
Is Feedback All You Need? Leveraging Natural
Language Feedback in Goal-Conditioned

Reinforcement Learning

Sabrina McCallum1,2, Max Taylor-Davies1,2, Stefano V. Albrecht1, Alessandro Suglia2

1University of Edinburgh 2Heriot-Watt University

Abstract

Despite numerous successes, the field of reinforcement learning (RL) remains far
from matching the impressive generalisation power of human behaviour learning.
One way to help bridge this gap may be to provide RL agents with richer, more
human-like feedback expressed in natural language. First, we extend BabyAI to
automatically generate language feedback from the environment dynamics and
goal condition success. Then, we modify the Decision Transformer architecture
to take advantage of this additional signal. We find that training with language
feedback either in place of or in addition to the return-to-go or goal descriptions
improves agents’ generalisation performance, and that agents can benefit from
feedback even when this is only available during training, but not at inference.

1 Introduction

Despite significant advances over decades of research, modern AI systems still lag significantly
behind the learning abilities of humans. During their development, human infants develop a wide
range of adaptive behaviours through an open-ended learning process that is remarkable for both its
sample efficiency and generalisation [1]. One likely contributing factor is that, while infant learners
do engage in trial-and-error learning, they are also able to draw from a variety of feedback sources
beyond their immediate environment. One such source is other humans, who may provide them
with additional feedback signals in the form of natural language [2; 3]. Sometimes, this feedback
may be akin to a classic reward signal, such as a parent praising (or scolding) their child for doing
something right (or wrong). But it can also be richer and more structured, conveying information
directly tailored to the learner’s current goal, such as explanations of specific observations and events.
This may allow the learner to update their prior knowledge and build a more stable and accurate
model of the world [4; 5].

While they are able to achieve superhuman performance on some tasks, reinforcement learning (RL)
agents typically struggle with both sample efficiency and generalisation, especially in settings where
the environment reward is sparse or under-specified [6]. Additionally, there may be environment–task
combinations for which no sufficiently expressive Markov reward function exists, or, in the case of
tasks specified in language, there may be a mismatch in abstraction between task and reward [7].

To address this, we investigate whether RL agents may be able to learn more generalisable policies
when introduced to richer and more human-like feedback signals expressed through natural language.
We modify an existing offline RL method to condition on different types of language feedback
provided by the environment. Our method includes a procedure to automatically generate this
language feedback, and requires no humans in the loop. We find evidence that conditioning on
language feedback can boost generalisation performance relative to baselines conditioning only on
goal instructions or return, and can match or outperform these baselines when goal instructions or
return are not available, even when feedback is not provided at inference time.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



m R̂ R̂s af m s af

... ...autoregressive Transformer

a a

Figure 1: We extend the capabilities of the Decision Transformer (return-conditioned) and Text
Decision Transformer (instruction-conditioned), with the option to condition on language feedback.

2 Related work

Reinforcement Learning from Human Feedback (RLHF). A related area of work can be found in
RLHF, which describes a methodology for dynamically adapting machine learning models, such as
large language models (LLMs) [8; 9; 10; 11] and more recently, vision-and-language models (VLMs)
[12; 13], to hard-to-specify goals which are typically linked to human preferences or behaviours.
Most similar to our work is Octopus [12], which leverages automatic feedback from the simulator
instead of human supervision. Both RLHF and our work use auxiliary feedback information to aid
learning where the desired behaviour may be difficult to capture in a simple reward signal. However,
while in RLHF, learning from feedback typically occurs as a separate subsequent process, we consider
it as part of the main training procedure. Likewise, we do not use the feedback samples to train any
explicit reward model, but pass them directly to the core behaviour-learning model.

Feedback in LLM prompts. A growing body of work prompts pretrained LLMs or VLMs to
generate plans for a range of robotic manipulation and embodied AI tasks. Some of these studies
incorporate a form of language feedback on the generated plan into the prompt. The feedback used is
typically automatic and ranges from simple binary task completion feedback [14] to more verbose
feedback messages from the environment and execution errors [15; 16; 17; 12]. Concurrent work
using feedback for language-to-code generation [18; 19] and chain-of-thought reasoning [20; 21; 22]
leverages compiler errors and human feedback, respectively. While the former inspired our notion
of feedback and the mechanism used to generate it, we do not make use of pretrained models or
in-context learning, and apply feedback specifically in the context of goal-conditioned RL.

3 Proposed method

Architecture. We build upon the Decision Transformer [23], which casts RL as a sequence modelling
problem, where behaviour is produced by generating action sequences in an auto-regressive manner
and conditioned on the desired return. The Transformer [24] has emerged as the architecture of choice
for pre-training LLM’s and VLM’s, and has been shown to be competitive on offline RL benchmarks
thanks to its flexibility w.r.t input encoding, and its ability to condition on previous timesteps over
long contexts through the self-attention mechanism. As a variant of the original DT, the Text Decision
Transformer (TDT) [25] conditions action generation on language goal instructions. Our architecture
(see Figure 1) extends both methods by allowing action generation to be conditioned on return-to-go
(RTG), goal instructions, language feedback, or any combination thereof.

Augmenting environments with language feedback. Our approach includes a method to automati-
cally generate low-level language feedback using predefined rules and templates. We conceptualise
two feedback types, ’Rule Feedback’ and ’Task Feedback’, which capture different information about
the consequences of the agent’s actions, as is illustrated in Figure 2. For our Task Feedback, we
decompose high-level goal instructions into granular sub-goals in order to generate feedback on the
agent’s progress towards the goal. Rule Feedback is provided when an action is executed that violates
any of the physical constraints or predicates imposed by the environment. We conceptualise this as a
type of corrective feedback extended with a detailed explanation for the failure. For further details on
feedback generation, the reader may refer to Appendix A.1.

2



feedback: “Great job! You've completed a 
part of your task by picking up a yellow key.”

action: pickup

feedback: --
action: left

feedback: “Not a good idea! You can't move 
forward here as there's a key blocking the 
way.”

action: forward

Task

Feedback

No

Feedback

Rule

Feedback

Figure 2: Different actions can result in either Rule Feedback, no feedback, or Task Feedback.

4 Experiments

To test our approach, we extend BabyAI [26], a suite of 2D gridworld environments which facilitates
the training of agents on goal-oriented tasks specified in language. Levels in BabyAI increase in
difficulty, and range from simple single rooms to complicated mazes with many objects. Harder
levels involve multiple sub-goals, long horizons and complex compositional instructions. All levels
in BabyAI pose challenges associated with sparse rewards. We select a subset of the levels including
single rooms and mazes, and use a random policy to generate offline training datasets for each level
using partial image observations. By default, BabyAI environments include high-level language goal
instructions, or ’missions’, and we augment this with language feedback as described in Section 3.

We compare the relative performance of different variants of our feedback-conditioned model against
baselines which condition only on RTG or only on mission, and investigate a) whether conditioning
on language feedback in addition to RTG or mission boosts the generalisation performance of
the baselines, b) whether we can exceed, or at least match, the generalisation performance of the
baselines by relying solely on language feedback, and c) how providing feedback not only during
training but additionally at inference impacts generalisation performance. As our Task Feedback
corresponds to goal conditions, we use goal-conditioned success rate as the evaluation metric, and
devise an evaluation protocol for compositional generalisation for both IID and OOD scenarios. For
implementation details and all results, see Appendices A.2 and A.3, respectively.

Exp 1: Combining RTG with Task Feedback boosts performance on single-room levels. Since
Rule Feedback seems to negatively impact performance on maze levels when combined with the
RTG, we hypothesise that while this dense feedback discourages unnecessary behaviour that has no
effect on the environment, thereby reducing the risk of the environment timing out in easier levels
with lower max steps, it is less helpful in harder maze levels, where the agent may try to complete the
task for longer, and potentially distracts from the goal-relevant behaviour encouraged by the RTG.

Exp 2: Combining mission with Rule Feedback boosts performance on maze levels. In addition,
we observe that combining the mission with only the Task Feedback can be detrimental for perfor-
mance. Unlike Rule Feedback, which is explicitly linked to the effect of the previous action, Task
Feedback encapsulates the cumulative effect of the full sequence of actions since the previous goal
condition, and we hypothesise that when presented with the mission and the Task Feedback together,
the model has to learn to simultaneously leverage two long-horizon signals at the same time.

Exp 2: Replacing RTG with feedback improves OOD performance. We find that performance
improvements for both OOD and IID scenarios are more significant the lower the performance of the
RTG-only baseline is, as well as when the relative goal location is OOD, which may be an indication
that language feedback captures transferable, higher-level information where behaviour learned on
the basis of a numerical reward is perhaps too specific to the training configurations and tasks.

3



Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

IID generalisation (on all levels)

+ 10

+ 0.05
+ 2.64 + 1.88

+ 3.79

- 10

31.37*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (on all levels)

+ 10
+ 4.96 + 4.28 + 5.62

- 1.34

- 10

26.46*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

 Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only 

feedback

OOD generalisation (on all levels)

+ 10

+ 2.33 + 2.59 + 1.93 + 3.26

- 10

29.52*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (on all levels)

+ 10
+ 4.96

+ 2.41 + 2.12

- 2.15

- 10

26.89*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Figure 3: Difference in performance between the return-only (DT) and mission-only (TDT) baselines
and our proposed variants that condition with feedback.

Exp 4: Replacing mission with feedback improves performance. In the case of OOD performance,
we observe the most significant improvements when the performance of the baseline is poor and the
model seemingly fails to learn a generalisable mapping to task-relevant behaviour from the mission
alone, as well as for test environments where the model has to generalise to unseen relative goal
locations or fixed goal objects, both of which are specified in the final part of the mission.

Exp 5: Feedback at inference is only useful when performance is otherwise poor. Apart from the
feedback-only variant, the performance change with feedback at inference appears to be inversely
proportional to the performance without feedback at inference. While this behaviour merits further
investigation, we hypothesise that the distribution of feedback encountered at inference is unseen in
training episodes which negatively affects the agent’s performance.

5 Limitations and future work

While we limit ourselves to demonstrating the potential of language feedback for goal-conditioned
RL on a single algorithm and learning environment, we are optimistic that the underlying idea
can be transferred successfully to other RL algorithms and simulation environments beyond 2D
gridworlds—we aim to explore this in future work. Replacing templates with more diverse language,
e.g. generated with LLM prompting, may provide the additional flexibility and scalability required
for transfer to more diverse task, action and observation spaces, without having to rely on humans
in the loop. As our feedback is generated automatically and does not rely on human annotators, it
should translate directly to the online setting in the scope of simulated learning environments. It
remains to be seen if pre-training agents in this fashion would be sufficient for successful sim-to-real
transfer; however, we believe that providing free-form language feedback to robots deployed in the
real world would be intuitive for human collaborators. Exploring the implications of this approach to
Human-Robot-Interaction is an interesting and promising avenue for future research.

6 Conclusion

We investigate the potential of using automatically generated language feedback to train agents in
sparse-reward environments with language-specified goals. We find evidence that conditioning on
such feedback in addition to goal instructions or desired return can yield significant improvements
in generalisation to environments that are IID or OOD with respect to various factors. Within the
BabyAI environment suite, feedback seems to provide a useful alternative or complementary signal
to desired return in easy levels, and to goal instructions in harder levels. Additionally, we establish
that language feedback can potentially serve as an alternative condition when goal instructions or
desired return are not available, and that in some cases, feedback is only effective when it is also
provided at inference time.

4



References
[1] J. R. Saffran, R. N. Aslin, and E. L. Newport, “Statistical learning by 8-month-old

infants,” Science, vol. 274, no. 5294, pp. 1926–1928, 1996. [Online]. Available:
http://www.jstor.org/stable/2891705

[2] J. A. C. Hattie and H. S. Timperley, “The power of feedback,” Review of Educational Research,
vol. 77, pp. 112 – 81, 2007. [Online]. Available: https://api.semanticscholar.org/CorpusID:
82532100

[3] L. E. Schulz, “The origins of inquiry: inductive inference and exploration in early
childhood,” Trends in Cognitive Sciences, vol. 16, pp. 382–389, 2012. [Online]. Available:
https://api.semanticscholar.org/CorpusID:17346427

[4] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial
intelligence, vol. 267, pp. 1–38, 2019.

[5] T. Lombrozo, “The structure and function of explanations,” Trends in cognitive sciences, vol. 10,
no. 10, pp. 464–470, 2006.

[6] J. M. C. Ocana, R. Capobianco, and D. Nardi, “An overview of environmental features that
impact deep reinforcement learning in sparse-reward domains,” Journal of Artificial Intelligence
Research, vol. 76, pp. 1181–1218, 2023.

[7] D. Abel, W. Dabney, A. Harutyunyan, M. K. Ho, M. L. Littman, D. Precup, and S. Singh, “On
the expressivity of markov reward,” ArXiv, vol. abs/2111.00876, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:240354171

[8] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. E. Miller, M. Simens, A. Askell,
P. Welinder, P. F. Christiano, J. Leike, and R. J. Lowe, “Training language models to follow
instructions with human feedback,” ArXiv, vol. abs/2203.02155, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:246426909

[9] J. Scheurer, J. A. Campos, J. S. Chan, A. Chen, K. Cho, and E. Perez, “Training language models
with language feedback,” 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
248965479

[10] N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. J. Lowe, C. Voss, A. Radford, D. Amodei,
and P. Christiano, “Learning to summarize from human feedback,” ArXiv, vol. abs/2009.01325,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221665105

[11] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and
G. Irving, “Fine-tuning language models from human preferences,” ArXiv, vol. abs/1909.08593,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:202660943

[12] J. Yang, Y. Dong, S. Liu, B. Li, Z. Wang, C. Jiang, H. Tan, J. Kang, Y. Zhang, K. Zhou, and
Z. Liu, “Octopus: Embodied vision-language programmer from environmental feedback,” 2023.

[13] Z. Sun, S. Shen, S. Cao, H. Liu, C. Li, Y. Shen, C. Gan, L. Gui, Y.-X.
Wang, Y. Yang, K. Keutzer, and T. Darrell, “Aligning large multimodal models
with factually augmented rlhf,” ArXiv, vol. abs/2309.14525, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:262824780

[14] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. R. Florence, A. Zeng, J. Tompson,
I. Mordatch, Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine,
K. Hausman, and B. Ichter, “Inner monologue: Embodied reasoning through planning
with language models,” in Conference on Robot Learning, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:250451569

[15] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. D. Reid, and N. Sünderhauf, “Sayplan:
Grounding large language models using 3d scene graphs for scalable task planning,” ArXiv,
vol. abs/2307.06135, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
259837542

5

http://www.jstor.org/stable/2891705
https://api.semanticscholar.org/CorpusID:82532100
https://api.semanticscholar.org/CorpusID:82532100
https://api.semanticscholar.org/CorpusID:17346427
https://api.semanticscholar.org/CorpusID:240354171
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:248965479
https://api.semanticscholar.org/CorpusID:248965479
https://api.semanticscholar.org/CorpusID:221665105
https://api.semanticscholar.org/CorpusID:202660943
https://api.semanticscholar.org/CorpusID:262824780
https://api.semanticscholar.org/CorpusID:250451569
https://api.semanticscholar.org/CorpusID:259837542
https://api.semanticscholar.org/CorpusID:259837542


[16] M. Skreta, N. Yoshikawa, S. Arellano-Rubach, Z. Ji, L. B. Kristensen, K. Darvish,
A. Aspuru-Guzik, F. Shkurti, and A. Garg, “Errors are useful prompts: Instruction guided task
programming with verifier-assisted iterative prompting,” ArXiv, vol. abs/2303.14100, 2023.
[Online]. Available: https://api.semanticscholar.org/CorpusID:257757298

[17] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. J. Fan, and
A. Anandkumar, “Voyager: An open-ended embodied agent with large language models,” ArXiv,
vol. abs/2305.16291, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
258887849

[18] X. Chen, M. Lin, N. Schärli, and D. Zhou, “Teaching large language models to self-debug,”
2023.

[19] A. Ni, S. Iyer, D. R. Radev, V. Stoyanov, W. tau Yih, S. I. Wang, and X. V. Lin, “Lever:
Learning to verify language-to-code generation with execution,” ArXiv, vol. abs/2302.08468,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:256900680

[20] S. An, Z. Ma, Z. Lin, N. Zheng, J.-G. Lou, and W. Chen, “Learning from mistakes
makes llm better reasoner,” ArXiv, vol. abs/2310.20689, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:264813981

[21] B. Peng, M. Galley, P. He, H. Cheng, Y. Xie, Y. Hu, Q. Huang, L. Lidén, Z. Yu, W. Chen,
and J. Gao, “Check your facts and try again: Improving large language models with external
knowledge and automated feedback,” ArXiv, vol. abs/2302.12813, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257205781

[22] A. Madaan, N. Tandon, P. Clark, and Y. Yang, “Memory-assisted prompt editing to improve
gpt-3 after deployment,” in Conference on Empirical Methods in Natural Language Processing,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:253236860

[23] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch, “Decision transformer: Reinforcement learning via
sequence modeling,” in Neural Information Processing Systems, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:235294299

[24] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Neural Information Processing Systems, 2017.
[Online]. Available: https://api.semanticscholar.org/CorpusID:13756489

[25] A. L. Putterman, K. Lu, I. Mordatch, and P. Abbeel, “Pretraining for language conditioned
imitation with transformers,” 2022. [Online]. Available: https://openreview.net/forum?id=
eCPCn25gat

[26] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen,
and Y. Bengio, “Babyai: A platform to study the sample efficiency of grounded language
learning,” in International Conference on Learning Representations, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:59536625

[27] J. Lin, Y. Du, O. Watkins, D. Hafner, P. Abbeel, D. Klein, and A. D. Dragan, “Learning
to model the world with language,” ArXiv, vol. abs/2308.01399, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:260438420

[28] L. Ruis, J. Andreas, M. Baroni, D. Bouchacourt, and B. M. Lake, “A benchmark for
systematic generalization in grounded language understanding,” ArXiv, vol. abs/2003.05161,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:212658007

[29] T. Cao, J. Wang, Y. Zhang, and S. Manivasagam, “Zero-shot compositional policy learning
via language grounding,” 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
258180211

[30] C. Heinze-Deml and D. Bouchacourt, “Think before you act: A simple baseline for
compositional generalization,” ArXiv, vol. abs/2009.13962, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:221995908

6

https://api.semanticscholar.org/CorpusID:257757298
https://api.semanticscholar.org/CorpusID:258887849
https://api.semanticscholar.org/CorpusID:258887849
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:264813981
https://api.semanticscholar.org/CorpusID:257205781
https://api.semanticscholar.org/CorpusID:253236860
https://api.semanticscholar.org/CorpusID:235294299
https://api.semanticscholar.org/CorpusID:13756489
https://openreview.net/forum?id=eCPCn25gat
https://openreview.net/forum?id=eCPCn25gat
https://api.semanticscholar.org/CorpusID:59536625
https://api.semanticscholar.org/CorpusID:260438420
https://api.semanticscholar.org/CorpusID:212658007
https://api.semanticscholar.org/CorpusID:258180211
https://api.semanticscholar.org/CorpusID:258180211
https://api.semanticscholar.org/CorpusID:221995908


[31] Z. Wu, E. Kreiss, D. C. Ong, and C. Potts, “Reascan: Compositional reasoning
in language grounding,” ArXiv, vol. abs/2109.08994, 2021. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:237572003

[32] A. Sikarwar, A. Patel, and N. Goyal, “When can transformers ground and compose: Insights
from compositional generalization benchmarks,” ArXiv, vol. abs/2210.12786, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:253097723

[33] M. Aghzal, E. Plaku, and Z. Yao, “Can large language models be good path planners? a
benchmark and investigation on spatial-temporal reasoning,” ArXiv, vol. abs/2310.03249, 2023.
[Online]. Available: https://api.semanticscholar.org/CorpusID:263671594

[34] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are
unsupervised multitask learners,” 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:160025533

[35] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” in Conference on Empirical Methods in Natural Language Processing, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:201646309

7

https://api.semanticscholar.org/CorpusID:237572003
https://api.semanticscholar.org/CorpusID:237572003
https://api.semanticscholar.org/CorpusID:253097723
https://api.semanticscholar.org/CorpusID:263671594
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:201646309


A Appendix

A.1 Datasets

Since we train our models offline, we create datasets containing trajectories generated by a
random policy for eight levels in BabyAI [26] which are listed in Table 1. For the single-
room levels, we generate 10 trajectories for 128 environment instantiations each, and 10 times
as many for the more complex maze levels. Trajectories are composed of sequences of mis-
sion string, partial image observation, action, reward and feedback string. Note that BabyAI
only provides a sparse, terminal reward between 0 and 1 at the end of the episode, and no
intermediate rewards. We make the training datasets used in our experiments available on
https://www.dropbox.com/sh/b0bff46d4s230hr/AADJE4xu_Aliqd_mAv3kUdSda?dl=0.

We augment BabyAI to generate ’Task Feedback’ and ’Rule Feedback’. Both types of feedback are
rule-based and deterministic, so that the same rule will trigger the same string every time (see Tables
2- 3). The procedure is illustrated in Figure 4. BabyAI missions consist of one or multiple high-level
actions (go to, open, pick up, or put next), each paired with goal objects, which are specified
using color, type and location descriptors. Apart from the simple goto, these actions involve multiple
steps; we decompose them into their component steps, which serve as sub-goals (or goal conditions)
for the purpose of generating feedback and calculating the goal-condition success rate used to compare
model performance. Note that we do not use these sub-goals as such as a learning signal. To illustrate
this, the mission "put a yellow ball next to the green box" would be decomposed into four sub-
goals: go to a yellow ball, pick up a yellow ball, go next to the green box, and
put a yellow ball next to the green box.

Note that unlike the correction feedback in [27], our Rule Feedback does not rely on heuristic
representations of rules outside of the dynamics of the simulator, and we avoid the use of instruction
language in the feedback to clearly separate this from the goal instructions. In a similar vein to
recent work in the space of LLMs for code generation [12] and planning [15], which leverages
execution errors for actions as automatic feedback, we exploit BabyAI’s internal action validation as
the simulation environment does not return execution errors or similar system messages as such.

We evaluate generalisation on environments seeded with held out seeds both for in-distribution (IID)
as well as out-of-distribution (OOD) scenarios. Our approach is inspired by work on compositional
generalisation in grid worlds, such as gSCAN [28] and related benchmarks [29; 30; 31; 32; 33]. The
attributes that we control for and their corresponding held-out values are described in Table 4.

We publish the code used to generate datasets and feedback, and to determine training, IID and OOD
seeds on https://github.com/maxtaylordavies/feedback-DT.

generate Task 
Feedback

return next state

yes

return next state

(no Feedback)

noDoes the next state 
correspond to sub 

goal success?

yes generate Rule 
Feedback

repeat state

no
Is the action 

permissable given 
the current state?

action

Figure 4: The feedback generation process for BabyAI environments.

8



Table 1: BabyAI levels used in our experiments. The top four levels are single rooms, the bottom
four mazes. GC’s = Goal Conditions. Unlike GoToLocal, GoToObj has no distractor objects. The
code used to generate the datasets can be found on https://github.com/maxtaylordavies/feedback-DT.

Level Mission space GC’s Stepsmax Episodes

GoToObj go to {the/a} {col} {type} 1 64 1,280
GoToLocal go to {the/a} {col} {type} 1 64 1,280
PickupLoc pick up {the/a} {col} {type} {loc} 2 64 1,280
PutNextLocal put {the/a} {col1} {type1}

next to {the/a} {col2} {type2}
4 128 1,280

Pickup pick up {the/a} {col} {type} 2 576 12,800
PutNext put {the/a} {col1} {type1}

next to {the/a} {col2} {type2}
4 1,152 12,800

Synth go to {the/a} {col} {type},
pick up {the/a} {col} {type},
open {the/a} {col} door,
put {the/a} {col1} {type1}
next to {the/a} {col2} {type2}

1-4 1,152 12,800

SynthLoc Same as Synth, but with loc language 1-4 1,152 12,800

Table 2: Feedback templates and their corresponding rules, which check whether the effect of an
action corresponds to the current goal condition. Unlike the other instruction types, GoNextTo is not
a default BabyAI instruction type and used exclusively as a sub-goal for PutNext instructions.

Instruction
type

Action Goal condition Feedback template

GoTo forward
left
right

Goal(FrontCell) "Fantastic! You’ve completed {a part of
}your task by going to {goal object descrip-
tion}."

GoNextTo forward
left
right

NextTo(FrontCell,
Goal)

"That’s right! You’ve completed {a part of
}your task by going next to goal object de-
scription."

Open toggle Goal(FrontCell) ∧
OpenDoor(FrontCell)

"That’s correct! You’ve completed {a part
of }your task by opening {goal door descrip-
tion}."

Pickup pickup Carrying(Object) ∧
Goal(Object)

"Great job! You’ve completed {a part of
}your task by picking up {goal object descrip-
tion}."

PutNext drop NextTo(FrontCell,
FixedGoal) ∧ Move-
Goal(FrontCell)

"That’s right! You’ve completed {a part of
}your task by going next to goal object de-
scription."

9



Table 3: Feedback templates and their corresponding rules, which check whether an action has
violated any of the pre-conditions for the action to have an effect on the environment.

Action Condition Feedback template

forward Wall(FrontCell) "Not a good idea! You can’t move forward while you’re
facing the wall."

forward Object(FrontCell) ∧
¬Door(FrontCell)

"Not a good idea! You can’t move forward here as
there’s a {object} blocking the way."

forward Door(FrontCell) ∧
Closed(FrontCell)

"Not a good idea! You can’t move forward here as the
door in front of you is closed."

forward Door(FrontCell) ∧
Locked(FrontCell)

"Not a good idea! You can’t move forward here as the
door in front of you is locked."

pickup Wall(FrontCell) "Not a good idea! You can’t pick up the wall."
pickup Empty(FrontCell) "Not a good idea! There’s nothing in front of you, and

you can’t pick up empty space."
pickup Door(FrontCell) "Not a good idea! You can’t pick up doors."
pickup Object(Carrying) "Not a good idea! You can’t pick up another object

while you’re already carrying one."

drop Wall(FrontCell) "Don’t do that! You can’t drop an object while you’re
facing the wall."

drop Object(FrontCell) ∧
¬Door(FrontCell)

"Don’t do that! You can’t drop an object on top of
another object, and there’s already a {object type} in
front of you."

drop Door(FrontCell) "Don’t do that! You can’t drop an object while you’re
facing a door."

drop Empty(Carrying) "Don’t do that! You’re not carrying any object so drop-
ping has no effect."

toggle Wall(FrontCell) "That won’t work here. You can’t open the wall."
toggle Object(FrontCell) ∧

¬Box(Object)
"That won’t work here. You can’t open {object type}s."

toggle Empty(FrontCell) "That won’t work. There’s nothing in front of you, and
you can’t open empty space."

toggle Door(FrontCell) ∧
Locked(FrontCell) ∧
¬Key(Carrying)

"That won’t work here. You can’t open a locked door
without a key of the same color as the door, and you’re
not carrying any key."

toggle Door(FrontCell) ∧
Locked(FrontCell) ∧
Key(Carrying) ∧
¬SameCol(Carrying,
FrontCell)

"That won’t work here. You can’t open a locked door
without a key of the same color as the door. You’re
carrying a {key color} key, but the door in front of you
is {door color}."

Table 4: Attributes and held out values used to evaluate OOD generalisation in our experiments.
*Fixed goal object and relative goal location are only applicable to levels which include PutNext
instructions, and those with location language (Loc), respectively.

Out-of-domain attribute Held out value

Goal object yellow box
Fixed goal object* blue ball
Relative goal location* on your right
Room size < 8 x 8 tiles
Agent starting location in room bottom left (in room) / bottom right (in maze)

10



A.2 Model Architecture and Training

For the decoder, we adapt the Huggingface implementation of the Decision Transfomer by [23] based
on GPT2 [34], while the state encoder conforms to the state encoder used for BabyAI in [26]. Details
are provided in Table 5. As in the original implementation, actions and rewards are encoded linearly,
and we use absolute positional embeddings. We extend the original model with sentence-level
embeddings for the mission and language feedback, for which we downsample 768-dimensional
embeddings from a frozen SentenceBERT model [35]. All embeddings are 128-dimensional, and
language embeddings are provided one sentence per timestep.

We keep most of the default values for training parameters listed in Table 6 as used by [23] for
their model corresponding to the architecture described above. We train for up to 10 epochs with
early stopping based on goal-condition success on the training seeds, and using batches of 64
samples consisting of sub-episodes with context length 64. In the case of single-room levels with
simple actions (goto and pickup), this corresponds to the full episode for unsuccessful episodes.
Note that we use random starting points within episodes from which to sample sub-episodes and
that consequently, even sub-episodes sampled from long (unsuccessful or maze-level) episodes
may contain fewer than 64 steps. The value used for early stopping patience is based on level
complexity, whereby we double the patience value after first two levels and again after the first four
levels. The target RTG for inference is 1, which is the maximum achievable in BabyAI. While for
variants using the mission, we provide the mission for both training and inference, for those variants
using feedback, we ablate whether the model has access to the actual feedback at inference time
or whether it is given a constant, randomly sampled placeholder. The project code is available on
https://github.com/maxtaylordavies/feedback-DT.

Table 5: Architecture hyperparameters

(a) Decoder

Parameter Value

N layers 3
N attention heads 1
Hidden dimension 128
Dropout 0.1
Non-linearity ReLU

(b) State encoder

Parameter Value

N convolutions 3
Channels 16, 32, 64
Filter sizes 2x2, 2x2, 2x2
Strides 1, 1, 1
Non-linearity ReLU

Table 6: Training hyperparameters

(a) Optimisation

Parameter Value

Optimiser AdamW
β1, β2 0.9, 0.99
Weight decay 1× 10−4
Learning rate 5× 10−4
Scheduler Linear
Warm-up ratio 0.1

(b) Other

Parameter Value

Max gradient norm 0.25
Max epochs 10
Early stopping
- patience (val steps) 8/16/32
- threshold 0.01
Batch size 64

11



A.3 Further results

A.3.1 Performance by level

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

IID generalisation (‘GoToObj’)

+ 50

+ 3.91

+ 25.78 + 26.57
+ 15.63

- 50

39.84*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

omly

feedback

IID generalisation (‘Pickup’)

+ 10

+ 2.73 + 1.56

- 3.91 - 3.13
- 10

21.88*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te

*r

tg

vs all 

feedback

IID generalisation (on ‘GoToLocal’)

+ 0.25

+ 0.05 + 0.02
+ 0.09 + 0.07

- 0.25

0.51*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

IID generalisation (‘PutNext’)

+ 10

+ 1.17

- 2.74
- 7.03

+ 3.51

- 10

29.30*

+ all 

feedback

+ rule 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

IID generalisation (‘PutNextLocal’)

+ 10
+ 5.86

+ 3.32
+ 0.78

+ 3.12

- 10

12.50*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

IID generalisation (‘Synth’)

+ 10

- 0.98 - 1.37 - 0.98

+ 0.98

- 10

24.61*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

IID generalisation (‘PickupLoc’)

+ 10

- 8.98

+ 1.18

- 1.56

+ 4.30

- 10

33.98*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

IID generalisation (‘SynthLoc’)

+ 10

- 8.79 - 8.99
- 7.43

- 1.18

- 10

38.09*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Figure 5: IID generalisation performance by level for the proposed variants conditioning on return
and/or feedback compared against the return-only (vanilla DT) baseline.

12



Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation (‘GoToObj’)

+ 50

+ 1.56

+ 19.53 + 23.70
+ 15.62

- 50

50.50*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only 

feedback

OOD generalisation (‘Pickup’)

+ 10

+ 2.35

+ 7.04

+ 2.35
+ 0.79

- 10

18.16*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation (‘GoToLocal’)

+ 25

- 0.79

+ 4.76 + 2.91 + 5.29

- 25

50.00*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation (‘PutNext’)

+ 10

- 0.39
- 3.65 - 4.76

+ 1.23

- 10

32.23*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation (‘PutNextLocal’)

+ 10 + 7.57

+ 0.83

- 4.00

+ 1.27

- 10

16.94*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation (‘Synth’)

+ 10

+ 2.28

- 3.91
- 1.82

+ 0.32

- 10

17.84*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation (‘PickupLoc’)

+ 10

+ 1.95 + 2.87

- 0.65

+ 6.90

- 10

26.17*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation (‘SynthLoc’)

+ 10

+ 2.30

- 2.83

+ 0.34

- 3.32

- 10

26.56*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Figure 6: OOD generalisation performance by level for the proposed variants conditioning on return
and/or feedback compared against the return-only (vanilla DT) baseline.

13



Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘GoToObj’)

+ 50

+ 2.34 + 0.78

- 2.35

+ 2.34

- 50

41.41*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘Pickup’)

+ 10 + 8.99
+ 6.65

+ 10.16

+ 0.79

- 10

15.62*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘GoToLocal’)

+ 25
+ 14.84

+ 8.59
+ 4.68

- 13.29
- 25

41.41*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘PutNext’)

+ 10

+ 4.88 + 6.25
+ 10.15

- 1.57

- 10

25.59*

+ all 

feedback

+ rule 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘PutNextLocal’)

+ 10
+ 4.88 + 4.88

+ 7.22

- 1.37

- 10

13.48*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘Synth’)

+ 10

- 0.59
- 2.54

+ 2.93
+ 1.37

- 10

24.22*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘PickupLoc’)

+ 10

+ 1.95 + 2.73 + 3.51

- 3.52

- 10

23.05*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

IID generalisation (‘SynthLoc’)

+ 10

+ 2.35

+ 6.84 + 8.60
+ 4.50

- 10

25.95*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Figure 7: IID generalisation performance by level for the proposed variants conditioning on mission
and/or feedback compared against the mission-only (vanilla TDT) baseline.

14



Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘GoToObj’)

+50

+ 0.52

- 7.55 - 8.85 - 9.37

- 50

52.08*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘Pickup’)

+ 10
+ 9.57

+ 11.33

+ 5.47 + 5.66

- 10

10.94*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘GoToLocal’)

+ 25

+ 0.27

- 5.29 - 2.11

- 24.07
- 25

48.94*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘PutNext’)

+ 10
+ 6.45 + 5.66

+ 12.04

- 0.32

- 10

25.39*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘PutNextLocal’)

+ 10
+ 9.62

+ 6.15 + 6.45

+ 2.98

- 10

14.89*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘Synth’)

+ 10
+ 3.65

+ 0.65
+ 2.67 + 2.15

- 10

16.47*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘PickupLoc’)

+ 10
+ 5.20 + 5.86

+ 2.08 + 2.60

- 10

22.92*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation (‘SynthLoc’)

+ 10
+ 5.23 + 3.66

- 0.39

+ 2.25

- 10

23.63*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Figure 8: OOD generalisation performance by level for the proposed variants conditioning on mission
and/or feedback compared against the mission-only (vanilla TDT) baseline.

15



A.3.2 OOD performance by OOD type

 Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation - goal object (on all levels)

+ 10

+ 2.74
+ 4.69 + 3.64 + 3.84

- 10

25.54*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation - goal object (on all levels)

+ 10

+ 3.48 + 2.23
+ 0.12

- 4.35
- 10

24.80*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

 Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation - agent location (on all levels)

+ 10

+ 1.04 + 1.51 + 0.81 + 0.67

- 10

33.75*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation - agent location (on all levels)

+ 10
+ 6.49

+ 0.95
+ 2.96

- 1.06

- 10

28.30*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

 Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only 

feedback

OOD generalisation - room size (on all levels)

+ 10

- 4.26

+ 5.88
+ 2.99

+ 7.45

- 10

42.94*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation - room size (on all levels)

+ 10

- 0.78

+ 1.32 + 1.37

- 5.20
- 10

39.46*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

 Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation - fixed goal object (on all levels)

+ 10
+ 4.54

- 3.37
- 1.61 - 0.63

- 10

16.65*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation - fixed goal object (on all levels)

+ 10 + 8.54

+ 3.61
+ 5.51

+ 1.75

- 10

12.65*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Figure 9: OOD generalisation performance across all eight levels for the proposed variants condition-
ing on return and/or feedback and mission and/or feedback compared against the return-only (vanilla
DT) and mission-only (vanilla TDT) baselines, respectively, w.r.t. agent starting location, goal object
color and type, room size and fixed goal object color and type.

16



 Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
D

T 
(R

TG
)

only

feedback

OOD generalisation - goal location (on all levels)

+ 10

+ 13.86

+ 3.32 + 3.90

+ 9.37

- 10

29.69*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Δ
 g

c 
su

cc
es

s 
ra

te
 (%

)

*v

an
ill

a 
FD

T 
(m

is
si

on
)

only

feedback

OOD generalisation - goal location (on all levels)

+ 10 + 9.76
+ 8.01

+ 1.37 + 1.07

- 10

33.79*

+ all 

feedback

+ rule 

feedback

+ task 

feedback

Figure 10: OOD generalisation performance for the proposed variants conditioning on return and/or
feedback and mission and/or feedback compared against the return-only (vanilla DT) and mission-
only (vanilla TDT) baselines, respectively, w.r.t. relative goal location across all levels.

A.3.3 Impact of feedback at inference

Table 7: Performance of the feedback-only variant against the mission-only and RTG-only baselines,
and change in performance when using feedback at inference. *OOD performance averaged across
OOD types.

Baseline Level
IID performance (%) OOD performance* (%)
Delta Change Delta Change
(vs baseline) (at inference) (vs baseline) (at inference)

mission

All levels +4.96 -2.34 +4.96 -4.99
GoToObj +2.34 -18.75 -0.52 -28.38
GoToLocal +14.84 -0.78 +0.27 +6.35
PutNextLocal +4.88 -0.39 +9.62 -6.00
PickupLoc +1.95 +10.94 +5.20 -2.47
Pickup +8.99 -5.47 +9.57 -0.39
PutNext +4.88 -2.35 +6.45 -4.11
Synth -0.59 -2.54 +3.65 -0.98
SynthLoc +2.35 +0.58 +5.23 -2.69

RTG

All levels +0.05 -2.34 +2.33 -4.99
GoToObj +3.91 -18.75 +1.56 -28.38
GoToLocal +5.47 -0.78 -0.79 +6.35
PutNextLocal +5.86 -0.39 +7.57 -6.00
PickupLoc -8.98 +10.94 +1.95 -2.47
Pickup +2.73 -5.47 +2.35 -0.39
PutNext +1.17 -2.35 -0.39 -4.11
Synth -0.98 -2.54 +2.28 -0.98
SynthLoc -8.79 +0.58 +2.30 -2.69

17



Table 8: Performance of the variants with all feedback in addition to mission/RTG against the respec-
tive baselines, and change in performance when using feedback at inference. *OOD performance
averaged across OOD types.

Baseline Level
IID performance (%) OOD performance* (%)
Delta Change Delta Change
(vs baseline) (at inference) (vs baseline) (at inference)

mission

All levels +4.28 -7.20 +2.41 -6.63
GoToObj +0.78 -10.94 -7.55 -15.88
GoToLocal +8.59 -18.75 -5.29 -17.99
PutNextLocal +4.88 -4.10 +6.15 -0.63
PickupLoc +2.73 -3.51 +5.86 -6.90
PutNext +6.25 -3.52 +5.66 -3.58
Pickup +6.65 -11.33 +11.33 -7.04
Synth -2.54 +0.98 +0.65 -0.32
SynthLoc +6.84 -6.45 +3.66 -3.95

RTG

All levels +2.64 -1.15 +2.59 -4.07
GoToObj +25.78 -9.37 +19.53 -14.32
GoToLocal +2.34 +5.47 +4.76 -3.97
PutNextLocal +3.32 -7.62 +0.83 -6.69
PickupLoc +1.18 -0.78 +2.87 -5.73
Pickup +1.56 -6.64 +7.04 -7.23
PutNext -2.74 +0.20 -3.65 -1.04
Synth -1.37 +5.47 -3.91 +4.10
SynthLoc -8.99 +4.10 -2.83 +0.54

Table 9: Performance of the variants with Rule Feedback in addition to mission/RTG compared
against the respective baselines, and change in performance when using feedback at inference. *OOD
performance averaged across OOD types.

Baseline Level
IID performance (%) OOD performance* (%)
Delta Change Delta Change
(vs baseline) (at inference) (vs baseline) (at inference)

mission

All levels +5.62 -9.99 +2.12 -6.70
GoToObj -2.35 -22.65 -8.85 -17.19
GoToLocal +4.68 -8.59 -2.11 -17.99
PutNextLocal +7.22 -6.25 +6.45 -3.32
PickupLoc +3.51 -4.68 +2.08 +1.04
Pickup +10.16 -10.16 +5.47 -0.39
PutNext +10.15 -17.38 +12.04 -12.89
Synth +2.93 -4.88 +2.67 -4.56
SynthLoc +8.60 -5.28 -0.39 +0.20

RTG

All levels +1.88 -0.22 +1.93 -2.34
GoToObj +26.57 -11.72 +23.70 -20.31
GoToLocal +8.60 0.00 +2.91 -1.06
PutNextLocal +0.78 -4.88 -4.00 -2.05
PickupLoc -1.56 -3.12 -0.65 -1.82
Pickup -3.91 -3.13 +2.35 +1.37
PutNext -7.03 +8.59 -4.76 +4.76
Synth -0.98 +5.08 -1.82 +4.94
SynthLoc -7.43 +7.43 +0.34 -3.12

18



Table 10: Performance of the variants with Task Feedback in addition to mission/RTG compared
against the respective baselines, and change in performance when using feedback at inference. *OOD
performance averaged across OOD types.

Baseline Level
IID performance (%) OOD performance* (%)
Delta Change Delta Change
(vs baseline) (at inference) (vs baseline) (at inference)

mission

All levels -1.34 +4.23 -2.15 +3.79
GoToObj +2.34 +3.13 -9.37 +10.41
GoToLocal -13.29 +18.76 -24.07 +21.96
PutNextLocal -1.37 +0.59 +2.98 -1.17
PickupLoc -3.52 +7.42 +2.60 +1.30
PutNext -1.57 +3.71 -0.32 +1.69
Pickup +0.79 +5.07 +5.66 +4.30
Synth +1.37 -1.76 +2.15 -2.93
SynthLoc +4.50 -3.13 +2.25 -1.42

RTG

All levels +3.79 -3.59 +3.26 -4.21
GoToObj +15.63 -14.06 +15.62 -20.57
GoToLocal +7.03 -1.56 +5.29 -3.17
PutNextLocal +3.12 -5.85 +1.27 -6.74
PickupLoc +4.30 +0.39 +6.90 +1.44
Pickup -3.13 -1.17 +0.79 +2.73
PutNext +3.51 -3.90 +1.23 -6.05
Synth +0.98 -0.59 +0.32 -1.82
SynthLoc -1.18 -1.95 -3.32 +1.71

19


	Introduction
	Related work
	Proposed method
	Experiments
	Limitations and future work
	Conclusion
	Appendix
	Datasets
	Model Architecture and Training
	Further results
	Performance by level
	OOD performance by OOD type
	Impact of feedback at inference



