position to the
surface. Concretely, during the G2P stage, for each incompatible particle (Sec. 4.1.2), we compute
the signed particle normal n̄p = npTp, and update the velocity according to the particle’s motion
relative to the surface. If the particle is moving away from the boundary (i.e., vp · n̄p > 0), its velocity
remains unchanged. Otherwise, we project the velocity along the surface: vproj

p = vp− (vp · n̄p) n̄p.

Figure 8: A thin surface cutting an elastic object.

D.2 Collider-to-Continuum Coupling

We present a scenario where a moving collider can interact with the continuum material. During the
G2P stage, for each incompatible particle, we correct the velocity as v̄p = vp + vr, where vr is the
rigid body velocity at position xp.

Figure 9: A ball colliding with a sand object.

E Values of Physical Parameters for Ground-truth Rollouts

For a fair comparison, we generate ground-truth simulation rollouts using the same physical parameter
values as in [4], listed in Tab. 13 for convenience. Each ground-truth rollout is executed three times,
one for each collider, totaling 75 rollouts. We remark that for each rollout a separate training run of
system identification is performed, where an initial guess of the physical parameters is optimized by
comparing the current rollout against the reference (either in the form of particle trajectories or visual
observations). For each material type, we use the same initial guess across all training runs.
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Newtonian (Initial Guess: µ = 10, κ = 104)

Parameter 1 2 3 4 5 6 7 8 9 10

µ 19.46 436.62 155.83 121.76 49.09 38.44 64.16 228.71 552.98 106.93
κ 56075.55 152696.25 193525.59 257356.05 518012.47 13772.52 358237.13 11041.06 16789.77 112569.73

Non-Newtonian (Initial Guess: µ = 100, κ = 105, τY = 10, η = 1)

Parameter 1 2 3 4 5 6 7 8 9 10

µ 13209.25 65351.08 43757.04 36027.61 19593.71 20522.72 51549.45 121865.90 241579.97 33764.59
κ 201566.59 171054.03 249639.94 134751.55 121836.33 14494.30 370317.66 32859.59 30324.98 122896.10
τY 1151.42 7491.70 3964.94 5061.12 1462.78 4153.38 3203.67 1192.76 1251.29 4689.16
η 6.68 26.69 23.27 22.31 38.83 27.24 20.43 10.27 10.62 22.89

Granular (Initial Guess: θfric = 10)

Parameter 1 2 3 4 5

θfric 30.6577 32.3751 26.8816 29.3458 42.2861

Table 13: Values of physical parameters for ground-truth simulation rollouts.

F Implementation Details

We implemented our framework using Python and Taichi for differentiable programming and parallel
computation. AS-DiffMPM is built upon the open source DiffMPM implementation in [4] and
subsequent works [7, 8]. We run the experiments on NVIDIA RTX 3080 and 4090 graphics cards.
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