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Abstract

Flexible docking, which predicts the binding conformations of both proteins
and small molecules by modeling their structural flexibility, plays a vital role
in structure-based drug design. Although recent generative approaches, particu-
larly diffusion-based models, have shown promising results, they require iterative
sampling to generate candidate structures and depend on separate scoring functions
for pose selection. This leads to an inefficient pipeline that is difficult to scale in
real-world drug discovery workflows. To overcome these challenges, we intro-
duce FIGRDock, a fast and accurate flexible docking framework that understands
complicated interactions between molecules and proteins with a regression-based
approach. FIGRDock leverages initial docking poses from conventional tools
to distill interaction-aware distance patterns, which serve as explicit structural
conditions to directly guide the prediction of the final protein-ligand complex via
a regression model. This one-shot inference paradigm enables rapid and precise
pose prediction without reliance on multi-step sampling or external scoring stages.
Experimental results show that FIGRDock achieves up to 100x faster inference
than diffusion-based docking methods, while consistently surpassing them in accu-
racy across standard benchmarks. These results suggest that FIGRDock has the
potential to offer a scalable and efficient solution for flexible docking, advancing
the pace of structure-based drug discoveryE]

1 Introduction

Molecular docking refers to predicting the three-dimensional structure of a protein—ligand complex
given the individual structures of the protein and the small molecule. This task is fundamental
to structure-based drug discovery, as it enables large-scale screening and mechanistic understand-
ing of molecular interactions that underlie pharmacological effects. While conventional docking
methods typically assume a rigid protein conformation, flexible docking models the conformational
adjustments of both the ligand and the protein, especially those arising from induced-fit effects.
By capturing this dynamic binding process, flexible docking provides a more biologically realistic
framework, though it also introduces significant computational and modeling complexity.
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Figure 1: Overview of FIGRDock. The model mainly comprises two modules: a conditional
encoder and a regression-based docking module. The conditional encoder, which is pre-trained using
computational complex data, aims at providing a coarse pair representation. The regression-based
docking module, fine-tuned on more accurate experimental complex data, is tailored to conduct
flexible docking with efficiency and accuracy under the guidance of conditional pair representation.

Deep learning has recently brought significant advances to the flexible docking problem, offering data-
driven alternatives to traditional physics-based methods. Among these, two major paradigms have
emerged: co-folding approaches that predict complex structures directly from protein sequences, and
generative approaches that operate on given unbound(apo) protein and ligand structures. Co-folding
models, exemplified by AlphaFold 3 [[1], achieve impressive accuracy but remain computationally
intensive due to the inherent complexity of protein structure prediction. In contrast, generative
methods [} 17,18} 4] leverage diffusion models to sample ligand poses, including global translation,
rotation, and torsion angles of ligand rotatable bonds and protein side chains, conditioned on apo
structures. By restricting the generative process to this product space, these methods significantly
reduce the dimensionality of the prediction task, and offer substantial improvements in efficiency
over co-folding approaches.

Despite these advances, current generative models still face notable limitations that hinder their
practical deployment. They typically rely on multi-step sampling to produce accurate protein-ligand
complexes and require repeated generation—scoring cycles, where performance improves with more
iterations [5, [17, |8]. Moreover, they depend heavily on pre-trained protein language models, such as
ESM2 [10], to provide amino acid embeddings that serve as initial node features [16, |5].

In contrast to diffusion-based models, regression-based approaches have been widely adopted in
rigid docking frameworks such as EquiBind [19] and TANKBind [12], offering superior efficiency
via one-shot pose prediction. However, their performance in flexible docking scenarios is often
suboptimal [3]], as one-shot inference struggles to capture induced-fit effects and conformational
changes in the ligand or protein. This gap raises a compelling question: Can we design a regression-
based docking framework that retains the efficiency of one-shot prediction while achieving high
accuracy under flexible docking scenarios?

To the best of our knowledge, accurate interaction modeling is essential to realize the full potential of
regression-based docking. Unlike generative approaches, which refine predictions through multiple
iterations, regression models infer binding conformations in a single pass. This one-shot approach
demands precise interaction modeling, as there is no iterative correction process like in generative
methods. In flexible docking scenarios, where even subtle conformational adjustments are critical,
any misrepresentation of interactions can lead to significant deviations in predicted binding poses.

Building on this insight, we propose Fast Interaction-Guided Regression for Docking (FIGRDock).
This method directly regresses to an accurate docking complex structure through a single network
inference, guided by interaction representations, enabling both higher precision and greater efficiency
in the docking process. FIGRDock’s training is organized into two stages, as illustrated in Figure I}
The first stage involves conditional pair representation learning. We leverage the SIU dataset [[7]],
which contains a substantial amount of synthetic computational complex data generated by docking
software, as pre-training data to learn interaction-informed paired representations between the protein
and ligand. Despite the lower precision compared to crystallographic data, computational structures




compensate for the limited availability of experimental structures. In the second stage, this learned
pair representation is used as input for the regression-based docking module, followed by fine-tuning
on more accurate crystal complex structures. The regression approach requires only a single network
inference to predict the structure. Guided by the interaction pair representation, it produces more
accurate predicted structures than iterative generative methods.

Experimental results show that when compared to generative methods, FIGRDock reduces inference
time from the order of tens of seconds to hundreds of milliseconds—a nearly 100x speedup. Further-
more, by leveraging pair representations as conditions, FIGRDock achieves superior performance
across both holo and apo input test scenarios. To the best of our knowledge, this is the first regression-
based method to achieve comparable or even better performance than diffusion-based methods. In
the context of the dominance of generative models in flexible docking, our work offers a promising
alternative approach that could provide valuable insights and solutions for future research in the field.

2 Related work

In this section, we briefly review related work on flexible docking, focusing on two main approaches:
co-folding methods and diffusion-based generative models.

2.1 Co-folding Methods

Co-folding methods aim to predict the three-dimensional structure of protein—ligand complexes in an
end-to-end fashion. These approaches take as input a protein sequence and a molecular representation
of the ligand, typically in the form of a molecular graph or SMILES string, and directly output the
bound complex structure. Recent advances such as NeuralPLexer [18], Umol [2], AlphaFold3 [1],
and HelixFold3 [L1] have demonstrated the effectiveness of this paradigm, achieving impressive
accuracy in modeling protein—ligand interactions from minimal input information. However, the
high computational demands of training and inference in these models pose significant challenges,
limiting their scalability and practicality for large-scale virtual screening applications.

2.2 Diffusion-based Generative Models

Diffusion-based generative models have emerged as a leading paradigm for flexible docking. These
methods take as input the unbound (apo) structures of both the protein and ligand and generate the
bound complex structure by modeling the joint conformational changes that occur upon binding.
Instead of searching over large configuration spaces or simulating the full folding process from
the sequence, these models leverage generative diffusion processes to sample binding poses in a
data-driven manner. Representative methods such as DiffDock-Pocket [17], DiffBindFR [25], and
Re-Dock [8]] use diffusion or diffusion-bridge frameworks to capture pocket side-chain flexibility.
FlexDock [4] and DynamicBind [[13] further incorporate backbone flexibility using techniques such
as unbalanced flow matching and geometric diffusion. While these approaches have shown strong
accuracy in modeling flexible binding, they often suffer from inefficiencies due to iterative sampling
and dependence on external scoring functions for pose selection.

Recently, there have been several initial attempts to alleviate the inefficiency problem. A representative
example is FABFlex [23]], which directly predicts protein-ligand conformation with a regression
model. Unlike diffusion-based methods that rely on iterative sampling, regression models aim to
directly predict the final bound structure in a single forward pass, offering significantly improved
inference efficiency. FABFlex, which takes the apo ligand and protein backbone as input and regresses
the ligand pose along with the C,, coordinates of binding site residues. While this approach greatly
reduces computational cost, its accuracy still lags behind state-of-the-art diffusion-based models.
Moreover, because it does not explicitly model side-chain flexibility, where much of the binding-
induced conformational change occurs, its ability to capture fine-grained interactions remains limited.
These limitations motivate the development of more accurate and interaction-aware regression-based
approaches, such as our proposed FIGRDock.
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Figure 2: Illustrations of FIGRDock consist of three components. a: Apply a combination of noise
to the pocket, including perturbed dihedral angles and coordinates, then denoise it to train a pocket
encoder that is aware of side chains. b: Use coarse structures generated by docking software to
learn a conditional pair representation. ¢: Fine-tune on accurate crystal complex structures, using
the coarse conditional pair representation to guide the regression-based docking module during the
fine-tuning process.

3 FIGRDock

In this section, we present our proposed method, FIGRDock. We begin by introducing the notations
and formalizing the flexible docking task. We then describe the two key components of FIGRDock:
(1) the conditional pair representation learning module, which captures interaction-aware features
between the protein and ligand, and (2) the regression-based docking module, which directly predicts
the bound complex structure in a single forward pass.

3.1 Preliminaries and Problem Formalization

A protein-ligand complex can be represented as G = (V, X'), where V represents the set of atom
types v; for the vertices ¢, and X represents the set of coordinates x; for each vertex. The complex
can be divided into two parts: a ligand and a protein. The ligand part is represented as G! = (V!, X!),
and the protein part is represented as GP = (VP, X'P). The atom types for the small molecule (ligand)
are consistent with those defined by the periodic table (e.g., C, N, O...). However, for the pocket
atom types, to model information about side-chain variations, we treat the same element at different
positions on the side chain and backbone as different types. For instance, for the element Carbon (C),
we distinguish between C (backbone carbonyl), CA (alpha carbon), CB (beta carbon), etc. (Refer to
the Appendix [6.1] for the complete list of side-chain atom types).

In the flexible docking setting, the goal is to predict the structural changes of both the protein and the
small molecule that occur during the binding process. Given the unbound apo structures of the ligand
and the protein, represented as G = (V!, X' ) and GP" = (VP, X?"), respectively, the task is to



predict their bound conformation: G! = (V!, X'!) for the ligand and G? = (WP, X'P) for the protein.
This requires modeling the mutual conformational adjustments that occur upon binding, making the
task significantly more complex than rigid docking.

3.2 Conditional Pair Representation Learning

Figure [2h illustrates the process for learning conditional pair representations. Initially, the protein
pocket and the ligand are processed by two separate pre-trained encoders to obtain initial node
representations: h, = 0,(GP" ) and h; = 6,(G'"). Here, 6, and 6, denote the encoders for the pocket
and the molecule, respectively. For the ligand encoder 6;, we adopt the pre-trained molecular encoder
from Uni-Mol [24].

To pre-train the pocket encoder 6, we design a side-chain denoising task using pocket data provided
by ProFSA [6]. Specifically, we apply a combined noise scheme to the original pocket GP: first, we
perturb its rotatable dihedral angles, and second, we add Gaussian noise to the coordinates of all
its atoms. This process yields the noised pocket GP. The learning objective for the pocket encoder
pre-training can be represented as:

Laq=Ego gol|f(07(G7)) — (X7 — XP)][3, (1)

Among them, X'P and X’P represent the coordinates of GP and GP respectively, and fp represents an
MLP (Multi-Layer Perceptron) structure, which is used to predict the coordinate noise of the pocket
from the pocket representation.

Subsequently, using the initial node representations h; and h,, obtained from the separate encoders, we
learn the conditional pair representation utilizing complex data from SIU [[7] (generated by docking
software calculations). Specifically, for this stage, we perturb the rotatable dihedral angles within the
ligand and the side chains of the pocket in the complex data. This generates noised, approximately

apo-like conformations denoted as G ] (ligand) and GP (pocket). Let D, represent the distance matrix
of the holo pocket structure and the small molecule structure within the complex. As shown in Figure

b, the purpose of the interaction network module 6; is to take the noisy conformations G? and G [ as
1nputs and learn the conditional pair representation by predicting D,,. Specifically, the loss function
can be defined as:

Le=Egi gollfi(hy) — Dulll3, 2)

Where f; represents the MLP utilized for predicting the distance matrix, and h; = 0;(6,(g ] ), 0,(GP))

represents the conditional pair representation learned by network 6;. During the training of 6;, the
parameters of 0, and ¢; are kept frozen.

3.3 Regression-based Docking Module

As shown in Figure 2k, the regression-based docking module 6, takes the unbound (apo) structures
G' and G”", along with the learned pair representation hpt, as inputs to predict the bound (holo)
complex structures G' and GP.

To enable direct coordinate regression while capturing both intra- and inter-molecular structural
constraints, we construct three distance matrices:

* Dy: the intra-ligand atomic distance matrix,

* D,: the intra-protein atomic distance matrix,

* D,;: the inter-molecular atomic distance matrix between ligand and protein atoms.
These matrices are computed from the predicted coordinates and serve as targets in our training
objective. Specifically, the coordinate prediction loss for the ligand is defined by comparing the

predicted intra-ligand atomic distances with the ground truth, encouraging the model to preserve
realistic molecular geometry.

Liigana = Ego+ g (|| fie(hu) = (X' = X)|3 + [ fra(h) — Dil[3). (€)



Similarly, the coordinate prediction loss for the pocket can be expressed as follows to enforce
physically realistic geometry within the binding pocket:

|fp6(il;v)*(Xp*Xp*)Hngprd(ﬁpl)*Dp”g)- @

Lastly, the following loss is defined to penalize deviations between the predicted and ground-truth
inter-molecular atomic distance matrix across the protein-ligand interface:

| fora(hpt) — Dyl [3). (5)

In the above losses, le, ﬁp, ﬁpl = ar(gl* , gr , hpi) denotes the resulting node embedding of ligand,
node embedding of pocket and pairwise embedding encoded by §;, respectively. The fic, fia, fpe,
fpd» and fp1q represent the head network for the prediction of the coordinate matrix and the distance.

Epocket = Egp* el (

‘Cinterface = Egp* Rels (

The total regression docking loss is the sum of these three components:
Er = »Cligand + £pocket + ‘Cinterface' (6)

4 Experiments

4.1 Main Experiments

Experimental Setup For pocket encoder pre-training, we use pocket data provided by ProFSA [6] to
perform sidechain-aware pre-training. Since the noise-adding process involves perturbing sidechain
torsions, we filtered the dataset to remove samples with incomplete sidechains, reducing the total
number of samples from 5 million to 4.8 million. The pre-training was conducted on 4 GPUs for 10
epochs with a batch size of 64, taking approximately 6 days to complete.

For conditional pre-training, we pre-train on the SIU [7] dataset, which consists of 5.34 million
complex conformations generated by docking software. The training was conducted using 4 A100
GPUs with a batch size of 16, and the pre-training took approximately 20 days to complete.

In the fine-tuning stage, we fine-tune FIGRDock on the commonly adopted PDBbind v2020
dataset[22]], which contains 19K crystal complex structures. We employ the time-split of PDB-
bind with 17k complexes from 2018 or earlier for training and validation, and 363 test structures
from 2019, ensuring consistency with previous works[[19} 4]]. The input apo ligand conformation
is generated using RDKit with a random seed, while the input apo protein structure is predicted by
ESMFold [10]. The fine-tuning is performed on 4 A100 GPUs for 100 epochs with a batch size
of 16, taking approximately 3 days to complete. Detailed hyperparameters can be found in the
Appendix

Evaluation Metric We evaluate FIGRDock on the PDBbind test set and the PoseBusters V2 [3]]
test set. The PoseBusters V2 Benchmark is a curated collection of 308 high-quality, drug-like
protein—ligand crystal complexes released after 2021, specifically designed to assess docking methods
not only in terms of RMSD but also based on chemical and geometric plausibility through RDKit-
based quality checks. The primary evaluation metric is the RMSD of Cartesian coordinates. We
report the percentage of samples with RMSD below different thresholds, specifically < 2A and <
5A for ligands, along with the median RMSD value across all samples. We also report the average
runtime to evaluate the model’s efficiency. Finally, for the PoseBusters benchmark, we report the
PBValid score, which reflects the model’s ability to generate chemically and structurally reasonable
conformations.

Baselines For the PDBbind benchmark, we compare FIGRDock with search-based models SMINA [9]
and GNINA [14], which are traditional methods employing scoring functions and search algorithms
to effectively explore ligand poses at a considerable computational cost. We also compare FIGRDock
with generation model-based pocket-level docking methods, DiffDock-Pocket [17], ReDock [8], and
FlexDock [4]. For the PoseBusters V2 benchmark, we measure FIGRDock against search-based
models GOLD [21]] and VINA [20], generation model-based FlexDock [4]], and co-folding models
UMol [2] and AlphaFold3 [1].

4.1.1 PDBbind

As shown in Table[I] we compare FIGRDock’s performance and runtime with search-based models
SMINA [9] and GNINA [14], sidechain flexible models DiffDock-Pocket [[17] and ReDock [8]],



Table 1: RMSD performance and runtime comparison of different methods on the PDBbind dataset.
The best results are highlighted in bold. FIGRDock demonstrates a significant advantage in both
accuracy and efficiency.

Holo Crystal Proteins Apo ESMFold Proteins Average

Models Runtime (s)
%<2t %<51 Med.] %<2t %<51 Med. —onumets
SMINA(rigid) 325 547 4.5 6.6 225 7.7 258
SMINA 198 479 5.4 3.6 20.5 7.3 1914
GNINA(rigid) 427 670 25 9.7 33.6 75 260
GNINA 278 544 46 6.6 28.0 72 1575
DiffDock-Pocket(40)  49.8  79.8 20 417 749 2.6 61
ReDock(40) 539 803 1.8 429 764 24 58
FlexDock - - - 39.7 - 2.5 11
FIGRDock 572 823 1.6 466  76.8 2.3 0.4

and all-atom flexible model FlexDock [4]. We report results for both rigid and flexible versions
of SMINA and GNINA. Overall, FIGRDock outperforms existing methods in both accuracy and
inference efficiency. In terms of RMSD performance, metric %9RMSD<2A is a crucial metric as the
predicted structure is considered successful when it meets this criterion. FlexDock [4] is the only
generative model that has modeled all atoms, making it the most equitable model for comparison.
FIGRDock significantly outperformed FlexDock [4]] in metric %#RMSD<2A by nearly 7% (46.6%
vs. 39.7%) with apo input. Furthermore, FIGRDock improves upon the previous best-performing
method, ReDock [8] in metric %RMSD<2A, by nearly 4% with both holo and apo input (57.2% vs.
53.9% and 44.6% vs. 42.9%). At the same time, in terms of model efficiency, FIGRDock significantly
accelerates inference compared to ReDock [8]], achieving over a 100-fold speedup (0.4s vs. 58s). This
demonstrates that under the guidance of conditional pair embeddings, the regression-based module,
which avoids repetitive sampling and iterative reasoning, not only substantially enhances efficiency
but also maintains state-of-the-art accuracy.

4.1.2 PoseBusters

On PoseBusters, as shown in Figure 3| rigid docking methods including DeepDock [15]], Uni-
Mol [24], GOLD [21]] and VINA [20] receive holo pockets as input. While flexible docking methods,
including FlexDock and FIGRDock use apo input generated by ESMFold. We also report the result
that FIGRDock uses holo as input. Finally, co-folding methods like Umol [2]] and AlphaFold3 [1]
take sequences as input. FIGRDock performs significantly better than FlexDock [4] as well as other
deep learning based rigid docking models like DeepDock [[15] and Uni-Mol [24]]. Compared to
search-based methods like GOLD [21] and VINA [20], although FIGRDock with apo input falls
slightly behind, it is much faster and takes on a prominently harder task. FIGRDock achieves better
performance than GOLD and Vina with holo input. AlphaFold3 [[1] significantly outperformed all
methods, as it is trained using a larger volume of data. FIGRDock can generate more physically
plausible conformations, achieving 99.5% and 96.7% PBValid for apo and holo input. Details of
validity checks for the PoseBusters V2 benchmark are deferred to Appendix

4.2 Ablation study

4.2.1 Comparison with ESM embedding

In this study, we compare our approach with the traditional method that uses protein language
model-generated embeddings as conditions, as reported in Table [2] “Without condition’ refers
to the model trained without any conditional pre-training, while “With ESM’ denotes the use of
amino acid-level node embeddings extracted from ESM2 [[10]]. Our method, FIGRDock, employs
the proposed conditional pair representation. All settings use the same network architecture and
fine-tuning strategy to ensure a fair comparison.

Results shown in Table[2]demonstrate that our interaction-guided approach provides substantial bene-
fits for molecular docking. First, the significant performance improvement of our method over the



N
69.8
ss 60
54.8
47.5 46.5
\\ N
x 67.5
\ - 58
14.8 20 \
5.2 2 §
& & N N Ny N © &
QQo K (@\ g " & &Q RS R\ &o %5,\
o N o 9 X
© < & S° =
o X
< &

RMSD < 2A PB-Valid & RMSD <2A  mapo holo msequence

Figure 3: Results of the PoseBusters V2 benchmark with known pockets. FIGRDock outperforms the
flexible docking method FlexDock with apo input. Meanwhile, FIGRDock outperforms search-based
methods (Gold and Vina) with holo input. For methods marked with *, we demonstrate results
reported by the FlexDock paper [4]].

Table 2: RMSD performance comparison of different protein representations for docking. “Without
condition’ uses no conditional pre-training; ‘With ESM’ uses ESM2-based residue level node
embeddings; FIGRDock employs interaction-aware conditional representations. The best results are
in bold, showing the advantage of our approach over general protein features.

Holo Crystal Proteins  Apo ESMFold Proteins

Models

%<2 T Med.| %<2 T Med.|
Without condition 46.2 2.2 37.8 2.8
With ESM 49.0 2.0 37.8 2.7
FIGRDock 57.2 1.6 46.6 2.3

unguided baseline validates the effectiveness of our conditional learning strategy. Moreover, FIGR-
Dock consistently outperforms the “With ESM’ setting across both holo and apo inputs—especially
for apo ESMFold proteins, where the success rate (%RMSD<2A) increases by nearly 9%. This
performance gain is particularly notable considering that our approach incurs significantly lower
training costs than ESM2. These findings suggest that representations capturing interaction-specific
knowledge offer more relevant and efficient guidance for docking tasks compared to general-purpose
protein representations.

4.2.2 TImpact of Apo Structure Prediction Methods on Docking Performance
Table 3: RMSD performance of FIGRDock models trained on apo structures predicted by different

folding methods (AlphaFold2 vs. ESMFold), evaluated on both AlphaFold2- and ESMFold-predicted
apo test sets.

Apo AlphaFold2 Proteins Apo ESMFold Proteins

Models

%<2 1 Med.| %<2 1 Med.|
FIGRDock(Training by AlphaFold2)  47.5 2.1 36.7 2.6
FIGRDock(Training by ESMFold) 48.1 2.1 46.6 2.3

Apo protein conformations can be predicted using either ESMFold or AlphaFold2, both of which
generate 3D protein structures from amino acid sequences. However, prediction accuracy varies



between methods, and few studies have explored how different predicted apo structures influence
downstream docking performance. Here, we evaluate the robustness of our model when provided
with apo structures predicted by different folding algorithms. This experiment is critical to determine
whether our model’s performance depends on specific conformational inputs.

To this end, we constructed two dataset variants for training and evaluation. In addition to the
main experimental setup using ESMFold, we created a variant based on AlphaFold2-predicted apo
structures. The data processing and split strategy follows the same protocol as FABFlex [23]. We
trained two models separately using apo structures predicted by ESMFold and AlphaFold2, and
evaluated each model on both ESMFold- and AlphaFold2-predicted test sets. Results are shown in
Table 3

We observe that when the training and testing apo structures come from the same folding method,
FIGRDock performs well in both cases. Interestingly, the model trained on ESMFold data generalizes
well to AlphaFold2-predicted test structures. In contrast, the model trained on AlphaFold2 data
performs poorly on the ESMFold-predicted test set. We hypothesize that this is due to AlphaFold2’s
higher prediction accuracy, which may result in less noisy apo conformations in the training set,
thereby limiting the model’s ability to generalize to noisier samples in the ESMFold test set.

4.2.3 Scaling Study of Pre-training Data

In this section, we investigate how the scale of pre-training data influences model performance
by varying the dataset size used for conditional pre-training, ranging from O (as noted earlier, this
corresponds to the *Without condition” setting in Table[2] i.e., no conditional pre-training) to 5 million
samples (the full SIU [7] dataset). Figure 4] demonstrates a positive correlation between the scale of
pre-training data and docking performance across all evaluation metrics, under both apo and holo
test scenarios. This consistent improvement with increasing data scale validates the effectiveness
and flexibility of our framework, as well as its potential to benefit from even larger datasets. Due to
computational constraints, we currently report full experiments only on the 5-million-sample setting.
Future work can explore larger-scale datasets to further enhance performance.
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Figure 4: Comparison of docking performance with different scales of pre-training data. Larger
pre-training datasets lead to better performance across both holo (left) and apo (right) settings.

5 Conclusion

In this work, we present FIGRDock, a fast and accurate regression-based framework for flexible
molecular docking. Unlike mainstream generative methods that rely on repetitive sampling, scoring,
and pre-trained protein embeddings, FIGRDock adopts an interaction-aware conditional representa-
tion to guide direct regression of protein-ligand complex structures. By decoupling the learning of
interaction patterns from the final docking prediction, FIGRDock achieves high docking accuracy
with a single forward pass, significantly improving inference efficiency. Extensive experiments on
both holo and apo settings demonstrate that FIGRDock not only outperforms previous diffusion-
based models in accuracy but also achieves nearly 100x faster inference. These results highlight the
promise of regression-based docking under interaction-guided supervision and open new directions
for efficient and scalable structure-based drug design.
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6 Technical Appendices and Supplementary Material

6.1 Implementation Details

The training of FIGRDock consists of three stages: Pocket encoder pre-training, conditional pre-
training, and fine-tuning. The hyperparameter settings used in all stages are listed in Table 4]

Table 4: Hyperparameter settings for Pocket Pretraining, Conditional Pretraining, and Fine-tuning
stages.

Pocket Pretraining | Conditional Pretraining Fine-tuning
Batch Size 64 16 16
Training Epochs 10 12 100
Learning Rate 1x107* 3x 1074 3x 1074
LR Scheduler polynomial_decay polynomial_decay polynomial_decay
Warmup Ratio 0.01 0.06 0.06
Optimizer Adam Adam Adam
Weight Decay 1x1074 0 0
GPU Number 4 4 4

For pocket encoding, to enhance the model’s sensitivity to side-chain variations during the docking
process, we treat atoms with the same elemental type but different structural roles, such as backbone
versus side-chain atoms, as distinct atom types. In particular, for side-chain atoms, we define a
comprehensive set of atom types to capture their structural specificity, including:

c, CA, CB, CD, CD1, CD2, CE, CE1, CE2, CE3, CG, CG1l, CG2, CH2, CZ, CZ2, CZ3,
N, ND1, ND2, NE, NE1, NE2, NH1, NH2, NZ, O, 0D1, 0OD2, OE1, OE2, 0G, 0G1l, OH,
SD, SE

We employ a Transformer-based architecture to encode molecular and protein structures. Specifically,
the encoding schemes for atom types and 3D positions, along with the design of the Transformer
layers, are adopted from Uni-Mol[24]].

6.2 Evaluating Model Generalization Beyond Structural Memorization

The docking structures used in pre-training provide only coarse-grained structural information.
Initially, we did not consider their similarity to the test set in our experiments. To further investigate
whether the model demonstrates true generalization ability rather than memorizing recurring patterns
between the training and test data, we analyzed the structural similarity between the SIU pre-training
set and the PDBbind test set.

To minimize potential data leakage, we removed all training samples whose structural similarity to
any test sample exceeded 0.5. After this filtering, the training set retained 5,018,392 entries. We then
repeated the pre-training and fine-tuning procedures using this filtered dataset.

Table 5: RMSD comparison of FIGRDock models trained with and without structural-similarity
filtering.

Holo Crystal Proteins  Apo ESMFold Proteins

Models

%<2 1 Med.|) %<2 1 Med.|
FIGRDock 57.2 1.6 46.6 2.3
FIGRDock (similarity-filtered)  57.2 1.7 45.7 2.2

As shown in Table [3] after removing highly similar structures from the training data, FIGRDock
maintains nearly identical performance compared to the original model. Although the proportion of
predictions with RMSD < 2 A slightly declines on the apo test set, the model still achieves competitive
results and substantially outperforms all baselines. This result indicates that the model has indeed
learned transferable and generalizable representations, rather than simply memorizing structural
patterns seen during training.
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6.3 Visualized Examples

6¢jj, L-RMSD: 0.91 , P-RMSD: 0.97  6uwv, L-RMSD: 0.94, P-RMSD: 0.98
AH-RMSD: 1.36 AH-RMSD: 1.29

6nv7, L-RMSD: 1.30, P-RMSD: 0.81 60xp, L-RMSD: 1.05, P-RMSD: 0.67
AH-RMSD: 1.10 AH-RMSD: 0.84

6gzy, L-RMSD: 3.74, P-RMSD: 495  6e6v, L-RMSD: 4.11, P-RMSD: 5.20

[ predicted pocket || predicted ligand
I holo pocket true ligand

Figure 5: Visualized examples of complexes 6cjj, buwv, 6nv7, 6oxp, 6gzy and 6e6v in PDBbind
test dataset. L-RMSD measures the RMSD between the predicted ligand and the ground-truth
ligand. P-RMSD denotes the RMSD between the predicted pocket and the ground-truth holo pocket.
AH-RMSD represents the RMSD between the input apo pocket and the ground-truth holo pocket.

6.4 Additional Experiment Results
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Figure 6: Detailed plausibility checks for predictions by FIGRDock on PoseBusters V2 benchmark
with holo and apo input. FIGRDock achieves 99.5% and 96.7% PBValid for apo and holo input,
generating physically reasonable conformations.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect our contri-
butions and scope, aligning well with the experimental results presented.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]

Justification: Our paper does not appear to have any significant limitations that need to be
discussed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.
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* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Theoretical results are not included in our paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provides sufficient details for reproducibility, including clear descriptions
of the methodology in Method section and experimental setup in Experiments section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provides open access to the inference code and necessary data via an
anonymized link, along with sufficient instructions to reproduce the key experimental
results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify our experimental setup in Experiments and provide hyperparame-
ters details in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We mark estimated results by * for the main experiment on PoseBusters
benchmark.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We describe these details in Experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully complies with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No formal declaration of societal impacts is required.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all the relevant works in References.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of our research does not utilize any LLMs as an integral
or novel component of the technical approach.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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