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Abstract

In this work, we propose a novel pipeline to enhance the detection and mitiga-
tion of wide-band Radio Frequency Interference (RFI) in mid-resolution (MR)
spectrogram data from the Green Bank Telescope. Our approach integrates an
unsupervised Mixture of Experts framework, combining the strengths of multiple
edge detection algorithms—Sobel filters, structured forests, Canny edge detection,
and the Hough transform—to robustly identify candidate signals in MR data. Lever-
aging these unsupervised labels, we fine-tune a YOLO-based supervised detection
model, significantly enhancing detection efficiency and scalability. Additionally, we
embed high-resolution (HR) signals detected by turboSETI into a latent represen-
tation space using the Vision Transformer (ViT-B16) model, enabling sophisticated
matching between MR and HR signals. This approach substantially reduces false-
positive technosignature candidates, improving the efficiency of extraterrestrial
signal searches. Our method presents a significant advancement in automated
signal detection, laying the groundwork for future large-scale technosignature
exploration.

1 Introduction

Searching for technosignatures—observable indicators of extraterrestrial technology—requires ana-
lyzing massive radio astronomy datasets across multiple temporal and spectral scales. Breakthrough
Listen (BL) provides data at multiple resolutions, each with trade-offs between time and frequency
coverage [28]. Historically, searches at the Green Bank Telescope (GBT) have relied on High Spectral
Resolution (HR) data, with ~3 Hz channels and ~18 s time bins ([[10], [22]), ideal for detecting
narrowband drifting signals via Doppler-drift analysis.

A limitation of this narrow focus is that many sources of radio-frequency interference (RFI), from
terrestrial or satellite origins, span kilohertz to megahertz and show temporal variability. Relying
solely on fine resolutions risks incomplete characterization or missed detection of such complex RFI,
obscuring genuine technosignatures.

We propose a multi-scale classification framework for GBT data, extendable to HR products from
other facilities such as the Allen Telescope Array and Parkes. Our approach combines HR detection
with mid-resolution (MR) morphological analysis (~3 kHz, 1 s), balancing sensitivity to narrow-
band signals with broader contextual clarity. The pipeline proceeds in four stages: (1) candidate
detection using HR data and Doppler-drift algorithms such as turboSETI [16]]; (2) MR cutouts for
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morphological characterization (broadband vs. narrowband, impulsive vs. continuous); (3) clustering
and association of HR and MR hits, demonstrated on the 97-galaxy survey of [[10], with attention
to the RFI-rich 1500-1650 MHz band; and (4) systematic exclusion of HR detections identified as
wide-band RFI in MR data.

By integrating HR and MR through morphological analysis and machine learning—unsupervised
edge detection and deep learning [31) [22]—our framework strengthens RFI discrimination and
candidate reliability. This multi-resolution approach expands the diversity of observed phenomena
and improves the robustness of SETI observations.

2 Related Work

The search for technosignatures has driven substantial advances in data collection, infrastructure,
and analysis. The Breakthrough Listen initiative [28| 51] established standardized public datasets
supporting reproducibility and large-scale collaboration, while the Exotica Catalog [27] broadened
observational targets. Large-scale extragalactic surveys, such as the 97-galaxy project yielding
over six million hits [[10], underscore both scientific promise and the growing challenge of satellite
interference.

With increasing data volume and complexity, machine learning has become central to technosig-
nature detection and false-positive reduction. Deep networks improve sensitivity for narrowband
searches [31]], and transfer learning on CNNs (FETCH) enables real-time FRB classification [[1]].
Unsupervised methods [22] further aid anomaly and RFI detection without labeled data. Computer
vision (CV) approaches—edge detection [8} 13] and the Mixture of Experts framework [45]—have
been adapted to identify and classify diverse signal morphologies in SETT data.

Object detection models such as YOLO [44] have been repurposed for candidate identification in spec-
trograms [50], with multi-scale and specialized variants boosting accuracy [9} 149} 29]. Similar models
benefit agriculture and small object detection [2, 21} 57]], while CV adaptations to time—frequency
data [35]] enhance scalability for SETL.

Edge detection remains foundational. The Canny detector excels for faint features [24, 147, |53[], with
CUDA and shape-adaptive improvements [34} 38]]. The Sobel operator has likewise been extended
for denoising, acceleration, and 3D data [17, 23} 4]

Spectrogram-based representations are now standard across audio, biomedical, and radar domains [3].
Deep architectures achieve state-of-the-art performance [20} 156, 137 125, [12], strengthened by multi-
task learning and advanced feature extraction [54, 35| [11} 143l 26]. Transfer learning and specialized
models [42, 40, 5] demonstrate flexibility across domains.

Finally, the Hough Transform remains indispensable for astronomical feature detection, extracting
lines and curves from noisy data [6]. Applications span arcs [[19], solar profiles [33]], artifact
removal [46], crescent detection [36]], 3D tracking [55]], and asteroid events [41} [30} [18]].

Together, these developments highlight the value of treating radio data as images and applying modern
CV and ML to SETI, improving scalability, efficiency, and scientific yield.

3 Proposed Method

While turboSETT is the de-facto engine for BL narrow-band searches, its sensitivity degrades on
the mid-resolution (MR, ~2.86 kHz) product compared to high-resolution (HR, ~2.84 Hz) spectra
[28]. A beacon confined to a few-hertz HR bin is spread over A fia/A ffine = 103 MR channels, so

per-channel S/N drops by the radiometer factor /A finia/A fine =~ 32. Thus the HR-tuned detection
cut of pyeri = 10 misses many MR beacons. This setting corresponds to an effective S/N ~ 33
after correcting turboSETI’s noise estimate [10], so lowering the MR threshold would inflate false
alarms.

We introduce a computer vision pipeline for RFI detection. Each scan is preprocessed by extracting
one coarse channel, input to a YOLO model. To remove the DC spike at channel center, we replace
the central column with the average of its neighbors, improving normalization and signal visibility.
We then employ an unsupervised Mixture of Experts to identify signals; these outputs can also train
YOLO for efficiency, though here we focus on the unsupervised stage.



Signals found in MR are cross-matched with HR hits from turboSETI. Spectrogram cutouts are
embedded with a Vision Transformer (ViT-B16) [[14]. When an HR hit lies inside an MR wideband
detection, it is treated as substructure and discarded, reducing the candidate haystack. Figure []]
visualizes this pipeline. Experiments ran on two multi-GPU servers: one with dual Intel Xeon Silver
4210 CPUs (40 logical cores), 188 GB RAM, and four RTX A4000 GPUs (16 GB each); the other
with dual AMD EPYC 7313 CPUs (32 cores), 504 GB RAM, and the same GPUs. Both used CUDA
12.4 with driver 550.78.

3.1 Unsupervised RFI Detection

In order to successfully train a YOLO model, we begin by
labeling each coarse channel image with boxes or regions
of interest with RFI. In the Appendix, we evaluate a simple  |REEREa
thresholding method to extract regions of interest. Due
to poor performance, we shift to more complex methods
of unsupervised edge detection. Common existing meth-
ods include Sobel filters, structured forests, Canny edge
detection, and Hough transform.

Sobel-based Unified Edge-Density (UED) Map. The Figure 1: Workflow to incorporate MR

Sobel operator uses 3 x 3 kernels data to remove wide-band RFI
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to approximate first-order derivatives along time and frequency axes. For a grayscale spectrogram I,
we compute

G, = Sobel(I,CV32F,1,0,3), G, = Sobel(I,CV32F,0,1,3),

with 32-bit precision. The gradient magnitude

MUED(:E; y) = 1/G% + Gi

After min—max normalization to [0, 1], the result is the UED map used in fusion and blob detection.
Sobel UED is fast and preserves edge strength, though contours may be thick and noise-sensitive.
Computations used OpenCV 4. 9/NumPy 1. 26, finishing in ~1 hr on a 40-core Xeon server.

highlights rapid intensity changes.

Structured—Forest Edge Map (SF). Structured forests [13] employ a supervised random-forest
that predicts small binary edge masks directly from image (or spectrogram) patches; averaging those
patch-level votes yields a dense probability map that is remarkably tolerant of textured backgrounds
and subtle RFT artifacts, yet still runs in real time. In our pipeline we apply the pre-trained model
shipped with OpenCV's ximgproc module as follows. Given a raw spectrogram block B € R#*W,
we scale it to [0, 1]
[ B —min B
ptp(B) + 106’

replicate the single channel to form a float-32 pseudo-RGB tensor Irgp € [0, 1]
the SF edge probability map via

HxWx3  and obtain

Mgy = detectEdges(Irgs) € [0,1]7*W.
Experiments finished in 1.5 hours on a 40-core Intel Xeon Silver 4210 CPU with 188 GB RAM.

Canny Edge Detector. To obtain thin yet contiguous edge regions, we employ the Canny detector
followed by contour filling, implemented in Python with opencv-python (cv2) and NumPy. Starting
from an 8-bit spectrogram frame I3, we first suppress impulsive noise with a 5x 5 median filter, then
apply Canny hysteresis with fixed thresholds i,y = 50 and Thigh = 150:

FE = Canny(medianBlur(Is, 5), TlOW,Thigh)



(a) Sobel filter (b) Structured forests
(c) Canny detector (d) Hough transform

Figure 2: Comparison of edge detection methods on the same spectrogram: (a) Sobel, (b) Canny, (c)
Structured forests, (d) Hough transform. Red bounding boxes mark time—frequency regions that the
method flagged as candidate signals.

(c) Signals from 1621.58-1624.51 MHz  (d) Signals from 1624.51-1627.44 MHz

Figure 3: Qualitative behavior of the Mixture of Experts algorithm on four representative mid-
resolution frames. Red bounding boxes mark time—frequency regions that the method flagged as
candidate signals.

and E € {0, 1}/>W,

The internal Canny stages (Gaussian smoothing, Sobel gradients, non-maximum suppres-
sion, and double-threshold linkage) yield a sub-pixel-accurate binary edge map E. To
convert these one-pixel traces into dense blobs we extract all external contours C =
findContours(F,RETR_EXTERNAL) and rasterize them, filled, onto a blank mask Mcy €
{0, 1}#>*W via drawContours(Mcwm,C, —1, 1, thickness = —1). The resulting Canny—Contour
Mask preserves complete signal tracks while excluding isolated noise fragments, making it a robust
input for the subsequent multi-map fusion stage. Experiments were completed in 1 hour on a dual
40-core Intel Xeon Silver 4210 CPU system with 188 GB RAM.

Hough Transform. The Hough transform converts edge pixels (¢, f) in the time—frequency
plane into votes in a parametric space (drift rate, intercept); peaks in that space reveal straight,
narrow-band tracks even when partially occluded. We implement its light-weight variant
probabilistic_hough_line from scikit-image on the Canny edge mask E. Using a vote
threshold of 5, a minimum segment length of 10 px, and a maximum gap of 2 px yields a set of
line segments £ = {((yo, *0), (y1,21))}. Each segment is rasterized at unit intensity onto a blank
float-32 canvas Mpy via cv2.1line, and a 3x 3 Gaussian blur smooths the accumulator:

MPH — GaussianBlur(MpH, 3)

The resulting Probabilistic Hough map highlights constant-drift or Doppler-corrected signals while
suppressing isolated noise. Experiments finished in 2 hours on a 40-core Intel Xeon Silver 4210 CPU
with 188 GB RAM.



Figure [2] (with additional cases in the Appendix) compares four edge maps on mid-resolution frames.
Expert blind review shows trends consistent with each detector’s design. Sobel (UED) highlights
strong local gradients, excelling on large high-contrast events but amplifying noise into many false
positives. Structured Forest (SF) integrates patch context, recovering thin straight drifts, but fragments
curved or hopping tracks. Canny-Contour Mask (CM) produces razor-thin edges and suppresses
noise via hysteresis, though meandering signals may self-intersect, splitting into multiple blobs. The
Probabilistic Hough (PH) transform is highly specific for constant-drift lines, but frequency hops or
curvature break tracks into disjoint detections, lowering recall. These complementary error modes
motivate their weighted fusion.

3.2 Mixture of Experts

Since each of our four unsupervised edge detection methods have different strengths and weaknesses,
we propose mixing these methods in order to minimize both false positives and negatives in our
identification process. Let Mgy, Mygp, Mowm, Mpu € [0, 1]H *W be the four edge maps described
earlier. We first form a weighted linear fusion

Mpyse = wspMsr + wyepMuep + wemMewm + wpa Mpw,

where uniform weights (wsr, wurDp, wem, wen) = (0.25,0.25,0.25,0.25) are used. The fused map
is standardized pixel-wise, Z = (Mpuse — p1)/(0 4+ 1078), with i, o the global mean and standard
deviation, and thresholded at Z > 2 to produce a binary mask B.

Connected components in B are labeled (ndi.label) and all regions smaller than 50 pixels are
discarded. To merge neighboring blobs representing the same physical track we perform a separable
dilation with horizontal and vertical structuring elements of length £ = 20 (i.e. gaps < 2 px are
bridged), take the union of the two dilations, and apply a 33 binary closing to refill small holes:

dilate (1xk, kx1) ; close 3x3
B Bhiled

Axis-aligned YOLO-style bounding boxes are then extracted from Byjeq and overlapping boxes
are merged. Finally, for each candidate box we compute the mean brightness of its corresponding
patch in the original spectrogram block; a box is kept only if that patch is no more than 10% darker
than the global mean, i.e. Ipyen > 0.9 Igoba. This brightness gate suppresses spurious detections on
exceptionally dark background regions. Experiments finished in 110 hours on a 40-core Intel Xeon
Silver 4210 CPU with 188 GB RAM.

3.3 Evaluation of Edge Detection

To ensure accuracy of bounding boxes, we only evaluate

coarse channels with kurtosis values of at least 7.0; chan- 200
nels with a smaller kurtosis value are likely to be purely
noise, so we disregard these channels for our study. Fig-
ure [3 shows a subsample of images used for qualitative
analysis. P S
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To quantify detection quality, we plot the pixel-intensity
difference between each bounding box and its surrounding
region. A well-placed box should yield a positive distance
from zero. Figure [] shows the resulting histogram after
clipping the outer 0.5% of values for legibility. The distri-
bution is skewed to the right with a mean of ;x = 14.0 and a median of 10.48, indicating that most
boxes indeed enclose brighter signal energy than their background. Negative tails remain, caused by
occasional false positives (dimmer interiors), missed faint signals (brighter exteriors), or very weak
detections that reduce the inside—outside contrast. Based on our qualitative and quantitative analysis,
we use this algorithm for all signal extraction from mid-resolution data. These labels can also be used
as input to a YOLO model for improved generalization and speed in future work.

Figure 4: Histogram showing mean dif-
ference between the inside and outside
of bounding boxes created by our Mix-
ture of Experts algorithm.

3.4 YOLO Signal Detection



The automatically labeled coarse—channel crops are used
to fine-tune the Nano variant of Ultralytics YOLOv11
(yololin.pt, COCO-pretrained). We create a random
80-20 training and validation split from our dataset of
8,037 images and corresponding labels extracted from our
unsupervised Mixture of Experts model. For deterministic
behavior we fix the global seed to 42 in Python, NumPy,
PyTorch, and pass the same value to YOLO’s internal
RNG. Training runs for 100 epochs with SGD at an initial
learning-rate of 102, a 5-epoch linear warm-up, momentum 0.937, and weight-decay 5x 1074,
Mini-batches contain 32 rectangular images (rect=True); an out-of-memory back-off loop halves
the batch size on the fly if the GPU exhausts memory. Data augmentation is kept minimal to preserve
temporal structure: mosaic is disabled, horizontal flips are turned off (mosaic=False, £1iplr=0),
and training proceeds in single-class mode (single_cls=True). The classification, distribution-
focal, and IoU loss terms are each weighted 0.3, and early stopping triggers after 20 stagnant epochs.
Figure 5| shows one of the validation batches output with labels for identified signals. The YOLO
model was trained in under 1 hour on a dual AMD EPYC 7313 system with 32 CPU cores, 504 GB
of memory, and four NVIDIA RTX A4000 GPUs (16 GB each).

Figure 5: Validation batch with pre-
dicted signals labeled

4 Extracting High-Resolution Hits

In order to match hits across resolutions, we use hits output from turboSETI on HR data that fall in
our range of interest (1500-1650 MHz). To improve visualization, each row is upsampled such that
every image of a hit has 279 time bins, matching the time dimension of mid-resolution files. This
resampling is purely for human interpretability, as all images are later resized to a fixed size during
vision-model pre-processing. Hits are also extracted with a buffer of 4 frequency bins on each side,
ensuring the full hit is extracted and providing additional spectral context and better image quality.

Extracting the latent space of hits, we adopt the Vision Transformer Base with 16 x 16 patches
(ViT-B/16) [14] using the pretrained ViT_B_16_Weights.IMAGENET1K_V1 checkpoint distributed
by TorchVision. The network is kept frozen with no additional fine-tuning and serves purely as a
feature extractor. ViT-B/16 contains 12 Transformer encoder layers, each with hidden dimension
768 and 12-head self-attention, for a total of ~ 86 M parameters. The published weights obtain
81.1 % top-1 (95.3 % top-5) accuracy on ImageNet-1K. Before feeding a crop to ViT, we resize
the shorter side to 256 px, center-crop to 224 x 224 px, replicate the single-channel spectrogram to
RGB, convert the image to a float tensor in [0, 1], and apply the standard ImageNet normalization
(1=(0.485,0.456,0.406), o=(0.229,0.224,0.225)). This preprocessing conforms each crop to the
input geometry and color-channel statistics expected by the pretrained ViT, ensuring full compatibility
without retraining the early layers.

We reduce the N x D ViT feature matrix, where N is the number of time—frequency samples
(spectrogram patches) and D=768 is the original dimensionality of each ViT feature vector, us-
ing principal-component analysis (PCA). Employing scikit-learn’s PCA with random_state=42
yields a deterministic 32-dimensional latent embedding Z € R *32 that is used for all subsequent
visualization and clustering steps.

The resulting vectors can be visualized using t-SNE. We row-wise {3-normalized the 32-dimensional
ViT embeddings and projected them with Barnes—Hut t-SNE (scikit-learn 1.x) using ncomponents =2,
perplexity = 30, early_exaggeration = 12 (default), metric = Euclidean, and a fixed random seed of

We evaluate the resulting plot shown in Figure [6p. Although the frequency of signals is not incor-
porated into the latent space, the color map is based on the start frequency of the signal which we
extract from the corresponding file name. Signals that originate from the same transmitter tend to
look alike and therefore group into color-consistent clusters on the t-SNE map. However, multiple
services can share a band (e.g. Wi-Fi and Bluetooth at 2.4 GHz), and even a “single-allocation"
band may have several emitters whose fine-resolution morphologies differ. A prominent example is
the bright green cluster near 1620 MHz; this frequency range (1610-1626.5 MHz) is allocated to
the Iridium satellite constellation [22], indicating that the clustered points capture visually similar
Iridium signatures. Since the clusters in this plot are distinguished relatively well between colors, we



see that the latent spaces are accurate representations of signals in HR spectrograms. We confirm this
by visual inspection of a random sample of signals from each cluster. Experiments were completed
in approximately five minutes using four NVIDIA RTX A4000 GPUs (16 GB each).
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Figure 6: (a) t-SNE visualization of latent space for hits in HR spectrograms found using turboSETT.
(b) Relation between exclusion threshold (percentage) and proportion of signals kept or excluded.

5 Reducing the Haystack

Using the hits extracted from MR data, we can use their frequency ranges in order to find where
broadband RFI is located. Based on the bounding boxes found from our Mixture of Experts model,
we can extract the exact frequencies of these signals based on the start and end frequencies of the
coarse channel. Each hit from HR data found using turboSETI has a center frequency associated,
which can be used to match to signals at MR. We can adjust the threshold at which a signal is
considered RFI and removed from the haystack. Figure[7]demonstrates these results side-by-side.
With a strict overlap criterion, discarding any HR hit whose frequency range intersects at least one
MR bounding box, we remove 29,212 of the 37,996 HR candidates (77%). Relaxing the requirement
so that a hit is discarded only if it overlaps five or ten MR boxes lowers the rejected set to 27,605
(73%) and 26,214 (69%) candidates, respectively. Figure[6b plots this inverse relationship between
the overlap threshold and the number of discarded signals, allowing users to tune the threshold to
balance completeness against false-positive suppression.
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Figure 7: Comparison of varying overlap thresholds for signal removal. (a) At least 1 MR signal
overlap: removes 6163 signals, (b) At least 5 MR signals overlap: removes 5457 signals, (c) At least
10 MR signals overlap: removes 4376 signals.

We can further analyze the original latent space (Figure[6h) in comparison with the plots in Figure[7}
The original bright green cluster belonging to frequencies at around 1620 MHz, most likely Iridium
signals, are excluded in all three plots in Figure[7] meaning that almost all of them overlap with
at least 10 signals found in MR data. Since Iridium signals are a common form of broadband RFI,
we see that this methodology is able to remove a large amount of hits from HR data that are most



likely attributed to RFI. This allows us to reduce the number of signals examined in our search for
technosignatures.

In addition to counting MR—HR overlaps, we incorporate latent-space densities to preserve outliers
that may represent rare or transient phenomena. Gaussian Kernel Density Estimation (KDE) estimates
point densities in the latent space, enabling identification of low-density signals [39]. We train a
Gaussian KDE (sklearn.neighbors.KernelDensity) on a random subsample of up to 20,000
points, with bandwidth chosen by GridSearchCV over [0.05, 1.5] using three-fold cross-validation.
The fitted KDE scores all points, yielding log-densities exponentiated to density-like values. An
anomaly threshold is set at the 5% log-density quantile (numpy .quantile), flagging the lowest-
density 5% as sparse or anomalous. In the reported run, the best bandwidth was 0.05, identifying
~1,900 low-density points. Figure B shows that preserving only these points removes 36,096 signals.
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Figure 8: Signal removal process. (a) Conditioning on density: 36,096 signals removed, (b) Final
plot: 25,015 signals removed.

We can combine these conditions such that signals that appear in at least 10 MR bounding boxes and
are not flagged as low density get excluded. Figure[8p visualizes this final result, and we remove
25,015 of the 37,996 candidates. In the Appendix we examine matching latent spaces and clusters of
signals in high-resolution and mid-resolution data, which can help us further understand hits found
for high-resolution spectrograms.

6 Conclusions and Future Work

In this paper, we presented a novel pipeline that leverages unsupervised edge detection and advanced
computer vision techniques to enhance the detection and rejection of wide-band Radio Frequency
Interference (RFI) in mid-resolution (MR) spectrogram data from the GBT. We developed a Mixture
of Experts (MoE) framework integrating Sobel filters, structured forests, Canny edge detection,
and the Hough transform to robustly identify candidate signals. These unsupervised labels were
validated both qualitatively and quantitatively, demonstrating accurate localization of signals within
spectrograms. Using these labels, we fine-tuned a YOLO-based supervised model for efficient,
generalizable detection. We then extracted high-resolution (HR) hits from corresponding turboSETI
data. Embedding HR signals into a ViT-B16 latent space enabled cross-resolution matching, allowing
the removal of HR hits likely originating from wide-band RFI and significantly reducing the number
of candidate technosignatures requiring further scrutiny.

Future work will focus on several directions to improve robustness and scalability. First, we will
also expand YOLO training to larger and more diverse datasets, including observations under
varied noise and instrumental conditions, to enhance generalization across telescope configurations.
Finally, we aim to incorporate temporal coherence and spatial context through advanced modeling
techniques, such as recurrent networks or transformer-based architectures, to better capture complex
time—frequency dynamics in signal evolution.
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A Unsupervised Edge Detection Outputs

A.1 NumPy Masking

A straightforward and highly interpretable approach for unsupervised edge detection is to apply
a simple NumPy-based thresholding mask, where we retain only pixels with intensities greater
than the mean plus a multiple of the standard deviation. Specifically, we compute the mean p and
standard deviation o of the coarse-channel spectrogram and keep pixels satisfying I > p + ko, with
k € {5,6,7}. This method is attractive for its simplicity and speed.

Figure 9] shows example outputs using a strict threshold of 1 + 7o. Panel (a) shows that brighter
signals can still be missed entirely, resulting in false negatives, while panel (b) demonstrates that
random background noise often exceeds the threshold, producing false positives. Panel (c) captures
a horizontal track but fragments it into multiple disjoint boxes, and panel (d) shows only partial
detection of a vertical signal. Overall, these examples highlight that simple thresholding struggles to
robustly bound signals while minimizing both false negatives and false positives. These shortcomings
motivate the exploration of more sophisticated edge detection strategies that can account for noise
patterns, signal morphology, and continuity, ultimately providing more reliable candidate extractions.
Experiments were conducted on a system with dual Intel Xeon Silver 4210 CPUs (40 logical cores),
188 GB RAM, and four NVIDIA RTX A4000 GPUs (16 GB each). These experiments completed in
approximately 1 hours.

(a) Brighter signals missed (false negative) (b) Noise detected (false positive)

(c) Horizontal signal fragmented (d) Partial signal detected

Figure 9: Qualitative behavior of the Numpy mask (x £ 7o) on four representative mid-resolution
frames.

A.2 Sobel-based Unified Edge-Density Map

Figure illustrates the qualitative behavior of the Sobel-based Unified Edge-Density (UED)
method [4]] on a set of representative mid-resolution spectrogram frames. This classical gradient-based
detector responds strongly to high-contrast transitions, allowing it to detect both narrow vertical tracks
associated with drifting narrowband signals and broad horizontal tracks corresponding to broadband
or impulsive interference. Panel (c) demonstrates a broad horizontal drift that is captured clearly and
continuously, while panel (d) shows strong vertical tracks that are also successfully identified, albeit
with edges slightly thicker than the true signal due to the gradient magnitude response.

However, Sobel filtering also exhibits several limitations. In low-signal or noise-dominated regions,
small random intensity variations are often enhanced, producing isolated speckles that are misclassi-
fied as candidate signals, as seen in panel (a). In addition, weak or partially occluded vertical tracks
may fragment into multiple disconnected bounding boxes rather than a single continuous detection,
as shown in panel (b). These behaviors highlight Sobel’s sensitivity to background noise and its
tendency to over-segment faint signals, motivating the later fusion of multiple edge detection methods
to improve robustness against false positives and signal fragmentation. Experiments were performed
on a system with dual Intel Xeon Silver 4210 CPUs (40 logical cores), 188 GB of RAM, and four
NVIDIA RTX A4000 GPUs (16 GB each), completing in roughly 1 hour.
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(a) Background noise dominates (b) Signal found but fragmented

(c) Broad horizontal track (d) Thick vertical track

Figure 10: Qualitative behavior of the Sobel-based Unified Edge—Density (UED) map on four
representative mid-resolution frames.

A.3 Structured Forests

Structured Forest (SF) edge detection provides a more context-aware behavior than simple
gradient-based methods such as Sobel. By leveraging a supervised random-forest model trained on
small image patches, SF predicts local edge probabilities that capture both intensity transitions and
short-range structural cues.

Figure[TT]illustrates its qualitative performance for signal detection. Panel (a) shows that SF effectively
traces narrow, continuous vertical signal tracks and produces clean edges, However, panel (b) and
panel (d) demonstrates its poorer performance in precisely bounding nonlinear or amorphous signals.
SF strikes a more favorable balance between noise robustness and edge sharpness, reducing the
false positives of Sobel filtering. Experiments were performed on a system with dual Intel Xeon
Silver 4210 CPUs (40 logical cores), 188 GB of RAM, and four NVIDIA RTX A4000 GPUs (16 GB
each), completing in roughly 1.5 hours.

(a) Strong vertical signals (b) Small signal fragment

(c) Edge of horizontal signal (d) Imprecise nonlinear bounding

Figure 11: Qualitative behavior of Structured Forest (SF) on four representative mid-resolution
frames.

A4 Canny Edge

The Canny edge detector [8]] provides sharp, well-defined edges that are advantageous for isolating
signal boundaries in mid-resolution spectrograms. By combining Gaussian smoothing, gradient-based
detection, non-maximum suppression, and hysteresis thresholding, it produces thin and continuous
contours that suppress most isolated noise. Figure [I2] demonstrates its qualitative performance.
Panel (b) shows a clean detection of a strong vertical signal with minimal edge thickening, and
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panel (a) illustrates Canny’s ability to produce precise bounding boxes; however, these edges can
become overly fragmented when signals are weak or discontinuous.

Panel (c) highlights its sensitivity to noise, particularly near coarse-channel edges. Panel (d) shows
how noisy regions can lead to many overlapping bounding boxes, complicating downstream labeling.
Overall, Canny provides accurate edge localization and thin contours, but it has tendencies to fragment
faint signals and produce multiple small false positives. Experiments were performed on a system
with dual Intel Xeon Silver 4210 CPUs (40 logical cores), 188 GB of RAM, and four NVIDIA
RTX A4000 GPUs (16 GB each), completing in approximately 1 hour.

(a) Precise but fragmented (b) Clean vertical detection

(c) Noise near edges (d) Overlapping noise boxes

Figure 12: Qualitative behavior of Canny edge detection on four representative mid-resolution frames.

A.5 Hough Transform

The Hough transform [6] specializes in detecting straight and parametric signal tracks, making it
particularly effective for constant-drift narrowband signals in mid-resolution spectrograms. By voting
in a parameter space defined by line slope and intercept, it aggregates evidence across pixels to
highlight coherent linear structures even when partially occluded. Figure [T3]illustrates its qualitative
performance. Panels (a) and (b) shows the clean detection of stronger signals, though some are
slightly segmented due to drift variations or when signals are weak or discontinuous.

Panel (c) captures limited portions of a weak signal, indicating that Hough retains some sensitivity
but struggles to form complete tracks under low SNR conditions. Panel (d) highlights its ability to
capture horizontal signal regions, though detections are highly segmented, reflecting the method’s
bias toward straight-line continuity. Overall, the Hough transform excels at isolating linear and
constant-drift signals but exhibits reduced recall for nonlinear or very weak signals. Experiments
finished in 2 hours on a 40-core Intel Xeon Silver 4210 CPU with 188 GB RAM.

(a) Precise but fragmented (b) Clean but segmented

(c) Weak signal detected (d) Segmented horizontal regions

Figure 13: Qualitative behavior of Hough transform on four representative mid-resolution frames.
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Figure 14: Validation batch from YOLOv8 with predicted signals labeled

B YOLOvVS8 Experimentation

In addition to the YOLOvV11 experiments presented in the main text, we also fine-tune the Nano
version of Ultralytics YOLOVS (yolov8n.pt, pretrained on COCO) [44]. Our dataset consists of
the same 8,037 spectrogram crops with bounding boxes generated by the unsupervised Mixture-of-
Experts model, which we randomly divide into an 80% training set and a 20% validation set. To
ensure reproducibility, we fix the global random seed to 42 across Python, NumPy, and PyTorch, and
provide the same seed to YOLO’s internal random number generator.

Training is performed for 100 epochs using stochastic gradient descent with an initial learning rate of
1073, a 5-epoch linear warm-up, momentum of 0.937, and weight decay of 5x 10~%. Batches contain
32 rectangular images (rect=True), and if GPU memory is exceeded, an automatic back-off routine
reduces the batch size by half. Data augmentation is deliberately minimal to preserve the temporal
integrity of signals: mosaic augmentation is disabled, horizontal flips are off (mosaic=False,
f1iplr=0), and the network is trained in single-class mode (single_cls=True). The classification,
distribution-focal, and IoU loss components each carry a weight of 0.3, and early stopping is applied
after 20 consecutive epochs without improvement. This YOLOv8 model completed training in less
than one hour, similar to YOLOv11 model, on a dual AMD EPYC 7313 workstation equipped with
32 CPU cores, 504 GB of RAM, and four NVIDIA RTX A4000 GPUs (16 GB each).

Figure [T4]displays a sample validation batch with predicted signal labels. We see that YOLOV8 has
comparable performance to YOLOv11 on the validation set. However, YOLOvV11 is better suited
for spectrogram analysis due to its incorporation of a refined backbone and neck with improved
feature fusion, enabling better detection of small and thin objects such as drifting signal tracks. The
YOLOvI11 Nano variant also uses fewer parameters, making it more computationally efficient for
scaling to larger datasets and incorporation into a larger pipeline.

C Subset Analysis: Iridium (1610-1629 MHz) and 1545 MHz Signals

We investigate how signals map across resolutions to better understand how mid-resolution (MR)
data products can aid in interpreting detections in high-resolution (HR) data, particularly for reducing
the high hit rate in technosignature searches. In this subset analysis, we focus on distinguishing
signals from the Iridium satellite constellation (typically observed between 1610-1626.5 MHz) from
those found near 1545 MHz, a region of the L-band dominated by terrestrial RFI. We sample signals
from both the MR and HR datasets whose start frequencies fall within either [1610, 1630) MHz
or [1545, 1546) MHz. Because of differing detection procedures—and the fact that multiple HR
detections often correspond to a single MR event—the number of sampled signals is not directly
balanced between resolutions for either the Iridium or 1545 MHz bands.

C.1 Extracting Latent Spaces

We begin our analysis by first extracting the latent space of each signal. As used in our original
pipeline, we adopt the Vision Transformer Base with 16 x 16 patches (ViT-B/16) [14]]. We use
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the pretrained ViT_B_16_Weights.IMAGENET1K_V1 checkpoint distributed by TorchVision, once
again keeping the network frozen with no additional fine-tuning. We then apply principal component
analysis (PCA) to the resulting N x D ViT feature matrix—where IV is the number of spectrogram
patches and D = 768 is the original embedding size—to obtain a lower-dimensional representation.
Using scikit-learn’s PCA with random_state=42, we project into a deterministic 32-dimensional
latent space, yielding Z € R™*32 for all subsequent visualization and clustering tasks.

t-SNE of ViT-16 HR latents t-SNE of ViT-16 MR latents
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Figure 15: Latent spaces extracted from ViT-B16 for 1545 MHz and Iridium (1610-1629 MHz)
signals

We again visualized the resulting vectors with Barnes—Hut t-SNE. Before projection, the 32-
dimensional ViT embeddings were row-wise ¢>-normalized, and t-SNE (scikit-learn 1x) was applied
with Neomponents = 2, a perplexity of 30, early_exaggeration set to its default value of 12, Euclidean
distance as the metric, and a fixed random seed of 42. The resulting embeddings are shown in
Figure[T5] Experiments were completed in approximately five minutes using four NVIDIA RTX
A4000 GPUs (16 GB each).

Although frequency was not incorporated into the latent spaces, we see that signals separate relatively
clearly based on color, which represents the start frequency of the signal. Plot (a) of the HR latent
spaces shows that although clusters are not very tightly separated by color, we can still differentiate
signals at 1545 MHz (purple points) from Iridium signals (green and yellow points). Plot (b) has
clearer differentiation of signals based on frequency. Signals at 1545 MHz exist in a cluster clearly
separated from Iridium signals. We also notice that signals from 1610-1629 MHz are separated into
more than one cluster. This implies that in MR, some Iridium signals from 1610-1620 MHz may look
different from Iridium signals greater than 1620 MHz.
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Figure 16: HDBSCAN output for 1545 MHz and Iridium (1600-1629 MHz) signals
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Figure 17: High-resolution cluster 0, primarily aligned with frequencies greater than 1610 MHz

C.2 Clustering with HDBSCAN

To cluster the 32-dimensional latent embeddings, we employ HDBSCAN (Hierarchical Density-
Based Spatial Clustering of Applications with Noise) [[7]. HDBSCAN extends the DBSCAN frame-
work by building a hierarchy of density-based clusters and then condensing it to select the most
stable structures, automatically determining the number of clusters without requiring a fixed k. Unlike
k-means or spectral methods, HDBSCAN can identify clusters of varying densities and shapes while
labeling low-density points as noise rather than forcing an assignment. This property is particularly
useful for our spectrogram embeddings, where meaningful signal clusters may coexist with sparse or
spurious points caused by RFI or weak detections. By using HDBSCAN, we obtain a set of robust
clusters and an explicit outlier class that can be filtered or analyzed separately in downstream steps.

We cluster the normalized MR embeddings Ziq using HDBSCAN, setting min_cluster_size
= 100, min_samples = 50, and use the cosine distance metric with the excess-of-mass (eom)
cluster selection method. We also cluster the normalized HR embeddings Zy;e, with HDBSCAN
with parameters min_cluster_size = 20, min_samples = 15, and again use the cosine distance
metric with the excess-of-mass (eom) cluster selection method. We performed a simple hyperpa-
rameter search for both clusterers, testing values min_cluster_size € {15, 20,50, 75,100} and
min_samples € {15,20,50,75,100}. We found that other hyperparameter combinations led to
less homogeneous clusters and misalignment with the frequency values shown in Figure[T3] All
experiments were completed in under ten minutes using four NVIDIA RTX A4000 GPUs (16 GB
each).

Figure[I6]show t-SNE plots of the resulting clusters. Comparing these plots to Figure[I5] we notice
that the clusters are relatively well aligned with frequencies as expected. We further evaluate the
homogeneity of signals in each cluster. Figure [I7]shows a sample of HR signals in cluster 0, and
Figure [T8] shows a sample of MR signals in cluster 0. We notice that each cluster appears internally
homogeneous, and they both align with frequencies greater than 1610 MHz (most likely Iridium
signals). After thorough evaluation, the clusters appear sufficiently homogeneous, so we proceed
with aligning clusters across resolutions.

C.3 Matching HR and MR Clusters

To align HR clusters with their MR counterparts, we compute the /5-normalized centroid of each
cluster in the latent space and solve a one-to-one assignment that maximizes the sum of cross-
resolution cosine similarities. A formal proof of the optimality of this mapping is provided in
Section[D}] In practice, this approach can also be extended to a many-to-one setting, since multiple
HR clusters may correspond to the same MR cluster.

We begin by jointly reducing the mid- and fine-resolution latent vectors into a common low-
dimensional space via PCA. Let

Lmid c RNmid ><768, Lﬁne c RNfine X768
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Figure 18: Mid-resolution cluster 0, primarily aligned with frequencies greater than 1610 MHz

be the original ViT embeddings. We stack them to form L = E‘Jmid} € RWVmia+Niine) X768 4p4

fine
apply PCA with
k = min (target_pcs, 768, Niid + Nine )
principal components (fixed random seed). Denote the projected embeddings by M = PCA (Lyia) €
RNmia Xk and F = PCA (Lgpe) € RVnexk,

Next, we compute one centroid per cluster in each space. HDBSCAN assigns a label of —1 to
points considered noise, meaning they do not belong to any dense cluster and are treated as outliers.
Accordingly, we compute centroids only for clusters with labels ¢ # —1; for such a cluster c, let

Z M; ., NEﬁne) |j('| Z Fj ,

i€, JET.

((:IIlld)
|I |

where Z. and 7. index points with label c. We then ¢5-normalize each centroid to unit length,
producing Cyniq € RM** and Cg,e € RM %k,

To seed an orthogonal alignment, we form the initial similarity matrix

0) _ (mid) (fine)
Si; cos(uz ;K )
and greedily pair each mid centroid ¢ with the fine centroid arg max; SZ»(JQ). Let {(i¢, jr) } I, be these
seed pairs. We solve the Procrustes problem

(seed) R— C(seed)

R = arg Rlelloln Hcﬁne mid || F

via the closed-form SVD solution, and rotate all fine centroids as éﬁnc = Cgne R*.

We then recompute the post-alignment cosine similarity matrix

Sij = cos(uzmld ) ﬁ;ﬁne)),

and apply the Hungarian algorithm to the cost matrix —S to find the one-to-one assignment IT*
that maximizes total cosine similarity. This yields an optimal mapping mid — fine. Finally, we
optionally prune any matched pair whose similarity S;; falls below a threshold (e.g. 0.30), and report
the surviving correspondences along with any unmatched clusters. Experiments were completed in
under five minutes using four NVIDIA RTX A4000 GPUs (16 GB each).

We visualize this final mapping using a heatmap, as shown in Figure[T9] Based on the output from
the Hungarian algorithm, MR cluster 1 (aligned with frequency range centered around 1610 MHz, as
shown in Figure[I3)) is left unmatched. MR cluster 2 with center frequency 1545.4 MHz has been
matched with HR cluster 1 with center frequency 1567.5 MHz. We can conclude that each of these
clusters align with signals at 1545 MHz, and the cosine similarity of 0.94 indicates their correct
mapping. Similarly, MR cluster 0 with center frequency 1624.7 MHz has been matched with HR
cluster O with center frequency 1614.3 MHz with a cosine similarity score of 0.44. Each of these

19



Aligned cosine similarity | Mid vs. High cluster map

~ - 1.0

T

= 2(1545.4) -

=

g - 0.8

= =

g =

5 0.6 2

¥} E

— 1(1608.9) ‘@

]

2 0.4 2
‘@

E Q

o w

% 0.2

=

S 0(1624.7) -

e

= 0.0

i
" oy
2 W3
“ o
o o
. o

HR clusters (ID | center-freq MHz)

Figure 19: Heatmap showing Hungarian algorithm matching across resolutions

clusters most likely represents Iridium signals, indicating they have also been correctly matched.
Since MR cluster 1 with center frequency 1608.9 MHz is left mismatched, we presume that Iridium
signals in the lower range appear different or have different structure at mid-resolution compared to
high-resolution. Since clusters of signals at 1545 MHz and 1610-1629 MHz have been matched in
the way we expect, we attempt to extend this analysis to all signals from 1500-1650 MHz.

D From Dual Latent Spaces to a Globally-Optimal Cluster Mapping

‘We denote
X ={x1,...,Xn} CRP, (D
y:{yla"',yn}CRD @

as the “mid-resolution” and “fine-resolution” latent clouds obtained after a shared k—dimensional
PCA projection [32]]. Following HDBSCAN, we remove label —1 (noise) and retain X7, ..., Xx,
and V1, ..., Vi, , the genuine clusters.

D.1 Notation and basic preprocessing

1. PCA reduction
We stack both clouds, run PCA, keep k¥ = min(8, D, m + n) principal axes, and write
Z; = PCAk(Xi), W, = PCAk(yJ').

2. Unit-length centroids.
For each non-noise cluster we form

1
o= > 7, 3)
2
1
J we).
~ jv% ~ IJ]‘
fii= i = ®)
leillz” 77 vl

This keeps the cosine similarity equal to the Euclidean inner product.
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3. Stacking.

Define
~ ~ T
A= [pl,....,n, | € RFXF (6)
B:i=[o],...,0,] € RF*F, %)

Rows of A and B are unit vectors.

D.2 Step 1: Seed correspondences

We obtain an initial many—-to-one map g : {1,...,kx} — {1,...,ky} by greedy row—wise
maximization of

SO .= ABT, 8)

C:={(g() [i=1,....,kx}. ©9)

Let Ac € RICIXF and Bo € RICI** be the sub-matrices whose rows correspond to C.

D.3 Step 2: Orthogonal Procrustes alignment

We wish to find the orthogonal matrix R € O(k) that best aligns the “fine” centroid matrix Bo €
R™*¥ to the “mid” centroid matrix A- € R™*¥ in the least—squares sense:

R* :argminHBcR—AcH; (10)
REO(k)

1. Expand the Frobenius norm as a trace Using | X — Y||Z = tr((X - Y) (X —Y)) with
X =B¢R,Y = A, we get

IBcR — Ac||t = tr((BeR) T (BoR)) + tr(AlAc)

—2tr(RTBlAc). (11)
Since RR" = I, the first trace reduces to tr(Bg B¢), which is constant. Hence
R* = ti(R"BJLA¢). 12
pax (R Bodc) 12
Define the cross—covariance
M = BLAc € RF¥F, (13)

2. Singular-value decomposition Compute
M=UXVT, (14)
where U,V € O(k), ¥ = diag(o1,...,0%),and o; > 0.

3. Change of variables Set
tr(R"TM)=tr(RTUSV ) =tr(V'RTUX)

=tr(QY), Q:=V'R'UEeO(k), (15)
k

(@) =) Qo (16)
=1

Since o; > 0, the maximum over () occurs at () = I, implying
VIIRYU=1I = R'=UV". (17)
4. Conclusion Therefore the unique orthogonal solution is
R*=UV'", where BLAc=UXV". (18)

Applying R* to the full fine-centroid matrix B yields B = B R*, which preserves lengths and
therefore (v;, ;) remains the aligned cosine similarity.
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D.4 Step 3: Global assignment as a linear program

Define the similarity matrix S := A BT € Rkx*ky Qur goal is a one-to-one map that maximizes
total similarity.

-
rrrllea%( tr(S H) (19)

where
P o= {Ile{0, 1} 11 <1, I'1 <1}, (20)

This is the linear assignment problem.

Theorem 1 (Optimal cluster matching). Let (&, ¢) = Hungarian(—S) be the index pairs returned
by the Hungarian algorithm applied to the cost matrix —S. The permutation matrix 11* subject to
%, ., = 1 (and zeros elsewhere) maximizes tr(STII) over P.

Proof. Equivalently, define the cost matrix C' = —S and rewrite as mingep tr(CTII). Its primal
and dual linear programs are:

]CX k}y
(Primal)  min ZZC” IT;; 21)
1=1 j=1
ky
sty Miy=1, i=1,... kx, (22)
j=1

kx
D Ij=1, j=1,... ky.
=1

kx ky
(Dual) max Zu + Zvj (23)
v i=1 j=1
S.t. u+v; <Cyy, Vi=1,...kx, j=1,... ky.

The Hungarian method maintains at each iteration:

u; +v; < Gy, Cyyi=Cyy —uy —v; 20,

and grows a matching using only the zero—reduced—cost edges C_’Z-j = (0. When no augmenting
path exists, the potentials (u, v) are updated by the minimal slack ming j).¢,.>0 C_’ij, preserving
dual feasibility and creating at least one new tight edge. Upon termination with a perfect matching,
complementary slackness II;; > 0 = wu; + v; = Cj; holds, and by strong duality the returned II*
minimises the cost in (ZI), equivalently maximises similarity. O

D.5 Step 4: Resulting mapping

i g I =1

is a bijection between a subset of mid clusters and a subset of fine clusters. Any cluster left unmatched
by II* has no partner with non—negative similarity higher than the Hungarian optimum.

Corollary 1. The above four-step pipeline (PCA — unit centroids — Procrustes alignment —
Hungarian assignment) yields the unique mapping that maximises the sum of pairwise aligned cosine
similarities.
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D.6 Complexity summary

PCA projection O((m + n)Dk)
Centroid computation O((m+ n)k)
Procrustes (SVD) : O(K?)

Similarity matrix o Olkxkyk)
Hungarian assignment :  O(max{kx, ky }*)

For typical SETI clustering workloads kx, ky < 103, the runtime is negligible compared with the
upstream neural-network inference, while providing a provably optimal cross-resolution correspon-
dence.

E Matching Signals Across Resolutions
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Figure 20: Latent spaces extracted from ViT-B16 for signals from 1500-1650 MHz
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Figure 21: HDBSCAN output for signals from 1500-1650 MHz

E.1 Extracting Latent Spaces

Expanding on our analysis in section[C] we investigate all signals found from 1500-1650 MHz in
L-Band. We use our original dataset of MR and HR signals in this range, once again extracting the
latent space of each image with ViT-B/16) [14]. We use scikit-learn’s PCA with random_state=42
to project into a 32-dimensional latent space, yielding Z € R¥>*32 for all subsequent visualization
and clustering tasks.
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(a) High-resolution cluster 11, primarily aligned with frequencies centered around 1620 MHz
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(b) Mid-resolution cluster 0, primarily aligned with frequencies centered around 1545 MHz

Figure 22: Evaluation of HR and MR cluster quality

We visualized the resulting vectors with Barnes—Hut t-SNE after row-wise £5-normalization. t-SNE
(scikit-learn 1x) was applied with Ncomponents = 2, @ perplexity of 30, early_exaggeration set to its
default value of 12, Euclidean distance as the metric, and a fixed random seed of 42. The resulting
embeddings are shown in Figure 20]

Similar to section [C.I] we see that signals separate relatively clearly based on start frequency of
the signal (represented by the color). In both plots (a) and (b), although not all clusters are very
tightly separated by color, we see relatively clear differentiation. For example, we once again the
green points with frequencies around 1620 MHz tend to cluster together, representing Iridium. Since
these latent representations match our expectations of how signals at similar frequencies also appear
visually similar, we proceed with using these vectors for clustering. All experiments were completed
in under five minutes using four NVIDIA RTX A4000 GPUs (16 GB each).

E.2 Clustering with HDBSCAN

We once again cluster [52]](48]] the normalized mid-resolution embeddings Z;q using HDBSCAN,
withmin_cluster_size = 100, min_samples = 50, the cosine distance metric, and the excess-of-
mass (eom) cluster selection method. Similarly, the normalized high-resolution embeddings Z;gp,
are clustered with HDBSCAN using min_cluster_size = 20, min_samples = 20, and the same
cosine-distance eom configuration. For both clusterers, we performed a simple hyperparameter sweep
over min_cluster_size,min_samples € {15, 20,50, 75,100} and found that other combinations
produced less homogeneous clusters and poorer alignment with the frequency structure in Figure 20]

Figure2T|shows the resulting t-SNE visualizations of the clusters. Compared to Figure[20] the clusters
are well aligned with frequency as expected, and we further assess the homogeneity of signals within
each cluster. Figure 22]plot (a) represents a sample of signals from cluster 11, primarily centered
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around 1620 MHz. Plot (b) represents a sample of signals from cluster 0, primarily centered around
1545 MHz. Although some outliers exist in every cluster, analysis of each cluster reveals strong
visual homogeneity. Some signals in each cluster may be from outlier frequency ranges, but their
morphologies appear similar to the rest of the cluster. Since the clusters are strongly homogeneous,
we proceed with matching clusters across different resolutions. All experiments were completed in
under five minutes using four NVIDIA RTX A4000 GPUs (16 GB each).

IIII 06
. I IIIII IIII

cosine similarity

MR vectors (1D centerfreq MHe)

HR vectors (ID | center-freq MHZ)

Figure 23: Heatmap visualizing Hungarian algorithm applied to clusters of all 1500-1650 MHz
signals

E.3 Matching HR and MR clusters

We repeat the method detailed in section|C.3]extended to a subset of 8,037 signals ranging from 1500-
1650 MHz. After performing PCA on the stacked original embeddings to reduce our dimensionality
to 8, we compute one centroid per cluster and perform Procrustes alignment. The final matching is
found using the Hungarian algorithm and visualized in Figure@ HR clusters 0, 2, 3, 6, and 9 are
left unmatched.

However, we notice that the cosine similarities do not align with the frequency ranges of signals as
expected. Each axis is sorted by the mean frequency calculated for each centroid, meaning that we
expect strong matches along the diagonal. Our results show that clusters with little to no overlap in
frequencies are matched with high cosine similarity values. For example, HR cluster 11 with center
frequency 1600.8 MHz (visualized in Figure[2Zh) is matched to MR cluster 0 with center frequency
1527.8 MHz (visualized in Figure 22b) with cosine similarity of 0.93. We notice that the center
frequencies and ranges shown in their corresponding figures have little to no overlap. This pattern is
apparent in many other pairs, such as MR cluster 5 (center frequency 1551.3 MHz) and HR cluster
8 (center frequency 1600.5 MHz) with cosine similarity of 0.79, as well as MR cluster 6 (center
frequency 1504.4 MHz) and HR cluster 5 (center frequency 1559.2 MHz) with cosine similarity of
0.91. Since our previous analysis showed that each cluster was relatively homogeneous, these results
imply that cosine similarity is not an indicative metric of similarity for clusters across resolutions.

F Multi-Resolution Latent Space Analysis

For further analysis, we first concatenate the HR and MR feature matrices into one combined
dataset, and fit a two-component PCA model on this merged set to ensure both resolutions share
the same projection axes. We then project each resolution’s features separately into the resulting
two-dimensional space. Figure[24]shows a side-by-side scatterplot, where the top panel displays the
high-resolution points in the 2D PCA embedding, colored by their start frequencies; the bottom panel
shows the mid-resolution points using the same axes and color mapping.
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Figure 24: Resulting projections of HR and MR signals after combined PCA

By comparing each of these plots, we clearly see that the points and clusters are not aligned by
frequency across resolutions. In other words, a signal at HR found at 1625 MHz (represented by a
green point) does not map to the same space as a signal at MR found at the same frequency range.
Our results indicate that the latent spaces derived from high- and mid-resolution features do not
preserve a simple correspondence based on physical frequency. Cosine similarity, which reflects
angular proximity in the embedding space, is therefore not always a reliable proxy for frequency
identity. Signals observed at the same MHz can appear dissimilar if resolution-specific artifacts
or noise push their embeddings apart, while signals at different frequencies may appear close if
their morphological features dominate the representation. In this context, cosine similarity captures
geometric relationships between embeddings but does not guarantee alignment with the true spectral
properties of the signals.

Although high- and mid-resolution latent spaces do not always align by frequency, this analysis
reinforces the utility of our multi-resolution pipeline in our main paper for reducing the high-
resolution candidate haystack. By leveraging unsupervised edge detection and a Mixture of Experts
framework to identify broadband RFI in MR data, and embedding HR hits in a ViT-B16 latent space,
we can remove HR signals that likely correspond to RFI before downstream analysis. Integrating
these approaches more tightly, such as by refining cross-resolution matching, promises to further
shrink the candidate set and accelerate the identification of promising technosignatures in large
surveys. In particular, improving cross-resolution matching could involve incorporating frequency as
a conditioning variable to guide associations, or applying cluster-aware matching that links multiple
HR detections to their corresponding MR broadband events. Such refinements would reduce duplicate
or spurious candidates while preserving rare or isolated signals of interest.
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