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Abstract

As Al models generate increasingly realistic images, growing concerns over po-
tential misuse underscore the need for reliable detection. Traditional supervised
detection methods depend on large, curated datasets for training and often fail
to generalize to novel, out-of-domain image generators. As an alternative, we
explore pre-trained Vision-Language Models (VLMs) for zero-shot detection of
Al-generated images. We evaluate VLM performance on three diverse benchmarks
encompassing synthetic images of human faces, objects, and animals produced by
16 different state-of-the-art image generators. While off-the-shelf VLMs perform
poorly on these datasets, we find that their reasoning can be guided effectively
through simple response prefilling — a method we call Prefill-Guided Thinking
(PGT). In particular, prefilling a VLM response with the task-aligned phrase “Let’s
examine the style and the synthesis artifacts” improves the Macro F1 scores of
three widely used open-source VLMs by up to 24%. Our code is publicly available
at: https://github.com/Zoher15/Zero-shot-pgt
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‘ User: [Image] Is this image real or AI-generated? | ‘ User: [Image] Is this image real or AI-generated?

Assistant: ‘Let’s think step by step‘ Assistant: ‘Let’s examine the style and synthesis artifacts‘

Figure 1: Top: Sample images from D3 (top row), DF40 (middle row), and GenImage (bottom row)
datasets. Can you guess which ones are real? The answer is in the footnote on the next page. Bottom:
Guiding model thinking with prefilled responses: chain-of-thought (left) vs task-aligned (right).


https://github.com/Zoher15/Zero-shot-pgt

1 Introduction

Rapid advancements in image generation have led to a surge in synthetic images (deepfakes) [1, 12, 13]].
Improved techniques now enable the easier and cheaper production of high-quality visuals [3} 4} 5]
While beneficial for creative applications, this progress has allowed malicious actors to produce
convincing forgeries (e.g., face swaps, synthetic photos) that are nearly indistinguishable from real
ones [6, [7,[8]. Such forgeries facilitate impersonation, copyright infringement, and disinformation,
highlighting the urgent need for robust detection methods to maintain visual trust [9} [10} [11} [12].

Existing solutions remain limited. Watermarking and metadata approaches are often easily bypassed
and require widespread adoption [13]]. Supervised methods, particularly feature-based ones, struggle
to generalize to new generators [14]].

To keep pace with these rapid developments, we investigate the use of pre-trained Vision-Language
Models (VLMs), which have demonstrated strong generalization across diverse tasks [[15} 16} 4] and
whose performance can be further enhanced through prompting [17, [18]].

We find that off-the-shelf VLMs perform poorly on the zero-shot detection of Al-generated images.
However, prefilling a model response can guide more focused reasoning and significantly improve
detection without any fine-tuning. We call this approach Prefill-Guided Thinking (PGT). In particular,
prefilling the model response with the phrase “Let’s examine the style and the synthesis artifacts”
encourages the VLM to attend more closely to forensic cues relevant for this task.

We evaluate PGT on three recent, diverse datasets spanning human faces, objects, and animals, with
images generated by 16 state-of-the-art image models (Fig. . For three widely used open-source
VLMs, our approach boosts Macro F1 scores by up to 24%, demonstrating strong generalization
across image categories as well as new generators.

2 Background

Supervised detection methods for Al-generated images typically fall into three categories: artifact-
based, frequency-domain, and spatial-domain approaches.

Artifact-based methods use Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs)
to detect subtle cues such as unnatural textures or edge inconsistencies [[19, 20, 21]]. As generative
models improve, these cues become less reliable. Models trained on fixed artifacts often overfit to
specific generators, leading to poor generalization [22, 23| 24]].

Frequency-domain techniques analyze spectral representations using techniques like Fast Fourier
Transform or Discrete Cosine Transform [14} 25] 26, [27]. These methods were effective against early
Generative Adversarial Networks (GANs), but newer diffusion models exhibit different frequency
characteristics, reducing the utility of fixed-frequency detectors [23} 128} 29].

Spatial-domain approaches examine raw pixel patterns to detect structural or textural inconsisten-
cies [29,130]]. While useful for earlier synthetic images, they often fail on photorealistic outputs from
diffusion models and are sensitive to post-processing such as compression and resizing [20} 31]].

To improve generalization, recent work has explored larger and more diverse training datasets [22}
32,1331 134} 1351 136l 371, as well as architectural modifications that target universal artifacts (e.g.,
upsampling patterns) [29} 38]]. Approaches like fixed-feature backbones and DiffusionFake have also
improved robustness to novel generators [24}39].

Vision-Language Models (VLMs) are trained on large-scale image-text datasets and demonstrate
strong zero-shot generalization across tasks such as classification, captioning, and visual question
answering [4} 15 [16]]. Prompt-based learning has emerged as a lightweight method to adapt language
models using natural language instructions [40]. Chain-of-thought, which encourages step-by-step
reasoning, has been effective in multimodal settings [41 42, 43]].

Building on this, we investigate whether prefilling VLM responses can support generalizable, zero-
shot detection of Al-generated images. We hypothesize that this approach could offer an alternative to
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a)‘ User: [Image] Is this image real or AI-generated? |

Assistant: The image appears to be real... (continues)
‘Final Answer (real/ai-generated) :‘ real. X

Assistant: [Let’s think step by step|
1. Details in the Skin Texture: The skin texture of the

elephant appears very detailed and realistic...(continues)

‘Final Answer (real/ai-generated) : ‘ real. X

c)‘ User: [Image] Is this image real or AI-generated? |

Assistant: ‘Let’s examine the style and the synthesis a_rtifacts‘

1. Texture and Detail: The skin texture of the elephant
appears somewhat uniform and lacks the fine... (continues)

‘Final Answer (real/ai-generated) :‘ ai-generated. v/

Figure 2: Illustration of PGT for the detection of an Al-generated image using a VLM (Qwen2.5-
7B). Input text is marked in [grey, response text in biue. (a) A baseline user query results in
the incorrect response real. (b) Using the chain-of-thought prefill [Let’s think step by step| im-
proves reasoning, but the classification remains incorrect. (c) Using our proposed S2 prefill
‘Let’s examine the style and the synthesis artifacts‘ leads to the correct classification: ai-generated. Full
reasoning traces for all three methods can be found in the Appendix.

training for synthetic image detection, with greater capacity to generalize to increasingly sophisticated
generative models.

3 Methods

We frame the detection of Al-generated images as a binary classification task: given an image, the
goal is to determine whether it is real or Al-generated. To evaluate overall performance, we use
the Macro F1 score, which is robust to class imbalance. To analyze performance across different
generators, we additionally report per-generator recall within the Al-generated class.

3.1 Prefill-Guided Thinking

Vision-Language Models typically consist of a system field for general instructions, a user field for
inputs, and an assistant field for model-generated responses. A prefill is a phrase inserted into the
assistant field, intended to guide the model’s response.

In our experiment, an image is presented to a VLM along with a question in the user
field: [User: [Image] Is this image real or Al-generated?. Consistent with instruction-tuned model
behavior, the VLM typically generates free-form reasoning in the assistant field (e.g.,
Assistant: This image appears to be...) (Fig.@a). To obtain a clean label, we query the model a second
time by inserting a phrase into the assistant field after its first response: [Final Answer(real/ai-generated): .
This is our baseline method.

The chain-of-thought (CoT) variant encourages step-by-step reasoning. It uses the same initial
question in the user field and inserts the phrase “Let’s think step by step” into the assistant field [42]].
The model’s prefilled responses then start with: Assistant: [Let’s think step by step| (Fig.[2b). The
final clean label is again elicited using the same follow-up answer phrase in the assistant field.

Building on prior work that highlights the importance of synthesis artifacts in detection [44], we
introduce S2, a task-aligned prefill. We insert the phrase “Let’s examine the style and the syn-
thesis artifacts” into the assistant’s field (Fig. [Zc), creating a prefilled response that starts with:
Assistant: ‘Let’s examine the style and the synthesis artifacts‘. This framing encourages attention to
perceptual cues, such as stylistic inconsistencies or generation artifacts, grounding the model’s
reasoning in visual rather than semantic features. The final classification label is obtained in the same
way as in the baseline.
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Figure 3: Detection Macro F1 across models, datasets, and PGT variations. Bars are annotated
with relative improvements of S2 over the next best method and 95% confidence error bars from 10k
bootstrap iterations.

We also evaluate the effects of prefill variations on detection performance, as well as approaches
where the same phrases are inserted into the user field (traditional user prompting) or in the system
field.

3.2 Data

We conduct experiments using three state-of-the-art benchmarks that span a broad spectrum of real
and Al-generated images.

D3 is a benchmark dataset introduced as part of the Contrastive Deepfake Embeddings framework [28].
Unlike many generative datasets focused on faces or curated categories, D3 comprises real images
collected from the web, covering a wide range of domains, including objects, urban scenes, artwork,
animals, abstract visuals, and human figures. Synthetic counterparts were generated using four
models: DeepFloyd IF, Stable Diffusion v1.4 and v2.1 [3], and Stable Diffusion XL [43]. We
randomly sampled 2,000 sets of five images (one real and four generated). After filtering for
copyright restrictions and broken links, the final dataset contains 8,420 images (1,684 real and 6,736
generated). We use 80% of this data (1,344 real and 5,392 generated) for our main evaluation and
reserve the remaining 20% (344 real and 1,344 generated) for additional experiments. We refer to the
main evaluation set as D3, and the smaller subset as D3 (2k).

DF40 is a facial image dataset containing content generated by 40 deepfake techniques across
four categories: face swapping, face reenactment, full-face synthesis, and facial editing [35]]. Tt
includes outputs from state-of-the-art models such as Collaborative Diffusion [46], Midjourney,
StyleCLIP [47], StarGAN v1 and v2 149]], and WhichFacelsReal. The dataset spans variations in
age, gender, ethnicity, and facial pose. We randomly sample 10,000 images (3,929 real and 6,071
generated) for the main evaluation, and an additional 2,000 images (794 real and 1,206 generated) for
extended experiments. We refer to the main evaluation set as DF40, and the smaller subset as DF40
(2k).

Genlmage is built using all real images from ImageNet [50], covering diverse object categories such
as animals, tools, vehicles, and furniture. Each real image is paired with a synthetic counterpart
generated by one of eight models: ADM [3]], BigGAN [31]], GLIDE [52], Midjourney, VQDM [33]],
Stable Diffusion v1.4 and v1.5 [3], and Wukong. We use a balanced evaluation sample of 10,000
images (5,000 real and 5,000 generated) for the main experiments and 2,000 images (1,000 real and
1,000 generated) for extended analyses. We refer to the main evaluation set as Genlmage, and the
smaller subset as Genlmage (2k).
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Figure 4: Detection recall (%) for Llama across different datasets and their state-of-the-art synthetic
image generators. Similar figures for LLaVA and Qwen are in the Appendix (Figs. [0} [T0).

Phrase Type D3 (2k) DF40 (2k) GenImage (2k)
Baseline — 46.7 423 44.5
Prefill 49.8 48.8 53.3
CoT Pseudo-Prefill 48.9 1.00 44.1 (47 48.8 (-4.5)
Prompt 45.5 44y  46.7 (2.1 50.4 (-2.8)
Prefill 53.2 61.2 64.8
S2 Pseudo-Prefill 43.4 (98) 45.2 (-16.0) 47.3 (-17.5)
Prompt 49.7 (350 48.8 124y  50.2 (-145)

Table 1: Macro F1 scores (%) across datasets and phrase modes for Qwen. Values in parentheses
indicate absolute differences compared to the prefill baselines. Tables for LLaVA and Llama are
shown in the Appendix.

3.3 Models

We conduct experiments with three Vision-Language Models: LLaVA—OneVisiorEL Owen2.5 —VIEI,
and Llama-3.2-Visio®’l We use instruction-tuned variants in evaluation mode and use seed=0
in the vLLM package [54] to ensure reproducibility. Token generation is capped at 512 tokens
(max_tokens=512). A single run on a NVIDIA A100 80GB for 10,000 images takes approximately
3 hours.

LLaVA-OneVision has been trained on multimodal instruction-following data to allow transfer learning
across different modalities and scenarios. We use the 7B, chat variant of the model for the main
evaluation.

Owen2.5-VL employs a native dynamic-resolution Vision Transformer trained from scratch using
Window Attention [S5]]. For the main evaluation, we use the 7B-Instruct variant.

Llama-3.2-Vision incorporates a separately trained vision adapter that interfaces with a pre-trained
Llama 3.1 language model. We use the 11B-Instruct version for our main evaluation.

*https://huggingface.co/collections/1lava-hf/1lava-onevision-66bble9ce8856e210a7edl1fe
*https://huggingface.co/collections/Qwen/qwen25-v1-6795ffac22b334a837c0f9ab
https://huggingface.co/collections/meta-1lama/1lama-32-66£448ffc8c32f949b04c8ct


https://huggingface.co/collections/llava-hf/llava-onevision-66bb1e9ce8856e210a7ed1fe
https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf

Phrase Prefill D3 (2k) DF40 (2k) GenImage (2Kk)

Baseline — 46.8 423 44.5
CoT [Let’s think step by step| 50.0 48.8 53.4
82 ‘Let’s examine the style and the synthesis artifacts‘ 537 595 645

[Let’s observe the style and the synthesis artifacts| 55.6 (+2.0) 62.4 (+2.8) 64.6 (+0.1)

[Let’s examine the synthesis artifacts| 54.6 (+0.9) 60.9 (+1.4) 64.0 (-0.6)
Variants [Let’s examine the style| 48.6 (-5.1) 55.8 (-3.8) 54.6 (-9.9)
[Let’s examine the details| 49.4 43 50.9 8.6 514 130
Let’s examine the flaws 58.4 (+4.8) 40.0 (-19.6) 54.1 (-10.5)

Table 2: Macro F1 scores (%) of different prefill phrasings for Qwen. Variants are annotated to show
absolute differences compared to S2.

4 Results

4.1 Detection Performance

With the exception of LLaVA on DF40, S2 consistently outperforms CoT and the baseline across
all three benchmarks and models (Fig.[3), achieving up to 24% relative improvement in Macro F1.
Across the 16 state-of-the-art generators, the underlying model remains the same, yet S2 reliably
boosts detection recall at inference. The gains in recall range from 15% for DF40’s sganl to 200%
for GenImage’s adm compared to the next best method for Llama (Fig.[d). Similar trends hold for the
other two models (Figs.[9} [T0]in Appendix). These results demonstrate that our task-aligned prefill
generalizes effectively, outperforming chain-of-thought for Al-generated image detection across
diverse models, datasets, and generators.

4.2 Guidance Comparison

We also compare prefill-guided thinking against simple user prompts that combine
‘User: [Image] Is this image real or AI-generated?‘ with ‘Please think step by step.‘ (COT) and
[Please examine the style and synthesis artifacts.] (S2). Additionally, we investigated the effect
of USiIlg the system field to instruct the model using ‘System: Please start your responses with‘ followed
by [“Let’s think step by step”’ and [“Let’s examine the style and synthesis artifacts’|. We refer to these
variants as Pseudo-Prefills.

As shown in TableT] user prompts and pseudo-prefills do not work as well as prefill-guided thinking
for CoT and S2 using Qwen. Similar trends are observed using LLaVA, whereas user prompts do
work better with Llama (Tables 3 @]in Appendix).

4.3 Prefill Phrasing

Here we examine the model’s sensitivity to prefill phrasing variations for guiding the model to detect
synthetic images. As shown in Table 2} Qwen’s detection performance varies depending on how the
prefill is worded. Guiding the model to consider both style and synthesis artifacts using alternative
phrasing does not reduce performance relative to our S2 prefill. In contrast, guiding the model to
focus on only style or only synthesis artifacts leads to a drop in detection. Guidance around details
and flaws also proves less effective than S2. While the specific phrasing of prefills affects the results,
note that using any task-aligned prefill consistently improves peformance compared to the baseline.

4.4 Descriptive Analysis of Reasoning

Here, we analyze the top words used by the three methods in correctly identifying images. Responses
are represented using a one-hot bag-of-words encoding over the vocabulary, after filtering out stop
words and infrequent terms. For each method, we train a logistic regression model on responses from
all three benchmarks to predict correctness (1 for correct detections and 0 for incorrect). The trained
regressions are then used to identify the 20 words that are most strongly associated with improved
detection performance.
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Figure 5: Top 20 words associated with the highest improvement in detection correctness for Qwen.
Similar figures for LLaVA and Llama are in the Appendix.

For Qwen, the top words vary widely depending on the method (Fig. [5), and similar differences
among methods are observed for Llama and LLaVA (Figs. [IT} [[2]in Appendix). Even with the same
underlying model, the three zero-shot methods induce substantial differences in the vocabulary used
for reasoning about the images.

5 Discussion

Our results show that prefilling responses for Vision-Language Models provides effective guidance
for the detection of Al-generated images — without task-specific fine-tuning. We introduce a simple
task-aligned prefill that consistently outperforms chain-of-thought across nearly all models and
benchmarks, and generalizes robustly across 16 state-of-the art image generators.

We also find that responses must be prefilled directly, as instructing the model to begin its responses
with the prefill does not reliably replicate the effect. For two of the three models we tested, prefilling
responses also outperforms standard user prompts. As with prompts, careful phrasing is critical for
effectiveness.

Overall, our findings suggest that prefilled guidance is a simple yet powerful approach for steering
VLMs toward robust and generalizable synthetic image detection in a zero-shot setting.

6 Limitations

A primary limitation of using VLMs for synthetic image detection is their computational cost.
Compared to traditional models like CNNs or ViTs, Vision-Language Models generate longer token
sequences, require more memory, and consequently perform slowly. As a result, any method that
leverages them inherits these computational demands.

While we found that Prefill-Guided Thinking improves synthetic image detection across three VLMs,
we cannot assume it will generalize to all VLMs. Architectures vary widely, as do their training
regimes. Moreover, our experiments were limited to mid-sized VLMs (7-11B parameters), so the
effectiveness of PGT for larger models remains unknown. Finally, although we used state-of-the-art
benchmarks from the past two years, the opaque nature of VLM training means we cannot exclude
that the models were exposed to some of these images during pre-training.



Finally, while we identified a prefill suited to synthetic image detection, our finding that prefills are
sensitive to phrasing means that the ease of discovering effective prefills for any given task remains
an open question.
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A Appendix

A.1 Full Reasoning Traces

This section includes the full reasoning traces for all three methods. We can see the full traces
produced by Qwen’s PGT variations for the Al-generated image of an elephant (Figs[6] [7] [8).

‘ User: [Image] Is this image real or AI-generated? |

Assistant The image appears to be real. The details in
the elephant’s skin texture, the natural lighting, and the
background vegetation suggest that this is a photograph of
a real elephant. AlI-generated images often have a more
artificial or stylized appearance, which is not evident in
this image.

‘Final Answer (real/ai-generated) : ‘ real. X

Figure 6: An example of a baseline reasoning trace for detecting Al-generated images using a VLM
(Qwen2.5-7B). Image from Fig.[2]
A.2 Detection Recall

This section shows the detection recall for Qwen and LLaVA (Figs[9} [10).

A.3 Guidance Comparison

This section shows the detection performance for LLaVA and Llama across guidance variations of
chain-of-thought and S2 (Tables[3] H).

A.4 Descriptive Analysis

This section shows the vocabulary associated with detection correctness for LLaVA and Llama

(Figs T2} [TT).
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User: [Imagel Is this image real or AI-generated?

Assistant[Let’s think step by step:

1. Details in the Skin Texture: The skin texture of the elephant appears very detailed and
realistic, with natural wrinkles and folds that are typical of an elephant’s skin. This level
of detail is often seen in real photographs.

2. Lighting and Shadows: The lighting and shadows on the elephant’s skin are well-rendered,
which is another characteristic of real photographs. The way the light falls on the elephant’s
body and the shadows it casts are consistent with natural lighting.

3. Background and Environment: The background shows a natural setting with greenery and a wall,
which looks like a typical environment for an elephant. The details in the background, such as
the leaves and the wall, are also quite realistic.

4. Overall Composition: The composition of the image, with the elephant in the foreground

and the background elements, is natural and not overly stylized, which is more common in real
photographs.

Given these observations, it is likely that this image is a real photograph of an elephant

in a natural or semi-natural environment. However, it’s important to note that AI-generated
images can sometimes be very realistic, so it’s always a good idea to cross-reference with other
sources or experts if there’s any doubt.

[Final Answer(real/ai-generated):‘ real. X

Figure 7: An example of a chain-of-thought reasoning trace for detecting Al-generated images using
a VLM (Qwen2.5-7B). Image from Fig. 2]

| User: [Image] Is this image real or AI-generated?

Assistant [Let’s examine the style and synthesis artifacts] in the image:

1. Texture and Detail: The skin texture of the elephant appears somewhat uniform and lacks the
fine, natural variations that you would expect in a real photograph. The wrinkles and folds in
the skin, while present, do not have the depth and complexity typically seen in real elephants.
2. Lighting and Shadows: The lighting in the image is somewhat flat, and the shadows are not
very pronounced. In a real photograph, you would expect more dynamic lighting and more defined
shadows, especially around the tusks and the trunk.

3. Background and Environment: The background appears to be a natural setting, but the image
quality and the way the elephant is positioned suggest it might be a controlled environment,
possibly a zoo or a sanctuary.

4. Overall Composition: The composition of the image is quite good, but the overall quality and
the way the elephant is presented suggest it might be an AI-generated image rather than a real
photograph.

Based on these observations, it is likely that this image is AI-generated.

[Final Answer(real/ai—generated):] ai-generated. v/

Figure 8: An example of a S2 reasoning trace for detecting Al-generated images using a VLM
(Qwen2.5-7B). Image from Fig. 2]
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Figure 9: Detection recall (%) for Qwen across different datasets and their state-of-the-art synthetic
image generators.
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Detection recall (%) for LLaVA across different datasets and their state-of-the-art

Phrase Type D3 (2k) DF40 (2k) GenImage (2k)

Baseline — 41.8 49.3 45.1
Prefill 442 59.2 55.1

CoT Pseudo-Prefill 41.3 29  49.1 -10.)  45.6 (9.4
Prompt 43.5 -0.7) 52.2 (-1.0) 55.4 (+0.4)
Prefill 52.1 57.5 59.6

S2 Pseudo-Prefill 41.6 105 49.2 (-82) 45.6 (-14.0)
Prompt 45.0 720 60.6 (+3.1) 52.2 (1.4

Table 3: Macro F1 scores (%) across datasets and phrase modes for LLaVA. Values in parentheses
indicate absolute differences compared to the prefill baselines.

Phrase Type D3 (2k) DF40 (2k) GenImage (2Kk)

Baseline — 47.7 40.1 60.4
Prefill 47.8 60.3 58.1

CoT Pseudo-Prefill 40.7 7.0 50.3 (-10.1) 47.4 (-10.7)
Prompt 50.5 +26) 61.5 12 62.9 (+4.8)
Prefill 58.4 62.1 71.8

S2 Pseudo-Prefill 58.6 (+0.1) 58.7 (:3.4) 64.4 (7.4
Prompt 56.5 19  63.1 +1.0) 76.6 (+4.8)

Table 4: Macro F1 scores (%) across datasets and phrase modes for Llama. Values in parentheses
indicate absolute differences compared to the prefill baselines.
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Baseline

CoT S2

unnatural dog portrait
dog smooth rendering
nuance text depiction
intelligence corner furthermore
hard intelligence particular
art observation main
aesthetic fur trait
model unusual world
young stylize additionally
typically symmetrical naturalistic
environment abstract art
pixelated distort pixelated
specific uniform symmetrical
sharpness perfect line
watermark art shot
type combine watermark
read event unrealistic
red slightly computer
typical algorithm photographer
grainy leave certainly
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Figure 11: Top 20 words associated with the highest improvement in detection correctness for Llama.

Baseline CoT S2
heavily consider determine
smooth abstract examination
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perfection art simulate
manipulated algorithm indoor
exaggerated plausible commercial
woman precision distort
person hairstyle evenly
surreal breed abstract
rule formal intelligence
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directly park consider
computer minimal fur
abstract inconsistent art
clean clearly hold
artificial impossible moment
artwork technical practice
ability hold computer
rendering portrait support
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Figure 12: Top 20 words associated with the highest improvement in detection correctness for Llava.
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