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Abstract

We study model personalization under user-level
differential privacy (DP) in the shared representa-
tion framework. In this problem, there are n users
whose data is statistically heterogeneous, and their
optimal parameters share an unknown embedding
U∗ ∈ Rd×k that maps the user parameters in Rd
to low-dimensional representations in Rk, where
k ≪ d. Our goal is to privately recover the shared
embedding and the local low-dimensional repre-
sentations with small excess risk in the federated
setting. We propose a private, efficient federated
learning algorithm to learn the shared embedding
based on the FedRep algorithm in (Collins et al.,
2021). Unlike (Collins et al., 2021), our algo-
rithm satisfies differential privacy, and our results
hold for the case of noisy labels. In contrast to
prior work on private model personalization (Jain
et al., 2021), our utility guarantees hold under a
larger class of users’ distributions (sub-Gaussian
instead of Gaussian distributions). Additionally,
in natural parameter regimes, we improve the pri-
vacy error term in (Jain et al., 2021) by a factor
of Õ(dk). Next, we consider the binary classifica-
tion setting. We present an information-theoretic
construction to privately learn the shared embed-
ding and derive a margin-based accuracy guaran-
tee that is independent of d. Our method utilizes
the Johnson-Lindenstrauss transform to reduce
the effective dimensions of the shared embed-
ding and the users’ data. This result shows that
dimension-independent risk bounds are possible
in this setting under a margin loss.
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1 Introduction
The rapid advances in machine learning have revolution-
ized domains such as healthcare, finance, and personalized
services. However, this progress relies heavily on the avail-
ability of user data, which presents two critical challenges.
First, user data is often statistically heterogeneous, that is,
individual users have distinct data distributions. This het-
erogeneity hinders the training of a single global model that
performs well for all users. Second, the reliance on sensitive
user data raises significant privacy concerns, necessitating
robust mechanisms that offer strong privacy protections.

Model personalization has emerged as a key strategy to ad-
dress the challenge of statistical heterogeneity by adapting
models to individual users, rather than relying on a single
global model that may perform suboptimally across diverse
data distributions. A widely used framework for personal-
ization is shared representation learning, where users collab-
orate to learn a low-dimensional embedding that captures
commonalities in their tasks. This shared embedding allows
users to train their local models more efficiently, leveraging
the embedding to complement their unique data.

However, despite its effectiveness in handling heterogeneity,
model personalization introduces additional privacy con-
cerns, as learning shared representations involves user col-
laboration, which can inadvertently expose sensitive infor-
mation. Ensuring rigorous privacy protections in this setting
requires formal guarantees, such as user-level differential
privacy (DP) (Dwork et al., 2006), which prevents adver-
saries from inferring an individual’s presence in the training
dataset based on the trained model. Existing approaches to
private model personalization suffer from limitations such
as restrictive assumptions about data distributions, central-
ized processing requirements, and suboptimal privacy-utility
trade-offs.

In this work, we study model personalization under user-
level differential privacy via shared representation learn-
ing. In this problem, there are n users, where user i ∈ [n]
is associated with a data distribution Di and a dataset
Si = (z1, . . . zm) ∼ Dmi . The optimal parameter of user
i is denoted as w∗

i ∈ Rd. We aim at learning a shared
low-dimensional embedding U∗ ∈ Rd×k, where k ≪ d,
and user-specific parameters v∗1 , . . . , v

∗
n ∈ Rk such that

w∗
i = U∗v∗i for each user i ∈ [n], under user-level DP. We
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propose a novel private federated algorithm for model per-
sonalization via shared representation that achieves superior
privacy-utility trade-off under relaxed assumptions. Our
contributions are summarized as follows:

1.1 Contributions

Efficient private federated algorithm for regression: We
extend the FedRep algorithm of (Collins et al., 2021) to
ensure user-level DP while addressing the case of noisy
labels in statistically heterogeneous user data. The algo-
rithm is iterative, where in each iteration t, it alternates
between local updates by the users to their local vectors
v1,t, . . . , vn,t ∈ Rk and private aggregated gradient update
to the shared embedding Ut ∈ Rd×k. Previous work (Jain
et al., 2021) required performing exact minimization with re-
spect to both the local vectors and the shared embedding in
a centralized manner. Since the embedding update in (Jain
et al., 2021) involves a minimization over data from all the
users, transforming their algorithm to a federated algorithm
is not directly feasible. Meanwhile, ours is naturally a feder-
ated algorithm since the gradient is computed by each user
locally, which the server privately aggregates. In natural pa-
rameter regimes, we show that our algorithm attains excess
population risk of Õ

(
d2k

n2ϵ2σ4
min,∗

+ d
nmσ4

min,∗

)
+ k

m where

σmin,∗ is k-th largest singular value of 1√
n
V ∗. Compared to

(Jain et al., 2021), under the same parameter regimes, this
reduces the privacy error term by a factor of Õ(dk).

Robustness to broader data distributions: Unlike prior
work (Jain et al., 2021) that assumes Gaussian data, the util-
ity guarantees of our private federated algorithm apply to a
broader class of sub-Gaussian distributions. Moreover, our
results apply to statistically heterogeneous users in the sense
that individual users may have distinct sub-Gaussian distri-
butions, while the work of (Jain et al., 2021) assumes that
the features of all the users are standard Gaussian. Moreover,
we extend the results of (Collins et al., 2021) not only to
the private case but also to the non-realizable case of noisy
labels.

Improved initialization under privacy constraints: We
introduce a private initialization algorithm for our feder-
ated algorithm. Our initialization algorithm is based on the
subspace recovery approach of (Duchi et al., 2022). Our
algorithm leverages a top-k singular value decomposition
(SVD) with added Gaussian noise. This ensures a feasible
starting point for the shared embedding, even under relaxed
data assumptions.

Dimension-independent risk guarantees for classifica-
tion: We provide an information-theoretic construction for
the binary classification setting under the margin loss and
derive an risk bound that benefits from margin guarantees.
We incorporate the Johnson-Lindenstrauss transform to re-

duce the effective dimensionality of the embedding space.
This leads to a margin-based risk bound independent of the
input dimension d. This result holds for arbitrary distribu-
tions where the feature vectors are bounded in the Euclidean
norm.

1.2 Related Work

Our work builds on and extends several lines of research in
federated learning, model personalization, and differential
privacy:

Federated personalization via shared representations:
Shared representation learning has proven effective in ad-
dressing user heterogeneity (Collins et al., 2021; Jain et al.,
2021). Additionally, centralized subspace recovery methods
(Tripuraneni et al., 2021; Duchi et al., 2022) may be used to
provide a good initialization for the shared representation
for better federated personalization guarantees. While prior
work focuses on non-private or centralized settings, our ap-
proach incorporates user-level DP in a federated framework
and achieves better utility guarantees.

Differentially private model personalization: (Jain et al.,
2021) introduced a private algorithm for model personal-
ization with centralized processing and restrictive Gaussian
assumptions. Our method improves excess risk guarantees
and extends applicability to sub-Gaussian data distributions.
There are other prior works studying private model person-
alization like (Bietti et al., 2022; Hu et al., 2021), but these
works are not under the representation learning framework
and their results are not comparable to ours.

Optimization methods for representation learning: Rele-
vant optimization techniques include alternating exact min-
imization frameworks (Thekumparampil et al., 2021) and
gradient-based optimization, which has also been widely
used for personalization (e.g., (Collins et al., 2021; Raghu
et al., 2019; Lee et al., 2019; Tian et al., 2020)). Our al-
ternating minimization framework adapts these gradient
techniques to a privacy-preserving federated setting with
noisy labels.

Dimensionality reduction with DP guarantees: The use
of the Johnson-Lindenstrauss transform in private learning
has been explored in recent work (e.g., (Lê Nguyen et al.,
2020; Bassily et al., 2022; Arora et al., 2022)). We adapt this
technique for federated personalization, deriving margin-
based risk guarantees independent of the data dimension d.

2 Preliminaries
We consider a setting of n users, where each user i ∈ [n] is
associated with distribution Di observed by a dataset Si =
((x1, y1), . . . (xm, ym)) ∼ Dm

i where xi ∈ Rd and yi ∈ R.
Given a low dimensional embedding matrix U ∈ Rd×k
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with orthonormal columns and local vector v ∈ Rk, the loss
incurred by the parameter (U, v) over data point (x, y) is
defined as ℓ(U, v, (x, y)) = ℓ′(y, ⟨x, Uv⟩). Suppose k ≪
d. It is useful conceptually to think of the matrix U as
a transformation x 7→ U⊤x that maps x ∈ Rd onto the
low-dimensional space Rk. In addition, we assume that
k ≪ m. This assumption is necessary to attain useful utility
guarantees as in prior work (Jain et al., 2018).

Given a collection of data sets S = (S1, . . . , Sn) ∈
Rnm(d+1), embedding matrix U ∈ Rd×k and collection
of local vectors V = [v1, . . . vn]

⊤ ∈ Rn×k, we write the
average empirical risk of (U, V ) over S as

L̂(U, V ;S) =
1

nm

n∑
i=1

∑
(x,y)∈Si

ℓ(U, vi, (x, y))

We also define the average population loss of (U, V ) over
the data distributions D = (D1, . . . ,Dn) as

L(U, V ;D) = 1

n

n∑
i=1

E(x,y)∼Di
[ℓ(U, vi, (x, y))] .

Given any (U∗, V ∗) ∈ Rd×k ×Rn×k for U∗ with orthonor-
mal columns, our goal is to minimize the excess population
risk w.r.t (U∗, V ∗) defined as

E(U, V ) = L(U, V ;D)− L(U∗, V ∗;D).

Let M ∈ Rd×k be any matrix. Recall our setting in which
k ≪ n. Denote the spectral norm of M with ∥M∥2 and
its Frobenius norm with ∥M∥F . We denote by σmax(M)
and σmin(M) the largest and k-th largest singular values
of M , respectively. Further, suppose that Q ∈ Rd×k is a
matrix with orthonormal columns and P ∈ Rk×k an upper
triangular matrix where QP = M is the QR decomposi-
tion of M . We take QR( · ) to be the function that maps
M to (Q,P ). Finally, given a subspace B, we denote its
orthogonal subspace as B⊥.
Definition 1. LetX ∈ R be a random variable. We callX a
centeredR-sub-Gaussian ifX satisfies E

[
eλX

]
≤ eλ2R2/2

for all λ ∈ R. Furthermore, we denote the distribution of
X as SG(R2).

We now introduce a quantity that is commonly used in ma-
trix completion (Jain et al., 2013) and shared representation
learning (Jain et al., 2021; Collins et al., 2021) as a measure
of distance between subspaces of Rd. It is conceptually use-
ful to think of this distance as measuring the dissimilarity
of span and alignment between two subspaces.
Definition 2. We define the principal angle between
the column spaces of matrices M1,M2 ∈ Rd×k via
dist(M1,M2) =

∥∥∥M̂⊤
1,⊥M̂2

∥∥∥
2

where M̂⊤
1,⊥, M̂2 are ma-

trices with orthonormal columns that satisfy span(M̂⊤
1,⊥) =

span(M1)⊥ and span(M̂2) = span(M2).

Note that we can instantiate the matrix M̂1,⊥ with Id×d −
M̂1M̂

⊤
1 . This is used many times in our analysis. We show

how to bound the excess risk with the principal angle in
Lemma 35 in Appendix B.
Definition 3 (User-level Differential Privacy (Dwork et al.,
2006)). A randomized algorithm A is (ϵ, δ)-user-level dif-
ferentially private (user-level DP) if for any pair of neigh-
boring collections of datasets S, S′ ∈ Rnm(d+1) differing
in a single user dataset and any event B in the output range
of A, we have

P [A(S) ∈ B] ≤ eϵP [A(S′) ∈ B] + δ.

Billboard Model. In this paper, we adopt the billboard
model of differential privacy (Hsu et al., 2014; Kearns et al.,
2014). In this model, there are n users and a central com-
puting server. The server first runs a differentially private
algorithm using the sensitive data from the users. The output
of the algorithm is then broadcast to all users. Each user
will independently train their own model using the broad-
cast output and the user’s own data. The results of these
individual computations will be kept to each user and never
shared with other users.

Personalization via Representation Learning. We de-
note the the optimal parameters of user i as w∗

i , and we
assume all user parameters {w∗

1 , . . . w
∗
n} share a low dimen-

sional embedding matrix U∗ ∈ Rk×d with k ≪ d such that
w∗
i = U∗v∗i with a local vector v∗i ∈ Rk for i ∈ [n]. Given

a dataset collection S = (S1, . . . Sn), the goal is to privately
find a shared low dimensional embedding matrix U ∈ Rd×k
and local vectors V = [v1, . . . vn]

⊤ with low excess risk
compared with U∗ and V ∗ = [v∗1 , . . . v

∗
n]

⊤. Throughout
this work, we assume U has orthonormal columns, hence
the shared matrix U effectively maps d-dimensional fea-
ture vectors x ∈ Rd to low-dimensional representations
U⊤x ∈ Rk that ease local demands on each user. Given
parameter spaces U , V , the objective can be formulated as a
minimization problem written as minU∈U,V ∈V L(U, V ;D).

3 Private FedRep Algorithm
In this section, we propose an efficient federated private
model personalization algorithm based on the FedRep algo-
rithm in (Collins et al., 2021) for regression problems. Our
algorithm is based on an alternating minimization frame-
work where the algorithm alternates between the updates of
user local vectors and the shared embedding by first finding
an empirical minimizer for each user, followed by comput-
ing a gradient with respect to the embedding. After we
compute the private shared representation, each user will in-
dependently solve for their user-specific local model, which
will be kept to each user. We provide rigorous utility and
privacy guarantees for our algorithm and give a detailed
comparison with prior work.
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We make several modifications to the original FedRep al-
gorithms and its analysis. First, we sample disjoint data
batches in each iteration to update the local vectors and
shared embedding separately while the original FedRep
uses the same data batches for both. This use of disjoint
data batches enables us to give a tighter bound on the Frobe-
nius norm of the computed gradients, which in turn reduces
the amount of noise required for privacy preservation. More-
over, we consider the setting of noisy labels, as opposed
to the original FedRep analysis. Incorporating label noise
introduces unique technical challenges into the analysis.
Roughly speaking, without label noise, we can show the
distance between the computed embedding with the ground
truth decreases geometrically with high probability across
iterations. However, such monotonic distance decrease is
no longer guaranteed in the presence of label noise. Instead,
we employ an induction-based argument to upper bound the
distance.

Before we introduce the Private FedRep algorithm, we first
give some definitions and assumptions that hold for the
entire section.

3.1 Problem Setting and Assumptions

In this section, we focus on quadratic loss defined
ℓ(U, v, (x, y)) = (y − ⟨x, Uv⟩)2 for all U ∈ Rd×k, v ∈
Rk, (x, y) ∈ Rd+1. Define Γ = maxi∈[n]∥v∗i ∥2. Denote

σmin,∗ = σmin

(
1√
n
V ∗
)

and σmax,∗ = σmax

(
1√
n
V ∗
)

,
respectively. In our setting, we assume that the rank of
1√
n
V ∗ ∈ Rn×k is k, which implies σmin,∗, the k-th largest

singular value of 1√
n
V ∗, is greater than 0. The values

Γ, σmax,∗, and σmin,∗ are important in this setting and ap-
pear in our final bounds. We additionally define the condi-
tion number to be γ =

σmax,∗
σmin,∗

.

The guarantees of our algorithm will rely on the following
assumptions.
Assumption 4 (Client Diversity). There are known
Λ, λ > 0 such that Λ ≥ σmax,∗ ≥ σmin,∗ ≥ λ.

The assumption that σmin,∗ > 0 is made explicitly or im-
plicitly in prior work (Collins et al., 2021; Jain et al., 2021).
Observe that Assumption 4 implies γ ≤ Λ

λ . In this sense, Λ
λ

is an estimate of the condition number γ.

To make our analysis tractable, we will introduce some
standard data assumptions similar to those invoked in prior
works (Collins et al., 2021; Du et al., 2020; Jain et al., 2021;
Thekumparampil et al., 2021; Tripuraneni et al., 2021). Al-
though we make these assumptions, our algorithm can be
used for a wider range of data sources than what is shown
here.
Assumption 5. Let i ∈ [n] and x ∼ Di. For all i ∈ [n]
the feature distribution Di has covariance matrix Id×d and

is sub-Gaussian in the sense of E
[
e⟨x,u⟩

]
≤ e

∥u∥22
2 for all

u ∈ Rd.

Assumption 6. Let SG(R) be any centered R-sub-
Gaussian distribution over R. Sample ζ ∼ SG(R). For
all i ∈ [n] and any data points (x, y) ∼ Di we generate the
label y for the i-th user via y = x⊤U∗v∗i + ζ where ζ is
independent for all x ∼ Di.

Unless stated otherwise, in this section, we assume that
Assumptions 4, 5, and 6 hold. However, we note that our al-
gorithms do not require knowledge of Assumptions 5 and 6.

3.2 Main Algorithm

Algorithm 1 uses alternating minimization for convergence
to an approximate minimizer of the excess population risk
in parameters U ∈ Rd×k with orthonormal columns and
V ∈ Rn×k, simultaneously. At each iteration of the in-
ner loop each user samples b data points without replace-
ment from their data set Si. The users then split this sam-
ple into disjoint batches Bi,t, B′

i,t for use in the comput-
ing parameters in iteration t. Our inner loop uses par-
allel execution at iteration t to locally compute a mini-
mizer vi,t ∈ argminv∈Rk L̂(Ut, v;Bi,t) and a gradient
∇i,t = ∇U L̂(vi,t, Ut;B′

i,t) for each user i. The server
then aggregates clipped gradients {clip(∇i,t, ψ)}t∈[T ] for
its gradient step and then returns Ut+1 to the users where
clip(M, τ) = M

∥M∥F
·min

{
1, τ

∥M∥F

}
for any M ∈ Rd×k

and τ ∈ R.

Each iteration Algorithm 1 ensures that Ut+1 has orthonor-
mal columns. Due to orthonormality, the noise injected
during the aggregation of (∇i,t)i∈[n] does not affect the
norm of∇i,t+1 for each i, t. This lack of noise propagation,
Dxi having a covariance matrix Id×d, and the use of disjoint
batches Bi,t, B′

i,t ensure the following bound on the size of
∇i,t.
Lemma 7. With probability at least 1− O(T · n−10), we
have

∥∇i,t∥F ≤ Õ
(
(R+ Γ)Γ

√
dk
)

for all i ∈ [n] and all t ∈ [T ] simultaneously.

We use Lemma 7 to choose the clipping parameter ψ in
Algorithm 1 in later results.

Theorem 8. Algorithm 1 is (ϵ, δ)-user-level DP in the bill-

board model by setting σ̂ = C
ψ
√
T log(1/δ)

nϵ for some abso-
lute constant C > 0.

We define ∆ϵ,δ := C

√
log(1/δ)

ϵ for any ϵ > 0 and δ ∈ [0, 1].

For the following result, recall the definition of γ =
σmax,∗
σmin,∗

and Assumption 4, where we assume there exists λ > 0
such that σmin,∗ ≥ λ.

4



Private Model Personalization Revisited

Algorithm 1 Private FedRep for linear regression

Require: Si = {(xi,1, yi,1), . . . , (xi,m, yi,m)} data for
users i ∈ [n], learning rate η, iterations T , privacy
noise parameters σ̂, clipping parameters ψ,ψinit, batch
size b ≤ ⌊m/2T ⌋, initial embedding Uinit ∈ Rd×k
Let S0

i ← {(xi,j , yi,j) : j ∈ [m/2]} ∀i ∈ [n]
Let S1

i ← Si \ S0
i ∀i ∈ [n]

1: Initialize: U0 ← Uinit
2: for t = 0, . . . , T − 1 do
3: Server sends Ut to clients [n]
4: for Clients i ∈ [n] in parallel do
5: Sample two disjoint batches Bi,t and B′

i,t, each of
size b, without replacement from S0

i

6: Update vi as vi,t ← argminv∈Rk L̂(Ut, v;Bi,t)
7: Compute the gradient w.r.t U

∇i,t ← ∇U L̂(Ut, vi,t;B′
i,t)

8: Send ∇i,t to server
9: end for

10: Server aggregates the client gradients as

Ût+1 ← Ut − η

(
1

n

n∑
i=1

clip(∇i,t, ψ) + ξt+1

)
Ut+1, Pt+1 ← QR(Ût+1)

where ξt+1 ← N d×k(0, σ̂2)
11: end for
12: Server sends U priv ← UT to all clients
13: for clients i ∈ [n] independently do
14: vpriv

i ← argminv∈Rk L̂(U priv, v;S1
i ) ∀i ∈ [n]

15: end for
16: Return: U priv, V priv ← [vpriv

1 , . . . , vpriv
n ]⊤

Lemma 9. Let η ≤ 1
2σ2

max,∗
. Suppose 1−dist2(U0, U

∗) ≥ c
for some constant c > 0. Set the clipping pa-
rameter ψ = Õ

(
(R+ Γ)Γ

√
dk
)

. Assume T =

logn
ηλ2 = Õ

(
min

(
nmλ2

max{∆ϵ,δ,1}(R+Γ)Γd
√
km+R2Γ2dσ2

min,∗
,

mΓ2σ2
max,∗

max{R2,1}·max{Γ2,1}γ4kΓ2+R2kσ2
max,∗

))
and Assump-

tions 5 and 6 hold for all user data. Set σ̂ as in Theorem 8
and batch size b = ⌊m/2T ⌋. Then, U priv, the first output of
Algorithm 1, satisfies

dist(U priv, U∗) ≤

(
1−

cησ2
min,∗

4

)T
2

dist(U0, U
∗)

+ Õ

(
(R+ Γ)Γd

√
kT

nϵσ2
min,∗

+

√
(R2 + Γ2)Γ2dT

nmσ4
min,∗

)
with probability at least 1−O(T · n−10).

Note that dist(U0, U
∗) in the right-hand side of the bound

in Lemma 9 is bounded from above by
√
1− c.

Given Lemma 9, we may obtain our main excess population
risk bound. Let U priv be the final shared embedding returned
from Algorithm 1. The intuition behind this result is that
a small principal angle between the two matrices U priv, U∗

implies U priv approximates U∗ as a transformation Rd →
Rk. Our choice of vpriv

i ∈ argminv∈Rk L̂(U priv, v;S1
i ) for

S1
i independent of U priv means wi = U privvpriv

i reliably
transforms a fresh feature vector x ∼ Dxi into a scalar x⊤wi
that is close to the noisy label x⊤U∗v∗i + ζ when n,m are
sufficiently large.

Recall in Assumption 4 we assume there exist Λ, λ > 0
such that Λ ≥ σmax,∗ ≥ σmin,∗ ≥ λ.

Theorem 10. Suppose all conditions of Lemma 9 hold with
η = 1

2Λ2 , T = Θ
(

Λ2 log(n3)
λ2

)
, and that Assumption 4 holds

as well. Then, U priv and V priv, the outputs of Algorithm 1,
satisfy

L(U priv, V priv;D)− L(U∗, V ∗;D)

≤ Õ

(
(R2 + Γ2)Γ4Λ2d2k

n2ϵ2σ4
min,∗λ

2
+

(R2 + Γ2)Γ4Λ2d

nmσ4
min,∗λ

2

)

+
R2k

m

with probability at least 1 − O(T · n−10). Furthermore,
Algorithm 1 is (ϵ, δ)-user-level DP in the billboard model.

Note our results in Theorem 10 can also be extended to the
case where new clients share the same embedding U∗. This
is formally presented in the following corollary.

Corollary 11. Suppose all conditions of Theorem 10 hold.
Consider a new client with a dataset Sn+1 ∼ Dm

′

n+1,
where Assumptions 5 and 6 hold with ∥v∗n+1∥2 ≤ Γ.
Let U priv be the output of Algorithm 1 and vpriv

n+1 =

argminv∈Rk L̂(U priv, v;Sn+1), if m′ ≳ k logm′. We have

L(U priv, vpriv
n+1;Dn+1)− L(U∗, v∗n+1;Dn+1)

≤ Õ

(
(R2 + Γ2)Γ4Λ2d2k

n2ϵ2σ4
min,∗λ

2
+

(R2 + Γ2)Γ4Λ2d

nmσ4
min,∗λ

2

+
R2k

m′

)

with probability at least 1−O(T · n−10 +m′−100).

Initialization. We require dist(U0, U
∗) in Lemma 9 to be

bounded away from 1 otherwise the bound is trivial since
the first term becomes 1 when c = 0. By definition of
the principal angle (2), dist(U0, U

∗) = 1 when the column
space of U0 and U∗ are orthogonal. For now, we assume
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such a U0 whose column space overlaps modestly with that
of U∗ in the sense of dist(U0, U

∗) <
√
1− c can be found

with reasonable effort. In the next subsection we give an
efficient algorithm that guarantees such an initialization.

3.3 Private Initialization Algorithm

In this section, we introduce an initialization algorithm for
our private FedRep algorithm (Algorithm 1). Our initial-
ization algorithm is based on the estimator in (Duchi et al.,
2022) and the privacy guarantee is achieved by adding Gaus-
sian noise to the estimator before using top-k-SVD. Our
private initialization algorithm achieves the same conver-
gence rate as the one in (Jain et al., 2021). But unlike (Jain
et al., 2021), which is limited to i.i.d. standard Gaussian
feature vectors, the guarantee for our algorithm holds in a
broader class of sub-Gaussian feature vectors. The detailed
steps of the algorithm are provided in Algorithm 2, while its
privacy and utility guarantees are established in Lemma 12.

Algorithm 2 Private Initialization for Private FedRep

Require: Si = {(xi,1, yi,1), . . . , (xi,m/2, yi,m/2)} data
for users i ∈ [n], privacy parameters ϵ, δ, clipping
bound ψinit, rank k

1: Let σ̂init ←
ψinit

√
2 log( 1.25

δ )
nϵ

2: Let ξinit ← N d×d(⃗0, σ̂2
init)

3: for Clients i ∈ [n] in parallel do
4: Send Zi ← 2

m(m−1)

∑
j1 ̸=j2 yi,j1yi,j2xi,j1x

⊤
i,j2

to
server

5: end for
6: Server aggregates Zi and add noise for privatization

Ẑ =
1

n

n∑
i=1

clip(Zi, ψinit) + ξinit

7: Server computes

UinitDU
⊤
init ← rank-k-SVD(Ẑ)

8: Return: Uinit

Lemma 12. Suppose that Assumptions 5 and 6 hold. Let
Uinit be the output of Algorithm 2. Then, by setting ψinit =
Õ((R2 + Γ2)d), we have

dist(Uinit, U
∗) ≤ Õ

(
(R2 + Γ2)d3/2

nϵσ2
min,∗

+

√
(R2 + Γ2)Γ2d

mnσ4
min,∗

)

with probability at least 1−O(n−10). Furthermore, Algo-
rithm 2 is (ϵ, δ) user-level DP.

By using Lemma 12 in conjunction with Theorem 10 and

an iteration count T = Θ

(
Λ2 log(R2d/k)

λ2

)
, we are able to

achieve the same utility guarantee as Theorem 10 without
any assumptions on dist(Uinit, U

∗).

Comparison with (Jain et al., 2021): Under conventional
assumptions in prior work (Tripuraneni et al., 2021) to nor-
malize V ∗ and SG(R) so that both Γ and R are Θ̃(1), the
Priv-AltMin algorithm in (Jain et al., 2021) achieves an
excess risk bound of Õ

(
d3k2

n2ϵ2σ4
min,∗

+ d
nmσ4

min,∗

)
+ k

m for
Gaussian data. Meanwhile, our Private FedRep algorithm
achieves a rate of Õ

(
d2kΛ2

n2ϵ2σ4
min,∗λ

2 + dΛ2

nmσ4
min,∗λ

2

)
+ k

m .

When Λ
λ (an upper bound on the condition number of

1√
n
V ∗) is Õ(1), which is a regime considered in (Jain et al.,

2021) and assumed in (Collins et al., 2021), we improve the
privacy error term in (Jain et al., 2021) by a factor of Õ(dk).

More generally, in the regime where n =

Õ

(
min

(
dkm
ϵ2 ,

√
d3km
ϵ2σ4

min,∗
,
√

d2mΛ2

ϵ2σ4
min,∗λ

2

))
, our bound is

tighter than the bound of (Jain et al., 2021) by a factor of
Õ
(
dkλ2

Λ2

)
when Λ

λ = Õ(
√
dk). Meanwhile, in the regime

where n = Õ

(
min

(
d2k2m
ϵ2 ,

√
d3km
ϵ2σ4

min,∗
, dΛ2

kσ4
min,∗λ

2

))
and n = Ω̃

(
dkm
ϵ2

)
, we achieve a bound tighter than that

of (Jain et al., 2021) by a factor of Õ
(
d2k2mλ2

nϵ2Λ2

)
when

Λ
λ = Õ

(
dk
ϵ

√
m
n

)
.

Additionally, our work improves over that of (Jain et al.,
2021) in two important respects. First, it requires less re-
strictive data assumptions (sub-Gaussian instead of Gaus-
sian feature vectors). Second, our algorithm can be naturally
written as a federated algorithm while the algorithm in (Jain
et al., 2021) requires centralized processing and transform-
ing it to a federated algorithm is infeasible.

3.4 Synthetic Data Experiment

The results in Figure 1 are obtained via data features from
N (0, Id) with problem parameters n = 20, 000, d = 50,
k = 2, and m = 10. Our data labels are generated as in
Assumption 6 given label noise sampled from N (0, R2)
with R = 0.01. We use local GD and non-private FedRep
as baselines for our comparison. See Appendix B.4 for
details1.

4 Margin-based Dimension Reduced
Construction for Classification

We now introduce our information-theoretic guarantees for
private representation learning for classification problem
with margin loss. Our approach is based on the observation
that learning a shared linear representation can be framed as

1Note as well this GitHub repository with a copy of our code.
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Figure 1: Graph of population MSE over choice of privacy
parameter ϵ ∈ [1, 8] for synthetic data comparing Algo-
rithm 1 to Priv-AltMin in (Jain et al., 2021).

training a 2-layer linear neural network, enabling the use of
the Johnson-Lindenstrauss (JL) transform (Johnson, 1984)
for dimensionality reduction.

We demonstrate this utility guarantee as follows. First,
we introduce the assumptions and definitions that hold for
this section. This includes the definition for the Johnson-
Lindenstrauss transform along with a randomized instan-
tiation. Subsequently, we describe the score function and
covering argument required to combine dimension reduc-
tion with the exponential mechanism. We then introduce
Algorithm 3 that exploits the margin loss to attain our main
result of the section, Theorem 17. Finally, we discuss the
relevance of the main result and its independence from the
data dimension d.

Let k′ ≪ d. By applying a linear transformation of the
data via an appropriately chosen matrix M ∈ Rk′×d, we
show that learning personalized parameters can support fur-
ther dimension reduction. This is done by first learning
Ũ ∈ Rk′×k over the linearly transformed data in Rk′ then
constructing the final shared embedding M⊤Ũ ∈ Rd×k.
We obtain utility guarantees independent of the data dimen-
sion d via this process of first learning a low-dimensional
embedding then mapping it to Rd×k.

In this section, we study the classification setting. Let X be
the d-dimensional Euclidean ball with constant radius r > 0
centered at the origin and Y = {−1, 1}. Define that data
space Z = X × Y . Let U ⊂ Rd×k be the space of d × k
matrices with orthonormal columns and V ⊂ Rn×k be the
space of matrices with rows bounded in Euclidean norm
by a universal constant Γ > 0. The data distributions for
our n users D1, . . . ,Dn are possibly distinct distributions
over X × Y . We further define the distribution sequence
D = (D1, . . . ,Dn).
Definition 13. Let (U, v) ∈ Rd×k × Rk and (x, y) ∈

Rd × {−1, 1} any data point. We define the margin loss
as ℓρ(U, v, z) = 1 [y⟨x, Uv⟩ ≤ ρ] and denote the 0-1 loss
ℓ(U, v, z) = ℓ0(U, v, z) = 1 [y⟨x, Uv⟩ ≤ 0].

Let U ∈ U , v ∈ Rk, and S′ = (z′1 . . . , z
′
m) ∈ Zm. We de-

fine L̂ρ(U, v;S′) = 1
m

∑m
j=1 ℓρ(U, v, z

′
j) for any U, v, S′.

Suppose V = [v1, . . . , vn]
⊤ ∈ V and let S = (S1, . . . , Sn)

be a sequence of datasets Si ∈ Zm for all i ∈ [n]. We
further define L̂ρ(U, V ;S) = 1

n

∑n
i=1 L̂ρ(U, vi;Si) for all

U, V, S. Our goal is to privately optimize the population loss
L(U, V ;D) = 1

n

∑n
i=1 EZi∼Di [L(U, v1, Zi)] over U, V

with personalization of V . We accomplish this via an ap-
plication of the exponential mechanism over a cover of a
dimension-reduced version of U .

Definition 14. Let G ⊂ Rd be any set of t vectors. Fix
τ, β ∈ (0, 1). We call the random matrix M ∈ Rk′×d a
(t, τ, β)-Johnson-Lindenstrauss (JL) transform if for any
u, u′ ∈ G

|⟨Mu,Mu′⟩ − ⟨u, u′⟩| ≤ τ∥u∥2∥u′∥2

with probability at least 1− β over M .

The JL transform is a popular and efficient method of
dimension reduction whose existence is ensured by the
Johnson-Lindenstrauss lemma (Johnson, 1984; Nelson,
2020; Woodruff et al., 2014). Via a JL transform M we are
able to preprocess a feature vector x into a low-dimensional
vector Mx ∈ Rk′ for use in our federated learning problem.
This preprocessing showcased in Algorithm 3 effectively
reduces the dimension of our learning problem.

Lemma 15. (Bassily et al., 2022) Let τ, β ∈ (0, 1). Take
G ⊂ Rd to be any set of t vectors. Setting k′ =

O

(
log( t

β )
τ2

)
for a k′ × d matrix M with entries drawn

uniformly and independently from
{
± 1√

k′

}
implies that M

is a (t, τ, β)-JL transform.

Suppose M ∈ Rk′×d is a random matrix with entries drawn
uniformly from

{
± 1√

k′

}
. Define UM = {MU : U ∈ U}.

Let BF be the k′ × k-dimensional Frobenius ball of radius√
2k. We define N γ to be a Frobenius norm γ-cover of
BF . Assuming that γ ≤ 1, we have UM ⊆ BF with high
probability. That is, for any U ′ ∈ UM there exists Ũ ∈ N γ

where ∥U ′ − Ũ∥ ≤ γ. Moreover, |N γ | ≤ O
((√

k
γ

)k′k)
.

Algorithm 3 first takes as input the user data sequence S and
score function f . It then constructs a JL transform M in the
sense of Lemma 15. Algorithm 3 reduces the dimensionality
of the users’ data in S by applying M to each feature vector
in each user’s dataset. The exponential mechanism is run
over a cover N γ using a score function f( · , SM ), which
will be defined shortly, to obtain a low-dimensional shared

7
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embedding Ũ ∈ Rk′×k. This M⊤Ũ ∈ Rd×k is used by
Algorithm 3 where the final embedding U priv =M⊤Ũ and
local vectors V priv = [vpriv

1 , . . . , vpriv
n ]⊤ are computed by the

users via U priv.

Remark: Our algorithm functions as an improper learner
in the sense that the learned shared representation U priv is
not necessarily an orthonormal matrix. However, this does
not affect the performance of the final user-specific classi-
fiers in terms of expected loss. In particular, Theorem 17
establishes that the expected loss incurred by our algorithm
remains close to that of an optimal orthonormal shared rep-
resentation, ensuring that the lack of orthonormality does
not degrade utility.

Assume for simplicity that m is even. We partition
Si = S0

i ∪ S1
i where S0

i = {z1,j , . . . , zm
2 ,j
} and

S1
i = {zm

2 +1,j , . . . , zm,j} for each i ∈ [n]. Fur-
ther, we denote St = (St1, . . . , S

t
n) where t ∈ {0, 1}.

Suppose that S = (S1, . . . , Sn) ⊂ Znm(d+1) is a se-
quence of n datasets with m samples each. Let SM =
((S1)M , . . . (Sn)M ) where (Si)M = {(Mxi,j , yi,j) : j ∈
[m]} for all i ∈ [n]. The score function for Algorithm 3
is f(Ũ , SM ) = − 1

n

∑n
i=1 min∥vi∥≤Γ L̂ρ(Ũ , vi; (Si)M ) for

Ũ ∈ N γ . Since we provide a user-level privacy guaran-
tee, we must bound the sensitivity of f over neighboring
sequences S, S′ where S′ differs from S by at most a single
user’s entire dataset. It can be shown that the sensitivity
is bounded 1

n , which follows easily from the fact that the
margin loss is bounded by 1.

Algorithm 3 Private Representation Learning for Per-
sonalized Classification
Require: dataset sequences S0 and S1 of equal size, score

function f(U ′, · ) = −minV ∈V L̂ρ(U
′, V ; · ) over

matrices U ′ ∈ Rk′×k, privacy parameter ϵ > 0, target
dimension k′ = O

(
r2Γ2 log(nm/δ)

ρ2

)
,

1: Sample M ∈ Rk′×d with entries drawn i.i.d uniformly
from

{
± 1√

k′

}
2: Let SM = ((S1)M , . . . , (Sn)M ) where (Si)M ={

(Mx, y) : (x, y) ∈ S0
i

}
for i ∈ [n]

3: Let N γ be a Frobenius norm γ-cover of BF
4: Run the exponential mechanism over N γ , privacy pa-

rameter ϵ, sensitivity 1
n , and score function f(U ′, SM ),

to select Ũ ∈ N γ

5: Let U priv ←M⊤Ũ
6: Each user i ∈ [n] independently computes vpriv

i ←
argmin∥v∥2≤Γ L̂(U

priv, v, S1
i )

7: Return: U priv, V priv = [vpriv
1 , . . . vpriv

n ]⊤

The lemma below is an extension of a fundamental result
for the exponential mechanism (McSherry & Talwar, 2007).

Key to obtaining this result is that γ is both the error pa-
rameter of the JL transform and the radius of the sets in our
cover N γ .

Lemma 16. Fix ϵ, ρ > 0, β ∈ (0, 1). Algorithm 3 is (ϵ, 0)-
user-level DP. Sample S ∼ Dm. Then, Algorithm 3 returns
U priv from input S such that

min
V ∈V

L(U priv, V ;S0) ≤ min
(U,V )∈U×V

L̂ρ(U, V ;S0)

+ Õ

(
r2Γ2k

ϵρ2n

)
with probability at least 1 − β over the randomness of S
and the internal randomness of the algorithm.

Theorem 17. Fix ϵ, ρ > 0, β ∈ (0, 1). Algorithm 3 is (ϵ, 0)-
user-level DP in the billboard model. Sample user data
S ∼ Dm. Then, Algorithm 3 returns U priv, V priv from input
S such that

L(U priv, V priv;D) ≤ min
(U,V )∈U×V

L̂ρ(U, V ;S0)

+ Õ

(
r2Γ2k

nϵρ2
+

√
r2Γ2

mρ2

)
with probability at least 1 − β over the randomness of S
and the internal randomness of the algorithm.

To the best of our knowledge, the above bound is the first
margin-based population loss bound that is independent of
the data dimension in private personalization with shared
embedding.

5 Conclusion
In this work, we revisit the problem of model personal-
ization under user-level differential privacy (DP) in the
shared representation framework. We propose a novel pri-
vate federated personalization algorithm that extends the
FedRep method while ensuring rigorous privacy guarantees.
Our approach efficiently learns a low-dimensional shared
embedding and user-specific local models while providing
strong privacy-utility trade-offs, even under noisy labels and
broader sub-Gaussian data distributions. A key contribution
of our work is demonstrating that private model personal-
ization can be achieved in a federated setting with improved
risk bounds. Specifically, we show that our approach re-
duces the privacy error term by a factor of Õ(dk) in a natu-
ral parameter regime, leading to a higher accuracy in high-
dimensional settings. Moreover, our private initialization
technique ensures a good starting point for learning shared
representations, even under privacy constraints. Addition-
ally, for binary classification, we provide an information-
theoretic construction for private model personalization that
leverages dimensionality reduction techniques, and hence,
derive margin-based dimension-independent risk bound.
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While our work provides significant advancements in private
federated personalization, several open directions remain
for future research: (i) Relaxing the identity covariance as-
sumption: Current results assume sub-Gaussian feature dis-
tributions with identity covariance. While this assumption
simplifies the analysis and aligns with prior work, it does
not hold in many real-world applications. A key challenge
is extending our methods to handle arbitrary covariance
matrices. This could involve leveraging adaptive precon-
ditioning techniques or covariance-aware mechanisms to
improve learning under more general feature distributions.
(ii) Extending beyond quadratic loss functions: Most of effi-
cient private personalization algorithms, including ours, rely
on quadratic loss (i.e., least-squares regression) due to its
analytical convenience. Developing gradient-based methods
for more general loss functions, such as logistic or hinge
losses, remains an important open problem. Current tech-
niques for private optimization in these settings are either
computationally expensive or lack strong utility guarantees.
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A Technical Lemmas
Proposition 18. Let X = (X1, . . . , Xa) ∈ Ra be random vector. Assume that Xp is Rp-sub-Gaussian for each p ∈ [a]
and that Xp, Xq are uncorrelated for p ̸= q. Let R = (R1, . . . , Ra). Then, for each ν ∈ Ra, the random variable ⟨ν,X⟩ is
(∥ν∥2 maxp∈[a]Ra)-sub-Gaussian.

Proof. Fix an arbitrary λ ∈ R. Observe

E
[
eλ⟨ν,X⟩

]
= E

[
a∏
p=1

e(λνp)Xp

]

=

a∏
p=1

E
[
e(λνp)Xp

]
≤

a∏
p=1

eλ
2ν2

pR
2
p

≤ eλ
2∥ν∥2

2 maxp∈[a] R
2
a

where the second equality holds by uncorrelatedness, the first inequality from the definition of sub-Gaussian, and the final
inequality from definition of ∥ν∥22.

Proposition 19. Let X = (X1, . . . , Xa) ∈ Ra be random vector with E [X] = 0⃗. Assume Xp, Xq are uncorrelated for
p ̸= q. Suppose that ν, π ∈ Ra with ⟨ν, π⟩ = 0. Then, ⟨ν,X⟩ and ⟨π,X⟩ are uncorrelated.

Proof. By the assumptions of the above proposition

E [⟨ν,X⟩⟨π,X⟩] = E

[
a∑
p=1

νpXp

a∑
p=1

πpXp

]

= E

 ∑
p,q∈[a]

νpπqXpXq


= E

[
a∑
p=1

νpπpX
2
p

]
+ E

∑
p ̸=q

νpπqXpXq


= σ2

a∑
p=1

νpπp +
∑
p ̸=q

νpπqE [Xp]E [Xq]

= 0

= E [⟨ν,X⟩] · E [⟨π,X⟩]

where the last three equalities hold by ⟨ν, π⟩ = 0, the uncorrelatedness of the components of X , and the linearity of
expectation.

Lemma 20 (McDiarmid’s inequality). Let f : Rn → R be a measurable function. Assume there exists a constant ci > 0
where, for all x1, . . . , xn ∈ R

sup
x′
i∈R
|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ ci

for each i ∈ [n]. Suppose X1, . . . , Xn ∈ R is a sequence of i.i.d. random variables. Then, for all s > 0

P [f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] ≥ s] ≤ e
− 2s2∑n

i=1
ci .
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Definition 21. We say that a random variable X ∈ R is R-sub-exponential if

E
[
eλ|X|

]
≤ eλR

for all λ such that 0 ≤ λ ≤ 1/R.

For the definition above, we call the smallest such R the sub-exponential norm of an R-sub-exponential random variable.
Lemma 22 (Bernstein inequality). Let X1, . . . , Xn ∈ Rd be a sequence of i.i.d. R-sub-exponential random variables. Then,
for any s > 0

P

[
1

n

n∑
i=1

Xi ≥ s

]
≤ e−cnmin

(
s2

R2 ,
s
R

)

for some constant c > 0.
Lemma 23 (Lemma 4.4.1 (Vershynin, 2018)). Let M ∈ Ra×b be any matrix. Take Sa−1,Sb−1 to be the unit spheres in
Ra,Rb, respectively. Suppose that N a,N b are Euclidean ϵ-covers over Sa−1,Sb−1. Then

∥M∥2 ≤
1

1− ϵ
max

v∈Na,v′∈N b
v⊤Mv′.

Definition 24. A centered random vector X ∈ Ra with covariance matrix Σ is isotropic if

Σ = E
[
XX⊤] = Ia.

Definition 25. A centered random vector X ∈ Ra is R-sub-Gaussian if

E
[
e⟨X,u⟩

]
≤ e

R2∥u∥22
2

for all u ∈ Ra.

Note that when a centered vector X ∈ Ra is 1-sub-Gaussian and has covariance matrix Ia, the components of X are
1-sub-Gaussian. We use this fact in our results in conjunction with Assumption 5.
Theorem 26 (Theorem 4.6.1 (Vershynin, 2018)). Let M be an a × b matrix whose rows are independent mean-zero
K-sub-Gaussian isotropic random vectors in Rb. Then, for any α ≥ 0, there exists c > 0 where

√
a− cK2

(√
b+ α

)
≤ σmin(M) ≤ σmax(M) ≤

√
a+ cK2

(√
b+ α

)
with probability 1− 2e−α

2

.
Corollary 27. Let M be an a× b matrix whose rows are independently drawn from N (0, σ̂2Ia×a). Then, for any α ≥ 0,
we have

σ̂
(√

a−
(√

b+ α
))
≤ σmin(M) ≤ σmax(M) ≤ σ̂

(√
a+

(√
b+ α

))
with probability at least 1− 2e−α

2

.

Proof. Observe that we have M = σ̂M̄ for a matrix M̄ ∼ N a×b(0, 1). As well, note that M̄ satisfies Theorem 26 with
K = 1 since its rows are standard Gaussians.

For any matrix A ∈ Ra×b, we also have that σp(c′A) = c′σp(A) for c′ > 0 a constant and σp(A) the p-th singular value of
A. Combining the above reasoning and Theorem 26, there exists a constant c > 0 such that

√
a− c

(√
b+ α

)
≤ σmin(M̄) ≤ σmax(M̄) ≤

√
a+ c

(√
b+ α

)
implies

σ̂
(√

a− c
(√

b+ α
))
≤ σmin(M) ≤ σmax(M) ≤ σ̂

(√
a+ c

(√
b+ α

))
with probability at least 1− 2e−α

2

. Furthermore, for standard Gaussians we have c = 1.

Note that one could simply apply Theorem 26 directly to the matrix M from Corollary 27 by using K = σ̂, but this does not
give the desired result. In particular, we require that σ̂ scale both terms of the upper bound of σmax(M) in our later analysis
of the Gaussian mechanism.
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B Missing Proofs for Section 3

B.1 Main algorithm results

We first restate our algorithm and main assumptions.
Assumption (Restatement of Assumption 4). There are known Λ, λ > 0 such that Λ ≥ σmax,∗ ≥ σmin,∗ ≥ λ.

Assumption (Restatement of Assumption 5). Let i ∈ [n] and x ∼ Di. For all i ∈ [n] the feature distribution Di has

covariance matrix Id and is sub-Gaussian in the sense of E
[
e⟨x,u⟩

]
≤ e

∥u∥22
2 for all u ∈ Rd.

Assumption (Restatement of Assumption 6). Let SG(R) be any centered R-sub-Gaussian distribution over R. Sample
ζ ∼ SG(R). For all i ∈ [n] and any data points (x, y) ∼ Di we generate the label y for the i-th user via

y = x⊤U∗v∗i + ζ

where ζ is independent for all x ∼ Di.

Unless stated otherwise, in this section, we assume that Assumptions 4, 5, and 6 hold. Furthermore, throughout our proofs
we assume n = Ω(dk). This assumption is reasonable in the context of our work since n = Ω(dk) is required for non-trivial
results in our final bounds.

Algorithm 1 Private FedRep for linear regression

Require: Si = {(xi,1, yi,1), . . . , (xi,m, yi,m)} data for users i ∈ [n], learning rate η, iterations T , privacy noise parameter
σ̂, clipping parameters ψ,ψinit, batch size b ≤ ⌊m/2T ⌋, initial embedding Uinit ∈ Rd×k
Let S0

i ← {(xi,j , yi,j) : j ∈ [m/2]} ∀i ∈ [n]
Let S1

i ← Si \ S0
i ∀i ∈ [n]

Initialize: U0 ← Uinit
for t = 0, . . . , T − 1 do

Server sends Ut to clients [n]
for Clients i ∈ [n] in parallel do

Sample two disjoint batches Bi,t and B′
i,t, each of size b, without replacement from S0

i

Update vi as
vi,t ← argmin

v∈Rk

L̂(Ut, v;Bi,t)

Compute the gradient w.r.t U
∇i,t ← ∇U L̂(Ut, vi,t;B′

i,t)

Send ∇i,t to server
end for
Server aggregates the client gradients as

Ût+1 ← Ut − η

(
1

n

n∑
i=1

clip(∇i,t, ψ) + ξt+1

)
Ut+1, Pt+1 ← QR(Ût+1)

where ξt+1 ← N d×k(0, σ̂2)
end for
Server sends U priv ← UT to all clients
for Clients i ∈ [n] independently do
vpriv
i ← argminv∈Rk L̂(U priv, v;S1

i ) ∀i ∈ [n]
end for
Return: U priv, V priv ← [vpriv

1 , . . . , vpriv
n ]⊤

Lemma (Restatement of Lemma 7). With probability at least 1−O(T · n−10), we have

∥∇i,t∥F ≤ Õ
(
(R+ Γ)Γ

√
dk
)

14
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for all i ∈ [n] and all t ∈ [T ] simultaneously.

Proof. The privacy guarantee directly follows from the the privacy guarantee of Gaussian mechanism and advanced
composition. In the following, we prove a high probability bound for ∥∇i,t∥F . Let B′

i = {(x′i,j , y′i,j) : j ∈ [b]} be a data
batch of user i sampled at iteration t as in Algorithm 1. Then we have

∇i,t =
2

b

b∑
j=1

(
⟨x′i,j , Utvi,t+1 − U∗v∗i ⟩+ ζi,j

)
x′i,jv

⊤
i,t+1

Denote u = Utvi,t+1 − U∗v∗i . Throughout the proof we condition on the event

E =

{
|ζi,j | ≤ R

√
26 log(nb),

∣∣⟨u, x′i,j⟩∣∣ ≤ ∥u∥2√26 log(nb), and ∥vi,t+1∥2 ≤
5

4
Γ for all (i, j) ∈ [n]× [b]

}
which holds by the sub-Gaussianity of x′i,j , the independence between x′i,j and Utvi,t+1 − U∗v∗i , and Proposition 42 with
probability at least 1−O(nb · n−14) ≥ 1−O(n−12). Given event E , we have

⟨x′i,j , Utvi,t+1 − U∗v∗i ⟩+ ζi,j ≤
5

2
(R+ Γ)

√
26 log(nb).

Meanwhile, the (p, q)-element of x′i,jv
⊤
i,t+1 has

|(x′i,j)p(vi,t+1)q| ≤
5

4
Γ
√
26 log(nb) (1)

for all i, j with probability at least 1−O(nb · n−14) by the sub-Gaussianity of the components of x′i,j and conditioning on
E . Therefore, taking union bound on p, q, t without conditioning, we have, with probability at least 1−O(Tdk · n−12)

∥∇i,t∥F ≤ 82(R+ Γ)Γ
√
dk log(nb)

for all i, t simultaneously. Finally, we bound 1−O(Tdk · n−12) ≥ 1−O(T · n−10).

Theorem (Restatement of Theorem 8). Algorithm 1 is (ϵ, δ)-user-level DP in the billboard model by setting σ̂ =

C
ψ
√
T log(1/δ)

nϵ for some absolute constant C > 0.

Proof. Since the computation of V priv is performed by each user independently, it is sufficient to show that the computation
of U priv satisfies centralized user-level DP.

Given the definition of the clipping function, for each i ∈ [n], we have ∥clip(∇i,t, ψ)∥F ≤ ψ which implies that the

sensitivity for each update of the Ut is bounded by ψ. By taking σ̂ = C
ψ
√
T log(1/δ)

nϵ , we obtain the privacy cost of each

iteration t is ρ = O
(

ϵ2

T ln(1/δ)

)
under zero-concentrated differential privacy (z-CDP, (Bun & Steinke, 2016)). By the

composition property of z-CDP, we obtain the total privacy cost ρ =
∑T
t=1 ρt = O

(
ϵ2

ln(1/δ)

)
. Then, we can convert the

z-CDP guarantee to DP guarantee with the privacy parameter being ρ +
√
ρ ln(1/δ) = O(ϵ) with sufficiently small δ.

Therefore, the computation of U priv is (ϵ, δ)-DP and the algorithm is (ϵ, δ)-DP in the billboard model.

For the rest of our proof we condition on the event of clipping does not affect the original gradient norm in Algorithm 1. By
Lemma 7, this event has probability at least 1−(T ·n−10) for all i, t simultaneously when selecting ψ = Õ

(
(R+ Γ)Γ

√
dk
)

.

Let v1,t, . . . , vn,t be the sequence of local user parameters generated at iteration t of Algorithm 1. Define the matrix
ΣVt =

1
n

∑n
i=1 vi,tv

⊤
i,t. Take B′

t = (B′
1,t, . . . , B

′
n,t) to be the sequence of batches from of Algorithm 1 used to update Ut at

iteration t for each user i. Assume that we re-index the batches B′
i,t = {(xti,j , yti,j) : j ∈ [b]} for each i, t. Let Ut+1, Pt+1

be the matrices from the QR decomposition, and

∇t =
1

n

n∑
i=1

∇i,t =
1

nb

n∑
i=1

b∑
j=1

∇U ℓ(Ut, vi,t, (xti,j , yti,j)) ∈ Rd×k
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the aggregated gradient, all computed in Algorithm 1. For ease of notation we also drop the iteration index t on the data
points (xti,j , y

t
i,j). Recall that η is the fixed stepsize for Algorithm 1.

Lemma 28. If Pt+1 is invertible, then

dist(Ut+1, U
∗) ≤ ∥P−1

t+1∥2
(
∥Ik − ηΣVt

∥2 dist(Ut, U∗) + η∥∇t − EB′
t
[∇t]∥2 + η∥ξt∥2

)
.

Proof. Let Ût+1 be the t-th iterate of Algorithm 1 before QR decomposition. Observe

∥(U∗)⊤⊥Ût+1∥2 = ∥(U∗)⊤⊥(Ut − η∇t + ηξt)∥2
≤ ∥(U∗)⊤⊥(Ut − η∇t + ηEB′

t
[∇t]− ηEB′

t
[∇t])∥2 + η∥ξt∥2

≤ ∥(U∗)⊤⊥(Ut − ηEB′
t
[∇t])∥2 + η∥∇t − EB′

t
[∇t]∥2 + η∥ξt∥2

since ∥(U∗)⊤⊥∥2 = 1. Then, since the data has covariance matrix Id and label noise ζi,j that satisfies E[ζi,j ] = 0

EB′
t
[∇t] =

1

nb

n∑
i=1

b∑
j=1

EB′
t

[
((x′i,j)

⊤Utvi,t − (x′i,j)
⊤U∗v∗i + ζi,j)x

′
i,jv

⊤
i,t

]
=

1

nb

n∑
i=1

b∑
j=1

EB′
t

[
x′i,j(x

′
i,j)

⊤(Utvi,t − U∗v∗i )v
⊤
i,t

]
=

1

nb

n∑
i=1

b∑
j=1

EB′
t

[
(Utvi,t − U∗v∗i )v

⊤
i,t

]
=

1

nb

n∑
i=1

b∑
j=1

Utvi,tv
⊤
i,t − U∗v∗i v

⊤
i,t

where the second equality holds because (x′i,j)
⊤Utvi,t − (x′i,j)

⊤U∗v∗i + ζi,j is a scalar and the fourth equality by the fact
that B′

t is independent of Ut, Vt. Hence

1

nb

n∑
i=1

b∑
j=1

(U∗)⊤⊥(Utvi,tv
⊤
i,t − U∗v∗i v

⊤
i,t) =

1

nb

n∑
i=1

b∑
j=1

(U∗)⊤⊥Utvi,tv
⊤
i,t = (U∗)⊤⊥Ut

1

n

n∑
i=1

vi,tv
⊤
i,t

since (U∗)⊤⊥U
∗ = 0. Then, for ΣVt

= 1
n

∑n
i=1 vi,tv

⊤
i,t

∥(U∗)⊤⊥(Ut − ηEB′
t+1

[∇t])∥2 = ∥(U∗)⊤⊥Ut(Ik − ηΣVt
)∥2 ≤ ∥Ik − ηΣVt

∥2∥(U∗)⊤⊥Ut∥2.

Hence
∥(U∗)⊤⊥Ût+1∥2 ≤ ∥Ik − ηΣVt

∥2∥(U∗)⊤⊥Ut∥2 + η∥∇t − EB′
t+1

[∇t]∥2 + η∥ξt∥2. (2)

Now, assuming that Pt+1 is invertible

∥(U∗)⊤⊥Ut+1∥2 = ∥(U∗)⊤⊥Ût+1P
−1
t+1∥2

≤ ∥P−1
t+1∥2∥(U∗)⊤⊥Ût+1∥2.

So
∥(U∗)⊤⊥Ut+1∥2 ≤ ∥P−1

t+1∥2∥(U∗)⊤⊥Ût+1∥2. (3)

Combining (2) and (3) finishes the proof.

Our proof for our main result follows from bounding the terms and factors on the right-hand side of the inequality in
Lemma 28; namely

dist(Ut+1, U
∗) ≤ ∥P−1

t+1∥2
(
∥Ik − ηΣVt∥2dist(Ut, U∗) + η∥∇t − EB′

t
[∇t]∥2 + η∥ξt∥2

)
. (4)
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The above inequality has four important components. The term ∥∇t−EB′
t
[∇t]∥2 is the deviation of the aggregated gradient

from its mean and hence can be bounded via concentration inequalities (see Proposition 30) and the term ∥ξt∥2 is the
magnitude of the Gaussian noise added for privacy, which is not difficult to bound as well (see Proposition 29).

Deriving bounds on ∥P−1
t+1∥2 and ∥Ik − ηΣVt

∥2dist(Ut, U∗) in (4) is less obvious and require some extra work. We can
understand ∥Ik − ηΣVt∥2 as a measurement of how close ΣVt is to η−1Ik. So, when ∥Ik − ηΣVt∥2 is small, the vectors
v1,t, . . . , vn,t are evenly distributed in Rk with no bias in any direction. For example, if v1,t, . . . , vn,t are independent with
vi,t ∼ N (0, η−1Ik) for each i, the matrix Ik−ηΣVt

= Ik− η
n

∑n
i=1 vi,tv

⊤
i,t will concentrate around the (d×k)-dimensional

zero matrix.

The quantity ∥P−1
t+1∥2 is more subtle. This quantity is a result of relating dist(Ut+1, U

∗) and dist(Ut, U∗) via ∥(U∗)⊤⊥Ût+1∥
as in our proof of Lemma 28. We can interpret ∥P−1

t+1∥2 as quantifying how far Ût+1 is from having orthonormal
columns. As well, we require that P−1

t+1 exists in general because the principal angle has dist(M,M ′) = 1 whenever
rank(M) ̸= rank(M ′).

Recall that ψ is the gradient clipping parameter in Algorithm 1.
Proposition 29. For all t, we have

∥ξt∥2 ≤ O

(
ψ
√
dT log(n) log(1/δ)

nϵ

)
with probability at least 1−O(n−10).

Proof. Let σ̂ =
ψ
√

2T log(1.25/δ)

nϵ as in the statement of Theorem 8. Let α > 0. Then, by Corollary 27

σ̂
(√

d−
(√

k + α
))
≤ σmin(ξt) ≤ σmax(ξt) ≤ σ̂

(√
d+

(√
k + α

))
with probability at least 1− 2e−α

2

. Choosing α =
√
10d log n gives us

∥ξt∥2 ≤ σ̂
(√

d+
√
k +

√
10d log n

)
=
ψ
(√

d+
√
k +
√
10d log n

)√
2T log(1.25/δ)

nϵ

≤ O

(
ψ
√
dT log(n) log(1/δ)

nϵ

)
with probability at least 1− 2e−10d logn.

Proposition 30. For any t, we have

∥∇t − EB′
t
[∇t]∥2 ≤ Õ

(√
η2(R2 + Γ2)Γ2d

nb

)
with probability at least 1−O(n−10).

Proof. Let N d and N k be Euclidean 1
4 -covers of the d and k-dimensional unit spheres, respectively. Then, by Lemma 23

we have
∥∇t − EB′

t
[∇t]∥2 ≤

4

3
max

a∈Nd,b∈Nk
a⊤
(
∇t − EB′

t
[∇t]

)
b.

Now
a⊤
(
∇t − EB′

t
[∇t]

)
b

=
2

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , Utvi,t − U∗v∗i ⟩+ ζi,j

)
⟨a, x′i,j⟩⟨vi,t, b⟩

− 2

nb

n∑
i=1

b∑
j=1

EB′
t

[(
⟨x′i,j , Utvi,t − U∗v∗i ⟩+ ζi,j

)
⟨a, x′i,j⟩⟨vi,t, b⟩

]
.
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We condition on ∥vi,t∥2 ≤ 5
4Γ for each i, which has probability at least 1−O(n−14) by Proposition 42. Then, we have that

2

nb

((
⟨x′i,j , Utvi,t − U∗v∗i ⟩+ ζi,j

)
⟨a, x′i,j⟩⟨vi,t, b⟩ − EB′

t

[(
⟨x′i,j , Utvi,t − U∗v∗i ⟩+ ζi,j

)
⟨a, x′i,j⟩⟨vi,t, b⟩

])
are centered, independent sub-exponential random variables when also conditioning on Ut. The sub-exponential norm of
these random variables is

(
5
4

)2 · 3(R+Γ)Γ
nb . Then, given Ut, Vt are independent of B′

t and assuming nb ≥ 20(d+ k) log n,
we get from Lemma 22

a⊤
(
∇t − EB′

t
[∇t]

)
b ≤ Õ

(√
η2(R2 + Γ2)Γ2d

nb

)
with probability at least 1−O(n−10) . This bound holds unconditionally since vi,t are bounded with probability at least
1−O(n−10) for each i. Thus

∥∇t − EB′
t
[∇t]∥2 ≤ Õ

(√
η2(R2 + Γ2)Γ2d

nb

)
(5)

with probability at least 1−O(n−10) by the union bound.

In Lemma 9 and Theorem 10, we assume there exist c0, c1 > 1 such that

T =
log n

ηλ2
≤ min

(
nmλ2

c1 max{∆ϵ,δ, 1}(R+ Γ)Γd
√
km log2(nm) +R2Γ2dσ2

min,∗ log(nm)
,

mΓ2σ2
max,∗

c0 max{R2, 1} ·max{Γ2, 1}γ4kΓ2 log2 n+R2kσ2
max,∗ log(nm)

)
.

(6)

This relationship between T and the problem parameters is equivalent to setting

T =
log n

ηλ2
(7)

along with assuming the following two conditions on m and n:

Assumption 31. Let E0 = 1− dist2(U0, U
∗) > 0. We assume there exists some constant c0 > 1 where

m ≥ c0
(
max{R2, 1} ·max{Γ2, 1}γ4k log2 n

E2
0σ

2
max,∗

+
R2k

Γ2
log(nm)

)
T. (8)

Assumption 32. Let ∆ϵ,δ = C

√
log(1.25/δ)

ϵ for some constant C > 0 and E0 = 1− dist2(U0, U
∗). For the user count n,

we assume, for some constant c1 > 1

n ≥ c1

(
max {∆ϵ,δ, 1} (R+ Γ)Γd

√
k log2(nm)

E2
0λ

2
+
R2Γ2d log(nm)

m

)
T. (9)

Our Assumptions 31 and 32 are used repeatedly throughout Appendix B. These conditions are easily leveraged as individual
assumptions on m and n, unlike the upper bound on T . Including the equality (7) allows us to contain all required conditions
on T , m, and n to one convenient setting.

Lemma 33. Let E0 = 1− dist2(U0, U
∗) and ψ = Õ

(
(R+ Γ)Γ

√
dk
)

. Suppose Assumption 31 and 32 hold. Then, for
any iteration t, we have that Pt+1 is invertible and

∥P−1
t+1∥2 ≤

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2

with probability at least 1−O(n−10).
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The proof of Lemma 33 is deferred to Appendix B.3.

Lemma 34. Let η ≤ 1
2σ2

max,∗
, n ≥ e8, E0 = 1 − dist2(U0, U

∗), and ψ = Õ
(
(R+ Γ)Γ

√
dk
)

. Suppose Assumptions 31

and 32 hold along with T = logn
ησ2

min,∗
. Then, for all t, we have

∥P−1
t+1∥2∥Ik − ηΣVt∥2 ≤

√
1−

ησ2
min,∗E0

4

with probability at least 1−O(n−10).

Proof. We will show that

∥Ik − ηΣVt
∥2 ≤ 1− ησ2

min

(
1√
n
Vt

)
≤

(
1−

ησ2
min,∗E0

4

)

with high probability for each t. Then selecting n ≥ e8 and using Lemma 33 implies the product ∥P−1
t+1∥2∥Ik − ηΣVt

∥2
satisfies the lemma statement.

Note that ΣVt
= 1

nV
⊤
t Vt = 1

n

∑n
i=1 vi,tv

⊤
i,t and define σmin,Vt

= σmin

(
1√
n
Vt

)
. Given Vt = V ∗(U∗)⊤Ut − F by

Lemma 39 and V ∗ and (U∗)⊤U are full rank, we have

σmin

(
1√
n
Vt

)
≥ σmin

(
1√
n
V ∗(U∗)⊤Ut

)
− σmax

(
1√
n
F

)
≥ σmin

(
1√
n
V ∗
)
σmin

(
(U∗)⊤Ut

)
− σmax

(
1√
n
F

)
Now, via the argument of Lemma 39, we have, with probability at least 1−O(n−10)

σmax

(
1√
n
F

)
≤ ντk

1− τk
σmax,∗ +

√
26R2 log(nb)

(1− τk)2b
(10)

for τk = cτ

√
35k logn

b . Recall that γ =
σmax,∗
σmin,∗

and ν = Γ
σmax,∗

. Then, there exists a constant ĉ > 0 such that, by
Assumption 31 with c0 ≥ 16ĉ2, we have

ντk
1− τk

σmax,∗ ≤ ĉ

√
E2

0σ
2
max,∗

c0γ4 log n
≤ σmax,∗E0

4
√
γ4 log n

≤ σmin,∗E0

4
√
log n

(11)

and √
26R2 log(nb)

(1− τk)2b
≤ ĉ

√
E2

0σ
2
max,∗

c0γ4k log n
≤ σmax ∗E0

4
√
γ4k log n

≤ σmin,∗E0

4
√
log n

(12)

since m ≥ c0
(

max{R2,1}·max{Γ2,1}γ4k log2 n
E2

0σ
2
max,∗

)
T and γ ≥ 1.

Furthermore
σmin

(
(U∗)⊤Ut

)
≥
√
1− ∥(U∗)⊤⊥Ut∥22 =

√
1− dist2(Ut, U∗)

Therefore, we obtain

σmin,Vt
≥ σmin

(
1√
n
V ∗
)
σmin

(
(U∗)⊤Ut

)
− σmax

(
1√
n
F

)
≥ σmin,∗

(√
1− dist2(Ut, U∗)− E0

2
√
log n

)
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with probability at least 1−O(n−10). Thus

1− ησ2
min,Vt

≤ 1− ησ2
min,∗

(√
1− dist2(Ut, U∗)− E0

2
√
log n

)2

. (13)

Claim 1: We have
∥Ik − ηΣVt∥2 ≤ 1− ησ2

min,Vt
.

with probability at least 1−O(n−10).

We prove Claim 1 by showing 1
2σ2

max,∗
≤ 2

σ2
max,Vt

+σ2
min,Vt

, which implies

∥Ik − ηΣVt
∥2 ≤ max

{
|1− ησ2

max,Vt
|, |1− ησ2

min,Vt
|
}
≤ 1− ησ2

min,Vt
.

First, we reuse

σmax

(
1√
n
F

)
≤ ντk

1− τk
σmax,∗ +

√
26R2 log(nb)

(1− τk)2b
as in (10). By Lemma 39 and the triangle inequality along with the submultiplicativity of the spectral norm

σmax,Vt = σmax

(
1√
n
Vt

)
≤ σmax

(
1√
n
V ∗(U∗)⊤Ut

)
+ σmax

(
1√
n
F

)
≤ σmax,∗ + σmax

(
1√
n
F

)
.

So

σmin,Vt
≤ σmax,∗ + σmax

(
1√
n
F

)
. (14)

By (11) and (12), we have

σmax

(
1√
n
F

)
≤ σmax,∗

2

and thus via (14)
σ2
min,Vt

≤ 2σ2
max,∗.

Since σmin,Vt
≤ σmax,Vt

by definition, we have σ2
min,Vt

+ σ2
max,Vt

≤ 4σ2
max,∗. This gives us 1

2σ2
max,∗

≤ 2
σ2
max,Vt

+σ2
min,Vt

with the required probability. This proves Claim 1.

Next, we will prove the following claim using induction.

Claim 2: Let α = 2

5T
√

log(nm)
− 1

25T 2log(nm) . We have
√
1− dist2(Ut, U∗) ≥

√
(1− tα)E0 for each iteration t ∈ [T ].

Base case: when t = 0, the inequality
√

1− dist2(U0, U∗) ≥
√
E0 is clearly true since E0 = 1− dist2(U0, U

∗).

Inductive hypothesis: we assume
√
1− ∥(U∗)⊤⊥Ut∥22 ≥

√
(1− tα)E0 for some t ∈ [T ].

Inductive Step: note tα < 1
2 for any t ∈ [T ]. Our assumption on

√
1− ∥(U∗)⊤⊥Ut∥22, (13), and assuming n ≥ eE0 imply

σ2
min,Vt

≥ σ2
min,∗

(√
(1− tα)E0 −

E0

2
√
log n

)2

. (15)

Now, since η ≤ 1
2σ2

max,∗
≤ 2

σ2
max,Vt

+σ2
min,Vt

, Weyl’s inequality and (15) give us

∥Ik − ηΣVt
∥2 ≤ 1− ησ2

min,Vt
≤ 1− ησ2

min,∗

(√
(1− tα)E0 −

E0

2
√
log n

)2

.
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By Lemma 33

∥P−1
t ∥2 ≤

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2

with probability at least 1−O(n−10). This event is a superset of the probabilistic bounds from earlier in this lemma.

Then

∥(U∗)⊤⊥Ut+1∥2 ≤

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2
(
1− ησ2

min,∗

(√
(1− tα)E0 −

E0

2
√
log n

)2
)
∥(U∗)⊤⊥Ut∥2

+ Õ

(
η(R+ Γ)Γd

√
k

nϵ
+

√
η2(R2 + Γ2)Γ2d

nb

) (16)

with probability at least 1−O(n−10). Assuming n ≥ eE0/(
√
2−1/2)2 , we have

1− ησ2
min,∗

(√
(1− tα)E0 −

E0

2
√
log n

)2

≤ 1− ησ2
min,∗

(√
E0/2−

E0

2
√
log n

)2

≤ 1−
ησ2

min,∗E0

4
.

As well, if n ≥ e8, we have

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2
(
1− ησ2

min,∗

(√
(1− tα)E0 −

E0

2
√
log n

)2
)

≤

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2
(
1− ησ2

min,∗

(√
E0/2−

E0

2
√
log n

)2
)

≤

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2
(
1−

ησ2
min,∗E0

4

)

≤

(
1−

ησ2
min,∗E0

4

)− 1
2
(
1−

ησ2
min,∗E0

4

)

=

√
1−

ησ2
min,∗E0

4
.

We now use the lower bound assumptions of the user count n and data sample count m. Recall the exact statements of
Assumption 31 and 32. That is, there exist c0, c1 > 1 such that

m ≥ c0
(
max{R2, 1} ·max{Γ2, 1}γ4k log2 n

E2
0σ

2
max,∗

+
R2k

Γ2
log(nm)

)
T

and

n ≥ c1

(
max {∆ϵ,δ, 1} (R+ Γ)Γd

√
k log2(nm)

E2
0λ

2
+
R2Γ2d log(nm)

m

)
T.

The problem parameters that lower bound m,n now come into use during this proof. Furthermore, recall that by Assump-
tion 4 we know some λ > 0 such that λ ≤ σmin,∗. Then, by Assumptions 31 and 32 along with n ≥ e8 and T = logn

ηλ2 , there
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exists a constant ĉ > 0 such that

∥(U∗)⊤⊥Ut+1∥2 ≤

(
1−

ησ2
min,∗E0

4

) 1
2

∥(U∗)⊤⊥Ut∥2

+O

(1− ησ2
min,∗E0√
2 log n

)− 1
2
η(R+ Γ)Γd

√
Tk log(1/δ) log(nb)

nϵ

+

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2
√
η2(R2 + Γ2)Γ2d log n

nb


≤

(
1−

ησ2
min,∗E0

4

) 1
2

∥(U∗)⊤⊥Ut∥2 +O

(
η(R+ Γ)Γd

√
Tk log(1/δ) log(nb)

nϵ

+

√
η2(R2 + Γ2)Γ2d log(nm)

nb

)

≤

(
1−

ησ2
min,∗E0

4

) 1
2

∥(U∗)⊤⊥Ut∥2 +O

(
ηλ2E2

0

√
T

c1T log(nm)

+

√
E4

0η
2(R+ Γ)Γσ2

max,∗λ
2T

c0c1 max{R2, 1} ·max{Γ2, 1}γ4k 3
2T 2 log(nm) log2 n

)

≤

(
1−

ησ2
min,∗E0

4

) 1
2

∥(U∗)⊤⊥Ut∥2 +O

( √
ησmin,∗E

2
0

c1T
√
log(nm)

+

√
E4

0η(R+ Γ)Γσ2
max,∗ log n

c0c1 max{R2, 1} ·max{Γ2, 1}γ4k 3
2T 2 log(nm) log2 n

)

=

(
1−

ησ2
min,∗E0

4

) 1
2

∥(U∗)⊤⊥Ut∥2 +
ĉE2

0

c1γT
√

log(nm)
+ ĉ

√
E4

0

c0c1γ4k
3
2T 2 log(nm) log n

(17)

since η ≤ 1
2σ2

max,∗
and λ ≤ σmin,∗.Recall that γ, k ≥ 1. Using the choice of c0, c1 ≥ 10ĉ in (17), we have

∥(U∗)⊤⊥Ut+1∥2 ≤

(
1−

ησ2
min,∗E0

4

) 1
2

∥(U∗)⊤⊥Ut∥2 +
E2

0

10γT
√
log(nm)

+

√
E4

0

100γ4k
3
2T 2 log(nm) log n

≤ ∥(U∗)⊤⊥Ut∥2 +
E2

0

5T
√
log(nm)

.

Thus, given E0 ≤ 1

1− ∥(U∗)⊤⊥Ut+1∥22 ≥ 1−

(
∥(U∗)⊤⊥Ut∥2 +

E2
0

5T
√
log(nm)

)2

= 1− ∥(U∗)⊤⊥Ut∥22 −
2E2

0∥(U∗)⊤⊥Ut∥22
5T
√

log(nm)
− E4

0

25T 2log(nm)

≥ 1− ∥(U∗)⊤⊥Ut∥22 − E0

(
2

5T
√
log(nm)

+
1

25T 2 log(nm)

)
.

Then, by our assumptions that
√
1− ∥(U∗)⊤⊥Ut∥22 ≥

√
(1− tα)E0, we have

1− ∥(U∗)⊤⊥Ut+1∥22 ≥ 1− ∥(U∗)⊤⊥Ut+1∥22 − αE0 ≥ (1− tα)E0 − αE0 = (1− (t+ 1)α)E0.
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Thus, by inductive hypothesis

σmin

(
(U∗)⊤Ut

)
≥
√

1− dist2(Ut, U∗) ≥
√

(1− tα)E0

for any t ≥ 0. This proves Claim 2.

Observe that tα ≤ Tα = T
10T
√

log(nm)+1

25T 2 log(nm) < 1
2 for all t. Using this, Claim 2 implies

σmin

(
(U∗)⊤Ut

)
≥
√
1− dist2(Ut, U∗) ≥

√
(1− tα)E0 ≥

√
E0/2 (18)

for each t ≥ 0. Via (18) and n ≥ e8 along with η ≤ 1
2σ2

max,∗

∥P−1
t+1∥2∥Ik − ηΣVt

∥2 ≤

√
1−

ησ2
min,∗E0

4

with probability at least 1−O(n−10) for any t ∈ [T − 1]. This proves the lemma.

Lemma (Restatement of Lemma 9). Let η ≤ 1
2σ2

max,∗
. Suppose 1 − dist2(U0, U

∗) ≥ c for some constant c > 0. Set

the clipping parameter ψ = Õ
(
(R+ Γ)Γ

√
dk
)

. Assume T = logn
ηλ2 = Õ

(
min

(
nmλ2

max{∆ϵ,δ,1}(R+Γ)Γd
√
km+R2Γ2dσ2

min,∗
,

mΓ2σ2
max,∗

max{R2,1}·max{Γ2,1}γ4kΓ2+R2kσ2
max,∗

))
and Assumptions 5 and 6 hold for all user data. Set σ̂ as in Theorem 8 and batch

size b = ⌊m/2T ⌋. Then, U priv, the first output of Algorithm 1, satisfies

dist(U priv, U∗) ≤

(
1−

cησ2
min,∗

4

)T
2

dist(U0, U
∗) + Õ

(
(R+ Γ)Γd

√
kT

nϵσ2
min,∗

+

√
(R2 + Γ2)Γ2dT

nmσ4
min,∗

)

with probability at least 1−O(T · n−10).

Proof. By Lemma 28

∥(U∗)⊤⊥Ut+1∥2 ≤ ∥P−1
t+1∥2

(
∥Ik − ηΣVt∥2∥(U∗)⊤⊥Ut∥2 + η∥∇t − EB′

t
[∇t]∥2 + η∥ξt∥2

)
. (19)

We must bound all three terms on the right-hand side of (19). Combining (19) and Proposition 30

∥(U∗)⊤⊥Ut+1∥2 ≤ ∥P−1
t+1∥2

(
∥Ik − ηΣVt∥2∥(U∗)⊤⊥Ut∥2 + Õ

(√
η2(R2 + Γ2)Γ2d

nb

)
+ η∥ξt∥2

)
(20)

with probability at least 1−O(n−10). Combining our choice of ψ with Proposition 29, via the union bound

∥(U∗)⊤⊥Ut+1∥2 ≤ ∥P−1
t+1∥2

(
∥Ik − ηΣVt∥2∥(U∗)⊤⊥Ut∥2 + Õ

(
η(R+ Γ)Γd

√
kT

nϵ
+

√
η2(R2 + Γ2)Γ2d

nb

))
(21)

for all t ∈ [T − 1] simultaneously with probability at least 1−O(T · n−10).

To bound the right-hand side of the above inequality, we need to bound ∥P−1
t+1∥2. By Lemma 33, with probability at least

1−O(T · n−10), we have ∥P−1
t+1∥2 ≤

(
1− ησ2

min,∗E0√
2 logn

)− 1
2

= O(1) for all t simultaneously, where the last equality follows

from the fact that η ≤ 1
2σmax,∗

, E0 ≤ 1, and log n ≥ 1 (assuming, without loss of generality, that n ≥ 2). Further, by
Lemma 33

∥(U∗)⊤⊥Ut+1∥2 ≤

(
1−

ησ2
min,∗E0

4

) 1
2

∥(U∗)⊤⊥Ut∥2 + Õ

(
η(R+ Γ)Γd

√
kT

nϵ
+

√
η2(R2 + Γ2)Γ2d

nb

)
(22)
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for all t simultaneously with probability at least 1−O(T · n−10).

Now, what remains is to obtain the tightest possible bound on the recursion from Lemma 22 via the summation of a
geometric sum. Since dist(U∗, Ut) = ∥(U∗)⊤⊥Ut∥2 ≤ 1, we have, for all t simultaneously

dist(U∗, Ut+1)

≤

(
1−

ησ2
min,∗E0

4

) 1
2

dist(U∗, Ut) + Õ

(
η(R+ Γ)Γd

√
kT

nϵ
+

√
η2(R2 + Γ2)Γ2d

nb

)

≤

(
1−

ησ2
min,∗E0

4

)T
2

dist(U∗, Ut)

+ Õ

T−1∑
t=0

(
1−

ησ2
min,∗E0

4

) t
2
(
η(R+ Γ)Γd

√
kT

nϵ
+

√
η2(R2 + Γ2)Γ2d

nb

)
≤

(
1−

ησ2
min,∗E0

4

)T
2

dist(U∗, Ut)

+ Õ

 1

1−
√
1− ησ2

min,∗E0/4

(
η(R+ Γ)Γd

√
kT

nϵ
+

√
η2(R2 + Γ2)Γ2d

nb

)
≤

(
1−

cησ2
min,∗

4

)T
2

dist(U∗, U0) + Õ

(
(R+ Γ)Γd

√
kT

nϵσ2
min,∗

+

√
(R2 + Γ2)Γ2d

nbσ4
min,∗

)

with probability at least 1−O(T · n−10), given that 1

1−
√

1− 1
x

≤ 2x for any x > 1 and since there exists c > 0 such that

E0 ≥ c. Selecting batch size b = ⌊m/2T ⌋ completes the proof of the lemma.

Lemma 35 (Adaptation of Theorem 4.2 (Jain et al., 2021)). Let X be a matrix with rows sampled from Di and y⃗ the vector
of its labels generated according to Assumption 6. Suppose that (x, y) with x ∼ Di is a data point independent of X with
label vector y. Take Ū to be any matrix with orthonormal columns and v̄ ∈ argminv∥v⊤Ū⊤X − y⃗∥22. Then

E
[
ℓ(v̄, Ū , (x, y))− ℓ(v∗, U∗, (x, y))

]
≤ Γ2∥(Ū Ū⊤ − I)U∗∥22 +

R2k

m
.

Proof. Assume that X ∼ Dmi is a data matrix with label vector y⃗ generated as in Assumption 6 using noise vector
ζ⃗ ∼ SG(R2)m. Let x ∼ Di be a data point that is independent of X . By definition of our loss function ℓ and data generation
method

Ex∼Di,ζ [ℓ(v, U, (x, y))] = Ex∼Di

[(
x⊤Uv − x⊤U∗v∗ + ζ

)2]
= (Uv − U∗v∗)

⊤ Ex∼Di

[
xx⊤

]
(Uv − U∗v∗) + E[ζ2]

= ∥Uv − U∗v∗∥22 + E[ζ2]

for any fixed U ∈ Rd×k, v ∈ Rk. Since v̄ ∈ argminv∥v⊤Ū⊤X − y⃗∥22 we have v̄ =
(
Ū⊤XX⊤Ū

)−1
Ū⊤Xy⃗, where this

24



Private Model Personalization Revisited

inverse exists by our assumption that k ≪ m. Then

E
[∥∥Ū v̄ − U∗v∗

∥∥2
2

]
= E

[∥∥∥Ū (Ū⊤XX⊤Ū
)−1

Ū⊤Xy⃗ − U∗v∗
∥∥∥2
2

]
= E

[∥∥∥Ū (Ū⊤XX⊤Ū
)−1

Ū⊤XX⊤U∗v∗ − U∗v∗ + Ū
(
Ū⊤XX⊤Ū

)−1
Ū⊤Xζ⃗

∥∥∥2
2

]
≤ E

[∥∥Ū Ū⊤U∗v∗ − U∗v∗
∥∥2
2

]
+
R2k

m

=
∥∥Ū Ū⊤U∗v∗ − U∗v∗

∥∥2
2
+
R2k

m

≤ Γ2
∥∥(Ū Ū⊤ − I)U∗∥∥2

2
+
R2k

m

where the first inequality follows from the fact that
(
Ū⊤XX⊤Ū

)−1
Ū⊤XX⊤Ū = I implies Ū⊤ =(

Ū⊤XX⊤Ū
)−1

Ū⊤XX⊤ by orthonormality of the columns of Ū and the expected mean square estimation error of
sub-Gaussian noise. Combining our two inequalities with E [ℓ(v∗, U∗, (x, y))] = E[ζ2] completes the proof.

Theorem (Restatement of Theorem 10). Suppose all conditions of Lemma 9 hold with η = 1
2Λ2 , T = Θ

(
Λ2 log(n3)

λ2

)
, and

that Assumption 4 holds as well. Then, U priv and V priv, the outputs of Algorithm 1, satisfy

L(U priv, V priv;D)− L(U∗, V ∗;D)

≤ Õ

(
(R2 + Γ2)Γ4Λ2d2k

n2ϵ2σ4
min,∗λ

2
+

(R2 + Γ2)Γ4Λ2d

nmσ4
min,∗λ

2

)

+
R2k

m

with probability at least 1−O(T · n−10). Furthermore, Algorithm 1 is (ϵ, δ)-user-level DP.

Proof. Via Lemma 9 and η ≤ 1
2σ2

max,∗

dist(U priv, U∗) ≤

(
1−

cησ2
min,∗

4

)T
2

dist(U0, U
∗) + Õ

(
(R+ Γ)Γd

√
kT

nϵσ2
min,∗

+

√
(R2 + Γ2)Γ2dT

nmσ4
min,∗

)
with probability at least 1−O(T ·n−10). Note that dist(UT , U∗) =

∥∥(UTU⊤
T − I)U∗

∥∥
2
. Applying Lemma 35 and plugging

our choice of T in this bound finishes the proof.

Theorem 36. (Theorem 4 (Tripuraneni et al., 2021)) Given a new user with a dataset Sn+1 of size m2 whose elements
sampled from distribution Dn+1 where assumptions 6 and 5 hold with ∥v∗n+1∥ ≤ Γ. Then if dist(U priv, U∗) ≤ δ and
m2 ≥ k logm2, let vpriv

n+1 = argminv∈Rk L̂(U priv, v;Sn+1), then we have

∥U∗v∗n+1 − U privvpriv
n+1∥2 ≤ Õ

(
Γ2δ2 +

R2k

m2

)
with probability at least 1−O(m−100

2 )

Corollary (Restatement of Corollary 11). Suppose all conditions of Theorem 10 hold. Consider a new client with a
dataset Sn+1 ∼ Dm

′

n+1, where Assumptions 5 and 6 hold with ∥v∗n+1∥2 ≤ Γ. Let U priv be the output of Algorithm 1 and
vpriv
n+1 = argminv∈Rk L̂(U priv, v;Sn+1), if m′ ≳ k logm′. We have

L(U priv, vpriv
n+1;Dn+1)− L(U∗, v∗n+1;Dn+1)

≤ Õ

(
(R2 + Γ2)Γ4Λ2d2k

n2ϵ2σ4
min,∗λ

2
+

(R2 + Γ2)Γ4Λ2d

nmσ4
min,∗λ

2
+
R2k

m′

)
with probability at least 1−O(T · n−10 +m′−100).
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Proof. From the proof in Lemma 35, we have

L(U priv, vpriv
n+1;Dn+1)− L(U∗, v∗n+1;Dn+1) ≤ ∥U∗v∗n+1 − U privvpriv

n+1∥2 + E[η2]− E[η2]

= ∥U∗v∗n+1 − U privvpriv
n+1∥2

Then by Lemma 9 and our choice of T , we obtain

dist(U priv, U∗) ≤ Õ

(
(R+ Γ)ΓdΛ

√
k

nϵσ2
min,∗λ

+

√
(R2 + Γ2)Γ2dΛ2

nmσ4
min,∗λ

2

)
Then we plug the bound of dist(U priv, U∗) into Theorem 36, and obtain

L(U priv, vpriv
n+1;Dn+1)− L(U∗, v∗n+1;Dn+1) ≤ ∥U∗v∗n+1 − U privvpriv

n+1∥2

≤ Õ

(
(R2 + Γ2)Γ4Λ2d2k

n2ϵ2σ4
min,∗λ

2
+

(R2 + Γ2)Γ4Λ2d

nmσ4
min,∗λ

2
+
R2k

m2

)
.

B.2 Private initialization results

Theorem 37 (Theorem 2.1 (Duchi et al., 2022)). Let M,M̂ ∈ Rd×d be symmetric matrices. Suppose p ∈ [k] for k a
positive integer with k < d. Denote by λp the p-th largest eigenvalue of M . Let A, Â be matrices with columns the top-k
eigenvectors of M,M̂ , respectively. Then, λk − λk+1 > 0 implies

dist(A, Â) ≤ 2∥M − M̂∥2
λk − λk+1

.

Proof. The theorem holds trivially when 2∥M−M̂∥2

λk−λk+1
> 1. So, we focus on the case 2∥M−M̂∥2

λk−λk+1
≤ 1.

Let λ̂p be the p-th largest eigenvalue of M̂ . By Weyl’s inequality and 2∥M−M̂∥2

λk−λk+1
≤ 1, we have

λ̂k+1 − λk+1 ≤ ∥M − M̂∥2 ≤
λk − λk+1

2
.

This and the assumption λk − λk+1 > 0 imply

λk+1 − λ̂k+1 ≥
λk − λk+1

2
> 0. (23)

By the Davis-Kahan theorem (Stewart, 1990)

∥A⊤
⊥Â∥2 ≤

2∥M − M̂∥2
λk − λ̂k+1

. (24)

Combining (23) and (24) along with ∥A⊤
⊥Â∥2 = dist(A, Â) finishes the proof.

We use a slight adaptation of Theorem L.1 from (Duchi et al., 2022). The statement of the result below is different from
the original result by a single step. This step is where the authors use the Davis-Kahan theorem to obtain a bound on
the principal angle. We instead state their Theorem L.1 before applying Davis-Kahan for use in our private initialization
guarantee.
Theorem 38 (Adaptation of Theorem L.1 (Duchi et al., 2022)). Let S = (S1, . . . , Sn) be a sequence of datasets where
Si = {(xi,1, yi,1), . . . , (xi,m/2, yi,m/2)} are sampled according to Assumptions 5 and 6 for each i ∈ [n]. Define Zi =

2
m(m−1)

∑
j1,j2∈[m/2]:j1 ̸=j2 yi,j1yi,j2xi,j1x

⊤
i,j2

, Z = 1
n

∑n
i=1 Zi, and Z̄ = 1

n

∑n
i=1 E [Zi]. Then, we have

∥Z − Z̄∥2 ≤ O

(
log3(nd)

√
(R2 + Γ2)Γ2d

mn

)
with probability at least 1−O(n−10).
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Algorithm 2 Private Initialization for Private FedRep

Require: Si = {(xi,1, yi,1), . . . , (xi,m/2, yi,m/2)} data for users i ∈ [n], privacy parameters ϵ, δ, clipping bound ψinit, rank
k

1: Let σ̂init ←
ψinit

√
log( 1.25

δ )
nϵ

2: Let ξinit ← N d×d(⃗0, σ̂2
init)

3: for Clients i ∈ [n] in parallel do
4: Send Zi ← 2

m(m−1)

∑
j1 ̸=j2 yi,j1yi,j2xi,j1x

⊤
i,j2

to server
5: end for
6: Server aggregates Zi and add noise for privatization

Ẑ =
1

n

n∑
i=1

clip(Zi, ψinit) + ξinit

7: Server computes
UinitDU

⊤
init ← rank-k-SVD(Ẑ)

8: Return: Uinit

Lemma (Restatement of Lemma 12). Suppose that Assumptions 5 and 6 hold. Let Uinit be the output of Algorithm 2. Then,
by setting ψinit = Õ((R2 + Γ2)d), we have

dist(Uinit, U
∗) ≤ Õ

(
(R2 + Γ2)d3/2

nϵσ2
min,∗

+

√
(R2 + Γ2)Γ2d

mnσ4
min,∗

)

with probability at least 1−O(n−10). Furthermore, Algorithm 2 is (ϵ, δ) user-level DP.

Proof. The privacy guarantee follows directly from the guarantee of Gaussian mechanism. For our utility guarantee, we
condition on the event

E =
{
|yi,j | ≤ O((Γ +R) log(mn)),

∣∣xpi,j∣∣ ≤ O (√log dmn
)

for all (i, j, p) ∈ [n]× [m]× [d] simultaneously
}

where xpi,j represents the p-th entry of xi,j . The condition E holds with probability at least 1−O(n−10).

Conditioning on event E , we obtain
∥Zi∥F ≤ Õ

(
(R2 + Γ2)d

)
and the clipping will not change the gradient norm. Let Z = 1

n

∑n
i=1 Zi, Z̄ = 1

n

∑n
i=1 E [Zi]. Via Corollary 27 and the

fact that the clipping does not affect the bound, we have

∥Ẑ − Z∥2 = ∥ξinit∥2 ≤ O
(√

dσ̂init

)
= O

(
(R2 + Γ2)d3/2

√
log n log2(dmn)

nϵ

)
(25)

with probability at least 1− 2e−10 logn.

By Theorem 38, we have

∥Z − Z̄∥2 ≤ O

(
log3(nd)

√
(R2 + Γ2)Γ2d

mn

)
(26)

with probability over 1−O(n−10). Therefore, by (25) and (26), we have

∥Ẑ − Z̄∥2 ≤ ∥Ẑ − Z∥2 + ∥Ẑ − Z∥2

≤ O

(
(R2 + Γ2)d3/2

√
log n log2(dmn)

nϵ
+ log3(nd)

√
(R2 + Γ2)Γ2d

mn

)
(27)

27



Private Model Personalization Revisited

with probability at least 1 − O(n−10) via the union bound. Finally, using Theorem 37 and the fact that Z̄ =
1
n

∑n
i=1(U

∗v∗i )(U
∗v∗i )

⊤ with (27), we obtain

dist(Uinit, U
∗) ≤ 2∥Ẑ − Z̄∥2

σ2
min,∗

≤ O

(
(R2 + Γ2)d3/2

√
log n log2(dmn)

nϵσ2
min,∗

+ log3(nd)

√
(R2 + Γ2)Γ2d

mnσ4
min,∗

)

with probability at least 1−O(n−10).

B.3 Auxiliary lemmas

The results of this section include multiple adaptations of those from (Collins et al., 2021) such as Lemma 43 and Lemma 33.
Our proofs, when they are adaptations, are substantially more complex due to the addition of label noise and differential
privacy to design Private FedRep (Algorithm 1).

This section has the following structure. We first characterize the solution of the local minimization step of Algorithm 1 in
Lemma 39. Next, we introduce in Proposition 40 terms quantifying the label noise terms that periodically appear throughout
our proofs. Using this proposition, we give a bound on the error from estimating v∗1 , . . . , v

∗
n incurred during the local

minimization step of Algorithm 1 in Lemma 41. Using similar methods, in Lemma 43 we bound the spectral distance
of the linear operator that defines the gradient step of Algorithm 1 from the identity operator. Finally, using all of these
intermediate results allows us to prove Lemma 33, a key lemma in our main proof of Section B.1.

Take It, I ′t to be the index sets of our batches in Algorithm 1. Let Bi,t = {(xi,j , yi,j) : j ∈ It} and B′
i,t = {(x′i,j , y′i,j) :

j ∈ I ′t}. We omit iterations t on our quantities for ease of notation. Further, we reindex the elements of Bi,t, B′
i,t to

Bi,t = {(xi,j , yi,j) : j ∈ [b]} and B′
i,t = {(x′i,j , y′i,j) : j ∈ [b]}. Let Ai,j = eix

⊤
i,j , A

′
i,j = eix

′⊤
i,j for each (i, j) ∈ [n]×It.

Define A : Rn×d → Rnb where A(M) = (⟨Ai,j ,M⟩F )(i,j)∈[n]×It
for all matrices M ∈ Rn×d. We analogously define the

operator A′ with respect to the matrices A′
i,j .

Denote (A′)† : Rnb → Rn×d the adjoint operator of A′ defined as (A′)†(M) =
∑n
i=1

∑b
j=1⟨A′

i,j ,M⟩A′
i,j . In this sense

(A)†A : Rn×d → Rn×d is a single operator. Furthermore, recall that ξt ∼ N (0, σ̂2)d×k and choose σ̂ = Õ
(

(R+Γ)Γ
√
dk

nϵ

)
.

Define the following recursion from Algorithm 1.

Algorithm 1 recursion

Vt+1 ← argmin
V ∈Rn×k

1

nb

∥∥∥A(V ∗(U∗)⊤ − V (Ut)
⊤) + ζ⃗

∥∥∥2
2

Ût+1 ← Ut −
η

nb

(
(A′)†A′(Vt+1(Ut)

⊤ − V ∗(U∗)⊤)
)⊤
Vt+1

− 2η

nb
∇U ⟨A′(Vt+1(Ut)

⊤), ζ⃗⟩+ ηξt

Ut+1, Pt+1 ← QR(Ût+1).

(28)

We will now state a theorem that gives an analytic form for Vt+1. Suppose p, q ∈ [d]. Let uq,t, u∗q be the q-th column of
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Ut, U
∗, respectively. Define

Gp,q =
1

b

n∑
i=1

b∑
j=1

(
Ai,jup,tu

⊤
q,t(Ai,j)

⊤) ∈ Rn×n

Cp,q =
1

b

n∑
i=1

b∑
j=1

(
Ai,jup,t(u

∗
q)

⊤(Ai,j)
⊤) ∈ Rn×n

Dp,q = ⟨up,t, u∗q⟩In×n ∈ Rn×n

Wp =
2

b

n∑
i=1

b∑
j=1

ζi,jAi,jup,t ∈ Rn.

(29)

Take G,C,D to be nk × nk block matrices with blocks Gp,q, Cp,q, Cp,q and W an nk-dimensional vector created by
concatenating Wp for each p ∈ [k]. Denote ṽ∗ = Vec(V ∗), a column vector of dimension nk.

For the following lemma we define

F = [(G−1((GD − C)ṽ∗ +W ))1 . . . (G
−1((GD − C)ṽ∗ +W ))k] ∈ Rn×k (30)

where (G−1((GD−C)ṽ∗ +W ))p is the p-th n-dimensional block of the nk-dimensional vector G−1((GD−C)ṽ∗ +W ).

Lemma 39. The matrix Vt+1 satisfies
Vt+1 = V ∗(U∗)⊤Ut − F

at each iteration t+ 1 for the error matrix F ∈ Rn×k.

Proof. Note that Vt+1 minimizes the function F (V,Ut) = 2
nb

∥∥A(V ∗(U∗)⊤ − V (Ut)
⊤) + ζ

∥∥2
2

and so ∇vpF (Vt+1, Ut) =

0 for vp the p-th column of V for each p ∈ [k]. Recall our definition of Ai,j = eix
⊤
i,j for ei the i-th n-dimensional standard

basis vector. Given that∥∥A(V ∗(U∗)⊤ − V (Ut)
⊤) + ζ

∥∥2
2
=
∥∥A(V ∗(U∗)⊤ − V (Ut)

⊤)
∥∥2
2
+ 2⟨A(V ∗(U∗)⊤ − V (Ut)

⊤), ζ⟩+ ∥ζ∥22

we have for uq,t the q-th column of Ut

0 = ∇vpF (Vt+1, Ut)

=
2

nb

k∑
q=1

n∑
i=1

b∑
j=1

(
u⊤q,t(Ai,j)

⊤vq,t+1 − (u∗q)
⊤(Ai,j)

⊤v∗q
)
Ai,jup,t +

4

nb
∇vp⟨A(V ∗(U∗)⊤ − Vt+1(Ut)

⊤), ζ⟩.

Let (M)∗,p be the p-th column of a matrix M . Then

∇vp⟨A(V ∗(U∗)⊤ − Vt+1(Ut)
⊤), ζ⟩ = −∇vp⟨A(Vt+1(Ut)

⊤), ζ⟩
= −∇vp⟨(⟨Ai,j , Vt+1(Ut)

⊤⟩F )(i,j)∈[n]×It
, ζ⟩

= −∇vp
∑

(i,j)∈[n]×[b]

ζi,j⟨Ai,j , Vt+1(Ut)
⊤⟩F

= −∇vp

〈 ∑
(i,j)∈[n]×[b]

ζi,jAi,j , Vt+1(Ut)
⊤

〉
F

= −∇vp

〈 ∑
(i,j)∈[n]×[b]

ζi,jAi,jUt, Vt+1

〉
F

=

− ∑
(i,j)∈[n]×[b]

ζi,jAi,jUt


∗,p
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the p-th column of the matrix −
∑

(i,j)∈[n]×[b] ζi,jAi,jUt ∈ Rn×k. Hence

1

b

k∑
q=1

n∑
i=1

b∑
j=1

(
Ai,jup,tu

⊤
q,t(Ai,j)

⊤) vq,t+1 =
1

b

k∑
q=1

n∑
i=1

b∑
j=1

(
Ai,jup,t(u

∗
q)

⊤(Ai,j)
⊤) v∗q + 2

b

n∑
i=1

b∑
j=1

ζi,jAi,jup,t.

Then, for ṽt+1 = (v⊤1,t+1, . . . , v
⊤
k,t+1)

⊤ ∈ Rnk and ṽ∗ = ((v∗1)
⊤, . . . , (v∗k)

⊤)⊤ ∈ Rnk we have

ṽt+1 = G−1C(ṽ∗ +W ) = Dṽ∗ −G−1((GD − C)ṽ∗ +W )

conditioned on the event that G−1 exists. We denote F = [(G−1((GD − C)ṽ∗ + W ))1 . . . (G
−1((GD − C)ṽ∗ +

W ))k] ∈ Rn×k where (G−1((GD − C)ṽ∗ + W ))p is the p-th n-th dimensional block of the nk-dimensional vector
G−1((GD − C)ṽ∗ +W ). Recalling the definition of D, we have that Vt+1 = V ∗(U∗)⊤Ut − F .

In order to evaluate the final bounds with label noise included we must bound the following terms

1

b
∇V ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩

and
1

nb
∇U ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩

in spectral norm.

Proposition 40. With probability 1−O(n−11), we have

(1)
∥∥∥∥1b∇V ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩
∥∥∥∥
2

≤
√

26R2n log(nb)

b
.

Furthermore, with probability at least 1−O(n−10), we have

(2)
∥∥∥∥ 1

nb
∇U ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩
∥∥∥∥
2

≤ 4

3

√
2 · 15R2Γ2d log n

nb
.

Proof. Claim 1: With probability 1− e−11 log(nb), we have∥∥∥∥1b∇V ⟨A(Vt+1(Ut)
⊤), ζ⃗⟩

∥∥∥∥
2

≤
√

26R2n log(nb)

b
.

Note that for any given p ∈ [n] and q ∈ [k](
1

b
∇V ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩
)
p,q

=

(
1

b
∇V ⟨(⟨eix⊤i,j , Vt+1(Ut)

⊤⟩F )(i,j)∈[n]×[m], ζ⃗⟩
)
p,q

=

1

b

∑
(i,j)∈[n]×[m]

ζi,j∇V (⟨eix⊤i,j , Vt+1(Ut)
⊤⟩F )(i,j)


p,q

=

1

b

∑
(i,j)∈[n]×[m]

ζi,j∇V (⟨eix⊤i,jUt, Vt+1⟩F )(i,j)


p,q

=

1

b

∑
(i,j)∈[n]×[m]

ζi,jeix
⊤
i,jUt


p,q

=
1

b

b∑
j=1

ζp,j⟨xp,j , uq,t⟩
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for uq,t the q-th column of Ut. Observe that ζp,j is independent of both xp,j and uq,t for all j ∈ [m]. Condition on the event

E = {|ζi,j | ≤ R
√
26 log(nb) for all (i, j) ∈ [n]× [m]}

which has probability at least 1− e−13 log(nb). Via this conditioning the random variable ζp,j⟨xp,j , uq,t⟩ is R
√

26 log(nb)-
sub-Gaussian given that ⟨xp,j , uq,t⟩ is 1-sub-Gaussian. Note as well ζp,j⟨xp,j , uq,t⟩ is mean zero and independent for each

j. So, 1
b

∑b
j=1 ζp,j⟨xp,j , uq,t⟩ is centered,

√
26R2 log(nb)

b -sub-Gaussian, and independent for every p.

Let σ̄2 be the variance of 1
b

∑b
j=1 ζp,j⟨xp,j , uq,t⟩, which has σ̄ ≤

√
26R2 log(nb)

b . Then,
(

1
mσ̄

∑b
j=1 ζp,j⟨xp,j , uq,t⟩

)
q∈[k]

has covariance matrix Ik. By the one-sided version of Theorem 26

σmax

(
1

mσ̄
∇V ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩
)
≤ O

(√
n+
√
k + w

)
with probability at least 1− e−α2

. Multiplying through by σ̄ and setting α =
√
n, we have∥∥∥∥1b∇V ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩
∥∥∥∥
2

≤
√

26R2n log(nb)

b

with probability at least 1− e−n conditioned on the event E . So, in general∥∥∥∥1b∇V ⟨A(Vt+1(Ut)
⊤), ζ⃗⟩

∥∥∥∥
2

≤
√

26R2n log(nb)

b

with probability at least 1− e−n − e−12 log(nb) ≥ 1− e−11 log(nb). This proves our first claim.

Claim 2: With probability at least 1−O(n−10), we have∥∥∥∥ 1

nb
∇U ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩
∥∥∥∥
2

≤ 4

3

√
2 · 15R2Γ2d log n

nb
.

Note that
1

nb
∇U ⟨A(Vt+1(Ut)

⊤), ζ⃗⟩ = ∇U

〈
1

nb

n∑
i=1

b∑
j=1

ζi,jAi,j , Vt+1(Ut)
⊤

〉
F

= ∇U

〈
1

nb

n∑
i=1

b∑
j=1

ζi,j(Vt+1)
⊤Ai,j , (Ut)

⊤

〉
F

= ∇U

〈
1

nb

n∑
i=1

b∑
j=1

ζi,j(Ai,j)
⊤Vt+1, Ut

〉
F

=
1

nb

n∑
i=1

b∑
j=1

ζi,j(Ai,j)
⊤Vt+1.

Observe that since (Ai,j)
⊤ is a matrix with one non-zero column x′i,j , we have (Ai,j)

⊤Vt+1 = x′i,j(vi,t+1)
⊤ where vi,t+1

is the i-th row of Vt+1. Let N d and N k be Euclidean 1
4 -covers of the d and k-dimensional unit spheres, respectively. Then,

by Lemma 23 ∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

ζi,j(Ai,j)
⊤Vt+1

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

ζi,jx
′
i,j(vi,t+1)

⊤

∥∥∥∥∥∥
2

=
4

3
max

a∈Nd,b∈Nk
a⊤

 1

nb

n∑
i=1

b∑
j=1

ζi,jx
′
i,j(vi,t+1)

⊤

 b

=
4

3
max

a∈Nd,b∈Nk

 1

nb

n∑
i=1

b∑
j=1

ζi,j⟨a, x′i,j⟩⟨vi,t+1, b⟩

 .
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Let ∥vi,t+1∥2 ≤ 5
4Γ for all i with probability at least 1−O(n−14) via Proposition 42. As well, we condition on the event

E =

{
∥vi,t+1∥2 ≤

5

4
Γ for all i simultaneously

}
which has probability P [E ] ≥ 1−O(n−13).

Since |⟨vi,t+1, b⟩| ≤ 25
16Γ by Cauchy-Schwarz, the random variable ζi,j⟨a, x′i,j⟩⟨vi,t+1, b⟩ is sub-exponential. Furthermore,

the variable 1
nbζi,j⟨a, x

′
i,j⟩⟨vi,t+1, b⟩ has sub-exponential norm bounded by 125RΓ

64nb ≤
2RΓ
nb and is mean zero. Following

from Lemma 22 conditioned on E and for nb ≥ 15d log n, we have

4

3nb

n∑
i=1

b∑
j=1

ζi,j⟨a, x′i,j⟩⟨vi,t+1, b⟩ ≤
4

3

√
2 · 15R2Γ2d log n

nb

with probability at least 1− e−15d logn. Via the union bound over N d,N k∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

ζi,j(Ai,j)
⊤Vt+1

∥∥∥∥∥∥
2

≤ 4

3
max

a∈Nd,b∈Nk

1

nb

n∑
i=1

b∑
j=1

ζi,j⟨a, x′i,j⟩⟨vi,t+1, b⟩

≤ 4

3

√
2 · 15R2Γ2d log n

nb

with probability at least 1− 9d+ke−15d logn ≥ 1− e−10d logn. Let E be the event

E =


∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

ζi,j(Ai,j)
⊤Vt+1

∥∥∥∥∥∥
2

≤ 4

3

√
2 · 15R2Γ2d log n

nb

 .

Applying the fact that P[Ec] ≤ P[Ec|E ] + P[Ec] ≤ e−10d logn +O(n−13) = O(n−10) finishes the second claim.

Recall the following definitions given prior to Lemma 39 where Ai,j = eix
⊤
i,j . Denote

Gp,q =
1

b

n∑
i=1

b∑
j=1

(
Ai,jup,tu

⊤
q,t(Ai,j)

⊤) ∈ Rn×n

Cp,q =
1

b

n∑
i=1

b∑
j=1

(
Ai,jup,t(u

∗
q)

⊤(Ai,j)
⊤) ∈ Rn×n

Dp,q = ⟨up,t, u∗q⟩In×n ∈ Rn×n

Wp =
2

b

n∑
i=1

b∑
j=1

ζi,jAi,jup,t ∈ Rn.

(31)

Take G,C,D to be nk × nk block matrices with blocks Gp,q, Cp,q, Cp,q and W an nk-dimensional vector created by
concatenating Wp for each p ∈ [k]. Let Gi, Ci, Di be the k × k matrices formed by taking the i-th diagonal element from
each Gp,q, Cp,q, Dp,q , respectively.

Lemma 41. Let τk = cτ

√
35k logn

b for some c > 0. Then

(1) ∥G−1∥2 ≤
1

1− τk
with probability at least 1−O(n−13).

Furthermore,

(2) ∥F∥F ≤
ντk

1− τk
∥V ∗∥2dist(Ut, U∗) +

√
26R2nk log(nb)

(1− τk)2b

with probability at least 1−O(n−11).
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Proof. Claim 1: We have

∥G−1∥2 ≤
1

1− τk
with probability at least 1− e−13k logn.

Let a be a normalized vector in nk dimensions. Define ai ∈ Rk to be the sub-vector of a constructed by choosing each
((p− 1)n+ i)-th component for p = 1, . . . , k. Observe that

σmin(G) = min
a:∥a∥2=1

a⊤Ga

= min
a:∥a∥2=1

n∑
i=1

ai
⊤
Giai

≥ min
i∈[n]

σmin(G
i).

Let Πi = 1
b

∑b
j=1 xi,jx

⊤
i,j . By our definition below (31), we have Gi = U⊤

t ΠiUt. Note that 1√
b
U⊤
t xi,j is 1√

b
-sub-Gaussian

and independent for each i, j. Assume b ≥ k. Then, using a one-sided form of Theorem 26, there exists a constant cτ > 0
where

σmin(U
⊤
t ΠiUt) ≥ 1− cτ

(√
k

b
+

w√
b

)
with probability at least 1− e−α2

. Setting α =
√
14k log n gives us

σmin(G
i) ≥ 1− τk

with probability 1− e−14k logn for τk as in the lemma statement. Via the union bound over i ∈ [n]

σmin(G) ≥ 1− τk

with probability at least 1− e−13k logn.

Claim 2: We have

∥F∥F ≤
ντk

1− τk
∥V ∗∥2dist(Ut, U∗) +

√
26R2nk log(nb)

(1− τk)2b

with probability at least 1− 2e−13k logn − e−11 log(nb).

The proof follows from bounding Hi = GiCi −Di for each i ∈ [n] in spectral norm with Lemma 22 and exploiting the
definition of our parameter ν =

maxi∈[n]∥v∗i ∥2

σmax,∗
.

Let Xi be the design matrix for xi,1, . . . , xi,b. Note that, by the definitions below (31), we have

GiDi − Ci = (Ut)
⊤ΠiUt(Ut)

⊤
t U

∗ − U⊤ΠiU∗ =
1

b
(Ut)

⊤X⊤
i Xi(Ut(Ut)

⊤ − Id)U∗.

Then

∥(GD − C)Vec(V ∗)∥22 =

n∑
i=1

∥Hi(v∗i )
⊤∥22

≤
n∑
i=1

∥Hi∥22∥v∗i ∥22

≤ ν2

n
∥V ∗∥22

n∑
i=1

∥Hi∥22.

and so

∥(GD − C)Vec(V ∗)∥22 ≤
ν2

n
∥V ∗∥22

n∑
i=1

∥Hi∥22. (32)
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We now bound each Hi using concentration inequalities. Define A = 1√
b
XiUt and B = 1√

b
Xi(Ut(Ut)

⊤ − Id)U∗. We
denote the rows of A and B with ai,j = 1√

b
(Ut)

⊤xi,j and bi,j = 1√
b
U∗(Ut(Ut)

⊤ − Id)xi,j , respectively. Note that, forN k

a Euclidean 1
4 -cover of the unit sphere in k dimensions, we have

∥B⊤A∥2 ≤ 2 max
u,u′∈Nk

u⊤B⊤Au′

= 2 max
u,u′∈Nk

u⊤

 b∑
j=1

bi,ja
⊤
i,j

u′

= 2 max
u,u′∈Nk

b∑
j=1

⟨u, bi,j⟩⟨ai,j , u′⟩

via Lemma 23. Now, fix some (u, u′) ∈ N k ×N k. Then, ai,j = 1√
b
(Ut)

⊤xi,j and bi,j = 1√
b
U∗(Ut(Ut)

⊤ − Id)xi,j . So,
⟨u, ai,j⟩ is 5

4
√
b
-sub-Gaussian and ⟨bi,j , u′⟩ is 5

4
√
b
dist(Ut, U∗)-sub-Gaussian. This means their product is 25

16bdist(Ut, U∗)-
sub-exponential.

Now, from Lemma 22, there exists c′ > 0 such that

P
[
∥Hi∥22 ≥ 2s

]
≤ P

 max
u,u′∈Nk

b∑
j=1

⟨u, bi,j⟩⟨ai,j , u′⟩ ≥ s


≤ 92ke

−c′bmin
(

s2

2.5dist2(Ut,U
∗)
, s
1.6dist(Ut,U

∗)

)
.

Let τ > 0 satisfy s
1.6dist(Ut,U∗) = max(τ, τ2). Then

τ2 = min

(
s2

2.5dist2(Ut, U∗)
,

s

1.6dist(Ut, U∗)

)
.

Picking τ2 = 14k logn
c′b and assuming that b ≥ 11k log n ensures

P

∥Hi∥2 ≥

√
35dist2(Ut, U∗)k log n

b

 ≤ e−14k logn (33)

for any fixed i ∈ [n]. So

P
[
∥(GD − C)Vec(V ∗)∥22 ≥ 35ν2∥V ∗∥22dist2(Ut, U∗)

k log n

b

]
≤ P

[
ν2

n
∥V ∗∥22

n∑
i=1

∥Hi∥22 ≥ 35ν2∥V ∗∥22dist2(Ut, U∗)
k log n

b

]

≤ P

[
ν2

n

n∑
i=1

∥Hi∥22 ≥ 35ν2dist2(Ut, U∗)
k log n

b

]

≤ nP
[
∥H1∥22 ≥ 35dist2(Ut, U∗)

k log n

b

]
≤ e−13k logn

where the first inequality follows from (32) and the last inequality follows from (33). The rest of the proof follows from
the fact that F = [(G−1((GD − C)ṽ∗ +W ))1 . . . (G

−1((GD − C)ṽ∗ +W ))k]. That is, we bound G−1[W1, . . . ,Wk]
via an application of Claim 1 along with Proposition 40 part (1). This gives a bound on the norm of F = [G−1((GD −
C)ṽ∗)1 . . . G

−1((GD − C)ṽ∗)k] +G−1[W1, . . . ,Wk] by the union bound.
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Let fi be the i-th row of F in row vector form. Also, recall that Gi, Ci, Di are the k × k matrices formed by taking the i-th
diagonal element from each Gp,q, Cp,q, Dp,q as in (31).

Proposition 42. Suppose Assumption 31 holds. For all t ∈ [T − 1], we have that vi,t+1 from Algorithm 1 satisfies

∥vi,t+1∥2 ≤
5

4
Γ

with probability at least 1−O(n−14) for all i ∈ [n].

Proof. By Lemma 39, we have (as row vectors) vi,t+1 = v∗i (U
∗)⊤Ut − fi. This implies

∥vi,t+1∥2 ≤ ∥v∗i ∥2∥(U∗)⊤Ut∥2 + ∥fi∥2

and so ∥vi,t+1∥2 ≤ Γ + ∥fi∥2. Fix i ∈ [n] and assume that ντk < 1. This is not difficult to achieve when using

Assumption 31. Recall that we defined τk = cτ

√
35k logn

b . Now, denoting the i-th row of a matrix with (M)i,∗

∥fi∥2 =

∥∥∥∥∥∥∥Gi
−1

(GiCi −Di)(v∗i )
⊤ +

1

b

n∑
i=1

b∑
j=1

ζi,jG
i−1

Ai,jUt

⊤

i,∗

∥∥∥∥∥∥∥
2

≤ ∥Gi−1∥2∥(GiCi −Di)(v∗i )
⊤∥2 + ∥Gi

−1∥2

∥∥∥∥∥∥∥
1

b

b∑
j=1

ζi,jx
⊤
i,jUt

⊤

i,∗

∥∥∥∥∥∥∥
2

≤ ντk
1− τk

∥v∗i ∥2 dist(Ut, U∗) +

√
40R2k log n

(1− τk)2b

≤ ντk
1− τk

Γ +

√
40R2k log n

(1− τk)2b

with probability at least 1− 2e−14k log(n) − e−14 log(nb) via the argument of Lemma 41 part (1), and the same arguments as
Lemma 41 part (2) and Proposition 40 part (1) applied to the vectors Gi−1

(GiCi −Di)(v∗i )
⊤ and

(
1
b

∑b
j=1 ζi,jx

⊤
i,jUt

)
i,∗

.

Now, assuming that m ≥ 4000c2τ
max{R2,1}·max{Γ2,1}γ4k log2 n

E2
0σ

2
max,∗

T and m ≥ 4000R
2k
Γ2 T log(nm), we have

ντk
1− τk

Γ +

√
40R2k log n

(1− τk)2b
≤ Γ

4
.

Taking the union bound over all i finishes the result.

Lemma 43. Let τ ′k = 5
√
13
√

Γ4d logn
nb . Suppose Assumption 31 holds. Then, we have, for any iteration t, that

1

n

∥∥∥∥∥
(
1

b
(A′)†A′(Vt+1(Ut)

⊤ − V ∗(U∗)⊤)− (Vt+1(Ut)
⊤ − V ∗(U∗)⊤)

)⊤

Vt+1

∥∥∥∥∥
2

≤ τ ′kdist(Ut, U∗) +
3RΓ2

√
15 · 24dk log(n) log(nb)

(nb)
3
4

with probability at least 1−O(n−10).

Proof. Take W = (W1, . . . ,Wk)
⊤ ∈ Rnk where Wp = 2

b

∑n
i=1

∑b
j=1 ζi,jAi,jup,t. Recall that F = [(G−1((GD −

C)ṽ∗ +W ))1 . . . (G
−1((GD −C)ṽ∗ +W ))k] ∈ Rn×k by (30). Define W̃ = [G−1W1 . . . G

−1Wk]. Let Qt be the matrix
defined via rows qi where

q⊤i = Ut(Ut)
⊤U∗(v∗i )

⊤ − Ut(fi)⊤ − U∗(v∗i )
⊤.
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Finally, define by Q̃t the matrix with rows q̃i,t = qi,t − W̃i,∗(Ut)
⊤ where W̃i,∗ is the i-th row of W̃ . Note that

1

n

∥∥∥∥∥
(
1

b
(A′)†A′(Vt+1(Ut)

⊤ − V ∗(U∗)⊤)− (Vt+1(Ut)
⊤ − V ∗(U∗)⊤)

)⊤

Vt+1

∥∥∥∥∥
2

≤ 1

n

∥∥∥∥∥
(
1

b
(A′)†A′(Q̃t)− Q̃t

)⊤

Vt+1

∥∥∥∥∥
2

+
1

n

∥∥∥∥∥
(
1

b
(A′)†A′(W̃i(Ut)

⊤)− W̃i(Ut)
⊤
)⊤

Vt+1

∥∥∥∥∥
2

.

(34)

The lemma follows from bounding the right-hand terms individually.

Let τ ′k = 5
√
13
√

Γ4d logn
nb .

Claim 1: We have
1

n

∥∥∥∥∥
(
1

b
(A′)†A′(Q̃t)− Q̃t

)⊤

Vt+1

∥∥∥∥∥
2

≤ τ ′kdist(Ut, U∗)

with probability at least 1− e−10d logn − 2e−13k logn.

Note that
∥q̃i∥2 ≤ ∥Ut(Ut)⊤U∗(v∗i )

⊤ − U∗(v∗i )
⊤∥2 + ∥Ut(fi)⊤ − Ut(W̃i)

⊤∥2
≤ Γdist(Ut, U∗) + ∥fi − W̃i∥2.

Now
∥fi − W̃i∥2 = ∥Gi−1∥2∥GiDi − Ci∥2∥(v∗i )⊤∥2

≤ dist(Ut, U∗)
νΓτk
1− τk

with probability at least 1−2e−13k logn via an argument identical to Lemma 41 part (2) without the label noise term. Choose
c0 ≥ 1000c2 in Assumption 31 to ensure ντk ≤ 1

4 . Then ∥fi − W̃i∥2 ≤ Γdist(Ut, U∗) and hence ∥q̃i∥2 ≤ 2Γdist(Ut, U∗)
with probability at least 1− 2e−13k logn.

By Proposition 42, we have ∥vi,t+1∥2 ≤ 5
4Γ with probability at least 1−O(n−14) for each i . Observe

1

nb

(
(A′)†A′(Q̃t)− Q̃t

)⊤
Vi,t+1 =

1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , q̃i,t⟩x′i,j(vi,t+1)

⊤ − q̃i,t(vi,t+1)
⊤) .

We first condition on the event

E =

{
∥q̃i∥2 ≤ 2Γdist(Ut, U∗) and ∥vi,t+1∥2 ≤

5

4
Γ for all i ∈ [n]

}
which has probability at least 1−O(n−10) by the union bound. Define the Euclidean 1

4 -covers of the d and k-dimensional
unit spheres N d and N k, respectively. Via Lemma 23∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , q̃i,t⟩x′i,j(vi,t+1)

⊤ − q̃i,t(vi,t+1)
⊤)∥∥∥∥∥∥

2

≤ 4

3
max

a∈Nd,b∈Nk

1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , q̃i,t⟩⟨a, x′i,j⟩⟨vi,t+1, b⟩ − ⟨a, q̃i,t⟩⟨vi,t+1, b⟩

)
.

The variable ⟨x′i,j , q̃i,t⟩ is 2Γdist(Ut, U∗)-sub-Gaussian and ⟨a, x′i,j⟩ is 5
4 -sub-Gaussian via Proposition 18. This means

⟨x′i,j , q̃i,t⟩⟨a, x′i,j⟩ is sub-exponential with norm 5
2Γdist(Ut, U∗). Then, the variable 1

nb ⟨x
′
i,j , q̃i,t⟩⟨a, x′i,j⟩⟨vi,t+1, b⟩ is

sub-exponential with norm
5Γ

nb
dist(Ut, U∗)∥v∗i ∥2 ≤

5Γ2

nb
dist(Ut, U∗)
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given that we have conditioned on E . Note that the variables
(
⟨x′i,j , q̃i,t⟩x′i,j(vi,t+1)

⊤ − q̃i,t(vi,t+1)
⊤) are centered.

Furthermore, due to our conditioning we can concentrate these variables with respect to the randomness x′i,j since they are
independent of q̃i,t, vi,t+1. So, by Lemma 22 there exists a constant c′ > 0 where

P

∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , q̃i,t⟩x′i,j(vi,t+1)

⊤ − q̃i,t(vi,t+1)
⊤)∥∥∥∥∥∥

2

≥ 2s

∣∣∣∣∣∣E


≤ 9d+k exp

(
−c′nbmin

(
s2

52Γ4dist(Ut, U∗)2
,

s

5Γ2dist(Ut, U∗)

))
.

(35)

From (35) we denote τ2 = min
(

s2

52Γ4dist(Ut,U∗)2 ,
s

5Γ2dist(Ut,U∗)

)
and further set τ2 = 13(d+k) logn

c′nb . If nb ≥ 13(d+k) logn
c′ ,

then

P

∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , q̃i,t⟩x′i,j(vi,t+1)

⊤ − q̃i,t(vi,t+1)
⊤)∥∥∥∥∥∥

2

≥ 5
√
13dist(Ut, U∗)

√
Γ4d log n

nb

∣∣∣∣∣∣E


≤ 9d+ke−13(d+k) logn ≤ e−10d logn.

Recall that P[E ] ≥ 1−O(n−10) . Therefore, we have

P

∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , q̃i,t⟩x′i,j(vi,t+1)

⊤ − q̃i,t(vi,t+1)
⊤)∥∥∥∥∥∥

2

≥ 5
√
13dist(Ut, U∗)

√
Γ4d log n

nb


≤ e−10d logn +O(n−10) = O(n−10).

(36)

This proves Claim 1.

Claim 2: We have

1

n

∥∥∥∥∥
(
1

b
(A′)†A′(W̃i(Ut)

⊤)− W̃i(Ut)
⊤
)⊤

Vt+1

∥∥∥∥∥
2

≤
3RΓ2

√
15 · 24dk log(n) log(nb)

(nb)
3
4

with probability at least 1−O(n−10).

Observe
1

nb

(
(A′)†A′(W̃i(Ut)

⊤)− W̃i(Ut)
⊤
)⊤

Vt+1

=
1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , W̃i(Ut)

⊤⟩x′i,j(vi,t+1)
⊤ − W̃i(Ut)

⊤(vi,t+1)
⊤
)
.

Note that the random variables ⟨x′i,j , W̃i(Ut)
⊤⟩x′i,j(vi,t+1)

⊤− W̃i(Ut)
⊤(vi,t+1)

⊤ have mean zero since x′i,j and W̃i(Ut)
⊤

are independent along with E
[
W̃i(Ut)

⊤
]
= 0⃗. Using a covering argument identical to Claim 1, we have∥∥∥∥∥∥ 1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , W̃i(Ut)

⊤⟩x′i,j(vi,t+1)
⊤ − W̃i(Ut)

⊤(vi,t+1)
⊤
)∥∥∥∥∥∥

2

≤ 4

3
max

a∈Nd,b∈Nk

1

nb

n∑
i=1

b∑
j=1

(
⟨x′i,j , W̃i(Ut)

⊤⟩⟨a, x′i,j⟩⟨vi,t+1, b⟩ − ⟨a, W̃i(Ut)
⊤⟩⟨vi,t+1, b⟩

)
.

(37)

Recall that W̃i =
(

1
nb

∑n
i=1

∑b
j=1 ζ

′
i,jx

′
i,j(vi,t+1)

⊤
)
i,∗
∈ Rk. Conditioning on ∥vi,t+1∥2 ≤ 5

4Γ, we have ∥W̃i∥2 ≤
5RΓ
√

24k log(nb)

4
√
nb

with probability at least 1− ke−12 log(nb) ≥ 1− e−11 log(nb) by the union bound on the components of W̃i.
Multiplication by U⊤

t on the right does not change this bound given orthonormality.
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We thus condition on the new event

E =

{
∥W̃iU

⊤
t ∥2 ≤

5RΓ
√
24k log(nb)

4
√
nb

and ∥vi,t+1∥2 ≤
5

4
Γ for all i ∈ [n]

}

which has probability at least 1 − O(n−11) via our above work and Proposition 42. The variable ⟨x′i,j , W̃i(Ut)
⊤⟩ is(

5RΓ
√

24k log(nb)

4
√
nb

)
-sub-Gaussian via conditioning on E . This means

1

nb

(
⟨x′i,j , W̃i(Ut)

⊤⟩⟨a, x′i,j⟩⟨vi,t+1, b⟩ − ⟨a, W̃i(Ut)
⊤⟩⟨vi,t+1, b⟩

)
is
(

3RΓ2
√

24k log(nb)√
n3b3

)
-sub-exponential. Using an argument identical to how we showed (36), the inequality (37) implies

1

n

∥∥∥∥∥
(
1

b
(A′)†A′(W̃i(Ut)

⊤)− W̃i(Ut)
⊤
)⊤

Vt+1

∥∥∥∥∥
2

≤
3RΓ2

√
15 · 24dk log(n) log(nb)

(nb)
3
4

(38)

with probability at least 1−O(n−10). Combining (36) and (38) via the union bound finishes the second claim.

Combining (34) with Claims 1 and 2 via the union bound finishes the proof.

Recall the exact statements of Assumption 31 and 32. That is, there exist c0, c1 > 1 such that

m ≥ c0
(
max{R2, 1} ·max{Γ2, 1}γ4k log2 n

E2
0σ

2
max,∗

+
R2k

Γ2
log(nm)

)
T

and

n ≥ c1

(
max {∆ϵ,δ, 1} (R+ Γ)Γd

√
k log2(nm)

E2
0λ

2
+
R2Γ2d log(nm)

m

)
T.

Lower bounds on the constants c0, c1 are used many times in the proof for the following lemma.

Lemma (Restatement of Lemma 33). Let E0 = 1− dist2(U0, U
∗) and ψ = Õ

(
(R+ Γ)Γ

√
dk
)

. Suppose Assumption 31
and 32 hold. Then, for any iteration t, we have that Pt+1 is invertible and

∥P−1
t+1∥2 ≤

(
1−

ησ2
min,∗E0√
2 log n

)− 1
2

with probability at least 1−O(n−10).

Proof. Recall that F = G−1(GD − C)V ∗ + 1
bG

−1∇V ⟨A(Vt+1(Ut)
⊤), ζ⟩ and let τk = cτ

√
35k logn

b , τ ′k =

15
√
13
√

Γ4d logn
nb for some constant c > 0. Letting c0 ≥ 2000c2τ in Assumption 31, we have 1

1−τk ≤
4
3 and noting

∥G−1∥2 ≤ 1
1−τk by Lemma 41 part (1), we have

∥F∥2 ≤
4

3
ντk∥V ∗∥2 +

√
47R2n log(nb)

b
(39)

with probability at least 1−O(n−11) via the argument Lemma 41 part (2) for the spectral norm.

Recall that Qt = Vt+1(Ut)
⊤ − V ∗(U∗)⊤ and Vt = V ∗(U∗)⊤Ut − F by Lemma 39. Now, denote H ′

t =
− 1
b (A

′)†A′(Qt)Vt+1 + nξt, Ht = − 1
b (A

′)†A′(Qt), and Wt =
η
nb∇U ⟨A(Vt+1(Ut)

⊤), ζ⟩. By Recursion 28, we have

P⊤
t+1Pt+1 = Û⊤

t+1Ût+1

= (Ut)
⊤Ut −

η

n
((Ut)

⊤H ′
t + (H ′

t)
⊤Ut) + ((Ut)

⊤Wt + (Wt)
⊤Ut)−

η

n
((Wt)

⊤H ′
t +H ′⊤

t Wt)

+
η2

n2
(H ′

t)
⊤H ′

t + (Wt)
⊤Wt
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By Weyl’s inequality, the above implies

σ2
min(Pt+1) ≥ 1− η
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To complete this proof we must bound each of these terms individually. That is, we upper bound

η

n
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⊤HtVt+1 + (Vt+1)
⊤(Ht)

⊤Ut) (40a)
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and lower bound
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These bounds follow from our previous propositions and lemmas.

Term (40a) has
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We have

max
∥a∥2=1

2η

n
a⊤(Vt+1)

⊤
(
1

b
(A′)†A′(Qt)−Qt

)
Uta ≤ 2ητ ′k +

3RΓ2
√

15 · 24dk log(n) log(nb)
(nb)

3
4

by Lemma 43. We are able to drop the second term on the right-hand side above later due to its very fast rate of decay in
n, b. Now
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We bound the first term above via
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⊤〉
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with probability at least 1 − O(n−11) by (39), where equalities 3 and 4 hold by the cycling property of the trace and
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⊤ = 0. Then
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with probability at least 1 − O(n−11) where the third equality follows from the cycling property of the trace and
((Ut)⊥Ut)

⊤ = 0. Combining (42) and (43) gives us
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given that τ2k ≤ τk by selecting c0 ≥ 35c2τ in Assumption 31. Define τ̄k = ντk +
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. Letting c0, c1 ≥ 4000, for (40a),
we have
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.
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Note that (Ut)⊤ξt in (40b) is a k × k Gaussian matrix with independent columns. Now, by an equivalent statement as
Corollary 27 for a k × k matrix

λmax((Ut)
⊤ξt + ξ⊤t Ut) = max
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for w > 0 with probability at least 1− 2e−α
2

for some constant c′ > 0. We select α =
√
10k log n, which means
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Now, for (40c)
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)
with probability at least 1−O(n−10) via Corollary 27 and Proposition 40 part (1). Now we bound the term (40d). Note that
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(44)

by Lemma 43 and taking c0 ≥ 4000c2τ and c1 ≥ 4000 from Assumptions 31 and 32 so 2ητ ′kdist(Ut, U∗) is dominant over
the noise term. Then
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Note that 2τ ′kdist(Ut, U∗) ≤ 1 by taking c0 ≥ 4000c2τ and c1 ≥ 4000 from Assumptions 31 and 32 since τ ′k =
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by selecting the constant c0 in Assumption 31 to have c0 ≥ 4000c2τ such that ντk ≤ 1
10 . Recall that

∥Wt∥2 ≤
4

3

√
2 · 15η2R2Γ2d log n
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with probability at least 1−O(n−10) by Proposition 40. So, combining (45) and (46)
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with probability at least 1−O(n−11). Recall ντk ≤ 1
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by Assumptions 31 and 32.

Observe that for (41)
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Note that concentration inequalities hold for the sum of uncorrelated sub-Gaussian random variables and U⊤
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orthonormal rows. Then, by a modified version of Lemma 40 part (2) for a k × k-dimensional version of Wt
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Via the above work we have, simultaneously by the union bound, there exists a constant ĉ > 0 such that
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with probability at least 1−O(n−10). The value of ĉ may change between lines. Its precise value does not matter and this
constant is used to simplify our proof. By our choice of ψ, we have σ̂ = O

(
(R+Γ)Γ

√
Tdk log(nb)
nϵ

)
. Putting together the

bounds in (47) and selecting c0 ≥ 4000c2τ and c1 ≥ 4000 in Assumptions 31 and 32
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with probability at least 1−O(n−10). Via our choice of σ̂, there is a constant ĉ > 0 such that
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Recall the exact statements of Assumption 31 and 32. That is, there exist c0, c1 > 1 such that
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The problem parameters that lower bound m,n now come into use during the following steps. Furthermore, recall that by
Assumption 4 we know some λ > 0 such that λ ≤ σmin,∗. Then, there exists a constant ĉ > 0 such that
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ĉηλ2E2

0√
c0c1γ2k

3
2 log2(nm) log n

.

and thus
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since λ ≤ σmin,∗. Further, this same constant ĉ satisfies
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√
η2R2Γ2dmax{σ2

max,∗, 1} log(nb)
nb
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since λ ≤ σmin,∗. Note that E2
0 ≤ E0 since E0 ∈ (0, 1). Then, combining c0, c1 ≥ max{10

√
2ĉ, 10

√
2ĉ2, 4000c2τ , 4000}

with (48) and (49) gives us
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with probability at least 1−O(n−10).
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B.4 Private FedRep experiments

In this subsection we describe the synthetic data experiments we designed to compare our Private FedRep (Algorithm 1) to
the Private Alternating Minimization Meta-Algorithm (Priv-AltMin) of (Jain et al., 2021). Our comparison is described
in Figure 2 as a graph of population mean square error (MSE) over choice of privacy parameter ϵ > 0. Note that we also
experimented with non-private AltMin, which performs similarly to the non-private FedRep in Figure 2.

Figure 2: Graph of population MSE over choice of privacy parameter ϵ ∈ [1, 8]. Local optimization is done via non-private
gradient descent on each user’s data separately and their population MSEs averaging over n users.

The features x ∈ Rd of our synthetic data are sampled from a standard normal Gaussian distribution. We select optimal
parameters U∗, v∗1 , . . . , v

∗
n by sampling U from a d× k-dimensional Gaussian distribution then generating an orthonormal

matrix U∗ via (U∗, P ) = QR(U) and sampling v∗i ∼ N (0, Ik) for all i ∈ [n]. Labels are generated as in Assumption 6 and
we choose Gaussian noise with standard deviation R = 0.01. Further, both Private FedRep and Priv-AltMin are initialized
using an implementation of Algorithm 2.

Our problem is instantiated with d = 50, k = 2, m = 10, and n = 20, 000. For FedRep we prune our hyperparameters,
deciding on T = 5 and learning rate η = 2.5 with clipping parameter ψ = 10. Similarly, Priv-AltMin with iterations
optimized for T = 5 and clipping parameter 10−4. The Gaussian mechanism variance for both algorithms is calculated

using the privacy parameter ∆ϵ,δ =

√
16 log(1.25/δ)

ϵ with δ = 10−6.
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C Missing Proofs for Section 4
We first restate our algorithm along with some initial definitions and results.

Define BF = {U ∈ Rd×k : ∥U∥F ≤
√
2k}. Assume for simplicity that m is even. We also partitioned Si = S0

i ∪ S1
i

where S0
i = {z1,j , . . . , zm

2 ,j
} and S1

i = {zm
2 +1,j , . . . , zm,j} for each i ∈ [n]. Further, we denote St = (St1, . . . , S

t
n)

where t ∈ {0, 1}. Suppose that S = (S1, . . . , Sn) ⊂ Znm(d+1) is a sequence of n datasets with m samples each. Let
SM = ((S1)M , . . . (Sn)M ) where (Si)M = {(Mxi,j , yi,j) : j ∈ [m]} for all i ∈ [n]

Algorithm 3 Private Representation Learning for Personalized Classification

Require: dataset sequences S0 and S1 of equal size, score function f(U ′, · ) = −minV ∈V L̂ρ(U
′, V ; · ) over matrices

U ′ ∈ Rk′×k, privacy parameter ϵ > 0, target dimension k′ = O
(
r2Γ2 log(nm/δ)

ρ2

)
,

1: Sample M ∈ Rk′×d with entries drawn i.i.d uniformly from
{
± 1√

k′

}
2: Let SM = ((S1)M , . . . , (Sn)M ) where (Si)M =

{
(Mx, y) : (x, y) ∈ S0

i

}
for i ∈ [n]

3: Let N γ be a Frobenius norm γ-cover of BF
4: Run the exponential mechanism over N γ , privacy parameter ϵ, sensitivity 1

n , and score function f(U ′, SM ), to select
Ũ ∈ N γ

5: Let U priv ←M⊤Ũ
6: Each user i ∈ [n] independently computes vpriv

i ← argmin∥v∥2≤Γ L̂(U
priv, v, S1

i )

7: Return: U priv, V priv = [vpriv
1 , . . . vpriv

n ]⊤

Definition (Restatement of Definition 13). Let (U, v) ∈ Rd×k × Rk and (x, y) ∈ Rd × {−1, 1} any data point. We define
the margin loss as

ℓρ(U, v, z) = 1 [y⟨x, Uv⟩ ≤ ρ]
and denote the 0-1 loss

ℓ(U, v, z) = ℓ0(U, v, z) = 1 [y⟨x, Uv⟩ ≤ 0] .

Definition (Restatement of Definition 14). Let G ⊂ Rd be any set of t vectors. Fix τ, β ∈ (0, 1). We call the random matrix
M ∈ Rk′×d a (t, τ, β)-Johnson-Lindenstrauss (JL) transform if for any u, u′ ∈ G

|⟨Mu,Mu′⟩ − ⟨u, u′⟩| ≤ τ∥u∥2∥u′∥2

with probability at least 1− β over M .

Proposition 44 ((Woodruff et al., 2014)). Let G ⊂ Rq be any set of t vectors. Fix τ, β ∈ (0, 1). For M ∈ Rk×q a
(t, τ, β)-JL transform for any u ∈ G

(1− τ) ∥u∥22 ≤ ∥Mu∥22 ≤ (1 + τ) ∥u∥22

with probability at least 1− β over M , which holds simultaneously with Definition 14.

Lemma (Restatement of Lemma 15). Let τ, β ∈ (0, 1). Take G ⊂ Rd to be any set of t vectors. Setting k′ = O

(
log( t

β )
τ2

)
for a k′ × d matrix M with entries drawn uniformly and independently from

{
± 1√

k′

}
implies that M is a (t, τ, β)-JL

transform.

Lemma 45 (Lemma D.1 (Bassily et al., 2022)). Fix β ∈ (0, 1). Suppose U ∈ Rd×k and that xi,j ∈ Rd, vi ∈ Rk for all
(i, j) ∈ [n]× [m]. Let M ∈ Rk′×d be a ((n+ 1)m, γ, β/2)-JL transform in the sense of Proposition 44. Then, there exists
a constant c ≥ 1 such that, with probability at least 1− β over the randomness of M , we have

∥Mxi,j∥22 ≤

(
1 + c

√
log (nm/β)

k′

)
∥xi,j∥22 (1)

∥MU∥2F ≤

(
1 + c

√
log (nm/β)

k′

)
∥U∥2F (2)
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∣∣v⊤i U⊤M⊤Mxi,j − v⊤i U⊤xi,j
∣∣ ≤ c∥Uvi∥2∥xi,j∥2

√
log (nm/β)

k′
. (3)

for all (i, j) ∈ [n]× [m] simultaneously.

Recall that U is the space of orthonormal d× k matrices and V the set of n× k matrices with columns whose Euclidean

norms are bounded by Γ > 0. Throughout the following results we assume that γ ≤ c
√

log(nm/β)
k′ for some constant

c ≥ 1 and a target dimension k′ for a JL transform. Furthermore, whenever we define a JL transform M , we assume that it
preserves the norm of data points xi,j for all (i, j) ∈ [n]× [m] and some fixed matrix in U ∈ U . Let N γ be a Frobenius
γ-cover of the

√
2k-radius Frobenius ball BF . By cover we mean that N γ contains the center points of Frobenius balls of

γ-radius whose union contain BF . Note as well that N γ ⊂ BF .
Proposition 46. Let M ∈ Rk′×d be a ((n + 1)m, γ, β/2)-JL transform in the sense of Proposition 44. Assume
c2 log (nm/β) ≤ k′ and that xi,j is a sequence of r-bounded feature vectors for each (i, j) ∈ [n] × [m]. Suppose
N γ is a Frobenius norm γ-cover of the k′ × k-dimensional

√
2k radius ball. Moreover, let U ∈ U and Ũ ∈ N γ where

∥Ũ −MU∥F ≤ γ. Then, there exists a constant c ≥ 1 where, with probability at least 1− β over the randomness of M , we
have ∣∣∣v⊤i Ũ⊤Mxi,j − v⊤i U⊤xi,j

∣∣∣ ≤ (
√
2 + 1)crΓ

√
log (nm/β)

k′

for any V = [v1, . . . , vn] ∈ V and all (i, j) ∈ [n]× [m] simultaneously.

Proof. Note that since U has orthonormal columns, we have ∥Uvi∥2 = ∥vi∥2 ≤ Γ for all j. So

∣∣v⊤i U⊤M⊤Mxi,j − v⊤i U⊤xi,j
∣∣ ≤ crΓ√ log (nm/β)

k′
(47)

with probability at least 1− 1
2β by part (3) of Lemma 45. Recall that γ ≤ c

√
log(nm/β)

k′ for some constant c ≥ 1. Assume

c2r2Γ2 log (nm/β) ≤ k′, which implies γ ≤ 1. Let BF be the k′ × k-dimensional Frobenius ball of radius
√
2k. We

define N γ to be a Frobenius norm γ-cover of BF . Note ∥MU∥F ≤
√
2k with probability at least 1 − 1

2β by part (2) of
Lemma 45. That is, with probability at least 1 − 1

2β, there exists Ũ ∈ N γ such that ∥Ũ −MU∥ ≤ γ. Let Ũ ∈ N γ be
within γ Frobenius-distance of MU conditioned on the event ∥MU∥F ≤

√
2k.

Now, there exists a constant c ≥ 1 such that∣∣∣v⊤i Ũ⊤Mxi,j − v⊤i U⊤M⊤Mxi,j

∣∣∣ ≤ ∥vi∥2∥∥∥Ũ⊤Mxi,j − U⊤M⊤Mxi,j

∥∥∥
2

≤ ∥vi∥2∥Ũ −MU∥F ∥Mxi,j∥2
≤
√
2rΓγ

≤
√
2crΓ

√
log (nm/β)

k′

where the third inequality holds by part (1) of Lemma 45 along with our choice of Ũ and the fourth inequality by our choice
of γ. Hence ∣∣∣v⊤i Ũ⊤Mxi,j − v⊤i U⊤M⊤Mxi,j

∣∣∣ ≤ √2crΓ√ log (nm/β)

k′
(48)

with probability at least 1 − 1
2β. Combining (47) and (48) with the union bound and triangle inequality completes the

proof.

Lemma (Restatement of Lemma 16). Fix ϵ, ρ > 0, β ∈ (0, 1). Algorithm 3 is (ϵ, 0)-user-level DP. Sample S ∼ Dm. Then,
Algorithm 3 returns U priv from input S such that

min
V ∈V

L̂(U priv, V ;S0) ≤ min
(U,V )∈U×V

L̂ρ(U, V ;S0) + Õ

(
r2Γ2k

ϵρ2n

)
with probability at least 1− β over the randomness of S and the internal randomness of the algorithm.
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Proof. Let M ∈ Rk′×d be a ((n+ 1)m, γ, β/4)-JL transform in the sense of Proposition 44. Further, let BF ⊆ Rk′×k be

the Frobenius ball of radius
√
2k. Recall that γ ≤ c

√
log(nm/β)

k′ for a constant c ≥ 1. Assume c2 log (nm/β) ≤ k′, which
implies γ ≤ 1.

Define VU ′ ∈ argminV ∈V L̂ρ(U
′, V ;S0) for each U ′ ∈ Rd×k and fix U ∈ argminU ′∈U L̂ρ(U

′, VU ′ ;S0). Denote the
columns of VU as v1, . . . , vn. Let N γ be a Frobenius norm γ-cover over BF . We have ∥MU∥F ≤

√
2k with probability at

least 1 − 1
4β by part (2) of Lemma 45. Choose γ = aρ

(
√
2+1)crΓ

for some constant a ∈ (0, 1) along with Û ∈ N γ within

Frobenius distance γ of MU conditioned on the event ∥MU∥F ≤
√
2k. Then, by Proposition 46, for all (i, j) ∈ [n]× [m]

simultaneously, we have ∣∣∣v⊤i Û⊤Mxi,j − v⊤i U⊤xi,j

∣∣∣ ≤ aρ
with probability at least 1− 1

2β. Assuming 1− aρ ≥ 0, the above implies, with probability at least 1− 1
2β, that

L̂(M⊤Û , VM⊤Û ;S
0) ≤ L̂(M⊤Û , VU ;S

0) ≤ L̂ρ(U, VU ;S0) (49)

where the left-hand inequality holds by VM⊤Û being a minimizer for L̂(M⊤Û , · S0).

Let Ū ∈ argminU ′∈BF
L̂(M⊤U ′, VM⊤U ′ ;S0). Then, by definition of Ū and the fact that N γ ⊂ BF , we have

L̂(M⊤Ū , VM⊤Ū ;S
0) ≤ L̂(M⊤Û , VM⊤Û ;S

0). (50)

Let (S0
i )M = {(Mxi,j , yi,j) : j ∈ [m/2]} for all i ∈ [n] and SM = ((S0

i )M )i∈[n]. This definition and the characterization
of our losses in Definition 13 imply L̂(Ū , VM⊤Ū ;S

0
M ) = L̂(M⊤Ū , VM⊤Ū ;S

0). Via the exponential mechanism over
N γ given score function −L̂(U ′, VM⊤U ′ ;S0

M ) for U ′ ∈ N γ and the usual empirical loss guarantees for the exponential
mechanism, we obtain U priv ∈ Rd×k where U priv =M⊤Ũ for some Ũ ∈ N γ such that

L̂(U priv, VU priv ;S0) = L̂(Ũ , VM⊤Ũ ;S
0
M ) ≤ L̂(Ū , VM⊤Ū ;S

0
M ) +O

(
log|N γ |
ϵn

)
with probability at least 1− 1

2β. This gives us

L̂(U priv, VU priv ;S0) ≤ L̂(M⊤Ū , VM⊤Ū ;S
0) +O

r2Γ2k log
(
rΓ

√
k

ρ

)
log ((nm/β))

ϵρ2n

 (51)

since |N γ | = O

((√
k
γ

)k′k)
and k′ = O

(
r2Γ2 log((nm/β))

ρ2

)
by our choice of γ. Combining (49), (50), and (51) via the

union bound along with recalling our definition VU ′ ∈ argminV ∈V L̂ρ(U
′, V ;S0) finishes the proof.

Theorem (Restatement of Theorem 17). Fix ϵ, ρ > 0, β ∈ (0, 1). Algorithm 3 is (ϵ, 0)-user-level DP in the billboard model.
Sample user data S ∼ Dm. Then, Algorithm 3 returns U priv, V priv from input S such that

L(U priv, V priv;D) ≤ min
(U,V )∈U×V

L̂ρ(U, V ;S0) + Õ

(
r2Γ2k

nϵρ2
+

√
r2Γ2

mρ2

)
with probability at least 1− β over the randomness of S and the internal randomness of the algorithm.

Proof. Let V priv ∈ V be the matrix with columns vpriv
i ∈ argmin∥v∥≤Γ L̂(U

priv, v;S1
i ) and V̂ ∈ V with columns v̂i ∈

argmin∥v∥≤Γ L̂(U
priv, v;S0

i ) for each i ∈ [n]. We first note that

L(U priv, V priv;D)− min
(U,V )∈U×V

L̂ρ(U, V ;S0)

=
(
L(U priv, V priv;D)− L(U priv, V̂ ;D)

)
+
(
L(U priv, V̂ ;D)− L̂(U priv, V̂ , S0)

)
+

(
L̂(U priv, V̂ , S0)− min

(U,V )∈U×V
L̂ρ(U, V ;S0)

) (52)
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Let M ∈ Rk′×d be a ((n+ 1)m, γ, β/6)-JL transform in the sense of Proposition 44. Let γ = c
√

log(nm/β)
k′ for a constant

c > 0 and γ = O
(
ρ
rΓ

)
. Assume c2 log (nm/β) ≤ k′, which implies γ ≤ 1. Denote by BF the k′ × k Frobenius ball of

radius
√
2k. Let N γ be a γ-cover of BF . Using Lemma 16, we have

L̂(U priv, V̂ ;S0)− min
(U,V )∈U×V

L̂ρ(U, V ;S0) ≤ Õ
(
r2Γ2k

ϵρ2n

)
(53)

with probability at least 1− 1
3β over the randomness of M .

Claim 1: We have

L(U priv, V priv;D)− L(U priv, V̂ ;D) ≤ Õ

(√
k′

m

)

with probability at least 1− 1
3β.

By the definition of V priv, we have
L̂(U priv, V priv;S1) ≤ L̂(U priv, V̂ ;S1). (54)

Our proof strategy is to obtain generalization error bounds for the parameters (U priv, V priv) and (U priv, V̂ ) with respect to
the loss L̂( · ;S1), which we leverage to prove the claim. We first analyze the generalization properties with respect to
ℓ, D of our 2-layer linear networks induced by the matrix product Uv for any U ∈ BF and v ∈ Rk′ with ∥v∥2 ≤ Γ. We
denote the family of 2-layer linear networks induced by the matrix product Uv as L and define BΓ ⊆ Rk′ to be the centered√
2kΓ-radius Euclidean ball. LetH0 be the space of binary classifiers induced by taking the sign of the functionals ⟨ · , Uv⟩

with Uv ∈ L. Similarly, defineH to be the space of binary linear classifiers induced by functions ⟨ · , w⟩ for all w ∈ BΓ.

Since L ⊆ BΓ each functional ⟨ · , Uv⟩ must also be contained in the space of functionals ⟨ · , w⟩ with w ∈ BΓ. This
naturally impliesH0 ⊆ H. Hence, the VC dimension ofH0 is no larger than the VC dimension ofH, i.e. at most k′ + 1.
Recall N γ ⊆ BF and that, by the description of Algorithm 3, there is a particular Ũ ∈ N γ such that U priv =M⊤Ũ . Then,
we have Ũ ∈ BF and thus the binary classifier induced by Ũv is inH0 for any v with ∥v∥2 ≤ Γ.

To garner a generalization guarantee, we use the fact that the VC dimension of H0 is O(k′). Recall that (Si)M =
{(Mxi,j , yi,j) : (xi,j , yi,j) ∈ Si} for each i ∈ [n]. Denote SM = ((Si)M )i∈[n] and define the sequence of distributions
DM = ((D1)M , . . . , (Dn)M ) where for, each i ∈ [n], we have that x′ ∼ (Di)M has the same distribution as Mx with
x ∼ Di. Thus, we obtain, from the VC dimension generalization error bounds onH that, for each i ∈ [n], the following∣∣∣L(Ũ , vpriv

i ; (Di)M )− L̂(Ũ , vpriv
i ; (S1

i )M )
∣∣∣ ≤ Õ(√k′

m

)
and ∣∣∣L(Ũ , v̂i; (Di)M )− L̂(Ũ , v̂i; (S1

i )M )
∣∣∣ ≤ Õ(√k′

m

)
with probability at least 1− 1

6nβ. Then, by the union bound and taking the arithmetic mean over the n users

∣∣∣L(Ũ , V priv;DM )− L̂(Ũ , V priv;S1
M )
∣∣∣ ≤ Õ(√k′

m

)
and ∣∣∣L(Ũ , V̂ ;DM )− L̂(Ũ , V̂ ;S1

M )
∣∣∣ ≤ Õ(√k′

m

)
with probability at least 1− 1

3β. Via the inner product that characterizes our losses in Definition 13, we have L(Ũ , V̂ ;DM ) =

L(U priv, V̂ ;D) and L(Ũ , V priv;DM ) = L(U priv, V priv;D). Using the above inequalities and (54), we obtain

L(U priv, V priv;D)− L(U priv, V̂ ;D) ≤ Õ

(√
k′

m

)
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with probability at least 1− 1
3β, which proves Claim 1.

Another application of the VC bound and the union bound gives us, with probability at least 1− 1
3β, that

L(U priv, V̂ ;D)− L̂(U priv, V̂ ;S0) ≤ Õ

(√
k′

m

)
. (55)

Combining (53), Claim 1, and (55) via the union bound, and recalling that k′ = O
(
r2Γ2 log(nm/β)

ρ2

)
by our choice of γ,

finishes the proof.
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