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ABSTRACT

Sequence to sequence (seq2seq) pre-training has achieved predominate success
in natural language generation (NLG). Generally, the powerful encoding and lan-
guage generation capacities from the pre-trained seq2seq models can significantly
improve most NLG tasks when fine-tuning them with task-specific data. However,
as a cross-lingual generation task, machine translation needs an additional ability
of representation transferring on languages (or translation model). Fine-tuning
the pre-trained models to learn the translation model, which is not covered in the
self-supervised processing, will lead to the catastrophic forgetting problem. This
paper presents a dual-channel recombination framework for translation (DCRT) to
address the problem mentioned above. In the proposed approach, we incorporate
two cross-attention networks into the pre-trained seq2seq model to fetch the con-
textual information and require them to learn the translation and language models,
respectively. Then, the model generates outputs according to the composite repre-
sentation. Experimental results on multiple translation tasks demonstrate that the
proposed DCRT achieves considerable improvements compared to several strong
baselines by tuning less than 20% parameters. Further, DCRT can incorporate
multiple translation tasks into one model without dropping performance, drastically
reducing computation and storage consumption.

1 INTRODUCTION

Large-scale pre-trained models (PTMs) have become a foundation of natural language processing
(NLP) in recent years (Qiu et al., 2020; Han et al., 2022). Generally, fine-tuning PTMs with task-
specific training data can achieve significant improvements compared to training the model from
scratch. There is a wide variety of pre-trained language models, which have different structures and
training objectives for different types of downstream tasks (Devlin et al., 2019; Lample & Conneau,
2019; Lewis et al., 2019). For natural language generation (NLG), e.g., summarization (Qi et al., 2020)
or dialogue (Zhong et al., 2022), sequence-to-sequence pre-training (S2SPTM) is more effective than
others. Different from the pre-trained encoders (Devlin et al., 2019; Lample & Conneau, 2019) or
decoders (Radford et al., 2018; 2019), S2SPTM builds the ability of encoding and generation in a
single model, which naturally suits the conditional text generation scenario (Lewis et al., 2019; Liu
et al., 2020; Qi et al., 2020).

Nevertheless, neural machine translation (NMT) does not reap the dividend of the S2SPTM, es-
pecially for improving the performance of rich-resource tasks (Liu et al., 2020; Song et al., 2019).
Unlike other NLG tasks, NMT needs an additional capacity for representation transferring on lan-
guages (or translation modeling). The self-supervised training objective determines that PTMs only
learn representations in the same language unless using a large number of parallel datasets. This
intrinsic property leads to fine-tuning the PTMs to directly learn the translation model will cause the
catastrophic forgetting problem (McCloskey & Cohen, 1989; Goodfellow et al., 2013). The model
will gradually forget the ability of language modeling in the process of learning translation. Thus, it
is worth studying how to explore the S2SPTM in NMT.

Recent studies have noticed the problem mentioned above and proposed some methods. As shown in
Figure 1, we divide them into several categories. The straightforward idea is to freeze the pre-trained
encoder or decoder and tune the rest with the NMT training objective (Figure 1b). Compared to fine-
tuning all parameters (Figure 1a), these approaches expect to preserve the pre-trained representation
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Figure 1: An illustration of the different strategies of exploiting PTMs for NMT.

and learn to translate. However, these methods do not address the gap between the PTM and NMT,
which makes them ineffective (Weng et al., 2020; Zhu et al., 2020). For the same reason, the
prompting-based approaches also do not work in NMT (Brown et al., 2020; Tan et al., 2021) (Figure
1c). Instead of trying to make the PTM learn to translate, some studies use it as an external knowledge
base (Zhu et al., 2020; Yang et al., 2019; Weng et al., 2020). As shown in Figure 1d), NMT can read
the pre-trained representation when performing the translation. This series of methods effectively
use pre-trained encoders. However, they ignore the powerful generative capability of the S2SPTM,
which is equally essential for NMT. In the meantime, parameter efficient fine-tuning (PEFT) shows its
advantages in the NLP community. The main idea of PEFT is to tune a small number of parameters
or a lightweight adapter (Figure 1e), which has shown competitive results to fine-tuning the whole
model (Houlsby et al., 2019; Bapna & Firat, 2019; Li & Liang, 2021; Philip et al., 2020). In NMT,
only adapting the cross-attention network in mBART outperforms fine-tuning all parameters (Gheini
et al., 2021). We believe that PEFT is a promising way to exploit S2SPTM for NMT, but the current
work does not study it in depth.

In this paper, inspired by PEFT, we present a dual-channel recombination framework for transla-
tion (DCRT). In the proposed framework, we incorporate two cross-attention networks from the
S2SPTM and NMT to connect the encoder and decoder. The two cross-attention networks, named as
language channel and translation channel, are responsible for language generation and cross-lingual
transferring, respectively. In addition, we notice that the representation from the cross-attention
networks is easy to degenerate. Specifically, the representation from one channel will become similar
after fine-tuning, which is detrimental to the subsequent continuation of the translation. To avoid
the aforementioned catastrophic forgetting problem, we propose two training objectives to ensure
the consistency of the representation contained in the same channel and the relationship between
representations from different channels before and after fine-tuning.

To illustrate the effectiveness of the DCRT, we conduct experiments on widely used rich-resource
and low-resource translation tasks. Experimental results on multiple tasks demonstrate that DCRT
based on the mBART (Liu et al., 2020) gets absolutely improvements by only tuning less than 20%
parameters. DCRT achieves state of the art on both WMT14 EN→DE and EN→FR tasks. Moreover,
we can easily extend DCRT as a multilingual NMT model, which can improve the utilization of
multilingual S2SPTM. In this setting, DCRT gets a comparable performance with the single model.

2 APPROACH

In this section, we will briefly introduce Transformer (Vaswani et al., 2017) and the typical training
objectives of NMT and S2SPTM. Then, we will expound on the proposed DCRT based on them.

2.1 BACKGROUND

Transformer The Transformer network (Vaswani et al., 2017) is widely used in the natural language
process (NLP) and computer vision (CV). The Transformer is composed of an encoder network
and a decoder network. Here, we can further disassemble the decoder into a cross-attention and
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self-attention network. The specific definition is as follows:

TRANSFORMER(·; θ) = DEC(ENC(·; θe); θd) = XATT(SATT(ENC(·; θe); θs); θx), (1)

where the Transformer is parameterized by θ. The θe and θd are the parameter of the encoder
and decoder, respectively. The θd is decomposed into θs and θx, which are the parameter of the
self-attention network and the cross-attention network, respectively. Thus, θ is equal to {θe, θx, θs}.
The three modules are composed of multiple self-attention layers; the number of layers is N . The
flow of the representation at the nth layer of the decoder is

Sn = XATTn(S̃n,H; θx), S̃
n = SATTn(Sn−1; θs),H = ENC(x; θd), (2)

where the matrix H is the contextual representation of the input sentence x encoded by the encoder,
and the matrix Sn is the output representation generated by the cross-attention network. Generally, in
NLG, the output representation from the final layer SN is used to generate the output sentence.

Neural Machine Translation Given a source-target parallel sentence pair {x,y} from the data-set
B, where |B| is the number of parallel sentence pairs. The target of NMT is y = fθ(x), where the
parameter θ is optimized by maximizing the likelihood Pθ(y|x). Specifically, the loss function is:

LN (θ) = −E{x,y}∼B[logPθ(y|x)] = −E{x,y}∼B[
1

J

∑
j

logPθ(yj |x,y1:j−1)], (3)

where J is the length of y and y1:j−1 means the sub-sequence before the jth word.

Sequence to Sequence Pre-training There are many successful S2SPTMs have been proposed
recently (Song et al., 2019; Qi et al., 2020; Lample & Conneau, 2019), we only present the most
general form here. Given a sentence z from the unlabeled data-set M , which contains |M | sentences,
the goal of S2SPTM is to reconstruct the sentence: z = fθ(ϕ(z)), where ϕ(·) is used to mask a
percentage of words in the z (Devlin et al., 2019; Lample & Conneau, 2019; Song et al., 2019). The
loss function of the S2SPTM is

LS(θ) = −Ez∼M [logPθ(z|ϕ(z))] = −Ez∼M [
1

I

∑
I

1zi /∈ϕ(z) logPθ(zi|ϕ(z), z1:i−1)], (4)

where I is the length of z and 1 is an indicator function.

2.2 THE PROPOSED DCRT

Preliminary To better illustrate our approach, we first give some necessary definitions. We define
a S2SPTM train by Equation 4 as fθpm(·), where θpm is made of {θpm

e , θpm
x , θpm

d }. Then, we train a
NMT model fθmt(·) by only tuning the cross-attention network of the fθpm(·). The parameter θmt is
{θmt

e , θmt
x , θmt

e }, where θmt
e and θmt

d are equal to θpm
e and θpm

d , respectively.

Dual-channel Recombination Structure Just like Equation 2, we can formalize the dual-channel
recombination structure as

Cn = DCR(S̃n,H; θc, θl, θt), S̃
n = SATTn(Cn−1; θs),H = ENC(x; θd), (5)

where DCR(·) can be decomposed as:

Cn = COM(Sl
n,S

t
n; θc),

{
Sl
n = XATTn(S̃n,H; θl)

St
n = XATTn(S̃n,H; θt).

(6)

Compared to the standard Transformer, our model has two cross-attention networks and a com-
bination function COM(·). The two cross-attention networks come from the S2SPTM and NMT
models, respectively. In other words, we use θpm

x to initialize θl and θmt
x to initialize θt. Here, the

XATT(; θl) serves as the language channel to preserve the generation ability from the S2SPTM, and
the XATT(; θt) is the translation channel which learns the representation transferring on languages.

Then, we consider the generation of the Cn as a probabilistic decision processing. Specifically, given
the jth hidden state sln,j from Sl

n and stn,j from St
n, the corresponding output cn,j is computed by:

cn,j = Pθc(cn,j |cn,j−1) ∗ sln,j + (1− Pθc(cn,j |cn,j−1)) ∗ stn,j . (7)
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Following the nature of sequence prediction, we define a conditional probability Pθc(cn,j |cn,j−1) to
decide the ratio of using sln,j and stn,j for each state. The Pθc(cn,j |cn,j−1) is computed by

Pθc(cn,j |cn,j−1) ≜ gθc(s
l
n,j , s

l
n,j , cn,j−1) ≈ gθc(s

l
n,j , s

l
n,j , sn−1,j−1). (8)

We do an approximate here to avoid reducing training efficiency. The gθc(·) is computed by:

gθc(s
l
n,j , s

l
n,j , sn−1,j−1) =

exp
[
τ(sn−1,j−1, s

l
n,j)

]
exp

[
τ(sn−1,j−1, sln,j)

]
+ exp

[
τ(sn−1,j−1, stn,j)

] , (9)

where τ(·) is a feed-forward network. We concatenate the two vectors, i.e., [sn−1,j−1, s
l
n,j ], as

the input. We expect the dual-channel mechanism to retain the capabilities of both models and the
decoder to dynamically fetch the representation from them. An illustration is shown in Figure 2.

Fine-tuning the model with the NMT training objective will lead to the catastrophic forgetting problem.
Specifically, we notice that the representation from one channel will become similar to another during
the fine-tuning stage. This representation degeneration phenomenon will be detrimental to the
NMT. As shown in the Figure 3, we adopt two constraints, named content consistency and relation
consistency, to avoid the these problems. The details are shown below.

Content Consistency Given the parallel sentence pair {x,y}, we feed x to go through the NMT
model fθmt(·) and ϕ(y) to the pre-trained model fθpm(·). to obtain two distributions of the two
models, i.e., Pθmt(y|x) and Pθpm(y|ϕ(y)). Then, we regularize the model predictions by minimizing
the Kullback-Leibler divergence (DKL(·)) between these two output distributions for the output
distribution Pθ(y|x), which is:

LC(θ) =
1

2
LCL(θ) +

1

2
LCT (θ) =

1

2
(DKL(Pθpm(y|ϕ(y))∥Pθ(y|x)) +DKL(Pθmt(y|x)∥Pθ(y|x)))

=
1

2
E{x,y}∼B

{
EPθpm

[
log

Pθ(y|x)
Pθpm(y|ϕ(y))

]
+ EPθmt

[
log

Pθ(y|x)
Pθmt(y|x)

]}
. (10)

The goal of this training function is that the representations after training are able to preserve the
semantic information present before training.

Relation Consistency On the other hand, the representations from the two channels can be seen
as two low-dimension manifolds in the semantic space. To preserve their characteristics, we let the
relative distance of the representations from the two channels be the same. The detail of the loss
function is as follows:

LR(θ) = −E{x,y}∼B

 1

J

J∑
j=1

[
||DIS(sjPθmt (y|x), sjPθpm (y|ϕ(y)))− DIS(st,jPθ(y|x), sl,jPθ(y|x))||

2
2

] ,

(11)

where DIS(·) is the distance function, for which we use the cosine similarity.
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Algorithm 1 The overall training process of the proposed DCRT.
Input: Parallel set B; Seq2seq pre-trained model with parameter θpm = {θpm

e , θpm
s , θpm

x }; Epoch E
Output: The NMT model fθ(·) with parameter θ = {θe, θs, θl, θt, θc}

1: Initialize the parameter θmt of the NMT model fθmt(·) by the θpm

2: for e = 0 to E do
3: for {x,y} in B do
4: Optimize θmt

x by the Equation 3 ▷ Freezing {θmt
e , θmt

s }
5: end for
6: end for
7: Randomly initialize the parameter θ of the DCRT model ▷ Equation 5-Equation 9
8: Reinitialize the corresponding parameters of θ by the θmt and θpm: θpm

e → θe, θ
pm
s → θs, θ

pm
x →

θl, θ
mt
x → θt

9: for e = 0 to E do
10: for {x,y} in B do
11: Compute the probability Pθpm(y|ϕ(y)) and SPθpm (y|ϕ(y)) by the S2SPTM fθpm(·)
12: Compute the probability Pθmt(y|x) and SPθmt (y|x) by the NMT model fθmt(·)
13: Optimize fθ(·) by the Equation 13 ▷ Freezing {θe, θs}
14: end for
15: end for
16: return fθ(·)

Training The overall training function can be formalized as:

L(θ;B) = LN(θ;B) + αLc(θ;B) + βLR(θ;B), (12)

where the coefficient α and β are the hyper-parameters to control loss function, which we set as 1
and 0.5, respectively. The loss of the training function is:

∇L(θ) = ∇LN (θ) +
α

2
∇LCT (θt) +

α

2
∇LCL(θl) + β∇LR(θt, θl) (13)

= ∇LN (θ) +
α

2
∇LCT (θt) + β∇LR(θt)︸ ︷︷ ︸

Regularization for TM

+
α

2
∇LCL(θl) + β∇LR(θl)︸ ︷︷ ︸

Regularization for LM

.

Compared to the vanilla training function (Equation 3), the proposed method has additional terms
to regularize the parameters further. Here, we divide them into two parts. The first part is used
to regularize the parameters θt for the translation model, and the second is used to regularize the
parameters θl for language model. DCRT can leverage this kind of regularization to avoid the
catastrophic forgetting problem.

3 EXPERIMENT

3.1 IMPLEMENTATION DETAIL

Data-set We first conduct experiments on the three widely-used WMT translation tasks: WMT14
English→German (EN→DE), WMT14 English→French (EN→FR) and WMT18 Chinese→English
(ZH→EN), The training data sizes of EN→DE, EN→FR and ZH→EN are 4.5M, 36M and 21M,
respectively. Both EN→DE and EN→FR tasks, we use the newstest2013 as the dev set and the
newstest2014 as the test set. On the ZH→EN task, we use the newsdev2017 as the dev set
and the newstest2018 as the test set.

Moreover, we evaluate the proposed DCRT on several low-resource machine translation tasks, in-
cluding WMT16 English↔Romanian (EN↔RO), IWSLT14 English↔German (EN↔DE), IWSLT17
English→French (EN→FR) and English→Chinese (EN→ZH) tasks. The sizes of the training set
for EN↔RO, EN↔DE, EN→FR and EN→ZH are 60K, 160k, 236k and 235k, respectively. On the
EN↔RO task, we use the newstest2015 as the dev set and the newstest2016 as the test set.
Following the Zhu et al. (2020), on the EN↔DE task, we split 7k sentence pairs from the training
dataset as the dev set and concatenate the dev2010, dev2012, tst2010, tst2011 and tst2012 as the test
set. On the EN→FR and EN→ZH tasks, we use the official dev/test sets of the corresponding years.
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Table 1: The comparison of the proposed DCRT and previous approaches. #PARAM is the number of
parameters. “T/F” indicates the number of trainable and frozen parameters. “∗” means the model
is implemented by ourselves. The BLEU score is computed by the multi-bleu.perl, and the results
computed by the sacreBLEU are shown in Appendix A.

Model #PARAM(T/F) EN→DE EN→FR

Transformer-big∗ (Vaswani et al., 2017) 207M/207M 28.73 41.70
Depth Growing NMT (Wu et al., 2019) 268M/268M 29.92 43.27
SD-Transformer (Li et al., 2020) 437M/437M 30.46 43.29

Transformer w/ mBERT∗ (Devlin et al., 2019) 164M/164M 29.19 41.46
Transformer w/ mBART∗ (Liu et al., 2020) 680M/680M 29.87 43.03
Transformer w/ XLM-R (Conneau et al., 2020) 700M/700M 30.9 43.8

VECO (Luo et al., 2021) 662M/662M 31.7 44.5
HICTL (Wei et al., 2021) 700M/700M 31.74 43.95
XLM (Lample & Conneau, 2019) 570M/570M 28.8 −
mRASP (Lin et al., 2020) 375M/375M − 44.3

Transformer w/ mBERT∗ (Devlin et al., 2019) 54M/164M 28.17 40.03
Deep Fusion (Weng et al., 2022) 171M/171M 31.59 44.21
CTNMT (Yang et al., 2019) − 30.10 42.30
BERT-fused NMT (Zhu et al., 2020) − 30.75 43.78

mGPT w/ Prompt Tuning (Zhang et al., 2021) 131K/560M 5.9 −
mGPT w/ Pre-fix Tuning (Zhang et al., 2021) 26M/560M 17.5 −
Multi-Stage Prompting (Tan et al., 2022) 19M/560M 21.2 −
CROSSATT Tuning∗ (Gheini et al., 2021) 40M/680M 29.51 42.83

DCRT w/ mBART 91M/731M 32.56 45.53

Setting We implement all experiments on the fairseq toolkit.1 We adopt the Transformer-big as
the baseline for the rich-resource tasks and Transformer-base for the low-resource tasks. We use
mBART25 as the default sequence to sequence pre-trained model in our experiment Liu et al. (2020).
We apply the byte pair encoding (BPE) (Sennrich et al., 2016b) to all language pairs and limit
vocabulary size to 32K. We set label smoothing as 0.1 and dropout rate as 0.1. The Adam is adopted
as the optimizer, and the β1/β2 is set as 0.9/0.98 for the base setting and 0.9/0.998 for the big
setting. We set the initial learning rate as 1e-3 and use the default warm-up strategy with 4000 steps.
In addition, for all pre-trained encoders, we append a 6 layers decoder with the same hidden size
to compose the NMT model. We set the learning rate as 1e-5 for models initialized by pre-trained
encoders and 2e-5 for models initialized by seq2seq pre-trained models. We use the polynomial
decay and set the label smoothing rate as 0.2. We use 8 A100 GPUs to train the rich-resource tasks
and one A100 GPU to train the low-resource tasks.

We use beam search as the decoding algorithm. For the WMT EN→DE, we set the beam size as 4
and the length penalty as 0.6. For other tasks, we set the beam size as 5 and the length penalty as 1.0.
For a fair comparison, we calculate the case-sensitive tokenized BLEU with the multi-bleu.perl script
for the WMT tasks and IWSLT EN↔DE task, and use the sacreBLEU23 to calculate case-sensitive
BLEU Papineni et al. (2002) for other tasks.4

3.2 RESULTS AND DISCUSSION

Rich-resource Translation Tasks The results on the WMT14 EN→DE and EN→FR tasks are
summarized in the Table 1. We implement the Transformer and report two advanced variations
proposed by Wu et al. (2019) and Li et al. (2020) as baselines. The Transformer baseline gets 28.73

1https://github.com/pytorch/fairseq
2https://github.com/mjpost/sacreBLEU
3BLEU+case.mixed+lang.${Src}-${Trg}+num- refs.1+smooth.exp+test.${Task}+tok.13a+version.1.5.1
4We also give the results computed by the sacreBLEU for the WMT tasks in Appendix A.
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Figure 4: A comparison of the different dual-channel structures. “O2O” means that the model has
one language channel and one translation channel. “O2M” means that the model has one language
channel and multiple translation channels.
Table 2: The results of the proposed DCRT on the low-resource translation tasks. #PARAM is the
number of trainable parameters.

Model #PARAM EN→RO RO→EN EN→DE DE→EN EN→FR EN→ZH

TRANS 6*65M 32.51 32.67 28.34 34.81 35.73 25.94
TRANSM 107M 30.93 31.72 27.79 34.69 34.92 25.57

XLM-R 700M 35.60 35.80 30.58 35.66 38.14 27.49
mBART 680M 37.43 37.21 30.72 36.79 38.86 28.63
BERT-fused − − − 30.45 36.11 38.70 28.20

DCRTO2O 91M 38.04 38.46 31.47 37.51 39.89 29.61
DCRTO2M 346M 38.52 39.02 31.35 37.65 40.23 29.87

and 41.70 BLEU scores on the EN→DE and EN→FR, respectively. Compared to the Depth Growing
NMT and SD-Transformer, we can see that the increase in trainable parameters improves model
performance. We sort several related studies out according to the strategy of using pre-trained models.
The first is the standard fine-tuning paradigm, which only achieves similar results to the baseline. In
the second category, we use the cross-lingual pre-trained models trained with large-scale parallel data
sets to initialize the NMT model. In this setting, the translation performance significantly improves
(2∼3 BLEU gains). It means that learning the translation model in the pre-training or fine-tuning
stage is necessary.

The motivation of the third one is to integrate the pre-trained models into the NMT model as a
knowledge base. In this situation, the NMT model focuses on learning to translate with the pre-
trained contextual representation. These approaches can work well for leveraging the capabilities
of pre-trained encoders (1.5∼2.5 BLEU gains). However, they ignore the generation ability from
the pre-trained models, which is equally important for machine translation. The final one includes
non-parametric and few-parametric (PEFT) methods. The prompting methods with mGPT are not
work in NMT. Only fine-tuning the cross-attention network (∼40M) of mBART achieves similar
results to tuning the whole model (0.3∼0.4 BLEU drops). Our model gets 32.56 and 45.53 BLEU
scores on the EN→DE and EN→FR, respectively. The empirical results prove that preserving the
generation ability besides learning translation can improve translation performance effectively. The
DCRT gets better quality by only tuning about 91M parameters which are largely less than previous
work. It is worth mentioning that more than one-third of the parameters in the mBART is the
embedding layer (250M+), which is used to cover more languages. In fact, only 10∼20% of word
vectors are used for a given translation task.

One Model Covers Multiple Translation Tasks Then, we combine all high-resource translation
tasks into one model to fully use the multilingual pre-trained model. We first put all the tasks
into the DCRT model same as above (named DCRTO2O). Then, we make all tasks share the same
language channel and have an exclusive translation channel (named DCRTO2M). In other words, if
we have three translation tasks, the DCRTO2M will have one language channel and three translation
channels. The results are shown in Figure 4, DCRTO2O has a slight descend compared to using one
model per task. The DCRTO2M gets the comparable results to the DCRT. In the O2M setting, we
can achieve a high-quality multilingual translation model with a few extra parameters, effectively
reducing computation and storage consumption.
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Low-resource Translation Tasks Following Liu et al. (2020) and Zhu et al. (2020), we evaluate
the proposed DCRT with O2O and O2M settings on the six low-resource tasks, which are shown
in Table 2. Further, we also implement a multilingual NMT model (TRANSM) as a comparison.
Compared to the Transformer baseline (TRANS), the TRANSM drops 0.1-1.7 BLEU, while the
DCRTO2O get 2.5∼6.5 BLEU gains. Compared to the mBART, the DCRTO2O, which reduces 87%
trainable parameters, gets 0.61∼1.25 BLEU gain. Then, DCRTO2M can achieve better results on
five of six tasks, in which the trainable parameter size will grow linearly with the number of tasks.
We notice that the EN→RO and RO→EN have more improvements when they have the individual
translation channel. The reason may be that the data of WMT is from the news domain, while IWSLT
is from the TED talks. We will investigate the influence of the domain discrepancy in the future.

Table 3: The results of the proposed
DCRT with back-translated dataset.

Model EN→DE RO→EN

Transformer 28.73 32.67
w/ BT 30.44 38.65

mBART 29.87 37.21
w/ BT 30.94 39.15

DCRT 32.56 39.11
w/ BT 33.43 40.31

Semi-supervised Translation We study whether the pro-
posed approach can work with back-translation (BT) (Sen-
nrich et al., 2016a), which is the most widely used data-
augmentation method in NMT. We make experiments on
the WMT En→De and Ro→En tasks. Specifically, for the
En→De, we use 24M synthetic data from Caswell et al.
(2019). For the Ro→En, we use 2M back-translated data
from Sennrich et al. (2016a).

The results are shown in Table 3. Our model with BT gets
0.87/1.20 gains compared to only using parallel data. More-
over, DCRT with BT achieves 2.99/1.66 gains compared
to the Transformer baseline and 2.49/1.16 gains compared to the mBART. The results demonstrate
that DCRT could work with BT to achieve better performance.

Table 4: The ablation study of the DCRT.

Model EN→DE ∆

DCRT 32.56 −
Remove the LC 30.55 -2.01
Remove the LR 30.23 -1.33
Remove both LC and LR 30.30 -2.26

Update all parameters 30.81 -1.75
Random initialization 29.24 -3.32
Freeze the θt 31.66 -0.90
Freeze the θl 31.98 -0.58
Freeze the θl and θt 31.04 -1.52

Ablation Study To further investigate the ef-
fect of each module in the DCRT, we make an
ablation study in this section. The results are
shown in Table 4. On the one hand, we look
at the change in BLEU by removing each train-
ing objective. When ablating LC and LR, the
BLEU drops 2.01 and 1.33, respectively. The
BLEU drops 2.26 when removing both LC and
LR. The experimental results show that the two
objectives are indispensable to avoid representa-
tion degradation, and removing either one will
lead to a great reduction.

On the other hand, we freeze the parameters
of different modules in the model. When fine-
tuning all parameters, the BLEU drops 1.75. As a comparison, when initializing all parameters
randomly, the BLEU drops 3.32. The results show that even if all parameters can be updated, the
model also benefits from the S2SPTM. Then, when freezing θt and θl, the BLEU drops 0.9 and 0.58,
respectively. When freezing both of θt and θl, the BLEU drops 1.52. The results suggest that tuning
these parameters makes the representation more suit for NMT.

The influence of the LC and LR For each setting, we sample a checkpoint at each 5000 training
steps. Then, we compute the probability from the combination function, BLEU score, and the cosine
distance between Sl and St on the test set on the WMT EN→DE task. The results are shown in
Figure 5. When removing the LC and LR (w/o Regu), the probability will be biased to the translation
channel, and the similarity of the representations of the two channels increases rapidly. We think the
DCRT will likely degenerate to only fine-tuning the cross-attention network (Gheini et al., 2021)
when there is no mitigation of catastrophic forgetting.

4 RELATED WORK

NMT with Pre-trained Models Using pre-trained models to improve the performance of NMT is
an attractive research direction worth studying. Liu et al. (2020); Lample & Conneau (2019) proposed
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Figure 5: The changes of the representations from the two channels with and without LC and LR.

to fine-tune multi-lingual pre-trained models NMT. However, the fine-tuning method does not work
well in rich-resource translation tasks Zhu et al. (2020). Zhu et al. (2020); Yang et al. (2019); Weng
et al. (2022) proposed to fuse pre-trained encoders into NMT. Weng et al. (2020) proposed to use
knowledge distillation to transfer knowledge from pre-trained models to NMT. Brown et al. (2020)
proposed that the generative language model (GPT-3) can use to translate by the prompting method
(or in-context learning). Our approach focuses on achieving the complementary representations of
the sequence to sequence pre-trained models and NMT.

Parameter Efficient Fine-tuning in NMT Parameter efficient fine-tuning (PEFT) is an effective
transfer mechanism, which can reduce the substantial training costs (Houlsby et al., 2019; He et al.,
2022; Zaken et al., 2022). Furthermore, Liu et al. (2022) demonstrated that PEFT is cheaper and
better than in-context learning in many NLP tasks. In NMT, Bapna & Firat (2019) proposed injecting
task-specific adapter layers into the pre-trained NMT model for domain adaption and multilingual
tasks. Guo et al. (2020) proposed to fine-tune the BERT with an adapter module for parallel sequence
decoding. Gheini et al. (2021) proposed to fine-tune the cross-lingual network of the S2SPTM for
NMT. According to the characteristics of the S2SPTM and NMT, we proposed the DCRT to amplify
the advantage of PEFT in NMT further.

Multi-channel Framework in NMT The multi-channel framework has been widely used in NMT.
Zhang & Zong (2016) proposed using an additional encoder to model source contextual knowledge
with monolingual data. Song et al. (2018) adopted a dual-channel model based on the different
structures, i.e., a self-attention module, and a CNN module, to model contextual representation in
different aspects. Xiong et al. (2018) extended the dual-channel framework to multi-channel for
fetching information on different levels according to the linguistic structure. On the other hand, the
mixture-of-experts (MoE) method is an expansion of the multi-channel framework (Shi et al., 2019;
Masoudnia & Ebrahimpour, 2014). Dai et al. (2022) proposed to use MoE structure in NMT. Then,
NLLB Team et al. (2022) gave a more general and effective version. Furthermore, the multi-channel
structure is widely-used in multi-modal MT, in which the different channels extract the inputs from
different modals. For example, Huang et al. (2016); Fang & Feng (2022) used a dual-channel
structure to encode image and text separately, then feed them to the decoder for translation. Inspired
by them, we use a dual-channel structure to obtain pre-trained representations, effectively avoiding
the problems caused by simply fine-tuning the pre-trained model.

5 CONCLUSION

In this work, we present a novel dual-channel recombination framework (DCRT) to exploit the
sequence-to-sequence pre-trained models in NMT. Specifically, we incorporate two cross-attention
networks into the pre-trained seq2seq model to fetch the contextual information. On the other hand, to
avoid catastrophic forgetting and representation degeneration problems, we require them to learn the
translation and language models with the content consistency and the relation consistency training
objectives. Extensive experiments from different settings show that the proposed approach effectively
utilizes the pre-trained mBART to improve translation quality by only fine-tuning a small number of
parameters. In future work, we will investigate whether the DCRT can combine with other advanced
sequence-to-sequence pre-trained models.
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A RESULTS ON RICH-RESOURCE TRANSLATION

The results computed by sacreBLEU are shown in Table 5. Our approach gets 31.79 and 42.89 BLEU
on the WMT EN→DE and EN→FR tasks, respectively. Compared to fine-tuning the mBART, our
method achieves 2.87 and 2.71 BLEU gains, which outperform all previous work.
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Table 5: The comparison of the proposed DCRT and previous approaches. #PARAM is the number
of parameters, and “T/F” indicates the tuneable and frozen parameters. “∗” means the model is
implemented by ourselves.

Model #PARAM(T/F) EN→DE EN→FR

Transformer-big∗ (Vaswani et al., 2017) 207M/207M 28.42 40.53
Depth Growing NMT (Wu et al., 2019) 268M/268M 29.5 41.8

Transformer w/ mBERT∗ (Devlin et al., 2019) 164M/164M 28.51 40.18
Transformer w/ mBART (Liu et al., 2020) 680M/680M 28.92 41.1
Transformer w/ XLM-R (Conneau et al., 2020) 700M/700M 39.9 41.2
CROSSATT Tuning∗ (Gheini et al., 2021) 40M/680M 28.71 40.80

VECO (Luo et al., 2021) 662M/662M 30.6 42.0
mRASP (Lin et al., 2020) 375M/375M − 41.7

DCRT w/ mBART 91M/731M 31.79 42.89
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