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ABSTRACT

Granger Causality (GC) provides a rigorous framework for learning causal struc-
tures from time-series data. Recent federated variants of GC have targeted dis-
tributed infrastructure applications (e.g., smart grids) with distributed clients that
generate high-dimensional data bound by data-sovereignty constraints. However,
Federated GC algorithms only yield deterministic point estimates of causality and
neglect uncertainty. This paper establishes the first methodology for rigorously
quantifying uncertainty and its propagation within federated GC frameworks. We
systematically classify sources of uncertainty, explicitly differentiating aleatoric
(data noise) from epistemic (model variability) effects. We derive closed-form
recursion expressions modeling the evolution of uncertainty through client-server
interactions, and identify four novel cross-covariance components that couple data
uncertainties with model parameter uncertainties across the federated architecture.
Moreover, we define rigorous convergence conditions for these uncertainty recur-
sions and obtain explicit steady-state variances for both server and client model
parameters. More importantly, our convergence analysis demonstrates that steady-
state variances depend exclusively on client data statistics, thus eliminating the de-
pendence on initial epistemic priors and enhancing robustness. Empirical evalua-
tions on synthetic benchmarks and real-world industrial datasets demonstrate that
explicitly characterizing uncertainty significantly improves the reliability and in-
terpretability of federated causal inference. These results enable robust root-cause
analysis in safety-critical privacy-constrained and distributed infrastructures.

1 INTRODUCTION

Complex industrial systems such as smart grids, distributed manufacturing, and supply chain net-
works are comprised of geographically distributed, tightly coupled system components (clients) that
interact dynamically and require seamless coordination for safe and reliable operations. The result-
ing interactions also mean that any disruptions, such as equipment failures or cyber intrusions, can
propagate quickly, triggering cascading effects across the entire system. Mitigating these challenges
requires risk-aware causal models that can identify causal influences between clients and quantify
their associated uncertainties. This ensures that limited resources for mitigation are efficiently allo-
cated to prevent or minimize cascading disruptions, especially in safety-critical applications.

Granger Causality (GC) is well-suited for learning causal structures from time-series data |Sho-
jaie & Fox|(2022); [Wismiiller et al.| (2021); Tank et al.[(2021)). Conventional GC methods rely on
data centralization. Clients in our problem setting cannot readily share their data because they are
equipped with modern sensors that generate high-dimensional data, and any downsampling or ag-
gregation of this data destroys critical diagnostic information. Additionally, many clients are bound
by data-privacy stipulations.

Recent advances in federated Granger causality (FedGC) partly address these challenges by ex-
changing only sufficient statistics rather than raw data [Mohanty et al.|(2025). Nonetheless, existing
FedGC methods provide only deterministic point estimates and neglect the uncertainty introduced
by data noise and model variability. To the best of our knowledge, this is the first methodology that
rigorously quantifies uncertainty and its propagation within FedGC frameworks.
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Without quantifying uncertainties in causal models, decision-makers may underestimate risks, lead-
ing to catastrophic failures. For instance, during the 2003 Northeast blackout Muir & Lopatto
(2004), control room alarms failed to trigger, and operators believed the system was operating nor-
mally. This binary fault detection approach ignored uncertainty and missed early warning signs. Had
the variances on inter-utility causal interactions been monitored rather than relying on single-point
alarm estimates, operators might have seen a widening of predictive confidence intervals, providing
sufficient warning to mitigate the cascade. Unfortunately, the cascade resulted in a massive outage.

This paper establishes the first theoretical foundation for analyzing how uncertainties propagate in
the FedGC framework. We address three fundamental questions:

1. Sources: What are the primary contributors to uncertainty in federated causal learning?

2. Propagation: How do uncertainties compound as clients and servers iteratively optimize loss?
3. Impact: What is the cumulative effect of these uncertainties on the fidelity of causal estimates?

Contributions: The key technical contributions of our paper are:

* A systematic classification of uncertainty sources in federated causal learning, distinguish-
ing between data noise (aleatoric), and model variability (epistemic) effects.

* Closed-form propagation expressions that track how these uncertainty move through
client—to—server, and server—to—client communication channels, and within the client, and
within the server paths, revealing four previously unrecognized cross-covariance terms that
couple data and parameters across the FedGC framework.

* Spectral-radius based conditions that guarantee convergence of all covariance recursions
leading to explicit solutions for the steady-state variances of the server and client models.

» Theoretical results on convergence, showing that these steady-state variances depend only
on raw data statistics of the clients (aleatoric), thereby eliminating any influence of the
initial epistemic priors in the FedGC framework.

2 LITERATURE REVIEW

In centralized settings, uncertainty propagation under gradient-based optimization has been studied
extensively. Recent works Wang et al.| (2023); |[Durasov et al.| (2024); |Gawlikowski et al.| (2023)
analyze how noise from stochastic gradients or perturbations propagates through updates, while
others|/Chan et al.|(2024)); Huseljic et al.| (202 1)); Meinert et al.|(2023); Hofman et al.|(2024)) formalize
the coupling between aleatoric and epistemic uncertainties Hiillermeier & Waegeman|(2021). These
analyses assume centralized training with full data access and do not generalize to federated settings.

In federated learning, uncertainty quantification has advanced mainly through Bayesian meth-
ods, including federated Bayesian neural networks [Yurochkin et al.| (2019), personalized infer-
ence [Kotelevskii et al.| (2022); [Zhang et al.| (2022)), ensemble strategies (Chen & Chao| (2020), and
Monte Carlo dropout [Park et al.|(2022)). While effective for horizontal IID data |Yang et al.| (2019),
these approaches rely on approximate posteriors (variational inference, sampling, dropout) and typ-
ically treat aleatoric and epistemic uncertainties independently. VertiBayes|Van Daalen et al.|(2024)
extends Bayesian inference to vertical partitions but remains static, lacking temporal dynamics and
client-server uncertainty interactions.

Beyond Bayesian approaches, federated Kalman filtering |Xing & Xial (2016)); |Baucas & Spachos
(2023) and distributed state estimation [Korres| (2010); [Primadianto & Lul (2016) propagate uncer-
tainty recursively but ignore cross-client causality. Causal federated works such as FedGC |[Mohanty
et al.| (2025) focus on deterministic recovery, neglecting noise propagation, while variational infer-
ence methods|Guo et al.;[Vedadi et al.|(2024) approximate posteriors without modeling client—server
cross-covariances. Robust aggregation |Pillutla et al.| (2022); |Li et al.|(2021)) mitigates heterogeneity
but remains agnostic to compounding uncertainty in causal graphs.

Our work departs from these directions by unifying causal structure learning with federated uncer-
tainty propagation. Unlike Bayesian FL. methods that assume horizontal partitioning or decouple
uncertainties, we explicitly trace how aleatoric noise and epistemic variability interact via cross-
covariance terms. This captures uncertainty propagation in federated time-series data while provid-
ing a causal interpretation of client—server interactions.
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3 PRELIMINARIES

State Space Model. The underlying system is modeled as a linear time-invariant (LTI) state—space:
ht = AR 4wt bt = Cht 40 (D

where ht € RP are the latent low-dimensional states and 4* € R? are the measured high-
dimensional data at time ¢ with d >> p. A and C are the constant state-transition and observation
matrices; w? and v? are zero-mean i.i.d. Gaussian system and measurement noise with covariances
Q@ and R, respectively. We make the following assumptions about the LTT state space model:

1. There are M subsystems such that h* = [RY,--- Ay, ], y" = [y}, -, y%,]. Each of these
subsystems is a client for our problem setting. The states are such that, hf, € RP™, and

yt, € R with dyy, >> pp,and M p,, = p,and N d,, = d.

2. The observation matrix C' is block-diagonal i.e., C' = diag (C117 e, Oy M) where each
block C,,, € R%m*Pm_The block C.y,y, is known at client m.

3. The state-transition matrix A is not block-diagonal i.e., dn # ms.t,, A, # 0 with

A € RPmXPn_ Each client m knows (or can locally compute) its diagonal block A,
while the off-diagonal blocks A,,,,Vn # m are unknown.

Granger Causality. A time series h,, is said to Granger-cause another series h,, if the inclusion of
past values of h,, improves the prediction of h,,. In the state-space setting, this notion is captured
by the off-diagonal entries of the state-transition matrix A. For instance, in a system given by,

Gi) = (o ) (i) 2 ®
h Ag1 Agn) \ KLt wh
the series ho Granger-causes hi precisely when A1 # 0. More generally, A,,, # 0 indicates that

past values of h,, influence the future of h,,, revealing a directed causal link from client n to m.
Estimating A,,,,, in a decentralized system is the goal of the federated GC framework.

3.1 FEDERATED GRANGER CAUSALITY

FedGC is a server-client framework with M different clients having unknown interdependencies
across them. We discuss the details of the client and server models in the FedGC framework.

Client Model. Each client m models its subsystem as an LTI state—space using only the local (di-
agonal) blocks A,,,, € RPm*Pm and C,,,,, € R%*Pm A Kalman filter based “local client model”
is used to compress the high-dimensional data (measurement) yﬁm) € R into a low-dimensional
state estimate il,gm) € RPm with d,,, >> p,,Ym € {1,--+ , M} such that:

h;:n,c = Amm iltmji? Hﬁn,c = hfn,c + Km(yin_cmm(hin,c)c) (3)

where K, is the Kalman gain computed from (A, Crums @mm s Rmm ). The local client model
(Kalman Filter) ignores cross-client dynamics A,,, (n # m). In order to compensate for these
cross-client dynamics, the client states are augmented with machine learning (ML) models to obtain
an “augmented client model” as follows:

Pt it t t Pt

hm,a = hm,c + om yma hm,a = Ammhm,a (4)
where 6,, € RP=*dm is a learnable matrix that captures missing cross-client effects. The loss
function (L, ), is optimized at client m with 6,,, being learned using Gradient-descent based update,

(Lim), = Y — Cmmhzn,a” s.t., 07tn+1 =05, —Mm Vor, (Lm)y — M2 Vo L (5)
In the above equation, 7);, 72 are the learning rates corresponding to client m’s loss function (L),
and server model’s loss function L, respectively (the server model is discussed in next paragraph).

Remark 3.1. In the gradient update equation above, while, Vg (L,,), can be computed locally at
the client m, the gradient Vy: L needs information from the server. However, the server cannot
directly compute Vg L as the gradient is w.r.t. client model parameter 6,,,. Therefore, the FedGC
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framework adopts chain rule to decompose it such that: Vg: Ly = (V. L) (Vo: ht, ). Akey

m,a

advantage of this decomposition is that the first factor i.e., V X L, can be communicated from the

m,a

server to client m, while Vg« fLﬁna can be computed locally at client m.

Server Model. The server collects from each client m the pair (ﬁﬁ;},, izf,j ,11) and stacks them into

H = [ L), HY = [Anhil - Auahly ] (6)
The diagonal matrix diag(A11, -+, Apar) is assumed to be known at the server. However, the

off-diagonal blocks (representing the GC) A,,,,,Vn # m are unknown. The server model’s goal is
to predict the next-step state H! as follows:

HE= (B, Bhy] st bl o= Apmhlh + > A B (7)
n#m

where the estimated causality ApnVn # m are learned by minimizing the server loss function L
with gradient-descent based updating used to learn A,,,,,Vn # m with server learning rate + s.t.

Ly = | HL =B, AL =A%, = Vg4, L (8)

The server then sends V;, L to client m for subsequent client parameter updating.

4 PROBLEM FORMULATION

The reliance of the FedGC framework on deterministic point estimates of the Granger causal pa-
rameters flmn (Vn # m) and the client parameters 6,, overlooks the influence of data noise and
model variability. In this work, we rigorously characterize and quantify how uncertainty propagates
through the federated pipeline. Our analysis is anchored around three core objectives:

1. Characterize the sources of uncertainty—namely, aleatoric noise from client data and
epistemic variability in model parameters.

2. Derive exact propagation recursions that track how these uncertainties evolve across
client—server communication and local/global updates within the client/server.

3. Analyze the steady-state impact of uncertainty, proving that under mild assumptions, the
resulting variances depend only on data noise and fixed gains, not on initial model priors.

5 SOURCES OF UNCERTAINTY

In this section, we partition the stochastic elements of FedGC into two disjoint categories: (ii)
aleatoric noise originating in the data (measurements) collected by each client,and (ii) epistemic
variance arising from incomplete knowledge of both client-side and server-side model parameters.

(1) Aleatoric. Aleatoric uncertainty captures the irreducible measurement noise €%, in client m’s
data i.e., y’,. When a client updates its parameter 6! via gradient descent, this data noise €,

propagates directly into the gradient Vg, (L,,), and hence into the variance of 6?, . Likewise, it also

enters the augmented state A, , = A, .+ 0%, y',. Since ﬁfn o 1s communicated to the server from

clients, this data noise also influences the estimation of Granger causality AfﬂnVn = m (also called

the server model parameter). Furthermore, this data noise affects the server loss L¢ and shows up
in the gradients V it L, ¥Ym communicated from the server to the clients.

(2) Epistemic. Epistemic uncertainty reflects our lack of knowledge about the model parameters
—both the client parameters 6,,, and the server parameters A,,,,. We assume both of these parame-
ters to be random variables in our problem setting. Sampling from a prior #9, ~ D; (ugm , Egm)
and A9, ~ Da(u% X9 ) where, D; and D; are any location-scale distributions, we refine 69,
and A?,m using gradient-descent updates. By accumulating sufficient gradient-descent iterations, we
reduce this epistemic uncertainty and thereby increase our confidence in the estimated causality.
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Table 1: Summary of notation (client index m, time index t)

Symbol Meaning Shape / Statistics
yt Raw data for client m at time ¢ eRdm; pb =E[yl ], B! = Var(y,)
ot Model parameter at client m € Rpm>dm
vt Vectorised 6¢, i.e., vi, = Vec(6?)) nh, = E[v},], Xf = Var(v},)
Ot Parameter-data covariance at client m Cov(vl,, yt)
/\I\l%n glient parameter-state covariance Cov(vin, fz,’,ﬁ,? @)
ton erver-client parameter covariance Cov(ag,,, v,
Fﬁnn Cross-covariance between a,,,, and hl,, , Cov(pyp: iy a)
hin.a Augmented state estimate at client m ¥}, = Var(h!,,)
At Server parameter estimate (n — m) € RPm>*Pn ¥ £ m
at.. Vectorised At ie., al == Vec(A! ) ¥, = Var(al,,)
L, Loss function at server cR! (Scalar)
(Lm)a  Loss function at client m € R! (Scalar)
G Gradient of server loss L, w.r.t ht, € RPm; Var(g;, ;)
~ Learning rate of the server model ' € R! (Scalar)
N1, N2 Learning rates of the client model € R! (Scalars)

Assumptions. Based on the sources of uncertainty, we make the following assumptions:

* (A1) Stochasticity. For every client m, the client model parameter ¢, and client data y!, are

random variables. The local client state izﬁw is deterministic. Consequently, the only randomness
t

entering the augmented states !, , = ht, . + 0,

t . Yn # m (also called the server model parameter) is random.

y,l comes from 0} and 3}, . In the server model,
the Granger causal estimation A

* (A2) Model Parameters. The server parameters A}, n # m, are mutually independent across

block-rows and times. As a consequence, for any distinct clients m # n, the induced parameters
6%, and 6, have zero cross-covariance at every time ¢, i.e. Cov(6%,,60%) = 0, Ym # n, Vi. We
formally establish this result in Lemma[D.T] and Proposition[D.2]

* (A3) Prior. The initial server and client parameters are independent, i.e., Agm 1 62, and the
initial client parameters are uncorrelated, i.e., Cov(62, 09) =0 Vn # m.

* (A4) Stationarity. Client data are weakly stationary with time-invariant first and second moments:
Elyn] = ny,,., Var(y,,) = y,,, vt

* (A5) Noise. The underlying states h® in the state—space model (see Eq [l) are noiseless. All
stochasticity enters through additive data (measurement) noise: y,!, = .. +¢},, with Efg}] =
0, and Var(e),) = X,,,. We formally show this using the Proposition

6 UNCERTAINTY PROPAGATION

Notation. Table[T] gives an overview of the symbols discussed in Sections 3| [} and 5]

6.1 CROSS-COVARIANCES

The FedGC framework intertwines data y!,, , client state ﬁfma, client model parameter vf,, and
server model parameter a,,, creating four essential cross-covariances: Qf , Al Tt —and U! .
This section provides explicit recursions so they can be propagated together with the individual
variances. From Table we know that v}, = Vec(6},), uf = E[v},], X} = Var(v},), ul ==
E[y!,] and Q, = Cov(vf,,yt,). Using the above notations, Proposition|6.1|shows that v?,, and ¢,
are dependent with a non-zero cross-covariance QF .

Proposition 6.1 (Client Model-Client Data Dependence). Assume Var(y! ') > 0. Then under

the federated Granger-causality updates, Q)Y := Cov(v,, yl,) # 0.
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Using Eq 4 we know that client states /!, , are a function of the client data y/,. Since Qf, # 0,
there must exists a dependence between the client model and client states. Proposition |6.2| analyzes

the evolution of the cross-covariance between the client’s model parameter v?,, and the states flf,w.

Proposition 6.2 (Client Model-Client State Dependence). Let A', = Cov (v!,, ht, ,). Then we
have the following recursion within the client, Al, = ¥} (14, @ pi, ) + Qb, (ph, ®Ia,,),

Due to the iterative communication between client and server, the client model dynamics are coupled
with that of the server model in a feedback loop. Essentially, the client’s noisy state estimates hfnya

affect the server estimate al,,,, and the server’s uncertain af,,, in turn influences subsequent client

state estimates. This effect is captured as the cross-covariance term ', given in Lemmal6.3]
Lemma 6.3 (Client State-Sever Model Dependence). The cross-covariance term Tt =~ :=

Cov(al,,, ht, ,) follows the recursive equation: Tl! = D!T! — + 2yB}, Xp  where,
Dl = (I-2yht hiT)®I,Bt, =ht @ Apm, and S = Var(ht, ,).

Because the client parameter and its augmented state are already linked through the cross-covariance
in Proposition[6.2] the client state—to—server model coupling of Lemmal6.3|propagates that link one
step further, yielding a direct client model-to-server model dependence captured in Lemma[6.4]

Lemma 6.4 (Client Model-Server Model Dependence). The term V! = := Cov(al,,, v!,)
evolves as, Uyt = Dy Wy, HiT + DiTL, Gil — Dixj  PiT+ 2yBp, Aj HLT +

2yBl,Sf GE — 2yBE Tl PLT, with the following gain matrices, B, = h o ® Amm,

mn mn

Dl = (I—2vht hT) @ LGE =201 (v} @ (ConmAmm) "), Bt = =210 (vt @ A))

n,c''n,c

and H,fl = Ipmdm - 2771(y,flyfnT) ® ((CmmAmm)TCmmAmm) - 2772(%31?/72—) ® (A;mAmm)

6.2 DURING COMMUNICATION

This section characterizes the communication channel as the conduit through which every existing
uncertainty—client-side data noise, client-parameter variance, and server-parameter variance—is
redistributed at each iteration. Specifically we analyze the uncertainty propagation in both (I) client-
to-server, and (II) server-to-client communication channel.

(I) Client to Server. At iteration ¢, client m sends its augmented states ﬁfn’a to the server. While
ht, , naturally captures 334 and 3! it may also include cross-covariance €2}, := Cov(v},, yl, ).

Lemmaprovides a closed-form expression for the uncertainty in fzfn,a using Egm, i »and Ot .

Yn

Lemma 6.5 (Uncertainty in Client to Server Communication). Let k., = tr(X! ) + [|luf, |

Then the variance in the izﬁma is, X, =kmSy o+ Qf (uh L, )T+ (b, ©1I,,)0%.

(ITI) Server to Client. At iteration ¢, the server’s uncertainty is encoded in the random ma-
trix AL ,. Instead of sending Af . the server computes and transmits the gradient: gﬁjfsl =
Vie. . LL where L} = [|Apm [Py, o =Pl o] = 3 im Alan ity o||?- This gradient inherits uncertainty

from both A? and h!, ,, propagating the server’s model uncertainty to client . Lemmashows
that gy, . captures the uncertainty in the server parameters, client states, and their cross-covariance.

Lemma 6.6 (Uncertainty in Server to Client Communication). With notation as above, the un-

certainty in the gradient communicated by the server is given by, Var (gfnfsl) =AU Ay,
where U* = Amm Eibm A;l‘f—lm + Zn#m(hfuch;—!—c) Zfaxmn -2 Zn;ém Amm Ff,,m hﬁl—!—c

6.3 WITHIN SERVER

In Sections and , we quantified how (i) the client—server cross-covariance T, , and (ii)
client m’s state variance sz propagate during the iterative optimization of the FedGC framework.
We now analyze their contribution to the propagation of the server’s parameter uncertainty Zf%m.

Theorem [6.7|combines these components into a closed-form recursion for Ef%m within the server.
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Theorem 6.7 (Uncertainty Propagation within the Server). The server model parameter at,’s
o DT 492 (0l ® Ain) B (b ® Apn)' +
QV(Dt Ut BIT 4 B TET D;T) with Dt = (I-2vh!  hiT)@I, and Bl,, = ht .© Apm

covariance evolves as, ©4! = D} ¥

n - mn n,c'“n,c

6.4 WITHIN CLIENT

Each of the four cross-covariances discussed in Section contribute to the propagation of uncer-
tainty of the client model parameter 6,, (or, v,, in vectorized form). Theorem expresses the
evolution of client model’s variance ¥ in terms of the uncertainty in its states X h:nl, the server

model X% ', and those cross-covariances 1, T/\71 W oland AfL
Theorem 6.8 (Uncertainty Propagation within the Client). The client-parameter covariance % gm
obeys the following recursion: 3y = H 'S~V HET 4+ GEAS L GET 4+ (X, + X))

- aném(ymn + szn) - Zn;ém(zmn + Zv—r:n) + Znyém Prirtlil Zﬁx;ln P;lilT’

where X, = Ht—l At—l Gt—lT Y. — Ht—l \Pt—l Pt—lT VA _ Gt—l Ft—l Pt—lT
and, G}t = 2m (gt © (CoumAmm) "), Pt = 2m (yh ' ® Ag,) Hi b=
Ipmdm - 2771 (yﬁ;ly;;ﬂ') ® ((CmmAmm)TCmmAmm> - 2772 (yﬁflyrffﬂ) ® (A:—nmAmm)

7 STEADY-STATE IMPACT OF UNCERTAINTY

For tractability, we assume, (I) lim;_, o0 ., = py,.,, and (II) lim;_, o lAz,,t1 .= lAL,,me

Proposition 7.1 (Gain Matrices Convergence). Under the above assumptions, the gain matrices
used in Sectionléconverges as, limyoo (D}, HY, Gl PL) = (D, Hyy, G, Pry) where, D, =
(I = 2y hnchl ) ® I, G = 201 (11, © (ConmAmm)T)y P = —202(pty,, © AlL,,)) and
Hu = 1p,.a, = 2m(py,, @m) ® ((CrmAmm)" CovmAmm) — 202 (1y,, @m) ® (AjnmAmm)-

Proposition [7.1] proves that the gains (DY, HY,, G, Pt,) converge in the limit as t — cc.

Proposition 7.2. If p(D,,), p(Hy,) < 1 then we have, lim;_, o0 (T%,,,, O!,) = (TS, US2,) with
020, = = Dn) '29Bmn S50, & U, = (I — Hp, @Dy, )~ Ved D, I35, G, — DpX%. P
With stable gains, Proposition shows that the cross-covariance terms I'f and W'  also con-
verge, each given in closed form. Corollary|7.3|then expresses the client-state variance %3 in terms
of the client-parameter variance ¥3° and the data moments; no other stochastic quantity survives.

Corollary 7.3. The above assumptions lead to convergence of the uncertainty of the client states
St as follows: limy oo X, = B0 = Ky 35° + Q0% (py,, @D + (py,, @1)QST, where
fm = tr(2y,,) + |1y, % and QO = G My -

m

The key theoretical result on the impact of uncertainty quantification is mentioned next in Theorems
and where we show that the steady-state uncertainties of server and client models are
dependent only on the client data distribution (aleatoric uncertainty), and independent of the prior
distribution of the parameters (epistemic uncertainty).

We know that the steady distribution of the client m’s raw data is given by E[y,,] = p,,,, and
Var(ym) = Xy,.. Using (uy,,,2,,.) we define the following two terms that will be used in the

Theorems|[7.4] and[7.5} () M,, = py,, ®1,,., and (AD) ki, = tr(Sy,)) + ||y, |12

Theorem 7.4 (Convergence of Server Model’s Uncertainty). Let p(D,,) < 1. Define L, (X) :=
D, XD)] and Q,n(X) = 4v*Bn (an + XM, M} + MmMLZ)BIrm.. Then, X% =
limy_, oo Efélmn exists, is unique, and is given by, X% = 22020 LZ(an( X ))

Theorem 7.5 (Convergence of Client Model’s Uncertainty). Let p(H,,) < 1. Write M,,,(X) =
H,SH], and R,(3) = G (km S + SMy, M), + M, M S)GT, Then the steady-state ¥go =
limy_y oo Egm is the unique solution to ngn = Mm(ngn) + Rm(Egjl) +P,x* PI

Amn™ m”




Under review as a conference paper at ICLR 2026

~107¢

L
2

2

~ 107

~ 1072 -—

1147 1 41
2

S B Sl b B e}

i
M

2

L~ 100

2

= 5
2) 3
& o & o
0 o w0 mw ww w00 ; o0 T MR o ; T T T
Number of iterations Number of iterations Number of iterations
(a) (b) (©
— ¥ ~107° — X
't —4
£~ 10
i ot — =, ~107? ) o i —
~ B 5t~ 100 a5 -—
2, < <
L\j/ | o | o
=R g, <
= =
o0 W o mw @ H o T S s 13 00 T s
Number of iterations Number of iterations Number of iterations
(@) © ®

Figure 1: Uncertainty propagation during training for different levels of X! highting (a) Tr(X At, )
(b) Tr(Eéél), (c) Tr(X5,), (d) Tr(X5,), (e) ||.UA§2 — Aislle, (O ||UA;;1 — Aaq||2 vs iterations.

Theorem |7E| shows that the steady state uncertainty of the server parameter represented by X%
depends only on the distribution of client data (u,,, , X,,,), and the steady state client model’s vari-
ance 2g° . It is independent of the prior variance E%mn. Similarly, Theorem [7.5|establishes that
the steady-state variance of the client model parameter 5 is uniquely determined by the client data
distribution (s, , ¥y, ), and the converged server uncertainty ¥X5° . Crucially, this result confirms
that the client’s epistemic uncertainty is governed entirely by aleatoric quantities and training dy-
namics, and is independent of the initial variance Egm.

8 EXPERIMENTS

8.1 SYNTHETIC DATASET

Experimental Settings. We simulate a multi-client linear time-invariant (LTT) state space model
described in [3] To enable interpretability, the experiments (except scalability) rely on a two-client
setup with p,,, = 2 and d,,, = 8 for m = {1, 2} such that the off-diagonal blocks of the state matrix
(A) are Aj5 = 0 and As; # 0. Both client and server models are regularized to ensure feasible
solutions. Further experimental details are provided in Section A of the Appendix.

Aleatoric. To analyze the effects of aleatoric noise, we change the data variance ¥, = and observe
the uncertainty of the server and client models at each iteration. The trace of covariance of the server

parameter (A’,, A% ) and the corresponding parameters (6%, 04) at clients 1 and 2, respectively are
plotted for different 3, in Figures Eka)-(f). The evolution plots for the covariance of both server
and client models validate the claims (in Section |§|, and Theorems & [7.5).

The jumps in the trace covariance plots of (6%, 6%) refer to the points where the mean-shifts of data
(i.e., f1y,,) occur. A preliminary inspection of Figures [[[(a)-(e) shows that higher ¥, accelerates
variance decay and hence faster learning. However, we can see from the norm error plots in Fig-
ureEKf) that very high ¥, causes larger estimation error in learning, and this effect is more profound
during mean shifts. These errors stem from violating Assumption (A4) (Section[5) in mean-shifts.

Epistemic. The effect of epistemic uncertainty is demonstrated by sampling fl?nn and 6°, from

normal distributions while progressively increasing their variance. This allows us to observe how
uncertainty propagates through the server and client models at each iteration. Figure 2]and Figure 3]
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shows that the evolution of the covariances for server and client models is agnostic to the variance
of the prior normal distribution, further validating the claim of Theorems [7.4]and[7.3]

Please refer to Appendix |B| for additional results highlighting the evolution of the (a) cross-
covariance terms, (b) communicated terms (mentioned in Section |§|), and (c) Scalability studies.

8.2 REAL-WORLD DATASET

We perform real-world experiments on two industrial cybersecurity datasets: (1) HAI |Shin et al.
(2021) and (2) SWaT Mathur & Tippenhauer|(2016), each containing multiple interacting processes.
We fit a linear state space model separately to each process. Specifically, we use the subspace
identification method |Overschee & Moor | (1994) to identify the process-specific state-transition and
observation matrices, which are further used for analyzing theoretical results of Section [6| & [7}
Preprocessing details are provided in Appendix [C]

Results. Cross-process GC in both datasets is learned using the FedGC framework. Owing to space
constraints, we provide the uncertainty evolution plots and the convergence results in Appendix [C|

9 LIMITATIONS

The analysis is based on the FedGC framework, which can be restrictive due to its linear models. We
provide extensions to non-linear models in Appendix [El The uncertainty propagation relies on data
stationarity, and we discuss possible relaxations in Appendix [E-I] though a full treatment remains
open. Theoretical guarantees scale unfavorably with dimensionality, which limits applicability to
very large systems; we complement this by analyzing both communication and computation com-
plexity in Appendix [D.3] Finally, client—server cross-covariance terms may expose sensitive data;
we present preliminary differential privacy modeling in Appendix [D.4]
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Note. All the plots corresponding to Section [B] and [C|are present at the end of this document.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, large language models (LLMs), specifically ChatGPT, were used only as a
writing aid to polish the clarity, flow, and readability of the manuscript. LLMs were not involved in
generating or shaping the underlying theoretical ideas, arguments, or results. All core contributions,
analyses, and conclusions presented here are entirely original and solely attributable to the authors.

B ADDITIONAL RESULTS ON ON SYNTHETIC DATASET

B.1 EXPERIMENTAL DETAILS

Experiments on synthetic dataset was conducted by simulating a two-client LTI system. Each client
has hidden latent state dimension p,, = 2 and measurement dimension d,,, = 8. A one way
dependency in which client 1 granger causes client 2 (and not vice-versa) is considered. Therefore
Ai12 = 0 and As; # 0. The loss functions in (5) and (8) are regularized and the learning rates -y, 1;
and 7y are adjusted to ensure convergence but not optimally tuned.

All the results reported are in terms of the trace of the covariance matrices. Trace of the covariance
matrix was chosen as a scalar quantity to quantify the uncertainty from the covariance matrices for
a multitude of reasons such as: 1) it is the sum of variances across all directions, 2) it is rotation in-
variant, 3) computationally cheap etc. Unless otherwise specified, the quantities plotted are relevant

to explaining the uncertainty propagation in learning Ao .

As discussed in Section 8, the effect of aleatoric noise in all the experiments is studied by changing
the data variance Ezm and the effect of epistemic noise is studied by changing the variance of the

initial values ¥°%  and 3
Amn m

B.1.1 CROSS-COVARIANCE AND COMMUNICATED TERMS

mn and WL, discussed in
Section 6 for different regimes of aleatoric and epistemic noise are given in Figures [ [5]and [6] We
can observe that the cross-covariance terms converge even for very high noise regimes.

Cross-Covariances. The evolution of cross-covariance terms At It

During Communication. The augmented client state ﬂt ., sent from the client carries the uncer-
tainty from the client to the server and the gradient V; bt Lt sent back to the client carries the

uncertainty from the server to the client. The evolution of covariances of these communicated terms
for different regimes of aleatoric and epistemic noises are plotted in Figures[7] [§]and [9]

B.2 SCALABILITY STUDIES

In the scalability experiment, we consider the two-client system with similar causal relationship as in
previous experiments. The hidden state dimension p,, = 2 is kept constant while the measurement

dimension d,,, is increased for both clients. Trace of covariance of /121 at convergence for regimes of
EO ~ {1076,107%,1072,10%} is summarized in Table I We could observe that the performance

of the framework remains more or less similar with increased dimension of the measurements d,,,

Table 2: Trace(Cov(/lgl)) vs measurement (i.e., raw data) dim. d,,

. Measurement (Raw Data) Dimension (d,,,)
Order of Variance d, = 16 d, — 32 dy =61 d,, — 128
~ 1076 ~ 1079 ~10°° ~ 107 ~ 10"
~ 1074 ~ 108 ~107° ~ 1077 ~ 1077
~ 1072 1.0x107% 40x107% 1.0x107* =~107°
~ 100 1.6722 1.9733 2.4601 1.5882
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In the second experiment, we keep p,,, = 2 and d,, = 8 and vary the number of clients M. We
report the trace of covariance of A,y at convergence for different regimes of E% in Table

mn

Table 3: Trace(Cov(As;)) vs. no. of clients M

Order of Variance M— Nuz\n}biri)f C]l\ljn:tsg(M)M — 16
~107° ~107° ~10° =~107° =~107°
~107% ~107° =~107° =~107° =~10°6
~ 1072 0.0001  0.0002  0.0002 0
~ 109 1.7233 1.6456  2.5835 4.7

C RESULTS ON REAL-WORLD DATASET

C.1 EXPERIMENTAL SETTING

We utilize two industrial cybersecurity datasets — (1) HAI and (2) SWaT, to conduct real-world
experiments.

HAI. The HAI dataset captures SCADA (Supervisory Control and Data Acquisition) time-series
data from a realistic industrial control system testbed augmented with a Hardware-in-the-Loop (HIL)
simulator that emulates steam-turbine power generation and pumped-storage hydropower genera-
tion. HAI testbed comprises four processes: 1. Boiler Process (P1), 2. Turbine Process (P2), 3.
Water Treatment (P3), 4. HIL Simulator (P4). Processes P1-P3 each represent a physical subsys-
tem with multiple sensor measurements and are treated as individual clients in our study. On the
other hand, P4 is a HIL simulation engine exposing control signals rather than sensor outputs and is
therefore excluded from our analysis.

SWaT. SWaT is the data from an industry-compliant six-stage water treatment testbed commis-
sioned in March 2015 by iTrust. Different stages in water treatment includes raw water storage, pH
balancing, ultrafiltration, dechlorination, reverse osmosis, and membrane backwash. Each stage is
treated as a client in our setting. We do not include the last stage (membrane backwash) in our study
because all the measurements in this stage are constant except one that takes few more values and
inclusion of this stage was causing convergence issues.

C.2 PREPROCESSING

We utilize different preprocessing methodologies for the two real-world datasets.

HAI. We first normalized the measurements to make sure they are evenly scaled. A subspace iden-
tification algorithm was used to fit an LTI system to these normalized measurements. The subspace
identification outputs the state-transition matrix A (which also signifies the Granger causality), and
the observation matrix C. The size of low-dimensional states p for the entire system was obtained
by looking at the decay of singular values of Hankel matrix involved in the subspace identification
step.

The observation matrix C' obtained from subspace identification is not block diagonal. An Ly norm
based thresholding was used to assign each state variable to a process and build a block diagonal C'
matrix. This is followed by re-estimating A matrix using least squares with the block diagonal C'
matrix. This re-estimated A matrix is considered the ground truth Granger causality for our study.

SWaT. For each client, the measurement variables with pearson correlation greater 0.3 with other
clients are selected. This is followed by the same steps as in the case of HAI data.

C.3 RESULTS

We plot the evolution of covariance of all the off-diagonal blocks A%, , covariance of 67, for all

clients and average Lo norm error of each flﬁ,m for both datasets in Figures
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HAI The server-side uncertainty on all off-diagonal Ay, terms drops rapidly within the first few
hundred iterations and stabilizes at very low traces (Figure [I6)), indicating fast convergence even
under high data (measurement) noise. Local parameter variances X, likewise shrink to nearly
zero (Figure [5), with only minor differences between the three processes. The average estimation
error ||f14,,,, — Amy|| decreases monotonically on the log—iteration scale (Figure6)), confirming that
reduced uncertainty directly translates to higher causal-link accuracy.

SWaT. In contrast to HAI dataset, SWaT’s causal-block covariances decline more gradually over
~ 1,000 iterations and do not show signs of complete convergence (Figure [24). This suggests that
the six-stage water-treatment testbed requires more iterations or additional data to fully resolve the
underlying causal links. Local model variances ¥y, exhibit a wider spread (at the end of 1000
iterations), with some retaining significantly more uncertainty than others (Figure[26). Correspond-
ingly, the /5 estimation errors plateau earlier and remain higher (Figure[27)), underscoring the slower,
higher-variance convergence behavior in SWaT, possibly due to higher noise in the collected data.

D ADDITIONAL THEORETICAL RESULTS

D.1 LemMADI

Lemma D.1. At any time t and, for each client m, define
gm = VLo = X )T, Xowi= AL(Apn Ahy = 37 A (h271), ).
r#m
Under Assumptions (A1)-(A4), we have for any m # n,

Cov (vec(gm), vec(gn)) = 0.
Proof. By Assumption (A2), the block-row server parameters for clients m and n are mutually
independent, hence X,,, L X,,. By Assumptions (A1), (A4), and (AS5), the local data satisfy
Hym =Elyn ] By, = Covlyn Lyn ),

with Cov(yly !, yh~!) = 0 for m # n. Since y; ! is also independent of {Af } by Assumption
(A3), we may write

vec(gm) = (1 @ Xy) yf{l~
Thus, for m # n,

Cov (vec(gm), vec(gn)) = B[(1 ® Xm) yir ' (yh ") T (1 ®@ Xp) '] — Elvec(gim)] E[vec(gn)] "

Independence allows factorization, and Assumption (A4)—(A5) implies E[y! " (v ") "] = 1y, 1, -
which cancels with the product of means. Hence

Cov (vec(gm), vec(gn)) =0, m #n.

D.2 ProprosITION[D.2l

Proposition D.2. Consider the client update rule
O = 0 — MG — 12Gm, s

where g1, . = Vo, Ly, (local) and g}, ; = Vg, L (global). Suppose Assumptions (A1)~(A5) hold.
Then, for any two distinct clients m # n,

lim Cov(f!,,0%) = 0.

)
t—o0 mren

Proof. Expanding the covariance for m # n gives

m 1Yn msYn

Cov (A5, 011 = Cov(6!,01) + 13 Cov(gy,. 9r.s) + vanishing local terms

where the omitted terms involve cross-products between local and global gradients.
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By Lemma|D.1} Cov(gj, ;, 95 o) = 0 for m # n. By (A2) and (A3), 6/, 1L 6/, at initialization. By
(A4)—(AS5), client data are uncorrelated across m, n, and all noise is additive. Hence all cross-terms
vanish, and we obtain the recursion

Cov (AL, 011 = Cov (6!, 67).

m Yn msYn

Since the initial covariance is zero, induction gives Cov(@t ot ) = 0 for all ¢, and thus

mI’n

lim Cov(6:,,6%) = 0.
t—o0

mr»’n

D.3 ProPoSITION[D.3|

As a direct consequence of Assumption (A5) we have the following proposition:
Proposition D.3 (Data Uncertainty with Zero Process Noise). Consider the discrete LTI system

o= Azt +wt, yt =Cat 40, wh ~ N(0,Q), and v' ~ N(0, R)

and assume the state matrix is asymptotically stable, p(A) < 1. In the absence of process noise i.e.,
Q = 0, then the data variance converges to its noise covariance. lim;_, ., Var(y') = R.

Proof. With @ = 0, the state update becomes deterministic:
T = Aat,
Thus, assuming some initial condition 29, the state at time ¢ is given by,
xt = Ataf,
Therefore, the data 7/ is given by,
y' = Oz + o' = CAY + o',
To compute the variance of y*, we consider the following equation,

Var(y') = Var(CA'2° 4 v*).

Since v* ~ N(0, R) is independent of z°, and C Az" is deterministic, we write Var(y') as,
Var(y') = Var(CA'z") 4 Var(v").
Now, since C' A*2? is deterministic, its variance is given by,
Var(CA'z°) = CA' Var(2°)(AH) TCT.

Given that p(A) < 1, we have A* — 0 as t — oo we have,

CA' Var(z2)(AHTCT — 0.
Using the above result, and the fact that Var(v') = R we can write Var(y') as,

lim Var(y') = tli}m [CA" Var(2°)(A")'CT + R] = R.

t—o00

D.4 PRIVACY ANALYSIS

We formally prove that the cross-covariance terms between client quantities and server quantities
can be made differentially private under the Gaussian mechanism.

FedGC Latent Privacy. In the original FedGC setup, each client m communicates a compressed
latent state h% _ and an augmented latent state A’ ., both of which are computed from private data

c,m a,m>

16



Under review as a conference paper at ICLR 2026

y! via local encoders (KF). As shown in Appendix F of FedGC, if the mapping y!, ﬁim has
bounded /5-sensitivity A, then adding Gaussian noise:

h h A-+/21og(1.25/5
hz,m:hi’m-l-./\/((lJQI)7 o> 0g(1.25/9)

g

ensures (g, 0)-differential privacy for each client’s latent state. The same construction holds for ﬁfl,m
and is preserved in our framework.

DP for Cross-Covariances. Unlike FedGC, our method introduces server-side use of cross-
covariance matrices between client representations, which may leak client-private correlations. The
key objects are:

F;‘Tm = COV<iLt ﬁg,n) = E[ﬁ;m<ﬁ2,n)—r] - ﬁz,m(ﬁz,n)T

c,m>

7 PtoNTY) ot (7t T
\ijmn = COV(Ufn, hi,n) = E[vfn(hi,n) ] - vfn(hz,n)
where vf, = vec(f!,) is the flattened client model parameter. We now show how to make these
matrices differentially private via Gaussian noise.

Each client m transmits perturbed values of A7 ., Y, .

¢m
R = R + € My = Bl + €
with 52, 5,‘1 ~ N(0, 0,21] ). Furthermore, since cross-covariance W,,,, requires v,,,, we peturb it as:
it = €}
with & ~ N(0,021). The server then computes the cross-covariances:
f‘:,m = Cov(fz’;m,izgﬁn), \Ilfm = Cov(f}fn,iz;n)

These estimators contain the desired cross-covariance along with stochastic masking from the per-
turbations.

Using classical state-space theory & Lipschitz assumptions, we have norm bounds: ||fALim l2 < B,

IRL o ll2 < Ba, [[0f,]|2 < By. Then, the f5-sensitivities of Iy, and Wy, are:
Ao(Tt ) < 2B.Ba, A(U! )< 2B,B.

mn

To achieve (g, §)-DP via the Gaussian mechanism, it suffices to add i.i.d. noise to each element of

the matrices:
2B.B,+/210g(1.25/4) 2B, B.+/2log(1.25/4)
2 ) (oA 2
€ €

or

This guarantees that the server-observed f‘f,m and ﬁlfm are differentially private with respect to any
one client’s data at time ¢.

Implications on Uncertainty Propagation. The injection of DP noise into I}, and W!  affects
the downstream uncertainty estimates in both client- and server-side propagation. Specifically, I'¢,,
appears exclusively in the server-side recursion (Theorem 6.6), while both 'Y and W!  are used
in the client-side update (Theorem 6.8). Making these matrices differentially private means that
the propagated covariances become slightly biased or inflated due to the added noise. This leads to
an overestimation of uncertainty, which preserves the structure of the recursion but may reduce the
accuracy of Granger causality. Nonetheless, the estimates remain valid under perturbed inputs, and

the user can control the privacy-utility trade-off via the (¢, J) parameters.

D.5 COMPLEXITY ANALYSIS

Let each client m have state dimension p,,, and data dimension d,,,, with M clients in total. We first
provide the computation and communication complexity per client.

(1) Computation. In a naive implementation, updating the full parameter covariance matrix X}, €

RPmdmxPmdm would incur O(p2,d2,) computation per round due to matrix-matrix multiplications
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and Kronecker product evaluations. However, our implementation can avoid this cost by exploiting

the structure of low-rank quantities such as ytgﬁT (which is rank-1), when d,,, > p,,. As a result,
matrix-vector products involving these terms can be computed without materializing the full p,,,d,,, %
Pmdm matrices. If we adopt a block-diagonal or factored representation of X} across layers or time

steps, the per-client computational cost is further reduced to O(p,,,d2,) per iteration.

(2) Communication. In terms of communication, our framework introduces no additional over-
head compared to vanilla FedGC. Therefore, total communication cost per client remains O(p,,),
matching that of FedGC. No additional communication is needed for tracking uncertainty.

All M clients. Across all M clients, the total additional computation scales as O (2%21 pmd?n)

per round, while communication remains unchanged at O (Z%zl pm) . These properties make the

method scalable to realistic federated settings.

E EXTENSIONS TO THE FRAMEWORK

Our current theory is derived under the assumption of linear time-invariant dynamics and Gaussian
noise, consistent with the original FedGC model. Nonetheless, we emphasize that the structure of
our uncertainty propagation is not inherently tied to linearity; it generalizes to any dynamical model
with well-defined latent state compression and state transition.

Bayesian Models. We consider an extension to nonlinear but stationary dynamical systems. Non-
linear dynamics being highly model-specific, we first show that our theoretical structure carries over
to two settings: (1) Extended Kalman Filters (EKF) - non-linear extension of the linear KF based
formulation, and (2) Gaussian Processes (GPs) - for kernelized settings. Both EKF, and GP-based
frameworks support general nonlinear transition functions while admitting tractable recursive ex-
pressions analogous to Theorem 6.8.

(1) Extended Kalman Filter (EKF). EKF approximates nonlinear state transitions via first-order
Taylor expansions. Consider the system:

he= f(RE) +w', ¢t =g(hl)+ 0", w' ~N(0,Q), v' ~N(0,R),

where f : R? — RP, g : R? — R, with d > p, are smooth nonlinear functions. The prediction
step linearizes f around the filtered mean:

- - of T
ht|t—1 _ ht—l , Ft—l .= , Pt\t—l — Ft—lpt—lFt—l .
c Flhe™) - +Q
For the observation model, define J, := g—i I The update step proceeds via:
h=h.

K'= Py (g, P T A R) Y R = BT K (yf g (RETTY)), Pt = (I-K'J,) P
We define the augmented representation used in FedGC:
AL =R + 0%yt 0' e RP¥9 ot = vec(d?).

Following our update rule, v'*1 = vt — 1V LIl — oy, ¢ L37VeT | the parameter covariance
update becomes:

e = HUSLHY + GPPIGY + HIA'GY + GEAY HY + PPSY P
where,
H' = La=2m(y'y" ) © (J] Jg) = 210"y ) @ (Al Amm),
G'=2m(y'®J,),
P! = Cov(ht),
A* = Cov(vt, hl).

18



Under review as a conference paper at ICLR 2026

This recursion is structurally identical to Theorem 6.8, with C' and P replaced by the Jacobian J,
and EKF posterior P?, respectively.

(2) Gaussian Process (GP). Consider a GP-based transition model, where f ~ GP(0, k(-,-)) gov-
erns the latent dynamics:

W= )+
Conditioning on past data {h%, h:~*}"_,, the GP posterior yields:
e~ Nl E4Q), pf =kT(RIE ', S = k(W R = kT (REE TR,
where K is the kernel matrix over {h~'}. We again define:

hey = uf + 6%
The parameter covariance propagates as:
T T T T T
S = 'S HY + G'sIGt + HIA'GY 4+ GIAY HY 4+ PS4 P

with J, := dg/ 8h| h=,,/ and other terms as above. This recursion mirrors the EKF case, with GP

posterior variance Zf replacing P?, and confirms that Theorem 6.8 applies structurally to kernelized
approximations.

Non-Bayesian Models. While EKF and GP admit analytic propagation of posterior uncertainty,
general deep models (e.g., RNNs, transformers) do not support closed-form covariance updates.
Techniques such as Monte Carlo dropout, ensemble variance, or variational inference yield scalar
uncertainties but do not enable recursive tracking. Thus, incorporating these models into our feder-
ated uncertainty framework would require entirely new derivations and likely sacrifice the tractabil-
ity of the current analysis.

E.1 RELAXING STATIONARY ASSUMPTIONS

Our convergence results (Theorems 7.4 and 7.5) critically rely on time-invariant statistics: E[y'] =
s Var(yt) = 3, and constant noise covariances @), 2. If these assumptions are relaxed, t Gt
and P! become time-varying, and the covariance recursion no longer admits a fixed-point solution.
For example, in our paper convergence of 3, requires,

limsup ||H |2 < 1.
t—oo
If this condition is violated under nonstationarity, the recursion may diverge. This is consistent with
our empirical observations in Fig. 1(e—f), where mean shifts lead to rising parameter variance. Ad-

dressing such nonstationarity would require adaptive learning schedules, sliding-window covariance
estimation, or changepoint detection, which are left for the future work.

F PROOFS

F.1 PROPOSITION 6.1

» Proposition (Client Model-Client Data Dependence) Assume Var(y', ) > 0. Then under the
federated Granger-causality updates, Qf, := Cov(v,, yh,) # 0.

Proof. From the gradient-descent update we have,
6!, = 67" + 201 (Con Avn) T (s — Conm A [ By + 017 1 ]) T
= 200 AL (Awam it = hid] = 7 At i
n#m
Rearrange to isolate dependence on y!,

0!

m

:M+Byt71T,

m
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where

M = 972_1 + 2771 (CmmAmm)T (yfn - CmmAmm ﬁf—;i) yfn_ﬁ - 2772 A;rrlm (Amm [i"fn_’; - ilytn_,cl]) Y

B = =201 (ConmAmm) " Conn A 017" = 200 A, >~ ALVREL
n#m
Thus 67, = M + By~ T is an affine function of ¢!, !.

m

Furthermore, the LTI measurement model gives

vt = Coom A ﬁﬁ;g + Varel, = CrumAmm (iLfn_cl + 97%_1%;_1) + Vare!,.

Rearranging we obtain,
yl, =N+ Dyl ! + Vare!,
where, .
N = CmmAmm ht71 D= CmmAmm etil-

m,c> m

Thus y!, is also an affine function of y*.

Letu =y, 1. Then
0! =M+ Bu', y', =N+ Du+ Vare,.
Since Var efn is zero-mean and independent of u, we have

Cov (6,4t ) = Cov(M + Bu', N+ Du) =B Cov(u',u)D" = B Var(u) D".

By assumption Var(u) = Var(y!; ') > 0, and B, D are nonzero (since the update and measurement

matrices are full-rank). Therefore Cov(6?,,y! ) = B Var(y.-1) D' # 0.

Hence 2, # 0, as claimed.

F.2 PROPOSITION 6.2

* Proposition (Client Model-Client State Dependence) Ler AL, = Cov (v
have the following recursion within the client, A}, = ¥4 (I4,, @ py, ) + U, (ph, © 1a,,),

Proof. We prove the recursion for Af, = Cov(v},, fzﬁn .) using the paper’s definitions:

From Table 1 and Eq. (4), we have the following definitions,
h,, = Var(vy,) = E[v}, v}, ] = up, g,
O, = Cov(vh,,yh,) = Elv),yb | =, pi!

o =hiy 0yt =Rl + (Yt @1, )0,

Expanding A!, from first principles, and using the definition of fALfna we have,

AL, =E[ol, kL) ) — ph ph!

m''m,a

=B vf, (AT + 0] 0 © 1p,)) | = b, (BT mb] (0, @ 1y,

= E[vl, vl (b, ® Ip,)] — ph, 1) (uh, ®1p,)

Analyzing the key expectation terms and substituting the definitions of Ztm, and Qf we have,

Efvy, Uy (Y © I, )} = E[(Z,, + 1,,1,,) W @ Ip,.)]  (since E[vg,v}0] =55 + 1, 1,,)

=Sh (Wl @I+, ph (1, @1I,.)

+E[(v), — ) (b, — 1, ) (ke — 1l ®1p,)]

=35 (uh, ®Ip)+ph ph (uh, @1Ip,.)
+ pp, El(vh, — ph, Vb — 1t V1@ I,

=3, (uh, ®Ip,) +ph, pol (nh @ Ip.) + ph Q) @1,

20

ilina) Then we

t—1T
m

)



Under review as a conference paper at ICLR 2026

Substituting the expression for E[vf, v (yt, ® I, )] (obtained above), back into A!, we have,

AL = (35, (1, @ Ln,) + i, 1), (1, © Ip,.) + 1, U0 @ 1,,)
- MtO,n/“‘tt),Tn (MZm ® Ipm)
= 22771(“;77; ®I m) +l,[,é7nQ§nT ®I m

Recognizing that Q! @ I, = (Q!, ® I,,, )", and simplifying the second term we obtain,

ph, QU @I, = (U, @I, Juh = (uh ®1a,)

Substituting this into the expression for A, we have,

A, =35 (Ia, @ py )+ Q5 (1, ©1a,,)

F.3 LEMMA 6.3

Assumption (A6) : The client’s augmented hidden state changes only by a small amount between
two consecutive time-steps Ahl, := AL — hl,  satisfying [|ARL ||, < e with ¢ is small.
¢ Lemma (Client State-Sever Model Dependence)The cross-covariance term T%, . =
Cov(al,,,, bt o) follows the recursive equation: TLt! = DIT! 4+ 2yB!, X[ where,

mns '"m,a

Dl = (I-2yht hiT)®I,Bt, =ht @ Apm, and S = Var(ht, ,).

n,c'n,c

Proof. Gradient descent on the quadratic loss L¢ with step size - gives,
dyty = Dy @ + 27 Bl iy, o
where D!, = (I — 2y ht, A )@ I and B, = h, .® Apum.

Taking the column covariance with izﬁna yields the shifted covariance term

Ui+l = Cov(alil b, ) = DiTY,, +2y B, S8 .

mn mn m,a n- mn

By Assumption (A6),
Wte = o+ Al [IAR ]2 < e

Defining, Tt+1 := Cov(alf!, 1) and expanding, we get,

mn > ''m,a

Il = Cov(atil it , + AhY,)

mn mn>

Let us define EY,,, := Cov(all! ht 4+ Aht,). Thne the matrix Cauchy—Schwarz inequality gives,

mn>''m,a
||E:nnH2 < tr(zztnlﬂ) £ = 0(6)
Using the above expression we obtain,

I =Dyl +2y B2, +0(e),
If € is small (Assumption (A6)), we get,
it =DiTY ., +2yBL,%

n-mn mn
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F.4 LEMMA 6.4

* Lemma (Client Model-Server Model Dependence)The term V!, := Cov(al,,, vt,) evolves
as, ViU = DIwl HET + DITE GIT — DIh PLT 4+ 2Bl AL HET +

2yBt,Sf GLT — 2y B, ULl PLT with the following gain matrices, Bl,, = h! , ® Apm,

Dt=(I—-2vht hiT) @ 1,GL =2m (vt @ (CoumAmm) "), P = =202 (v, @ A,)

and H;L =1p,.d, —2m (yrtn%tnT) Y ((CmmAmm)TCmmAmm) —2m (yrtn%tnT) & (A:nmAmm)

Proof. From the loss L, one gradient—descent step with stepsize y gives,

altl = Dtat 4 QVBt it

mn nrmn mn'*m,a*

The update 051 = 0%, — 01V, (Lm), — n2Ve,, Ls is linear in (6, ht, ,,at,,); in vectorized
form,

it = H! vt + Gt ht — ptat

m m'*m,a m-mn-

Compute Uit = Cov(aLh!l, vit1) using the above two equations,

mn?’ 'm

t t 7t t t
m + Gmhm,a - Pmamn)

Wit = Cov(Dlal,, + 2vB]} ht ., Hiw

mn m mn' m,a’

= D! Cov(al,,,v!,)H! + D! Cov(at,,, ht, )G — D! Cov(al,,, al,, )PL

mn? - m mn? m,a mn?’ 'mn

+2yBt,,, Cov(hi, ., vt YH 4+ 2yB!  Cov(h! ﬁ;a)Gg —2yB!,, Cov(ht, . at, PT

m,a’ “m m,a’ m,a?’ “mn

=D,V HI +DIT! GI —DLSY P +2yBl AL HE +2yB! S G —2yBL Tt Pl

mn--m n-mn mn~ M mn--m> T m mn- mn- m

. . . . . . . t 1
Grouping the six contributions yields the given recursion of Wi t1, O

F.5 LEMMA 6.5

* Lemma (Uncertainty in Client to Server Communication) Let ., = tr(X!, ) +||ul, || Then
the variance in the h', , is given by, S =kmSh o+ QL @, )T+ (@1, ) QL.

Proof. From the definition of augmented client states we have, ¢, := ﬁfn o }Alfn . =0yt which
in vectorized form is ¢}, := Y} vl with Y}, := (y!] ® I, ). Therefore, by definition we have,

m “m)

Var(ql,) = E[Y, ol v TYET] — B[V, of JE[Y 0

m-m-m T m m-m

I

Computing the second moment we have,
E[Yvmom Yo'l = E[(y, ® I, ) om0 (Y © I,,)]
=E[(ymym ) @ (v,01,)]
= E[yp.¥m | © E[vy, 07, | + Cov(yy, @ vp,)
= (%, + 1y, Hy) © (Sp,, + 1, 1p,)
QL @, @I, )T+ (ul, ®1, )0,

The first moment is given by,

E[Yi ) = (4, I, )uh, + b,

Computing the outer product of the first moments we have,

EY,vn E[Yon] T = (1, 1)) @ (up, 16),)
+ QL (uh, @I, )"+ (ul, @1, QL.
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Subtracting outer product of first moment from second moment we obtain,

Var(gy,) = (55, + py, ) © 6 1+ [(Z4,, + gy, 160) © 1y, )]
— (1, 10 ) @ (125, 126} )
QL (@I, )T+ (@1, )

The term (X, +pup ") @ popg — ppn” @ poprg simplifies to X @ pugpg . By design, f @ pigpg
is absorbed into mmEgm via trace normalization, leaving,

Var(qh,) = cmSh, + Q(pl, @I, )T+ () @I, YO .
Using the definition of ¢!, we have,
Var(i?jn,a - ilin,c) = ’szém + Q'trn(:u'zm ® Il)m)T + (/-‘Zm ® IPWL)Q)?:’;LF'
Since ﬁﬁmc is deterministic, we have,

S = Var(hl, ) = kw3 + Qb (uh, @I, )"+, @I, QL.

F.6 LEMMA 6.6

* Lemma (Uncertainty in Server to Client Communication) With notation as above, the uncer-

tainty in the gradient communicated by the server is given by, Var (g,’;“‘;) = Al U Ay, where
Ut = Amm sz A;—mm + Zn;ém(h;chi:—c) ZfA,,m -2 Zn;ém Amm Finn hfz—,rc

Proof. Letrt := Ay (R, o — ht, ) — Dot At Bt ... Weknow that, g5t} = ATt Then

mn ''n,co* m,s

Var(ghthy = A, Var(rt) Apm.

Im,s
We compute

mn '"n,c

Var(r') := Var(Amm fALfna) + Z Var(flfnn iwa) -2 Z Cov(Apm /A”Lfn,a, Al ht )

Since hf, . is deterministic. We have,

Var(Apm Ity o) = Apm S AL

mm?

Var(A?,, B, ) = (b BET)SY 5 Cov(Amm b, 4y AL B ) = Apn T, RET

mn '“n,c n,c'‘n,c m,a’ mn '“n,c mn '“n,c*

Putting these into Var(r?) gives exactly

n,c''n,c mn '‘n,c*

Ut = Anm sz A;rrlm + Z (ht Wt ) Ef‘lmn _9 Z A rt  mtT

Hence Var(g,7}) = A}, U' Ay, as claimed. O

F.7 THEOREM 6.7

* Theorem (Uncertainty Propagation within the Server) The server model parameter a',,,’s co-

variance S evolvesas, S = D!YY DIT + 447 (ht o® Amm) i (fzfl’c®Amm)T +
2y (D;; Tt BLT 4+ B TiT D;T) with Dt = (I—2yht hiT) @I, and B}, = bt . ® Ay

n,c''n,c
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Proof. At round t, the server gradient update as follows:

pF#EM,N

Under Assumption (A1) (off-diagonal blocks independent), the last summation term contributes no
covariance with A and can be omitted when computing Var(A!F1).

Apply Vec(-) and use the property that: Vec(XB) = (BT ® I) Vec(X) and Vec(AX) = (I ®
A) Vec(X) for any three matrices A, B, X.

We obtain the following after vectorization,
Vee(At) = (1= 2vhf  hiT) @ 1) Vee(AL,) + 25 (b o @ Am) Bl
‘We then define,
D= (I—-2yht hlV) @I, Bl,=h!,.®Aunm, al, = Vec(A},).

Then the vectorized update is given by,

at+1_Dtat + 27315 iLt

mn n mn mn '"m,a*

We wish to compute £ = Var(aff1).

Using the property Var[X + Z] = Var[X ]+ Var[Z] + Cov(X, Z) + Cov(Z, X) for any two vectors
X, and Z.

Weset, X = D!al Z =2yB! ht  Then,

n ‘mn’ mn m,a*

it = Var[X] + Var[Z] + Cov(X, Z) + Cov(Z, X).
(1) Variance of X: D/} is deterministic, so
Var[X] = D! Var(a),,) DI" =D!s} D!T.
(2) Variance of Z: fzf;p and A,,,,, are fixed at round ¢, hence
Var(Z] = 42 B, Var(ht, ) B = 492 (', ® Ap) L, (bl 0 @ AT
(3) Cross-covariance terms: Since D! and B/, are deterministic,

Cov(X,Z) =2y D} Cov(at,,, bt ) Bt =2yD!Tt, Bl

Cov(Z,X) =2y By, Cov(hpy 4 apy) Dy =27 By, Thl DT
Adding the four contributions we obtain,
DT+ 49" (e ® Amm) i, (e ® Ai)”
4 ZV(DTiF;&rthT + Bt TIT ptT

mn mn mn n )

£ = Dish

mn mn

F.8 THEOREM 6.8

* Theorem (Uncertainty Propagation within the Client) The client-parameter covariance Eetm
obeys the following recursion: 3 = H!™! E;;l H!Z'T 4+ GE Z;;;l G 4+ (X + X))

m

t—1 At—1 ~t—1T t—1 g t—1 pt—1T t—1mt—1 pt—1T
where, X,,=H_, A G ', Yo,=H, "V P Z.,=G, I, P ,

and, Gﬁ,l_l = 2771 (Z/:n_l & (CfmmAmm)T);Pyz_l = _2772 (y,%_l & A;rrlm)aHrfz_l =
Ipmdm - 2771 (y'rib_ly'rtn_l—r) ® ((CmmAmm)TcmmAmm) - 2772 (y;;t—lyrtn_l—r) ® (A'IzmAmm)
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Proof. All random variables distributional assumptions (A1-A6) and second—moment symbols
X5 %5 8y AL Q! are defined in Section 5.

Computing the analytical values of Vg: (Ly,),, and Vg: L, and substituting them in Eq (5) of
Section 3.1, we have the following client model update (for the FedGC framework):

—Conm Al )0t T =22 A0, (S0 AR )yt
n#Em

mn? mn7

Let v!, := Vec(6!). Using the property Vec(AXB) = (BT ® A) Vec(X) and Vec(A h) = (h' ®
I) Vec(A) for any matrices A, B, X and vector h, we obtain the following:

Htl t— 1_|_Gt 1ht 1+Pt 1Zamn+uma
n#m

where these matrices (H},, Gt , P!) are exactly those stated in the theorem. We define ul, 1 :=
20 (45 @ (CrmAmm) ") (U5, — Coum Ammhly, ) - By assumption (Ad) uf, ! has mean 0 and van-
ishing covariance: E[u!, 1] = 0, Var(uf; ') = 0.

First, we have the following:

Var(H} i) = HE'SETHITT Var(GE A L) = G st G

We also denote St = >, al-

netm t+. Independence of different off-diagonal blocks af;,) in as-

mn

sumption (A2) yields Var(S4 1) = £m ZtAmn ; hence
Var(P,ﬁ,L_lsfy:l) _ Z Pt 1Et 1 P':n 1T
n#m

Independence assumptions (A2) imply that cross terms with different client indices cancel. The only
non-zero covariances are

Cov(Hv, Gh) = HITUAS G = X,

Cov(Hv, PS) = > HI WP = Ny,

Cov(Gh, PS) = Y GL'TL I PIT = 3" 7,
n#m n#m

Each term X,,,, Y;un, Zimn appears together with its transpose in the variance expansion. Applying

Var(-) to Vec(0,,), and using Var(u!, ') = 0, we obtain:

Eém — Ht—lzt—lHt—lT G:;lzz:ant—lT + (X’m +XT)
= Von +Y0) = Y Zon + Z) + Y PG BT

F.9 PROPOSITION 7.1

* Proposition (Gain Matrices Convergence) Under the above assumptions, the gain matrices used
in Section 6 converges as, limy_,oo (D}, H,, Gt PL) = (Dyn, Hypy, G, Py) where, Dy, = (I —

27 fzncﬁ—,';c) ® I, G = 2m (uym ® (CmmAmm)T), P, = —2n9 (pym ® A—rrnm) and H,, =

Ipm dpm — 2m (p*ym N—gm ) & ((CmmAmm )T CmmAmm) — 212 (ﬂym ,Uzm ) (A;mAmm)-

Proof. We prove the convergence of the gain matrices under the assumptions (provided in Section
7):
@D lim;_ oo yfn = Uy, (client data converges)

25



Under review as a conference paper at ICLR 2026

D lim; o hfn’c = ﬁm’c (client state estimates converge)

First, for D!, = (I — 2vh, ,htT.) ® I we have,

n,c''n,c

“ R T
lim D' = (1— 2 (Jim B, ) (Jim 2, ) ®1
—00 ’ ’

t— o0 t—oo
= (I = 2vhnch) ) ® I =: D,
Next for G, = 211 (y%, @ (Crum Amm) | ) We have,
lim Gt, = 21, (( lim yfn) ® (CmmAmm)T)
t—o00 t—o0
= 2m (py,, ® (CmmAmm)T) =:Gny
Similarly for Pt, = —2n2(y!, ® Al ) we have,
lim P!, = —2n, (( lim yfn) ® A:,—lm)
t—oo t—o0
—21m2(fty,, ® A;m) = Pn

Finally for H!, we have,
tliglo Hrtn = Ipmdm - 2771 ((tILIgo yinyg) ® ((CmmAmm)TOmmAmm))
—2m ((lim y9ly ) @ (AL Arn) )
t—o0

Using the fact that lim; o0 5,45 = 11y, ,u;—m + Xy, (from the stationary distribution), but under

Assumption (A4) that ¥, is constant, we get,

Hy =1Ip,.4,, —2m (,uym/l;m ® (CmmAmm)TCmmAmm)
— 219 (,uymﬂ;—m ® A;zrzmAmm)

F.10 PROPOSITION 7.2

* Proposition If p(D,,) < 1 and p(H,,) < 1 then we have, limy_o (I'%,,,, Wt ) = (T55,, ¥5° )
With T, = (I=D,,) 29BN , & W, = (I—Hy@D,) "L Veo DT, Gl ~ D, 5% PJ).

mn m mmn m

Proof. Convergence of ', : From Lemma 6.3, we have the recursion as follows,

T = Dyl + 298,50,

n- mn

Taking limits ¢ — oo and using Proposition 7.1 we obtain,
Lo = Dul'n, + 2y B X5

(I = Dp)Tyy, = 2vBmn X5,

Since p(D,,) < 1, the matrix (I — D,,) is invertible, giving:
F’?non = (I - Dn)*12,.menzzo

m

Convergence of ¥!, : From Lemma 6.4, the recursion is given by,

vt =Dy, Hy' + DyTy, Gyl — Dysh Pt

mn M

+ 2yBL, AL HE + 2yBl SE GE — 2yBE T PLT

mn mn m
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At steady-state, using Proposition 7.1 we obtain,
U =D,V Hl + D, Gl — D,5% P
+ 2B Ape Hy) + 2YBin S50 G — 2B Ioo) Pl

3 mn

This can be rewritten as a vectorized equation using Vec(-),
Vec(Ur° ) = (Hp, @ Dy)Vec(¥oe ) + Vec(X)
where X collects all remaining terms.

Since p(Hy, @ Dy,) = p(Hpm)p(Dy) < 1 by assumption, we have,

Vec(¥5° ) = (I — Hy, @ D,,)~ ' Vee(X)

Substituting back X we obtain,

v = (I — Hy, ®D,) 'Vec (D,I'3,G,, — D, % PJ)

F.11 COROLLARY 7.3

* Corollary The above assumptions lead to convergence of the uncertainty of the client states Z}L
as follows: limy_,oo B 1= 550 = K 5% 4 Q% (py,,, @ )T + (p1y,, @ DX, where ki, =
tr(zym) + ||.uym H2 and (17 = Zceﬁﬂym-
Proof. From Lemma 6.5, the client state variance evolves as follows,

Sh = Fn S, + Uy, @ L, )T+ (uh, ® 1, )
where r}, = tr(3! )+ [|ul, |7

Under the stationarity Assumption (A4) and Proposition 7.1 we define the following,

» = lim X
O = L 2g,,
T k1t — 2
Km 2= tlifrolo Ko, = 1(3y,,) + [y, |

From Proposition 6.1 and the steady-state analysis we have,
2 = Cov(v3S ym) = S5 4y,
since at steady-state, the parameter covariance dominates the data-model correlation.

Substituting these limits into the variance expression, we obtain,

Sy = kmXg,, + g, My, (Hy,, ® 1 m)T + (py,, ® 1, m)N;nngn
= mSge, + 350, (g by, @ Ip,,) + by, by, @ Ip, )55,
Simplifying using the Kronecker product properties, we have,
Jim 5= 550+ Q% (py, @ Lp,) T+ (i, @ L, )T

with Q% = ¥5° 11, . O

m
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F.12 THEOREM 7.4

* Theorem (Convergence of Server Model’s Uncertainty) Let p(D,,) < 1. Define the linear map
L,(X) = D, XD], and the injection Q,,,,(X) = 42 B», (/@,,LE + XM, M + MmMLZ)BT

mn-**
BT t . . . . . o 00 k
Then, X5 = lim;,o, ¥ exists, is unique, and is given by, ¥¢ =37/ E,L(an( x50 ))

Proof. From Theorem 6.7, the server parameter covariance evolves as follows,

>0 =DLyY DL +44°BL, % Bl

mn

_|_ 27 (Dt Ft BtT + Bt FtT DZT)

n-mn mn mn—T mn

Taking limits ¢ — oo and using Proposition 7.1 we have,
YY =D,E%X D, +47y*Bn,X° By,
+ 2y (D52, By 4+ Brn Lo, D))

mn mn
From Corollary 7.3, we substitute E;L'Om as follows,
S = Kk Eg0 + 50 My M, + M, M, S5

2

where M, = 1, @ I, and ki, = tr(Sy,,) + ||y,

m

Defining the linear operator £,,(X) = D, X D, and the quadratic form we have,

an(z) = 4’YZan (sz + EMmM; + MmMTZ) B,

m mn
The steady-state equation thus becomes,
2?40,,,,,1 = ‘C’n(zicmn) + an(zgfn)

Since p(D,,) < 1 (given as a condition), the operator L,,(.) is a contraction, and the solution is given
by the Neumann series:

S, = 2L (Quan(35))
k=0

With I being the identity operator, the above expression can be re-written as,

(I - £n)(2210m7,) = Qmn

This has a formal solution with operator inversion such that,
Ezomn = - En)_lan

Since p(D,,) < 1, the Neumann series expansion is valid thus we can use,
(- ['n)71 = Zﬁﬁ
Substituting this into the equation for X5° ~ we obtain,
o0
k
Eiomn = Z ‘Cn(an)
k=0

The series converges because || £X(Qun)ll < p(Dn)*||Qmnll — 0ask — oo Uniqueness fol-
lows from the Banach fixed-point theorem, as £,, is a contraction mapping on the space of positive
semidefinite matrices with a matrix norm.

O
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F.13 THEOREM 7.5

* Theorem (Convergence of Client Model’s Uncertainty) Let p(H,,) < 1. Write M,,(X)
HnXH;, and Ry, (E) = G (kmE + S M, M), + M, M, %) G], Then the steady-state X3°

m

lim; o 33f s the unique solution to £5° = My (252 ) + Rin(35° ) + PnX% Py
Proof. From Theorem 6.8, the client parameter covariance evolves as follows,

Sert=HL %, HY+ RL (S )+ PLYY P+ cross terms
where R, collects terms quadratic in X .

Under Proposition 7.1°s convergence and Theorem 7.4’s steady-state for X7, we take limits as,

S5 = HpnSP Hp + R (S3°) + PS%. P

m

The quadratic term R,,, derives from Corollary 7.3’s expression as,
Ru(E) = Gy (kmS + M, M), + M, M,\ %) G,
with G, = 21 (py,, ® (CrumAmm) ") and M,, = Hy, @ I
Rewriting the fixed-point equation using the linear operator M,,,(X) = H,, X H,| we obtain,

550 = M (S32) + Rin(552) + P25 P

m OIS

Since p(H,,) < 1 (given), M., is a contraction, guaranteeing a unique solution.
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Figure 4: Uncertainty propagation in the cross-covariance terms during FedGC learning for different
regimes of X3 (a) T'%; vs iterations, (b) A% vs iterations, (c) W5, vs iterations.
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Figure 5: Uncertainty propagation in the cross-covariance terms during FedGC learning for different
regimes of X% (a) T4 vs iterations, (b) A} vs iterations, (c) W5, vs iterations.
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Figure 6: Uncertainty propagation in the cross-covariance terms during FedGC learning for different
regimes of Xg: (a) I'; vs iterations, (b) A5 vs iterations, (c) W5, vs iterations.
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Figure 7: Uncertainty propagation in the communicated terms during FedGC learning for different
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Figure 8: Uncertainty propagation in the communicated terms during FedGC learning for different
regimes of ¥ 5, (a) Var(g\, ,) vs iterations, (b) Xj,  vs iterations,
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Figure 9: Uncertainty propagation in the communicated terms during FedGC learning for different
regimes of Xg: (a) Var (gfms) vs iterations, (b) Zz vs iterations,
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Figure 11: Trace of the covariance of the local model parameters € for each of the three components
during FedGC learning for different regimes of X! for HAI dataset: (a) Tr(3j, ), (b) Tr(%f, ), (c)

Tr(X5,) vs. iteration t.
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Figure 14: Trace of the covariance of the local model parameters € for each of the three components
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Figure 17: Trace of the covariance of the local model parameters € for each of the three components
during FedGC learning for different regimes of Egm for HAI dataset: (a) Tr(%}, ), (b) Tr(3},), ()

Tr(X5,) vs. iteration t.

© ™ Number of iterations """ Number of iterations "™ Number of iterations
@) llpar, — Aszl2 ®) |4, — Arsll2 © llpag, — Aall2

' " NI;;:bcr c‘;?mitcraggns - " ' “ I\'l‘l‘;l‘qh(‘,r 5% itcraggms - " ' " NI;;;{bcr c‘;?mitcraggns - .
(@) [l 45, — A2sl2 © llpag, — Asll2 ) llpag, — As2ll2

Figure 18: Average Lo norm error of each off-diagonal block of the matrix A during FedGC learning
for different regimes of ¥§ for HAI dataset: (a) H”f‘iiz — Aia||2, (b) ||:LI’At13 — Aisl2, (©) HNA& -

Aatl2, (d) HMA;B — Aasl|2, (e) ||MA§1 — Aailf2, () HMA§2 — Asz||2 vs. iteration ¢.

35



Under review as a conference paper at ICLR 2026

N ]
~ \
™\ & -
\ \
\\\‘ \\
— et —
— & p IS
ul =
\ ~J
— S

Number of iterations

Number of iterations

Number of iterations

Number of iterations

. \\\
" Number of iterations " Number of iterations " Number of iterations " Number of iterations
(@ Tr(X4 ) O Tr(X4,) (@) Tr(E4 ) (h) Tr(X 4 )

Number of iterations

(@) Tr(S 4, )

Number of iterations

() Tr(S4,)

Number of iterations

0 Tr(S4,)

Number of iterations

M Tr(X4 )

Number of iterations

Number of iterations

Number of iterations

Number of iterations

(m) Te(S 4 ) () Tx(S4 ) ©) Tx(S4 ) (p) Tr(2 4, )
40 IS S\
— IR 7 .. '

™ Number of iterations ™ Number of iterations ™ Number of iterations ™ Number of iterations
@ Tr(X 4 ) (0 Tr(X4,) () Tr(X4,) O Tr(X4,)

Figure 19: Trace of the covariance for each off-diagonal block of the A matrix during FedGC learn-
ing for different regimes of E;m on SWaT dataset, plotted vs. iteration ¢.

NN

S
==

TSy

Ti(sh)

iz

/ i
J’ ~ 10

(a) Tr(Z5,)

" Number of itcrations " Number of iterations

(b) Tr(5,)

(c) Tr(Z5,)

(d) Tr(3h,)

(e) Tr(ZéS)

Figure 20: Trace of the covariance of the local model parameters 6,,, for each of the five components
during FedGC learning for different regimes of E;m on SWaT dataset, plotted vs. iteration ¢.

36



Under review as a conference paper at ICLR 2026

Number of iterations Number of iterations Number of iterations Number of iterations

@ [lpae, — Arzfl2 ®) [l a1, — Assll2 © [lmae, — Arall2 @ [lpar, — A2

Number of iterations Number of iterations Number of iterations Number of iterations

© llpay, — Azll2 ® llpag, — Assll2 (@ llpag, — Azall2 (h) [|pa a5, — Aos|[2

sl

1724

Number of iterations Number of iterations Number of iterations Number of iterations

) llrag, — Asill2 O I ag, — Asz2ll2 &) [l a5, — Asall2 M llrag, — Assll2

e
/ \
/ —
.
- S N I
) / \ ™N
= / -
T ST
= T < \\x
= . J \ N
Number of iterations Number of iterations * Number of iterations Number of iterations

m) [lpag, — Aall2 ) [|pn a1, — Asz2 ©) [l as, — Assll2 ®) [las, — Ass2

= =
| I
Number of iterations Number of iterations Number of iterations Number of iterations

@ llpag, — Asill2 © llpae, — Aszll2 () [l e, — Assll2 ® llpag, — Asall2

Figure 21: Average Lo norm error of each off-diagonal block of the 5 x 5 matrix A during FedGC
learning for different regimes of E;m on SWaT dataset, plotted vs. iteration ¢.

37



Under review as a conference paper at ICLR 2026

BT 9w . B
& oo~ T — 0 = = i
g, — o~ 2T — i g — % i
& Ul 0 &= o & 0
Dy g 10 rH‘H ~ 10" 24
" Number of iterations " Number of iterations " Number of iterations " Number of iterations
(a) TI‘(EAt ) (b) Tr(EAt ) (c) TI‘(EAt ) (d) TI'(EAt )
12 13 14 15
‘ 5 SR ST s~
=5 — — 5~ T — s~ = ~10
g — — g — s ~10? S0
= - = L b
= 9 S
" Number of iterations " Number of iterations ™ Number of iterations " Number of iterations
(e) Tr(X 4 ) ) Tr(X 4 ) (2) Tr(X 4 ) (h) Tr(X 4 )
21 23 24 25
_ o ~107° o ~100 ) b
= — =~ & s~ 107! = — I, -
g — o w2 |2 — o a2 |2 — I
= L = . = L
9 S 5
" Number of iterations " Number of iterations " Number of iterations " Number of iterations
() Tr(X4 ) G Tr(Z4,) (k) Tr(X 4 ) M) Tr(X4)
31 32 34 35
=~ EIRMTRI = =~
’}. e — | = )
E , — = ~107 — = ~107 H: B >} — I~
= s o 5~
™ Number of iterations " Number of iterations " Number of iterations " Number of iterations
(m) Tr(X 4 ) () Tr(X 4 ) (0) Tr(X 4: ) ) Te(Z 4 )
41 a2 43 a5
a - 2 _ .
= =
: " Number of iterations

Number of iterations

@ Tr(X 4 )

(0 Tr(X4,)

Number of iterations

Number of iterations

(S) TT(ZAES)

O Tr(X4,)

Figure 22: Trace of the covariance for each off-diagonal block of the A matrix during FedGC learn-

ing for different regimes of E%

mn

38

on SWaT dataset, plotted vs. iteration ¢.



Under review as a conference paper at ICLR 2026

Ex <
I [
Mmoo T Tt vt N ot o
(@) [[par — A2z ) [[ae. — Azl ©) [[par, — A2 (D [[ae. — Assll2
12 13 14 15
~ 107t —_— = 10
ot o~ 2 = — o~ 10 *
] ) SURURTIRRY I - 2 ~10"
| (" -
L B o P L B P P
(@ llpay, — A2l 0 | e, — A2sl2 (@ [lpar, — Azl (h) [l ag, — Assll2
21 23 24 25
N\ o~ B ' 1 ﬂ%\\
C o~ N - ‘\ 2
= 2 ~107 ) X . 2 =, o~
< o~ o~
| I
5 B o ~ 10
T — 0~ 10
=
I~
T O e O P L P, P S
@ g — Asil2 @ lpar, — Aszll2 ) Nl ae, — Asall2 M [[par — Ass|l2
31 32 34 35
= \.
= S"l“ ~ 1076 . PR e o~ —
< — 5~ — o~ — %~
L:‘ \“”1‘ ~ 1072 £ ~10? - 0~ 1072
= =~ 5~ ) 0~ 10
O S L O T B ST
(m) [|p g0, — A2 M) [[pae, — Aazll2 () llae, — Aasll2 (®) l1ar. — Aasll2
41 42 43 45
3 E: = 3
I L 0~ 1076 !
5. I o =
' ~ 1072 "
~ T
O A R P S B L B I AP R AP

@ [lrag, — Asafl2 O [y, — Asz|2 ) I ag, — Assll2 © [lreag, — Asall2

Figure 23: Average L, norm error of each off-diagonal block of the A matrix during FedGC learning
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Figure 24: Trace of the covariance for each off-diagonal block of the A matrix during FedGC learn-
ing for different regimes of ng on SWaT dataset, plotted vs. iteration ¢.
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Figure 25: Trace of the covariance of the local model parameters 6 for each of the five components
during FedGC learning for different regimes of E% on SWaT dataset, plotted vs. iteration ¢.
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Figure 26: Trace of the covariance of the local model parameters # for each of the five components
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Figure 27: Average L, norm error of each off-diagonal block of the A matrix during FedGC learning
for different regimes of Z‘,gm on SWaT dataset, plotted vs. iteration t.
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