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a b s t r a c t

Recently, the new paradigm ‘‘pre-train, prompt, and predict’’ has achieved remarkable few-shot
learning achievements compared with the ‘‘pre-train, fine-tune’’ paradigm. Prompt-tuning inserts
the prompt text into the input and converts the classification task into a masked language modeling
task. One of the key steps is to build a projection between the labels and the label words, i.e.,
the verbalizer. Knowledgeable prompt-tuning (KPT), which integrates external knowledge into the
verbalizer to improve and stabilize prompt-tuning. KPT uses word embeddings and various knowledge
graphs to expand the label words space to hundreds of words per class. However, some unreasonable
label words in the verbalizer may damage the accuracy. In this paper, a new method called KPT++
is proposed to improve the few-shot text classification. KPT++ is refined knowledgeable prompt-
tuning, which can also be regarded as an upgraded version of KPT. Specifically, KPT++ uses two newly
proposed prompt grammar refinement (PGR) and probability distribution refinement (PDR) to refine the
knowledgeable verbalizer. Extensive experiments on few-shot text classification tasks demonstrate
that our KPT++ outperforms state-of-the-art method KPT and other baseline methods. Furthermore,
ablation experiments and case studies demonstrate the effectiveness of both PGR and PDR refining
methods.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Pre-trained language models (PLMs) [1–7] have performed
xceptionally well on various tasks (e.g., text classification [8],
eading comprehension [9], text generation [10], etc.) in the field
f natural language processing (NLP). Researchers have conducted
xtensive studies [11,12] to dissect the rationale for the effec-
iveness of PLMs, and experimental results show that PLMs learn
wealth of prior knowledge during pre-training. A common

pproach to exploiting PLMs for various downstream tasks is
ine-tuning, which concatenates a trainable task-specific classi-
ier at the last layer of PLMs. However, fine-tuning discards the
re-trained masked language model (MLM) head and requires
etraining the task-specific classifier, which does not fully exploit
he prior knowledge in PLMs.

Recently, a method to fully exploit prior knowledge in PLMs,
rompt-tuning, has received extensive attention from the NLP
ommunity due to its astonishing performance on few-shot learn-
ng [13,14]. A general approach to prompt tuning is to combine
nput sentences with natural language templates to transform
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downstream tasks into masked language model tasks. For exam-
ple, classify the sentiment of a sentence x: ‘‘The plot of this movie
is interesting.’’. We first combine the sentence x and the template
into: ‘‘x It was [MASK].’’. Assuming the label words are good and
bad, the verbalizer [15] maps them to label positive and negative.
Which category the sentence x is classified into depends on which
ord PLM fills in [MASK] with a greater probability of ‘‘good’’
nd ‘‘bad’’. Verbalizer builds a projected bridge between the label
ord space and the label space, which significantly impacts the
lassification performance [16].
The original and most widely used are manual verbalizers

14,15], in which the developer manually selects a single word
o represent each category. Human manual selection is time-
onsuming and may not be effective enough, and later studies use
he discrete search [17–19] to find suitable label words automat-
cally. However, the label words obtained by automatic discrete
earch lack prior knowledge and have less coverage. Therefore, to
mprove the coverage and reduce the bias of manual verbalizers,
u et al. propose knowledgeable prompt tuning (KPT) [20], which
ncorporates external knowledge into the verbalizer to facilitate
rompt-tuning. The core idea of KPT is to use WordNet [21],
ord embeddings, ConceptNet [22], etc., as external knowledge
ases to expand the label words corresponding to each category.

lthough KPT has constructed a knowledgeable verbalizer that
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ontains comprehensive label words, the collected label words
an be noisy since the vocabulary of the knowledge base is
ot tailored for the PLM. Therefore, in order to solve the above
hortcomings, we propose refined knowledgeable prompt-tuning
KPT++), which uses prompt grammar refinement and probability
istribution refinement to refine and filter label words in the
nowledgeable verbalizer.
The main contributions of this paper can be summarized as

ollows:
(1) We propose a novel method, Refined Knowledgeable

rompt-tuning (KPT++), which performs better than the original
PT, and the improvement is more obvious when there are more
oisy label words in the knowledgeable verbalizer.
(2) We propose two methods, prompt grammar refinement

nd probability distribution refinement, specifically for refining
abel words in knowledgeable verbalizers. Furthermore, the ef-
ectiveness of these two refining methods is demonstrated by
onstructing ablation experiments.
(3) Experimental results on five text classification datasets

emonstrate that the few-shot performance of KPT++ outper-
orms the state-of-the-art method KPT and other baseline meth-
ds.
This paper is organized as follows. In Section 1, we intro-

uce the research background and motivation of this paper. In
ection 2, we review related works to pre-trained language mod-
ls, and prompt learning, after which we describe the proposed
ethod KPT++ and its two refining methods prompt grammar

efinement and probability distribution refinement in Section 3.
n Section 4, we describe the datasets, experimental setting and
resent the experimental results. In Section 5, we provide an in-
epth analysis of our proposed KPT++. Finally, we conclude and
ook ahead in Section 6.

. Related work

.1. Pre-trained language models

In recent years, the emergence of various pre-trained language
odels has promoted the development and progress in the field
f natural language processing. Devlin et al. [3] proposed a new
anguage representation model called BERT, which stands for
idirectional encoder representations from transformers. BERT
chieved state-of-the-art performance on multiple natural lan-
uage understanding benchmarks, starting the era of pre-trained
anguage models. Unlike BERT, which is based on bidirectional
ransformers, Alec et al. [23] proposed a left-to-right unidirec-
ional language model (GPT). Yinhan et al. proposed RoBERTa by
odifying the training process of the original BERT. Specifically,

he static masking strategy is replaced with a dynamic masking
trategy and the pre-training task is removed. Lan et al. [5]
dopted the method of parameter sharing to reduce the mem-
ry consumption of the original BERT model, and replaced the
ext sentence prediction (NSP) task of the original BERT model
ith a new sentence order prediction (SOP) task, which further

mproved the performance. Subsequently, Yang et al. [24] pro-
osed a Transformer-XL-based autoregressive pre-training model,
LNet, which learns bidirectional context via maximizing the
xpected likelihood of all permutations of the factorization order
nd overcomes the limitations of BERT due to its autoregres-
ive formulation. Kevin et al. [6] proposed a pre-training model
ased on a generator-discriminator architecture, ELECTRA, which
ses a novel replaced token detection (RTD) pre-training task
o improve the pre-training efficiency. Furthermore, pre-trained
anguage models such as BART [25], T5 [7], UniLM [26] and
PT3 [27] have achieved excellent results on natural language
eneration tasks.
2

2.2. Prompt tuning

Prompt learning has exploded in the field of natural language
processing since it was discovered that feeding GPT3 [13] some
hand-crafted templates and prompts without updating parame-
ters could lead to surprising learning performance with few or
even zero shots. Then an amazing work PET [14] was proposed,
which was the first to apply prompt learning to normal-sized lan-
guage models such as BERT and ALBERT, and achieved satisfactory
few-shot learning performance. Different from the previous man-
ual methods, the automatic verbalizer was proposed by Schick
et al. [17], which uses labeled data to select the most infor-
mative label words in the PLM’s vocabulary. Timo et al. [28]
explored methods to identify label words automatically. How-
ever, it does not bring significant improvement compared to the
hand-picked results. LM-BFF [16] is a set of simple and effective
methods for fine-tuning language models on few-shot, which au-
tomatically generates prompts and searches for the best prompts.
Li et al. [29] proposed a lightweight alternative for fine-tuning
natural language generation tasks, prefix-tuning, which keeps
language model parameters frozen and optimizes a sequence
of continuous task-specific vectors called prefixes. At about the
same time, P-tuning [18] was proposed, which employs train-
able continuous prompt embeddings and improves both GPT and
BERT well. Similarly, Hambardzumyan et al. [19] proposed WARP
with a soft verbalizer, which uses a continuous vector for each
class and uses the dot product between the masked language
model output and the class vector to produce the probability for
each class. Ni and Kao [30] use ELECTRA for prompt learning.
Specifically, they transform the downstream task into a replaced
token detection (RTD) pre-training task. Ni and Kao [31] pro-
posed a novel masked Siamese prompt tuning (MSP-tuning) to
improve few-shot natural language understanding. Specifically,
MSP-tuning randomly masks some of the prompt tokens in or-
der to obtain a pair of masked Siamese prompt words for each
sample. Recently, Hu et al.. [20] proposed knowledgeable prompt
tuning (KPT), which incorporates external knowledge into the
prompt verbalizer for text classification. Unlike previous studies,
only KPT and our KPT++ use external knowledge to integrate into
the prompt verbalizer, and the KPT++ proposed in this paper is
an optimized and improved version of KPT. Compared with KPT,
our KPT++ proposes two new refining methods, PGR and PDR, to
optimize the knowledgeable verbalizer.

3. Proposed method

3.1. Preliminaries

In this subsection, we first introduce how standard prompt
tuning works for pre-trained language models. For prompt tuning,
the size of the pre-trained language model and the knowledge
learned in the pre-training phase directly determine the per-
formance of the model in the prompt tuning phase. This pa-
per focuses on comparing various prompt tuning methods, thus
the main experimental section afterward uses the RoBERTa-large
model, which is most commonly used by other prompt tuning
methods. Given a pre-trained masked language model (MLM) M,
he discrete input tokens are xin = x0,x1,...,xn . Let V refers to the
vocabulary of a language model M and e serves as the embedding
function for M. For instance, we can formulate a binary movie
review sentiment classification task using a prompt (e.g., ‘‘It was
[MASK]’’.) with input xin (e.g., ‘‘This is the most exciting action
movie this year’’.) as:

Xtemplate = [CLS]e(xin)[SEP]e(It) e(was) e([MASK])e(.) (1)

nd let language model M predict whether it is more appropriate
o fill in ‘‘great’’ (positive) or ‘‘terrible’’ (negative) for [MASK]
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Fig. 1. The overall framework of KPT++. This is an example of sentiment binary classification for movie reviews. The main difference compared to KPT is that we
propose two new verbalizer refining methods: prompt grammar refinement (PGR) and probability distribution refinement (PDR) to refine and upgrade the verbalizer.
l
t

oken. Among them, the prompt ‘‘It was [MASK]’’. belongs to the
ocabulary V. Then, we formalize the training process. Firstly, let
erbalizer VB: Y be the mapping from the task label space in the
ocabulary V in M to a label word. For example VB: Y = positive
V = {‘‘great’’}. We feed the masked language model (MLM) M
ith a [MASK] token. In this way, the original binary sentiment
lassification is converted into a masked language model task. We
odel the probability of predicting class y ∈ Y as:

(y|xin) = p([MASK] = VB(y)|Xtemplate)

=
exp(wVB(y) · h[MASK])∑

y,∈Y
exp(wVB(y,) · h[MASK])

(2)

where h[MASK] is the hidden vector of [MASK] token. This
method re-uses the pre-trained weights and does not introduce
any new parameters.

3.2. KPT++: Refined knowledgeable prompt tuning

Unlike standard prompt-tuning, knowledgeable prompt tun-
ing generates multiple label words related to each class y,
e.g., VB : Y = positive →V = {‘‘great’’, ‘‘good’’, ‘‘amazing’’, . . . }.
KPT++ uses WordNet [21], Word embeddings, ConceptNet [22],
etc., as external knowledge bases to expand the label words
corresponding to each category. The edges between each of
these words represent relevance relationships and are labeled
with relevance weights. We assume that the name of each class
is the best-labeled word and use it as the central node and
get the neighboring nodes with relevance weight greater than
a threshold as the labeled word for that class. In this way,
each class is given a set of label words. As shown in Fig. 1,
a knowledgeable verbalizer containing hundreds of label words
is obtained after label word expansion. Although we construct
a knowledge-rich linguist with a comprehensive set of label
words, the collected label words can be very noisy because the
vocabularies of external knowledge bases are not tailored for
pre-trained language models [20]. Therefore, we need to refine
the verbalizer and filter out the noisy words. In this paper, we
propose two refining methods prompt grammar refinement and
robability distribution refinement. Next, we describe each of these
wo refinement methods.

.2.1. Prompt grammar refinement
For prompt tuning, label word and prompt are whole and

hould not be considered separately. In the original knowledge-
ble verbalizer, it only considered whether the meaning of the
3

label word is reasonable, but after some label words are filled
in [MASK], the sentence formed with the prompt word is unrea-
sonable. For example, ‘‘can’t’’ has a negative connotation from a
certain point of view, but the sentence ‘‘It was can’t’’. is clearly
a grammatically incorrect sentence and a sentence with confus-
ing meaning. As shown in Fig. 2, we combine each label word
and prompt word into a sentence, and then input the trained
grammar detection model to filter out those label words with
grammatical errors. For the grammar detection model, We use a
pre-trained BERT-GEC [32] model to perform grammatical error
detection. This is the first refining process of KPT++.

3.2.2. Probability distribution refinement
After PGR refining, the verbalizer is then refined by PDR. The

probability distribution refinement does not abandon the original
knowledgeable prompt tuning of the relevance refinement, but
combines two refinement methods. We want the label words
to have high relevance to this class and low relevance to other
classes. The relevance refinement treats the vector of the prob-
abilities of the label word on unlabeled support set S as the
representation Q v of the label word. Q v can be expressed as:

Q v
= [pv

1, p
v
2, . . . , p

v
i ] (3)

Here i is the number of data in support set S . Q v ’s ith element
is:

pv
i = PM([MASK] = v|Xip),Xi ∈ S̃ (4)

During the calculation process, the name of each class is se-
ected as the central word, such as ‘‘positive’’ for Positive. Thus,
he vector representation Q v0 of the these names as the class’s
representation Q y. Thus, the relevance score R(v, y) between a
label word v and a class y is calculated as the cosine similarity
between the two representation:

R(v, y) = cos(Qv,Qy) = cos(Qv,Qv0). (5)

Furthermore, we hope the label words do not contribute pos-
itively to multiple classes, leading to confusion among classes.
Empirically, the higher the correlation between the label word
and this class, the better, and the lower the correlation with
other classes, the better. As shown in Fig. 3, on the unlabeled
support set, we want the distribution probabilities of labeled
words to have a high standard deviation, rather than tending to
the same probabilities. In order to filter confusing and useless
label words, we designed a metric that favors label words that
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Fig. 2. The illustration of prompt grammar refinement.
Fig. 3. The illustration of probability distribution refinement.
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are only highly relevant to the category they belong to and lowly
relevant to other categories with high standard deviation and
differentiation of the distribution. The PDG refined standard value
RSd(v) composed of correlation and the standard deviation is:

RSd(v) = r(v, f(v))(
|y| − 1∑

y∈Y, y̸=f(v) r(v, y)d
)1/d + STDv (6)

where f(v) is the corresponding class of v, the normalization
coefficient d is:

d =
C

|y| − 2 + ϵ
+ 1, C > 0, 0 < ϵ ≪ 1 (7)

We set C = 5 and ϵ = 0.0001 in the experiments. The
standard deviation STDv of the distribution is expressed as:

STDv =
√
(pv

1 − pave) + (pv
2 − pave) + · · · + (pv

n − pave)/(n − 1)

(8)

where pave is the average of the label word probabilities.

3.2.3. Training and prediction
During training, the threshold of RSd(v) is a hyperparameter.

We dynamically adjust the threshold of RSd(v) among {1, 1.2, 1.5}
for the setting. We assign a learnable weight wv to each label
word v (may be already refined by the PGR and PDR methods).
The weights form a vector w ∈ R|v|, which is initialized to be a
zero vector. The weights are normalized within each vy:

αv =
exp(wv)∑

u∈y, u̸=v exp(wv)
(9)

We map the weighted average of the predicted probability of
each refined label word to the class label y. The predicted ŷ can
be expressed as:

ŷ = max
exp(s(y|xp))∑

′
(10)
y∈Y y′ exp(s(y |xp))

4

Table 1
The statistics of datasets used in this paper.
Dataset Type # Class Test size

AG’s News Topic classification 4 7600
DBPedia Topic classification 14 70000
Yahoo Topic classification 10 60000
Amazon Sentiment classification 2 10000
IMDB Sentiment classification 2 25000

where s(y|xp) is

s(y|xp) =

∑
y∈Vy

av logPM ([MASK] = v|xp) (11)

Finally, the predicted values are optimized using the cross-
ntropy function.

. Experiments

In this section, we conduct extensive experiments on the five
idely acknowledged text classification datasets. Experimental
esults show that our proposed KPT++ outperforms state-of-the-
rt method KPT and other baseline methods.

.1. Datasets and templates

To better evaluate our proposed method KPT++, we use three
opic classification datasets: AG’s News [33], DBPedia [34], Ya-
oo [35], and two sentiment classification datasets: IMDB [36]
nd Amazon [37]. The statistics of the datasets are shown in
able 1. We follow KPT [20] to design the templates. In order to
eaken the influence of templates on the experimental results,
e design four templates for each dataset, as shown in Table 2.
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Table 2
The templates of each dataset.
Dataset Template

AG’s News
A [MASK] news : <Input>
<Input> This topic is about [MASK].

[ Category : [MASK] ] <Input>
[ Topic : [MASK] ] <Input>

DBPedia
<Tittle> <paragraph> <Tittle*> is a [MASK] .

<Tittle> <paragraph> In this sentence, <Tittle*> is a [MASK] .

<Tittle> <paragraph> The type of <Tittle*> is [MASK].

<Tittle> <paragraph> The category of <Tittle*> is [MASK].

Yahoo
A [MASK] question : <Input>
<Input> This topic is about [MASK].

[ Category : [MASK] ] <Input>
[ Topic : [MASK] ] <Input>

Amazon
It was [MASK] . <Input>
Just [MASK] ! <Input>
<Input> All in all, it was [MASK].

<Input> In summary, the film was [MASK].

IMDB
It was [MASK] . <Input>
Just [MASK] ! <Input>
<Input> All in all, it was [MASK].

<Input> In summary, it was [MASK].

4.2. Expermental setting

We chose the very widely used RoBERTa-large model for the
re-trained language model for the main experiments. Because
he datasets are relatively balanced, we use Micro-F1 as the test
etric in all experiments, which is described in the following
quations:

ecallmic =
TP1 + TP1 + · · · + TPn

TP1 + TP1 + · · · + TPn + FN1 + FN1 + · · · + FNn

(12)

Precisionmic =
TP1 + TP1 + · · · + TPn

TP1 + TP1 + · · · + TPn + FP1 + FP1 + · · · + FPn

(13)

Micro − F1 = 2
Recallmic × Precisionmic

Recallmic + Precisionmic
. (14)

here TPi is the True Positive of class i; FPi is the False Positive
f class i; FPi is the False Negative of class i.
We evaluate each prompt-based method using four templates

nd five random seeds, and the results we report are the average
f 20 runs. Repeating the experiment multiple times can reduce
he influence of randomness on the experimental results. For
he probability distribution refinement based on the unlabeled
upport set S, the size |S| is 200. For k-shot experiments, we
ample k instances of each class from the original training set to
orm the few-shot training set, and resample k instances in each
lass to form the validation set. We take the value of k as 1, 5, 10
nd 20 for few-shot experiments. For hyper-parameters, we run
he model for 5 epochs and select the checkpoint with the best
alidation performance for testing. The maximum input length
f the three datasets AG’s News, DBPedia, and Yahoo is 128; the
aximum input length of the two datasets Amazon, IMDB is 512.
he learning rate of the optimizer is 3e-5. For the fairness of the
xperiments, we keep the same as KPT in terms of experimental
ettings.
5

4.3. Baselines

In order to thoroughly evaluate the performance of the pro-
posed method, we compare KPT++ with a series of baseline meth-
ods:
(1) Fine-tuning: directly fine-tune the RoBERTa-large model based
on a few samples and then use the hidden embedding of [CLS] to
predict.
(2) Prompt-tuning: regular prompt-based few-shot learning,
where each class corresponds to a single manually selected label
word.
(3) AUTO PT: prompt-tuning with automatic verbalizer [17],
which does not need to manually determine the label words in
advance, but uses the label data to automatically select the most
suitable label words in the PLM vocabulary.
(4) SOFT PT: prompt-tuning with soft verbalizer [19], which does
not require specific label words, but uses a continuous vector
(generated from the label name) for each class and uses the dot
product between the masked language model output and the
class vector to generate the probability of each class.
(5) KPT: knowledgeable prompt-tuning [20], prompt-tuning with
knowledgeable verbalizer, which integrates external knowledge
into the verbalizer, and each category correspond to multiple
label words.

4.4. Experimental results

First of all, from the experimental results in Table 3, it can
be seen that the prompt-based methods are much better than
the Fine-tuning. The less training data there is, the greater the
gap between prompt-tuning and fine-tuning. For example, on the
DBPedia dataset, the 1-shot performance of KPT++ is 94.4%, while
Fine-tuning is only 8.6%. Although AUTO PT does not need to
manually select label words, its performance is still inferior to
manual prompt-tuning, especially when there are low-few sam-
ples (e.g., 1-shot, 5-shot). SOFT PT slightly outperforms manual
prompt-tuning. Compared with other baseline methods, KPT in-
corporating external knowledge has the best overall performance.
Finally, our proposed KPT++ outperforms the state-of-the-art KPT
on all datasets. The experimental results not only illustrate the
validity of prior knowledge, but also demonstrate the importance
of the refining process.

5. Analysis

This section provides an in-depth analysis of our proposed
KPT++.

5.1. Ablation study

This subsection analyzes the impact of our two proposed
refining methods (PGR and PDR) on the KPT++ method. For the
ablation study, w/o PGR, w/o PDR and w/o BOTH is the vari-
ant of KPT++ that does not conduct PGR, PDR and both PGR
and PDR, respectively. The training data for the experiments
are 10 samples per class. In the experiments of this subsection,
we perform prompt learning based on pre-trained RoBERTa-base
and RoBERTa-large, respectively. The RoBERTa-base has 12 Trans-
former layers with 768 dimensions, 12 self-attentive heads per
layer, and 125M parameters; The RoBERTa-large has 24 Trans-
former layers with 1024 dimensions, 12 self-attentive heads per
layer, and 355M parameters. The experimental results are shown
in Table 4, the performance of both w/o PGR and w/o PDR is lower
than the original KPT++. Further, the worst overall performer is
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Table 3
Results of 1/5/10/20-shot text classification based on RoBERTa-large. We report their mean ± standard deviation of 20
runs (four templates and five random seeds).
Shot Method AG’s News DBPedia Yahoo Amazon IMDB

1

Fine-tuning 19.8 ± 10.4 8.6 ± 4.5 11.1 ± 4.0 49.9 ± 0.2 50.0 ± 0.0
Prompt-tuning 80.0 ± 6.0 92.2 ± 2.5 54.2 ± 3.1 91.9 ± 2.7 91.2 ± 3.7
AUTO PF 52.8 ± 9.8 63.0 ± 8.9 23.3 ± 4.5 66.6 ± 12.5 75.5 ± 15.5
SOFT PF 80.0 ± 5.6 92.3 ± 2.3 54.3 ± 2.7 90.9 ± 5.8 89.4 ± 8.9
KPT 83.7 ± 3.5 93.7 ± 1.8 63.2 ± 2.5 93.2 ± 1.3 92.2 ± 3.0
KPT++ 84.5 ± 3.4 94.4 ± 1.5 64.1 ± 2.4 93.7 ± 1.4 92.8 ± 1.9

5

Fine-tuning 37.9 ± 10.0 95.8 ± 1.3 25.3 ± 14.2 52.1 ± 1.3 51.4 ± 1.4
Prompt-tuning 82.7 ± 2.7 97.0 ± 0.6 62.4 ± 1.7 92.2 ± 3.3 91.9 ± 3.1
AUTO PF 72.2 ± 10.1 88.8 ± 3.9 49.6 ± 4.3 87.5 ± 7.4 86.8 ± 10.1
SOFT PF 82.8 ± 2.7 97.0 ± 0.6 61.8 ± 1.8 93.2 ± 1.6 91.6 ± 3.4
KPT 85.0 ± 1.2 97.1 ± 0.4 67.2 ± 0.8 93.4 ± 1.9 92.7 ± 1.5
KPT++ 86.1 ± 1.7 97.9 ± 1.1 68.3 ± 1.3 94.5 ± 1.7 93.5 ± 1.4

10

Fine-tuning 75.9 ± 8.4 93.8 ± 2.2 43.8 ± 17.9 83.0 ± 7.0 76.2 ± 8.7
Prompt-tuning 84.9 ± 2.4 97.6 ± 0.4 64.3 ± 2.2 93.9 ± 1.3 93.0 ± 1.7
AUTO PF 81.4 ± 3.8 91.5 ± 3.4 58.7 ± 3.1 93.7 ± 1.2 91.1 ± 5.1
SOFT PF 85.0 ± 2.8 97.6 ± 0.4 64.5 ± 2.2 93.9 ± 1.7 91.8 ± 2.6
KPT 86.3 ± 1.6 98.0 ± 0.2 68.0 ± 0.6 93.8 ± 1.2 92.9 ± 1.8
KPT++ 87.6 ± 1.6 98.8 ± 1.2 68.7 ± 1.2 94.4 ± 1.5 93.5 ± 1.7

20

Fine-tuning 85.4 ± 1.8 97.9 ± 0.2 54.2 ± 18.1 71.4 ± 4.3 78.5 ± 10.1
Prompt-tuning 86.5 ± 1.6 97.9 ± 0.3 67.2 ± 1.1 93.5 ± 1.0 93.0 ± 1.1
AUTO PF 85.7 ± 1.4 92.2 ± 2.7 65.0 ± 1.8 93.9 ± 1.1 92.8 ± 2.0
SOFT PF 86.4 ± 1.7 98.0 ± 0.3 67.4 ± 0.7 93.8 ± 1.6 93.5 ± 0.9
KPT 87.2 ± 0.8 98.1 ± 0.3 68.9 ± 0.8 93.7 ± 1.6 93.1 ± 1.1
KPT++ 88.4 ± 1.3 98.7 ± 0.4 69.6 ± 1.1 94.4 ± 1.7 93.8 ± 1.2
Table 4
Ablation study of KPT++.

Method AG’s News DBPedia Yahoo Amazon IMDB

RoBERTa-base

KPT++ 85.4 ± 1.2 97.1 ± 1.1 65.4 ± 1.3 93.7 ± 1.5 91.5 ± 1.6
w/o PGR 85.2 ± 1.3 96.5 ± 1.4 65.1 ± 1.5 93.4 ± 1.6 91.3 ± 1.6
w/o PDR 84.9 ± 1.3 96.6 ± 1.2 65.3 ± 1.1 93.2 ± 1.3 91.1 ± 1.6
w/o BOTH 84.2 ± 1.3 96.2 ± 1.7 64.8 ± 1.4 93.1 ± 1.5 91.2 ± 1.6

RoBERTa-large

KPT++ 87.6 ±1.6 98.8 ±1.2 68.7 ± 1.2 94.4 ±1.5 93.5 ± 1.7
w/o PGR 86.4 ± 1.4 98.0 ± 0.9 67.9 ± 1.1 93.9 ± 1.2 92.9 ± 1.3
w/o PDR 86.3 ± 1.5 97.8 ± 0.7 68.1 ± 1.3 94.1 ± 1.3 92.8 ± 1.1
w/o BOTH 85.6 ± 1.4 97.9 ± 0.2 67.5 ± 1.1 94.0 ± 1.0 92.7 ± 2.1
w/o BOTH. The experimental results show that both PGR and
PDR have positive effects on the model. The combination of PGR
and PDR works best. Of course, the improvement of the refining
method depends on the quality of the original knowledgeable
verbalizer. For example, the original knowledgeable verbalizer
has many noise words, so it is necessary to use the refining
method, and the model will be significantly improved.

5.2. Performance influence between different pre-trained language
models

In this subsection, we investigate the influence of different
re-trained language models on performance. We experimen-
ally evaluate the results of KPT++ on BERT-base, BERT-large,
oBERTa-base, and RoBERT-large, respectively. The training data
or the experiments are 10 samples per class. The experimental
esults are shown in Table 5. The four models, BERT-base, BERT-
arge, RoBERTa-base, and RoBERT-large, averaged 85.5%, 87.3%,
6.6%, and 88.6% on the five datasets, respectively. We find that
oBERTa-large outperforms BERT-large by 1.3%; RoBERTa-base
utperforms BERT-base by 1.1%. The RoBERTa model learns more
n the pre-training phase than BERT. Therefore using RoBERTa for
rompt tuning is more effective. In addition, we find that BERT-
arge is 1.8% higher than BERT-base and RoBERTa-large is also
.3% higher than RoBERTa-base. This phenomenon illustrates that
or a prompt tuning method like KPT++, the larger the size of
he pre-trained language model, the better the model works on
ownstream tasks.
6

5.3. Case studies

The RoBERTa-large model trained by KPT in Section 4 is se-
lected for the case studies in this subsection. Table 6 shows
three specific cases in which the KPT prediction is wrong but
the KPT++ prediction is correct. ‘‘Wrong case’’ is the original
input sample, ‘‘Label’’ represents the truth label, and ‘‘Prediction’’
represents the prediction result of KPT. The first sample is from
AG’s News dataset, and the task is to classify news topics, which is
originally labeled as ‘‘Business’’, but KPT incorrectly predicts it as
‘‘Technology’’. The reason for this error is probably the presence
of many unreasonable or confusing label words in the KPT, such
as {Airplane, makers, wheelbarrow, economy, spoon, companies,
pollution} in the label Technology. The phrase ‘‘train and plane
maker’s’’ in the sentence would lead the model to assume that
this is technology news. Because PDR and PGR filtered out these
unreasonable or confusing label words, KPT++ predicted correctly.

The second example is clearly technology news, but KPT pre-
dicts it as ‘‘Sports’’ news. Because KPT has some unreasonable and
confusing label words, such as the ‘‘Sports’’ category with {home,
English, humor, witticism, women, national, european}. We can
see that the word ‘‘home’’ appears several times in the input, and
the word ‘‘home’’ is actually a label word of the ‘‘Sport’’ category
in the KPT, which will directly affect the model’s judgment. Also,
the PDR and PGR filter out these unreasonable or confusing label
words, therefore KPT++ predicts correctly. The third case is from
the sentiment classification dataset Amazon, which has a large
number of negative words in this sample, such as depressing, dark

side, puking, depravity and cruelty. These words basically match
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Table 5
Results of KPT++ on different pre-trained language models.

PLM AG’s News DBPedia Yahoo Amazon IMDB Avg

BERT base 84.2 ± 1.4 96.1 ± 1.3 64.3 ± 1.2 92.5 ± 1.4 90.3 ± 1.4 85.5
large 86.5 ± 1.3 97.7 ± 1.4 66.8 ± 1.1 93.6 ± 1.6 91.8 ± 1.3 87.3

RoBERTa base 85.4 ± 1.2 97.1 ± 1.1 65.4 ± 1.3 93.7 ± 1.5 91.5 ± 1.6 86.6
large 87.6 ± 1.6 98.8 ± 1.2 68.7 ± 1.2 94.4 ± 1.5 93.5 ± 1.7 88.6
Table 6
Cases where KPT predicted wrongly but KPT++ predicted correctly.
Wrong case Label Prediction

CEO quits at world’s top maker of trains Paul Tellier stepped down as
president and chief executive of Bombardier Inc. Yesterday, surprising
investors and sending the train and plane maker’s shares down as much as
26 percent to a 10-year low. (AG’s News)

Business Technology

The Kid Stays in His Home, Dressed in PJ’s, With a Live Mike Robert Evans,
the fabled Hollywood producer and man about town, will be enjoying his
latest gig, as a satellite radio talk-show host, from the comfort of his home.
(AG’s News)

Technology Sports

You sure you want to read this?. This book is not for a rainy day. Rainy day’s
are depressing and exploring the dark side of the human soul is no less. If
you are into dreams leave this book on the shelf. If you want to feel like
puking from the pit of stomach at the depts of human depravity this is the
book for you. One sentence to describe this book: A daring expose of the
cruelty of children and a slap on the wrist of anybody who thinks kids don’t
need discipline. (Amazon)

Positive Negative
Table 7
Cases where KPT++ predicted wrongly but KPT predicted correctly.
Wrong case Label Prediction

If the ending hadn’t been so fantastically unexpected, I don’t think I could
rate this movie so well. This movie has a lot of uncomfortable, distressing,
‘‘marriage falling apart’’ character interaction. ... I guessed every typical plot
twist except the one that occurred. The ending definitely makes this movie
worth watching. The intrigue and the drama, not quite as much. (IMDB)

Positive Negative

This film is perfect for over the top cheesy zombie lovers. its a film you can
laugh at from the acting to the terrible zombie action. ... if it was any better i
don’t think it would of made any difference but it wouldn’t be interesting to
see a remake with all the same cast as i believe they have possibly improved
over the last 7 years. (IMDB)

Negative Positive
Fig. 4. Left: The label words filtered out by PGR. Right: The top 5 label words with the smallest standard deviation of the probability distribution. The values
represent STDv in Eq. (8).
with the ‘‘Negative’’ category label words in KPT, therefore the
model directly predicts ‘‘Negative’’. However, the true sentiment
of this review is positive. We can see in these cases examples of
confusing labels of KPT which caused misclassifications and were
successfully removed by KPT++.

In addition, there are some samples where KPT++ is incorrectly
classified but KPT is correctly classified, as shown in Table 7. The
first example should be negative sentiment but KPT++ predicts
positive sentiment, and the second example should be positive
sentiment but KPT++ predicts negative sentiment. This indicates
that filtering by PDR and PGR also have side effects on certain
samples. Some of the deleted label words may be valuable for
some specific samples. However, the overall effect of PDR and
7

PGR is positive. In the IMDB test set, 227 samples were cor-
rectly predicted by KPT++ and incorrectly predicted by KPT, while
only 25 samples were correctly predicted by KPT and incorrectly
predicted by KPT++.

5.4. Label words filtered out by PGR and PDR

To more intuitively understand the role of PGR and PDR, we
conduct case studies. As shown in Fig. 4 (Left), we show the
labeled words for some sentiment classification tasks filtered by
PGR. For example, ‘‘don’t’’ has a negative connotation from a
certain point of view, but the sentence ‘‘It was don’t’’. is clearly a
grammatically incorrect sentence and a sentence with confusing

meaning. Intuitively, such words are not suitable as label words.
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s shown in Fig. 4 (Right), we show the top 5 label words with
he smallest standard deviation of the probability distribution.
or example, the label words ‘‘callous’’ and ‘‘beaming’’ with the
mallest standard deviation are very rare words. Too many such
are words can also hurt the performance of the model.

. Conclusion

In this paper, we propose a powerful method, KPT++, based
n knowledgeable prompt tuning for few-shot text classification.
he core idea of KPT++ is that we propose prompt grammar
efinement and probability distribution refinement, two methods
edicated to refining knowledgeable verbalizers. Specifically, the
rompt grammar refinement refines the knowledgeable verbal-
zer by the grammar of prompt sentences with label words;
he probability distribution refinement refines the knowledge-
ble verbalizer based on the predicted probability distribution
f label words over the support set. Extensive experiments on
ive few-shot text classification datasets demonstrate that our
roposed KPT++ outperforms state-of-the-art method KPT and
ther baseline methods. The experimental results show that our
PT++ performs better than KPT when there are more noise label
ords. In the future, we will study the application of KPT++ to
ore complex natural language processing tasks. Moreover, com-
ining KPT++ with continuous prompts is an interesting research
irection.
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