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Abstract

The sliced Wasserstein (SW) distances between two probability measures are
defined as the expectation of the Wasserstein distance between two one-dimensional
projections of the two measures. The randomness comes from a projecting direction
that is used to project the two input measures to one dimension. Due to the
intractability of the expectation, Monte Carlo integration is performed to estimate
the value of the SW distance. Despite having various variants, there has been no
prior work that improves the Monte Carlo estimation scheme for the SW distance
in terms of controlling its variance. To bridge the literature on variance reduction
and the literature on the SW distance, we propose computationally efficient control
variates to reduce the variance of the empirical estimation of the SW distance. The
key idea is to first find Gaussian approximations of projected one-dimensional
measures, then we utilize the closed-form of the Wasserstein-2 distance between
two Gaussian distributions to design the control variates. In particular, we propose
using a lower bound and an upper bound of the Wasserstein-2 distance between two
fitted Gaussians as two computationally efficient control variates. We empirically
show that the proposed control variate estimators can help to reduce the variance
considerably when comparing measures over images and point-clouds. Finally, we
demonstrate the favorable performance of the proposed control variate estimators
in gradient flows to interpolate between two point-clouds and in deep generative
modeling on standard image datasets, such as CIFAR10 and CelebA.

1 Introduction

Recent machine learning applications have recognized the Wasserstein distance [32, 27], as a universal
effective tool. In particular, there are various applications that achieve notable performance by
using the Wasserstein distance as a component, for example, (hierarchical) clustering [10], domain
adaptation [5, 6], generative modeling [1, 31], and so on. Despite its appealing performance, the
Wasserstein distance has two major weaknesses. The first weakness is that it has high computational
complexities. As discussed in [27], the time complexity of computing the Wasserstein distance
between two discrete measures that have at most n supports is O(n3 log n). Additionally, the space
complexity required for the pair-wise transportation cost matrix is O(n2). As a result, computing
the Wasserstein distance on a large-scale discrete distribution is expensive. The second weakness is
that the Wasserstein distance suffers from the curse of dimensionality. More specifically, the sample
complexity of the Wasserstein distance is O(n−1/d). Therefore, using the Wasserstein distance in
high-dimensional statistical inference may not be stable.

The Wasserstein distance has a famous alternative called the sliced Wasserstein (SW) distance, which
is derived from the one-dimensional Wasserstein distance as its base metric. The one-dimensional
Wasserstein distance has a closed-form solution, which can be computed in O(n log n) time complex-
ity and O(n) space complexity in the discrete case. Here, “supports" refers to the discrete probability
measures being compared. To apply this closed-form solution in a high-dimension setting, random
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projections are employed, transforming two measures into infinite pairs of one-dimensional measures
using a projecting function with infinite projecting directions that belong to the unit-hypersphere. The
closed-form of the one-dimensional Wasserstein distance is then applied to pairs of one-dimensional
measures to obtain projections, and the SW distance is computed by aggregating the values of
projections. The most commonly used method of aggregation is averaging, resulting in an expectation
of the projected one-dimensional Wasserstein distance with respect to the uniform distribution over
projecting directions. Since the space of projecting directions is the unit-hypersphere, the SW distance
does not suffer from the curse of dimensionality, and its sample complexity is O(n−1/2). Due to its
scalability, the SW distance has been successfully applied in various applications such as point-cloud
reconstruction [25, 30], generative models [7, 23], domain adaptation [16], clustering [13], variational
inference [34], and many other tasks.

The SW distance is typically estimated using the Monte Carlo integration, as the intractable expec-
tation requires approximation in practice. The number of Monte Carlo samples drawn from the
unit-form distribution over the unit-hypersphere is referred to as the number of projections. Increasing
the number of projections improves the accuracy and stability of the estimation. However, to the best
of our knowledge, there is no prior work on improving the Monte Carlo approximation scheme of the
SW distance, especially in terms of variance reduction. In this work, we propose a novel approach
that combines the SW distance literature with the variance reduction literature by introducing the
very first control variates, which are a technique for reducing the variance of Monte Carlo estimates.

Contribution. In summary, our contributions are two-fold:

1. To address the issue of variance in estimating the SW distance using Monte Carlo samples, we
propose a novel approach based on control variates. Specifically, we first identify two Gaussian
distributions that closely approximate the two projected one-dimensional measures by minimizing
Kullback–Leibler divergence. Next, we construct control variates using the closed-form solution of
the Wasserstein distance between two Gaussian distributions. We propose two control variates, an
upper bound and a lower bound, for the Wasserstein distance between the fitted Gaussian distributions.
By using these control variates, we show that the computation is only linear in terms of the number
of supports and the number of dimensions, even when dealing with discrete probability measures.
This means that the proposed control variates estimators have the same computational complexity as
the conventional estimator of the SW distance. Overall, our proposed approach provides a practical
and efficient method for estimating the SW distance with reduced variance.

2. We empirically show that the proposed control variate estimators yield considerably smaller
variances than the conventional computational estimator of SW distance, using a finite number of
projections, when comparing empirical distributions over images and point clouds. Moreover, we
illustrate that the computation for control variates is negligible compared to the computation of the
one-dimensional Wasserstein distance. Finally, we further demonstrate the favorable performance
of the control variate approach in gradient flows between two point clouds, and in learning deep
generative models on the CIFAR10 [14] and CelebA [18] datasets. From our experiments, we observe
that using the proposed control variate estimators considerably improves performance, while their
computation time is approximately the same as that of the conventional estimator.

Organization. The remainder of the paper is organized as follows. First, we review the background
on the Wasserstein distance, including its special cases, such as the one-dimensional case and the
Gaussian case, as well as the sliced Wasserstein distance and the Monte Carlo estimation scheme,
in Section 2. Next, we discuss the construction of control variates and their resulting estimator of
the SW distance in Section 3. We then present experimental results in Section 4 to demonstrate the
benefits of the proposed control variate estimators. Finally, we conclude in Section 5 and provide
proofs of key results, related works, and additional materials in the Appendices.

Notations. We use the notation KL(f, g) =
∫∞
−∞ f(x) log

(
f(x)
g(x)

)
dx to denote the Kullback-Leibler

divergence between two densities f and g. For any d ≥ 2, we denote Sd−1 := {θ ∈ Rd | ||θ||22 = 1}
as the unit hyper-sphere and U(Sd−1) as its corresponding uniform distribution. We denote P(Sd−1)
as the set of all probability measures on Sd−1. For p ≥ 1, Pp(Rd) is the set of all probability measures
on Rd that have finite p-moments. For any two sequences an and bn, the notation an = O(bn) means
that an ≤ Cbn for all n ≥ 1, where C is some universal constant. We denote θ♯µ as the push-forward
measure of µ through the function f : Rd → R, where f(x) = θ⊤x. We denote PX as the empirical
measure 1

m

∑m
i=1 δxi , where X := (x1, . . . , xm) ∈ Rdm is a vector.
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2 Background

We now review some essential materials for the paper.

Wasserstein distance. Given p ≥ 1, two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd), the
Wasserstein distance [33, 27] between µ and ν is : Wp

p(µ, ν) = infπ∈Π(µ,ν)

∫
Rd×Rd ∥x−y∥ppdπ(x, y),

where Π(µ, ν) is set of all couplings that have marginals are µ and ν respectively. The computational
complexity and memory complexity of Wasserstein distance are O(n3 log n) and O(n2) in turn when
µ and ν have at most n supports. However, there are some special cases where the Wasserstein
distance can be computed efficiently.

Special Cases. When p = 2, we have Gaussian distributions µ := N (m1,Σ1) and ν := N (m2,Σ2),
the Wasserstein distance between µ and ν has the following closed-form:

W2
2(µ, ν) = ∥m1 −m2∥22 + Tr(Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2). (1)

When d = 1, the Wasserstein distance between µ ∈ Pp(R) and ν ∈ Pp(R) can also be computed
with a closed form: Wp

p(µ, ν) =
∫ 1

0
|F−1

µ (z) − F−1
ν (z)|pdz. When µ and ν are one-dimension

discrete probability measures that have a most n supports, the computational complexity and memory
complexity, in this case, are only O(n log n) and O(n).

Sliced Wasserstein distance. Using random projections, the sliced Wasserstein (SW) distance can
exploit the closed-form benefit of Wasserstein distance in one dimension. The definition of sliced
Wasserstein distance [3] between two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) is:

SWp
p(µ, ν) = Eθ∼U(Sd−1)[W

p
p(θ♯µ, θ♯ν)], (2)

where U(Sd−1) is the uniform distribution over the unit-hyper sphere.

Monte Carlo estimation. The expectation in the SW is often intractable, hence, Monte Carlo
samples are often used to estimate the expectation: ŜW

p

p(µ, ν;L) =
1
L

∑L
l=1 Wp

p(θl♯µ, θl♯ν), where
projecting directions θ1, . . . , θL are drawn i.i.d from U(Sd−1). When µ and ν are empirical measures
that have at most n supports in d dimension, the time complexity of SW is O(Ln log n + Ldn).
Here, Ln log n is for sorting L sets of projected supports and Ldn is for projecting supports to L sets
of scalars. Similarly, the space complexity for storing the projecting directions and the projected
supports of SW is O(Ld+ Ln). We refer to Algorithm 1 in Appendix B for the detailed algorithm.

Variance and Error. By using some simple transformations, we can derive the variance of the Monte
Carlo approximation of the SW distance as: Var[ŜW

p

p(µ, ν;L)] =
1
LVar[Wp

p(θ♯µ, θ♯ν)]. We also
have the error of the Monte Carlo approximation [21] is:

E
[
|ŜW

p

p(µ, ν;L)− SWp
p(µ, ν)|

]
≤ 1√

L
Var
[
Wp

p(θ♯µ, θ♯ν)
]1/2

. (3)

Here, can see that Var[Wp
p(θ♯µ, θ♯ν) plays an important role in controlling the approximation error.

Therefore, a natural question arises: "Can we construct a function Z(θ;µ, ν) such that E[Z(θ;µ, ν)] =
SWp

p(µ, ν) while Var[Z(θ;µ, ν)] ≤ Var[Wp
p(θ♯µ, θ♯ν)?". If we can design such Z(θ;µ, ν), we will

have E
[∣∣∣ 1L ∑L

l=1 Z(θl;µ, ν)− SWp
p(µ, ν)

∣∣∣] ≤ 1√
L

Var[Z(θ;µ, ν)]1/2 ≤ 1√
L

Var[Wp
p(θ♯µ, θ♯ν)]

1/2

which implies that the estimator 1
L

∑L
l=1 Z(θl;µ, ν) is better than ŜW

p

p(µ, ν;L).

3 Control Variate Sliced Wasserstein Estimators

We first adapt notations from the control variates literature to the SW case in Section 3.1. After that,
we discuss how to construct control variates and their computational properties in Section 3.2.

3.1 Control Variate for Sliced Wasserstein Distance

Short Notations. We are approximating the SW which is an expectation with respect to the random
variable θ. For convenience, let denote Wp

p(θ♯µ, θ♯ν) as W (θ;µ, ν), we have:

SWp
p(µ, ν) = E[W (θ;µ, ν)], and ŜW

p

p(µ, ν;L) =
1

L

L∑
l=1

W (θl;µ, ν), (4)
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where θ1, . . . , θL
i.i.d∼ σ0(θ) := U(Sd−1).

Control Variate. A control variate [26] is a random variable C(θ) such that its expectation is
tractable i.e., E[C(θ)] = B. From the control variate, we consider the following variable:

W (θ;µ, ν)− γ(C(θ)−B) (5)

where γ ∈ R. Therefore, it is easy to check that E[W (θ;µ, ν)− γ(C(θ)−B)] = E[W (θ;µ, ν)] =
SWp

p(µ, ν) since E[C(θ)] = B. Therefore, the Monte Carlo estimation of E[W (θ;µ, ν)− γ(C(θ)−
B)], i.e., 1

L

∑L
l=1(W (θk;µ, ν)− γ(C(θl)−B)), is an unbiased estimation of E[W (θ;µ, ν)].

Now, we consider the variance of the variable W (θ;µ, ν)− γ(C(θ)−B).

Var[W (θ;µ, ν)− γ(C(θ)−B)] = Var[W (θ;µ, ν)]− 2γCov[W (θ;µ, ν), C(θ)] + γ2Var[C(θ)].

The above variance attains its minimum, with respect to γ, for γ⋆ = Cov[W (θ;µ,ν),C(θ)]
Var[C(θ)] Using the

optimal γ⋆, we the minimum variance of is:

Var[W (θ;µ, ν)]

(
1− Cov[W (θ;µ, ν), C(θ)]2

Var[W (θ;µ, ν)]Var[C(θ)]

)
. (6)

Therefore, the variance of W (θ;µ, ν)− γ⋆(C(θ)−B) with is lower than W (θ;µ, ν) if the control
variate C(θ) has a correlation with W (θ;µ, ν).

Definition 1. Given a control variate C(θ), the corresponding controlled projected one-dimensional
Wasserstein distance is:

Z(θ;µ, ν, C(θ)) = W (θ;µ, ν)− Cov[W (θ;µ, ν), C(θ)]

Var[C(θ)]
(C(θ)−B). (7)

In practice, computing γ⋆ might be intractable, hence, we can estimate γ⋆ using Monte Carlo samples.

Control Variate Estimator of the SW distance. Now, we can form the new estimation of SWp
p(µ, ν).

Definition 2. Given a control variate C(θ) with E[C(θ)] = B, the number of projections L ≥ 1, the
Control Variate Sliced Wasserstein estimator is:

ĈV-SW
p

p(µ, ν;L,C(θ)) = ŜW
p

p(µ, ν;L)− γ̂⋆
L

1

L

L∑
l=1

(C(θl)−B), (8)

where θ1, . . . , θL ∼ σ0(θ), ŜW
p

p(µ, ν;L) = 1
L

∑L
l=1 W (θl;µ, ν), and the estimated optimal

coefficient γ̂⋆
L = Ĉov[W (θ;µ,ν),C(θ);L]

V̂ar[C(θ);L]
with Ĉov[W (θ;µ, ν), C(θ);L] = 1

L

∑L
l=1(W (θl;µ, ν) −

ŜW
p

p(µ, ν;L))(C(θl)−B), V̂ar[C(θ);L] = 1
L

∑L
l=1(C(θl)−B)2.

Remark 1. In Definition 2, the optimal coefficient γ̂⋆
L is estimated by reusing Monte Carlo samples

θ1, . . . , θL. It is possible to estimate γ̂⋆
L using new samples θ′1, . . . , θ

′
L to make it independent to

ŜW
p

p(µ, ν;L). Nevertheless, this resampling approach costs doubling computational complexity.
Therefore, the estimation in Definition 2 is preferable in practice [26]. It is worth noting that the
estimation is only asymptotic unbiased, however, it is negligible since the unbiasedness is always lost
after taking the p-root for computing the value of SW with finite L.

In this section, we have not yet specified C(θ). In the next session, we will focus on constructing a
computationally efficient C(θ) that is also effective by conditioning it on two probability measures
µ and ν. Specifically, we define C(θ) := C(θ;µ, ν), which involves conditioning on these two
probability measures µ and ν.

3.2 Constructing Control Variates

We recall that we are interested in the random variable W (θ;µ, ν) = Wp
p(θ♯µ, θ♯ν). It is desirable

to have a control variate C(θ) such that C(θ) ≈ W (θ;µ, ν) [26]. Therefore, it is natural to also
construct C(θ) := C(θ;µ, ν) based on two measures µ, ν. Moreover, since we know the closed-form
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solution of Wasserstein distance between two Gaussians, control variates in the form C(θ;µ, ν) =
W2

2(N (m1(θ;µ), σ
2
1(θ;µ)),N (m2(θ; ν), σ

2
2(θ; ν))) could be tractable.

Gaussian Approximation. The question of constructing the control variate i.e., specifying
N (m1(θ;µ), σ

2
1(θ;µ)) and N (m2(θ; ν), σ

2
2(θ; ν)) now requires finding the Gaussian approximation

of two projected measures θ♯µ and θ♯ν. As a solution, we perform the following optimization:

m1(θ;µ), σ
2
1(θ;µ) = argminm1,σ2

1
KL(θ♯µ,N (m1, σ

2
1)), (9)

m2(θ; ν), σ
2
2(θ; ν) = argminm2,σ2

2
KL(θ♯ν,N (m2, σ

2
2)), (10)

where KL denotes the Kullback–Leibler divergence. When µ and ν are discrete measures, we assume
that KL divergence is defined with 0 log 0 = 0 or exists in the sense of the number of supports
of µ and ν approaching ∞. The advantage of the above estimation framework is that it has the
closed-form solution when two measures are discrete, namely, µ =

∑n
i=1 αiδxi

(
∑n

i=1 αi = 1) and
ν =

∑m
i=1 βiδyi

(
∑m

i=1 βi = 1).

Proposition 1. Let µ and µ be two discrete probability measures i.e., µ =
∑n

i=1 αiδxi

(
∑n

i=1 αi = 1) and ν =
∑m

i=1 βiδyi
(
∑m

i=1 βi = 1), we have: m1(θ;µ) =∑n
i=1 αiθ

⊤xi, σ2
1(θ;µ) =

∑n
i=1 αi

(
θ⊤xi −m1(θ;µ)

)2
, m2(θ; ν) =

∑m
i=1 βiθ

⊤yi, σ2
2(θ; ν) =∑m

i=1 βi

(
θ⊤yi −m2(θ; ν)

)2
, are solution of the problems in equation 9- 10.

We refer to Appendix A.1 for the detailed proof of Proposition 1. When µ and ν are continuous, we
can solve the optimization by using stochastic gradient descent by sampling from µ and ν respectively.
In addition, we can use corresponding empirical measures of µ and ν i.e., µn = 1

n

∑n
i=1 δXi

and

νn = 1
n

∑n
i=1 δYi as proxies (where X1, . . . , Xn

i.i.d∼ µ and Y1, . . . , Yn
i.i.d∼ ν). Beyond optimization,

we can also utilize the Laplace approximation to obtain two approximated Gaussians for θ♯µ and θ♯ν
when the push-forward densities are tractable.

Constructing Control Variates. From the closed-form of the Wasserstein-2 distance between two
Gaussians in equation 1, we have: W2

2(N (m1(θ;µ), σ
2
1(θ;µ)),N (m2(θ; ν), σ

2
2(θ; ν))) =

(m1(θ;µ) − m2(θ; ν))
2 + σ1(θ;µ)

2 + σ2(θ; ν)
2 − 2σ1(θ;µ)σ2(θ; ν). To calculate

E[W2
2(N (m1(θ;µ), σ

2
1(θ;µ)),N (m2(θ; ν), σ

2
2(θ; ν)))] as the requirement of a control vari-

ate, we could calculate the expectation of each term i.e., E[(m1(θ;µ)−m2(θ; ν))
2], E

[
σ2
1(θ;µ)

]
,

E
[
σ2
2(θ; ν)

]
, and E[σ1(θ;µ)σ2(θ; ν)].

Proposition 2. Given two discrete measures µ and ν, m1(θ;µ), m2(θ; ν), σ2
1(θ;µ), and σ2

1(θ;µ) as
in Proposition 1, we obtain:

E[(m1(θ;µ)−m2(θ; ν))
2] =

1

d

∥∥∥∥∥
n∑

i=1

αixi −
m∑
i=1

βiyi

∥∥∥∥∥
2

, (11)

E
[
σ2
1(θ;µ)

]
=

1

d

n∑
i=1

αi

∥∥∥∥∥xi −
n∑

i′=1

αi′xi′

∥∥∥∥∥
2

, E
[
σ2
2(θ; ν)

]
=

1

d

m∑
i=1

βi

∥∥∥∥∥yi −
m∑

i′=1

βi′yi′

∥∥∥∥∥
2

(12)

The proof of Proposition 2 is given in Appendix A.2.

Unfortunately, we cannot compute the expectation for the last term E[σ1(θ;µ)σ2(θ; ν)].
However, we could construct control variates using lower-bound and upper-bound of
W2

2(N (m1(θ;µ), σ
2
1(θ;µ)),N (m2(θ; ν), σ

2
2(θ; ν))).

Definition 3. Given two Gaussian approximations of θ♯µ and θ♯ν i.e.,N (m1(θ;µ), σ
2
1(θ;µ)) and

N (m2(θ; ν), σ
2
2(θ; ν)), we define the following two control variates:

Clow(θ;µ, ν) = (m1(θ;µ)−m2(θ; ν))
2 (13)

Cup(θ;µ, ν) = (m1(θ;µ)−m2(θ; ν))
2 + σ2

1(θ;µ) + σ2
2(θ; ν). (14)

We now discuss some properties of the proposed control variates.
Proposition 3. We have the following relationship:

Clow(θ;µ, ν) ≤ W2
2(N (m1(θ;µ), σ

2
1(θ;µ)),N (m2(θ; ν), σ

2
2(θ; ν))) ≤ Cup(θ;µ, ν). (15)
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The proof of Proposition 3 follows directly from the construction of the control variates. For
completeness, we provide the proof in Appendix A.3.
Proposition 4. Let µ =

∑n
i=1 αiδxi

and ν =
∑m

i=1 βiδyi
, using the control variate Clow(θ;µ, ν) is

equivalent to using the following control variate: W2
2(θ♯N (m1(µ), σ

2
1(µ)I), θ♯N (m2(ν), σ

2
2(ν)I)),

where we obtain m1(µ), σ
2
1(µ) = argminm1,σ2

1
KL(µ,N (m1, σ

2
1)) and m2(ν), σ

2
2(ν) =

argminm2,σ2
2
KL(ν,N (m2, σ

2
2)).

The proof for The Proposition 4 is given in Appendix A.4. The proposition means that using
the control variate Clow(θ;µ, ν) is equivalent to using the Wasserstein-2 distance between two
projected location-scale multivariate Gaussians with these location-scale multivariate Gaussians are
the approximation of the two original probability measures µ and ν on the original space.

Control Variate Estimators of the SW distance. From two defined control variates in Definition 3,
we define the corresponding controlled projected one-dimensional Wasserstein distances and control
variate sliced Wasserstein estimators.
Definition 4. Given two control variates Clow(θ;µ, ν), Cup(θ;µ, ν) in Definition 3, the correspond-
ing controlled projected one-dimensional Wasserstein distances are defined as:

Zlow(θ;µ, ν) = Z(θ;µ, ν, Clow(θ;µ, ν)), Zup(θ;µ, ν) = Z(θ;µ, ν, Cup(θ;µ, ν)), (16)

where Z(θ;µ, ν, C(θ)) is defined in Definition 1.

Definition 5. Given Zlow(θ, µ, ν), Zup(θ, µ, ν), ĈV-SW
p

p(µ, ν;L,C(θ)) as defined in Definition 4
and Definition 4, the lowerbound and upperbound control variate sliced Wasserstein estimators are:

̂LCV-SW
p

p(µ, ν;L) =
1

L

L∑
i=1

Zlow(θl, µ, ν) = ĈV-SW
p

p(µ, ν;L,Clow(θ;µ, ν)), (17)

̂UCV-SW
p

p(µ, ν;L) =
1

L

L∑
i=1

Zup(θl, µ, ν) = ĈV-SW
p

p(µ, ν;L,Cup(θ;µ, ν)). (18)

We refer to Algorithm 2- 3 for the detailed algorithms for the control variate estimators in Appendix B.

Computational Complexities. When dealing with two discrete probability measures µ and ν
that have at most n supports, projecting the supports of the two measures to L sets of projected
supports costs O(Ldn) in time complexity. After that, fitting one-dimensional Gaussians also costs
O(Ldn). From Proposition 2 and Definition 3, computing the control variate Clow(θ;µ, ν) and its
expected value Blow(µ, ν) costs O(dn). Similarly, computing the control variate Cup(θ;µ, ν) and
its expected value Bup also costs O(dn). Overall, the time complexity of ̂LCV-SW

p

p(µ, ν;L) and
̂UCV-SW

p

p(µ, ν;L) is the same as the conventional SW, which is O(Ln log n + Ldn). Similarly,
their space complexities are also O(Ld+ Ln) as the conventional estimator.

Gradient estimators. In some cases, we might be interested in obtaining the gradient
∇ϕSWp

p(µ, νϕ) = ∇ϕE[Wp
p(θ♯µ, θ♯νϕ)] e.g., statistical inference. Since the expectation in the

SW does not depend on ϕ, we can use the Leibniz rule to exchange differentiation and expecta-
tion, namely, ∇ϕE[Wp

p(θ♯µ, θ♯νϕ)] = E[∇ϕWp
p(θ♯µ, θ♯νϕ)]. After that, we can use ∇ϕC(θ;µ, νϕ)

(∇ϕClow(θ;µ, νϕ) or ∇ϕCup(θ;µ, νϕ)) as the control variate. However, estimating the optimal

γ⋆
i =

Cov[∇ϕi
Wp

p(θ♯µ,θ♯νϕ),∇ϕi
C(θ;µ,νϕ)]

Var[∇ϕi
C(θ;µ,νϕ)]

(for i = 1, . . . , d′ with d′ is the number of dimensions of
parameters ϕ) is computationally expensive and depends significantly on the specific settings of νϕ.
Therefore, we utilize a more computationally efficient estimator of the gradient i.e., E[∇ϕZ(θ;µ, νϕ)]
for Z(θ;µ, νϕ) is Zlow(θ;µ, νϕ) or Zup(θ;µ, νϕ) in Definition 4. After that, Monte Carlo samples
are used to approximate expectations to obtain a stochastic gradient.

4 Experiments

Our experiments aim to show that using control variates can benefit applications of the sliced
Wasserstein distance. In particular, we show that the proposed control variate estimators have
lower variance in practice when comparing probability measures over images and point-clouds in
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Figure 1: The empirical errors of the conventional estimator (SW) and the control variate estimators (LCV-SW,
UCV-SW) when comparing empirical distributions over MNIST images and point-clouds.

Table 1: Summary of Wasserstein-2 [8] (multiplied by 104), computational time in second (s) to reach step
8000 of different sliced Wasserstein estimators in gradient flows from three different runs.

Distances Step 3000 (W2 ↓) Step 4000 (W2 ↓) Step 5000 (W2 ↓) Step 6000(W2 ↓) Step 8000 (W2 ↓) Time (s ↓)

SW L=10 305.5196± 0.4921 137.8767± 0.3631 36.2454± 0.1387 0.1164± 0.0022 2.1e− 5± 1.0e− 5 26.13± 0.04
LCV-SW L=10 303.1001± 0.1787 136.0129± 0.0923 35.0929± 0.1459 0.0538± 0.0047 1.5e− 5± 0.2e− 5 27.22± 0.24
UCV-SW L=10 303.1017± 0.1783 136.0139± 0.0921 35.0916± 0.1444 0.0535± 0.0065 1.4e− 5± 0.2e− 5 29.48± 0.23

SW L=100 300.7326± 0.2375 134.1498± 0.3146 33.9253± 0.1349 0.0183± 0.0011 1.6e− 5± 0.2e− 5 220.20± 0.21
LCV-SW L=100 300.3924± 0.0053 133.6243± 0.0065 33.5102± 0.0031 0.0134± 8.7e− 5 1.4e− 5± 0.1e− 5 221.75± 0.35
UCV-SW L=100 300.3927± 0.0050 133.6242± 0.0065 33.5088± 0.0028 0.0136± 0.0003 1.4e− 5± 0.2e− 5 233.71± 0.06

Section 4.1. After that, we show that using the proposed control variate estimators can help to drive a
gradient flow to converge faster to a target probability measure from a source probability measure
while retaining approximately the same computation in Section 4.2. Finally, we show the proposed
control variate estimators can also improve training deep generative models on standard benchmark
images dataset such as CIFAR10, and CelebA in Section 4.3. Due to the space constraint, additional
experiments and detailed experimental settings are deferred to Appendix D.

4.1 Comparing empirical probability measures over images and point-clouds

Settings. We aim to first test how well the proposed control variates can reduce the variance
in practice. To do this, we use conventional Monte Carlo estimation for the SW 2

2 with a very
large L value of 100000 and treat it as the population value. Next, we vary L in the set
{2, 5, 10, 50, 100, 500, 1000, 5000, 7000, 10000} and compute the corresponding estimates of the
SW with both the conventional estimator and control variate estimators. Finally, we calculate the
squared difference between the estimators and the estimated population as the estimated error. We
apply this process to compare the empirical distributions over images of digit 0 with the empirical
distribution images of digit 1 in MNIST [15] (784 dimensions, with about 6000 supports). Similarly,
we compare two empirical distributions over two randomly chosen point-clouds in the ShapeNet
Core-55 dataset [4] (3 dimensions, 2048 supports). We also estimate the variance of the estimators
via Monte Carlo samples with L = 50000 in Table 3 in Appendix D.1.

Results. We show the estimated errors and the computational time which are averaged from 5 different
runs in Figure 1. From the figure, we observe that control variate estimators reduce considerably
the error in both cases. On MNIST, the lower bound control variate estimator (LCV-SW) gives a
lower error than the upper bound control variate estimator (UCV-SW) while being slightly faster.
The computational time of the LCV-SW has nearly identical computational time as the conventional
estimator (SW). In the lower dimension i.e., the point-cloud case, two control variates give the
same quality of reducing error and the same computational time. In this case, the computational
time of both two control variates estimators are the same as the conventional estimator. From
Table 3 in Appendix D.1, we observe that the variance of the control variate estimators is lower
than the conventional estimator considerably, especially the LCV-SW. We refer to Appendix D.1 for
experiments on different pairs of digits and point-clouds which show the same phenomenon.

4.2 Point Cloud Gradient Flows

Settings. We model a distribution µ(t) flowing with time t along the sliced Wasserstein gradient
flow µ(t) → SWp(µ(t), ν), which drives it towards a target distribution ν [29]. Here, we set ν =
1
n

∑n
i=1 δYi as a fixed empirical target distribution and the model distribution µ(t) = 1

n

∑n
i=1 δXi(t),

where the time-varying point cloud X(t) = (Xi(t))
n
i=1 ∈

(
Rd
)n

. Starting at time t = 0, we integrate
the ordinary differential equation Ẋ(t) = −n∇X(t)

[
SWp

(
1
n

∑n
i=1 δXi(t), ν

)]
for each iteration.

We choose µ(0) and ν are two random point-cloud shapes in ShapeNet Core-55 dataset [4] which
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Table 2: Summary of FID and IS scores from three different runs on CIFAR10 (32x32), and CelebA (64x64).

Method CIFAR10 (32x32) CelebA (64x64) Method CIFAR10 (32x32) CelebA (64x64)

FID (↓) IS (↑) FID (↓) FID (↓) IS (↑) FID (↓)

SW L=10 21.72± 0.37 7.54± 0.06 11.14± 1.12 SW L=1000 14.07± 0.97 8.07± 0.06 10.05± 0.40
LCV-SW L=10 18.67± 0.39 7.74± 0.04 10.17± 0.73 LCV-SW L=1000 13.58± 0.12 8.23± 0.02 9.78± 0.47
UCV-SW L=10 21.71± 0.36 7.57± 0.01 11.00± 0.04 UCV-SW L=1000 13.21± 0.49 8.21± 0.09 9.51± 0.30

were used in Section 4.1. After that, we use different estimators of the SW i.e., ŜWp, ̂LCV-SWp, and
̂UCV-SWp, as the replacement of the for SWp to estimate the gradient including the proposed control

variate estimators and the conventional estimator. Finally, we use p = 2, and the Euler scheme with
8000 iterations and step size 0.01 to solve the flows.

Results. We use the Wasserstein-2 distance as a neutral metric to evaluate how close the model
distribution µ(t) is to the target distribution ν. We show the results for the conventional Monte Carlo
estimator (denoted as SW), the control variate Clow estimator (denoted as LCV-SW), and the control
variate Cup estimator (denoted as UCV-SW), with the number of projections L = 10, 100 in Table 1.
In the table, we also report the time in seconds that estimators need to reach the last step. In addition,
we visually the flows for L = 100 in Figure 6 in Appendix D.2. Moreover, we observe the same
phenomenon on a different pair of point-clouds in Table 4 and in Figure 3 in Appendix D.2.

4.3 Deep Generative Modeling

Settings. We conduct deep generative modeling on CIFAR10 (with image size 32x32) [14], non-
croppeed CelebA (with image size 64x64) [18] with the SNGAN architecture [19]. For the framework,
we follow the sliced Wasserstein generator [7, 23] which is described in detail in Appendix D.3. The
main evaluation metrics are FID score [9] and Inception score (IS) [28]. On CelebA, we do not report
the IS since it poorly captures the perceptual quality of face images [9]. The detailed settings about
architectures, hyper-parameters, and evaluation of FID and IS are provided in Appendix D.3.

Results. We train generators with the conventional estimator (SW), and the proposed control variates
estimators (LCV-SW and UCV-SW) with the number of projections L = 10, 1000. We report FID
scores and IS scores in Table 2. From the table, we observe that the LCV-SW gives the best generative
models on both CIFAR10 and CelebA when L = 10. In particular, the LCV-SW can reduce about
14% FID score on CIFAR10, and about 10% FID score on CelebA. Also, the LCV-SW increases the
IS score by about 2.6%. For the UCV-SW, it can enhance the performance slightly compared with the
SW when L = 10. It is worth noting that, the computational times of estimators are approximately
the same since the main computation in the application is for training neural networks. Therefore,
we can see the benefit of reducing the variance by using control variates here. Increasing L to 1000,
despite the gap being closer, the control variate estimators still give better scores than the conventional
estimator. In greater detail, the LCV-SW can improve about 3.5% FID score on CIFAR10, about 2%
IS score on CIFAR10, and about 2.7% FID score on CelebA compared to the SW. In this setting
of L, the UCV-SW gives the best FID scores on both CIFAR10 and CelebA. Concretely, it helps
to decrease the FID score by about 6.1% on CIFAR10 and about 5.4% on CelebA. From the result,
the UCV-SW seems to need more projections than the LCV-SW to approximate well the optimal
control variate coefficient (γ⋆) since the corresponding control variate of the UCV-SW has two more
random terms. For the qualitative result, we show randomly generated images from trained models
in Figure 4 for L = 10 and in Figure 5 for L = 1000 in Appendix D.3. Overall, we obverse that
generated images are visually consistent to the FID scores and IS scores in Table 2.

5 Conclusion
We have presented a method for reducing the variance of Monte Carlo estimation of the sliced Wasser-
stein (SW) distance using control variates. Moreover, we propose two novel control variates that serve
as lower and upper bounds for the Wasserstein distance between two Gaussian approximations of
two measures. By using the closed-form solution of the Wasserstein distance between two Gaussians
and the closed-form of Gaussian fitting of discrete measures via Kullback Leibler divergence, we
demonstrate that the proposed control variates can be computed in linear time. Consequently, the
control variate estimators have the same computational complexity as the conventional estimator of
SW distance. On the experimental side, we demonstrate that the proposed control variate estimators
have smaller variances than the conventional estimator when comparing probability measures over
images and point clouds. Finally, we show that using the proposed control variate estimators can lead
to improved performance of point-cloud SW gradient flows and generative models.
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Supplement to “Control Variate Sliced Wasserstein"
We first provide the skipped proofs in Appendix A. Additionally, we present the detailed algorithms
for the conventional estimator of the sliced Wasserstein distance and the control variate estimators
in Appendix B. Sliced Wasserstein variants are discussed in Appendix C, and we also discuss
how to use control variates in those variants in the same appendix. In Appendix D, we provide
additional experiments and their detailed experimental settings. Finally, we report the computational
infrastructure in Appendix E.

A Proofs

A.1 Proof of Proposition 1

We have µ and ν are two empirical measures i.e., µ =
∑n

i=1 αiδxi (
∑n

i=1 αi = 1) and ν =∑m
i=1 βiδyi

(
∑m

i=1 βi = 1), we have their projected measures θ♯µ =
∑n

i=1 αiδθ⊤xi
and θ♯ν =∑n

i=1 βiδθ⊤yi
. We recall that the KL divergence is defined as KL(p, q) =

∫∞
−∞ p(x) log

(
p(x)
q(x)

)
dx.

Now, we have:

argminm1,σ2
1
KL(θ♯µ,N (m1, σ

2
1))

= argmaxm1,σ2
1

[
n∑

i=1

αi log

(
1√
2πσ2

1

exp

(
− 1

2σ2
1

(θ⊤xi −m1)
2

))]

= argmaxm1,σ2
1

[
n∑

i=1

(
− αi

2σ2
1

(θ⊤xi −m1)
2 − αi

2
log(σ2

1)

)]
= argmaxm1,σ2

1
f(m1, σ

2
1).

Taking the derivatives and setting them to 0, we have:

d

dm1
f(m1, σ

2
1) =

n∑
i=1

αi

σ2
1

(m1 − θ⊤xi) =
1

σ2
1

(
n∑

i=1

αim1 −
n∑

i=1

αiθ
⊤xi

)
= 0,

d

dσ2
1

f(m1, σ
2
1) =

n∑
i=1

(
αi

2σ4
1

(θ⊤xi −m1)
2 − αi

2σ2
1

)
=

1

2σ2
1

(
n∑

i=1

αi

σ2
1

(θ⊤xi −m1)
2 −

n∑
i=1

αi

)
= 0.

Hence, we obtain:

m1 =

∑n
i=1 αiθ

⊤xi∑n
i=1 αi

=

n∑
i=1

αiθ
⊤xi,

σ2
1 =

∑n
i=1 αi(θ

⊤xi −m1)
2∑n

i=1 αi
=

n∑
i=1

αi(θ
⊤xi −m1)

2.

With similar derivation, we obtain the result for m2, σ
2
2 and complete the proof.

A.2 Proof of Proposition 2

We first prove the following lemma.

Lemma 1. Let θ is a uniformely distributed vector on the unit-hypersphere i.e., θ ∼ U(Sd−1), we
have E[θθ⊤] = 1

dId.

Proof. Since we can obtain a uniformly distributed vector θ on Sd−1 by normalizing a unit Gaussian
distributed vector i.e., θ = z

||z||2 with z ∼ N (0, Id). Therefore, we can rewrite:

E[θθ⊤] = E
[

z

||z||2
z

||z||2
⊤
]
.
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Since the expectation of a random matrix is a matrix of expectation, we now need to calculate E[θiθj ]
or E

[
zi

||z||2
zj

||z||2
⊤
]

for all i, j ∈ [[d]].

Let denote θ = (θ1, . . . , θd) and z = (z1, . . . , zd), we have θ′ = (θ1, . . . ,−θi, . . . , θd) (for any
i ∈ [[d]] ) also follow U(Sd−1) since θ′ = z′

||z′||2 with z′ = (z1, . . . ,−zi, . . . , zd) ∼ N (0, Id)

(linear mapping of a Gaussian is a Gaussian). Therefore, we have E[θiθj ] = −E[θiθj ] which means
E[θiθj ] = 0 for all j ∈ [[d]] ̸= i. Now, we calculate the variance E[θ2i ] for all i ∈ [[d]]. We have

d∑
i=1

E[θ2i ] =
d∑

i=1

E
[

z2i
||z||22

]
=

d∑
i=1

E

[
z2i∑d
j=1 z

2
j

]
= 1.

Moreover, θ1, . . . , θd are exchangeable with a similar argument with the symmetry and linear mapping
property of Gaussian distribution. Therefore, they are indentically distributed i.e., E[θ2i ] = E[θ2j ] =
1/d for all i, j ∈ [[d]]. We complete the proof here.

We now go back to the proof of Proposition 2. From Proposition 1, we have:

E[(m1(θ;µ)−m2(θ; ν))
2] = E

( n∑
i=1

αiθ
⊤xi −

m∑
i=1

βiθ
⊤yi

)2


=

(
n∑

i=1

αixi −
m∑
i=1

βiyi

)⊤

E
[
θθ⊤

]( n∑
i=1

αixi −
m∑
i=1

βiyi

)
=

1

d

∥∥∥∥∥
n∑

i=1

αixi −
m∑
i=1

βiyi

∥∥∥∥∥
2

,

where we use the result of Eθ∼U(Sd−1)[θθ
⊤] = 1

d from Lemma 1. Next, we have:

E
[
σ2
1(θ;µ)

]
= E

 n∑
i=1

αi

(
θ⊤xi −

n∑
i′=1

αi′θ
⊤xi′

)2


=

n∑
i=1

αi

(
xi −

n∑
i′=1

αi′xi′

)⊤

E
[
θθ⊤

](
xi −

n∑
i′=1

αi′xi′

)
=

1

d

n∑
i=1

αi

∥∥∥∥∥xi −
n∑

i′=1

αi′xi′

∥∥∥∥∥
2

.

Similarly, we have E
[
σ2
2(θ; ν)

]
= 1

d

∑m
i=1 βi ∥yi −

∑m
i′=1 βi′yi′∥

2
.

A.3 Proof of Proposition 3

We recall that:
Clow(θ;µ, ν) = (m1(θ;µ)−m2(θ; ν))

2,

Cup(θ;µ, ν) = (m1(θ;µ)−m2(θ; ν))
2 + σ1(θ;µ)

2 + σ2(θ; ν)
2,

W2
2(N (m1(θ;µ), σ

2
1(θ;µ)),N (m2(θ; ν), σ

2
2(θ; ν))) = (m1(θ;µ)−m2(θ; ν))

2 + (σ1(θ;µ)− σ2(θ; ν))
2.

Since 0 ≤ (σ1(θ;µ)−σ2(θ; ν))
2 ≤ σ1(θ;µ)

2+σ2(θ; ν)
2, we obtain the result by adding (m1(θ;µ)−

m2(θ; ν))
2 to the inequalities.

A.4 Proof of Proposition 4

We have µ and ν are two empirical measures i.e., µ =
∑n

i=1 αiδxi (
∑n

i=1 αi = 1) and ν =∑m
i=1 βiδyi (

∑m
i=1 βi = 1). Now, we have:

argminm1,σ2
1
KL(µ,N (m1, σ

2
1I))

= argmaxm1,σ2
1

n∑
i=1

αi log

(
1√

(2π)d|σ2
1I|

exp

(
−1

2
(xi −m1)

⊤|σ2
1I|−1(xi −m1)

))

= argmaxm1,σ2
1

n∑
i=1

αi

(
− 1

2σ2d
1

(xi −m1)
⊤(xi −m1)−

d

2
log(σ2

1)

)
= argmaxm1,σ2

1
f(m1, σ

2
1)
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Taking the derivatives and setting them to 0, we have:

∇m1f(m1, σ
2
1) =

n∑
i=1

αi

σ2d
1

(m1 − xi) =
1

σ2d
1

(
n∑

i=1

αim1 − αixi

)
= 0,

d

dσ2
1

f(m1, σ
2
1) =

n∑
i=1

αi

(
d

2σ2d+2
1

(xi −m1)
⊤(xi −m1)−

d

2σ2
1

)
,

=
d

dσ2
1

n∑
i=1

(
αi∥xi −m1∥22

σ2d
1

− αi

)
= 0.

Hence, we obtain:

m1 =

∑n
i=1 αixi∑n
i=1 αi

=

n∑
i=1

αixi,

σ2
1 =

(∑n
i=1 αi∥xi −m1∥22∑n

i=1 αi

) 1
d

=

(
n∑

i=1

αi∥xi −m1∥22

) 1
d

.

Similarly, we obtain m2 =
∑m

i=1 βiyi and σ2
2 =

(∑m
i=1 βi∥yi −m2∥22

) 1
d .

Using the linearity of Gaussian distributions, we have θ♯N (m1, σ
2
1I) = N (θ⊤m1, σ

2
1θ

⊤Iθ) =
N (θ⊤m1, σ

2
1) (θ⊤θ = 1). Similarly, we obtain θ♯N (m2, σ

2
2I) = N (θ⊤m2, σ

2
2). Therefore, we

have:

W2
2(θ♯N (m1, σ

2
1I), θ♯N (m2, σ

2
2I)) = (θ⊤m1 − θ⊤m2)

2 + (σ1 − σ2)
2.

Calculating the expectation, we have:

E
[
W2

2(θ♯N (m1, σ
2
1I), θ♯N (m2, σ

2
2I))

]
= (m1 −m2)

⊤E[θθ⊤](m1 −m2) + (σ1 − σ2)
2

=
1

d
∥m1 −m2∥22 + (σ1 − σ2)

2.

Let denote C(θ) = W2
2(θ♯N (m1, σ

2
1I), θ♯N (m2, σ

2
2I)), we have:

C(θ)− E[C(θ)] = (θ⊤m1 − θ⊤m2)
2 − 1

d
∥m1 −m2∥22

=

(
θ⊤

n∑
i=1

αixi − θ⊤
m∑
i=1

βiyi

)2

− 1

d

∥∥∥∥∥
n∑

i=1

αixi −
m∑
i=1

βiyi

∥∥∥∥∥
2

2

=

(
n∑

i=1

αiθ
⊤xi −

m∑
i=1

βiθ
⊤yi

)2

− 1

d

∥∥∥∥∥
n∑

i=1

αixi −
m∑
i=1

βiyi

∥∥∥∥∥
2

2

= Clow(θ;µ, ν)− E[Clow(θ;µ, ν)].

Similarly, we obtain:

Var [C(θ)] = E
[
(C(θ)− E[C(θ)])2

]
= E

[
(Clow(θ;µ, ν)− E[Clow(θ;µ, ν)])

2
]
= Var[Clow(θ;µ, ν)],

Cov [C(θ),W (θ;µ, ν)] = E [(C(θ)− E[C(θ)])(W (θ;µ, ν)− E[W (θ;µ, ν)])]

= E [(Clow(θ;µ, ν)− E[Clow(θ;µ, ν)])(W (θ;µ, ν)− E[W (θ;µ, ν)])]

= Cov [Clow(θ;µ, ν),W (θ;µ, ν)] .

Therefore, it is sufficient to claim that using the Clow control variate is equivalent to use
W2

2(θ♯N (m1, σ
2
1I), θ♯N (m2, σ

2
2I)) as the control variate.

B Algorithms

We present the algorithm for computing the conventional Monte Carlo estimator of the sliced
Wasserstein distance between two discrete measures in Algorithm 1. Similarly, we provide the
algorithms for the lower bound control variate estimator and the upper bound control variate estimator
in Algorithm 2 and in Algorithm 3 respectively.
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Algorithm 1 The conventional estimator of sliced Wasserstein distance.
Input: Probability measures µ =

∑n
i=1 αiδxi

and ν =
∑m

i=1 βiδyi
, p ≥ 1, and the number of

projections L.
Set ŜW

p

p(µ, ν;L) = 0
for l = 1 to L do

Sample θl ∼ U(Sd−1)

Compute ŜW
p

p(µ, ν;L) = ŜW
p

p(µ, ν;L) +
1
L

∫ 1

0
|F−1

θl♯µ
(z)− F−1

θl♯ν
(z)|pdz

end for
Return: ŜW

p

p(µ, ν;L)

Algorithm 2 The lower bound control variate estimator of sliced Wasserstein distance.
Input: Probability measures µ =

∑n
i=1 αiδxi

and ν =
∑m

i=1 βiδyi
, p ≥ 1, and the number of

projections L.
Set ŜW

p

p(µ, ν;L) = 0

Compute x̄ =
∑n

i=1 αixi, and ȳ =
∑m

i=1 βiyi
for l = 1 to L do

Sample θl ∼ U(Sd−1)

Compute wl =
∫ 1

0
|F−1

θl♯µ
(z)− F−1

θl♯ν
(z)|pdz

Compute cl = (θ⊤x̄− θ⊤ȳ)2

end for
Compute ŜW

p

p(µ, ν;L) =
1
L

∑L
l=1 wl

Compute b = 1
d∥x̄− ȳ∥22

Compute γ =
1
L

∑L
l=1(wl−ŜW

p

p(µ,ν;L))(cl−b)
1
L

∑L
l=1(cl−b)2

Compute ̂LCV-SW
p

p(µ, ν;L) = ŜW
p

p(µ, ν;L)− γ 1
L

∑L
l=1(cl − b)

Return: ̂LCV-SW
p

p(µ, ν;L)

Algorithm 3 The upper bound control variate estimator of sliced Wasserstein distance.
Input: Probability measures µ =

∑n
i=1 αiδxi

and ν =
∑m

i=1 βiδyi
, p ≥ 1, and the number of

projections L.
Set ŜW

p

p(µ, ν;L) = 0

Compute x̄ =
∑n

i=1 αixi, and ȳ =
∑m

i=1 βiyi
for l = 1 to L do

Sample θl ∼ U(Sd−1)

Compute wl =
∫ 1

0
|F−1

θl♯µ
(z)− F−1

θl♯ν
(z)|pdz

Compute cl = (θ⊤x̄− θ⊤ȳ)2 +
∑n

i=1 αi(θ
⊤xi − θ⊤x̄)2 +

∑m
i=1 βi(θ

⊤yi − θ⊤ȳ)2

end for
Compute ŜW

p

p(µ, ν;L) =
1
L

∑L
l=1 wl

Compute b = 1
d∥x̄− ȳ∥22 + 1

d

∑n
i=1 αi∥(xi − x̄)∥22 + 1

d

∑m
i=1 βi∥(yi − ȳ)∥22

Compute γ =
1
L

∑L
l=1(wl−ŜW

p

p(µ,ν;L))(cl−b)
1
L

∑L
l=1(cl−b)2

Compute ̂UCV-SW
p

p(µ, ν;L) = ŜW
p

p(µ, ν;L)− γ 1
L

∑L
l=1(cl − b)

Return: ̂UCV-SW
p

p(µ, ν;L)

C Related Works

Gaussian Approximation of the sliced Wasserstein distance. In a recent work [22], the closed-form
of Wasserstein between Gaussian distributions is utilized to approximate the value of the SW distance.
The key idea is based on the concentration of random projections in high-dimension, i.e., they are
approximately Gaussian. However, the resulting deterministic approximation is not very accurate
since it is only based on the first two moments of two original measures. As a result, the proposed
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Figure 2: The empirical errors of the conventional estimator (SW) and the control variate estimators (LCV-SW,
UCV-SW) when comparing empirical distributions over MNIST images and point-clouds.

approximation can only work well when two measures have weak dimensional dependence. In
contrast, we use the closed-form of Wasserstein between Gaussian distributions to design control
variates, which can reduce the variance of the Monte Carlo estimator. Our estimators are still
stochastic, converge to the true value of the SW when increasing the number of projections, and work
well with probability measures that have arbitrary structures and dimensions.

Beyond uniform slicing distribution and related works. In the SW distance, the projecting direction
follows the uniform distribution over the unit-hypersphere σ0(θ) = U(Sd−1). In some cases, changing
the slicing distribution might benefit downstream applications. For example, the distributional sliced
Wasserstein distance [24] can be written as DSWp

p(µ, ν) = Eθ∼σ(θ)

[
Wp

p(θ♯µ, θ♯ν)
]
, where σ(θ) is

a distribution over the unit hypersphere. We can directly apply the proposed control variates to the
DSW as long as we can calculate Eθ∼σ(θ)[θθ

⊤]. If it is not the case, we can still use the proposed
control variates by approximating the DSW via importance sampling. In particular, we can rewrite
DSWp

p(µ, ν) = Eθ∼σ0(θ)

[
Wp

p(θ♯µ, θ♯ν)
σ(θ)
σ0(θ)

]
, then use control variates. We discuss other related

works including how we can apply the control variates to other variants of the SW in Appendix C.

Sliced Wasserstein variants with different projecting functions. The conventional sliced Wasser-
stein is based on a linear projecting function i.e., the inner product to project measures to one
dimension. In some special cases of probability measures, some other projecting functions might
be preferred e.g., generalized sliced Wasserstein [12] distance with circular, polynomial projecting
function, spherical sliced Wasserstein [2] with geodesic spherical projecting function, and so on.
Despite having different projecting functions, all mentioned sliced Wasserstein variants utilize random
projecting directions that follow the uniform distribution over the unit hypersphere and are estimated
using the Monte Carlo integration scheme. Therefore, we could directly adapt the proposed control
variates in these variants.

Applications of the control variate estimators. Since the proposed control variates are used
to estimate the sliced Wasserstein distance, they can be applied to all applications where sliced
Wasserstein exists. We would like to mention some other applications such as domain adaptation [16],
approximate Bayesian computation [20], color transfer [17], and so on.

D Additional Experiments

In this section, we provide some additional experiments for applications in the main text. In particular,
we calculate the empirical variances of the conventional estimator and the control variate estimators
on different images of digits and point-clouds in Appendix D.1. We provide the point-cloud gradient
flow between two new point-cloud in Appendix D.2. We then provide the detailed training of deep
generative models and additional generated images in Appendix D.3.

D.1 Comparing empirical probability measures over images and point-clouds

Settings. We follow the same settings which are used in the main text. However, for
MNIST, we compare probability measures over digit 1 and digit 7. For point-clouds, we
compare two different point-clouds from the main text. We report the estimated variances of
W (θ;µ, ν), Zlow(θ;µ, ν), Zup(θ;µ, ν) defined in Definition 4 in Table 3. We use a large number of
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Table 3: Estimated variances of the conventional estimator’s and the control variate estimators.

Estimator MNIST 0-1 MNIST 1-7 Point-cloud-1 Point-cloud-2

SW 4700.87± 59.12 1205.62± 14.17 12.78± 0.025 12.79± 0.026
LCV-SW 0.045± 0.008 0.0017± 0.001 0.0025± 0.0000 0.0021± 0.0000
UCV-SW 0.061± 0.016 0.0018± 0.0001 0.0025± 0.0000 0.0021± 0.0000

Table 4: Summary of Wasserstein-2 scores (multiplied by 104) from 3 different runs, computational time in
second (s) to reach step 500 of different sliced Wasserstein variants in gradient flows.

Distances Step 3000 (W2 ↓) Step 4000 (W2 ↓) Step 5000 (W2 ↓) Step 6000(W2 ↓) Step 8000 (W2 ↓) Time (s ↓)

SW L=10 305.3907± 0.4919 137.7762± 0.3630 36.1807± 0.1383 0.1054± 0.0022 2.3e− 5± 1.0e− 5 26.30± 0.03
LCV-SW L=10 302.9718± 0.1788 135.9132± 0.0922 35.0292± 0.1457 0.0452± 0.0045 1.7e− 5± 0.3e− 5 27.65± 0.01
UCV-SW L=10 302.9717± 0.1788 135.9132± 0.0922 35.0295± 0.1458 0.0446± 0.0038 2.0e− 5± 0.4e− 5 29.56± 0.01

SW L=100 300.6303± 0.2375 134.0492± 0.3146 33.8608± 0.1348 0.0121± 0.0010 1.6e− 5± 0.2e− 5 222.06± 1.34
LCV-SW L=100 300.2362± 0.0054 133.5238± 0.0065 33.4460± 0.0030 0.0084± 5.8e− 5 1.4e− 5± 0.1e− 5 223.79± 0.82
UCV-SW L=100 300.2631± 0.0054 133.5237± 0.0065 33.4459± 0.0030 0.0083± 8.5e− 5 1.6e− 5± 0.1e− 5 235.29± 1.65

Figure 3: Point-Cloud gradient flows for L = 10 from SW, LCV-SW, and UCV-SW.

samples e.g., 100000 Monte Carlo samples. In the table, point-cloud-1 denotes the pair in Figure 6
and point-cloud-2 denotes the pair in Figure 3.

Results. We show the estimated errors and the corresponding computational time in Figure 2.
From the figure, we observe the same phenomenon as in the main text. In particular, the control
variate estimators reduce considerably the errors in both cases while having approximately the same
computational time.

D.2 Point-cloud Gradient Flows

Settings. We follow the same settings which are used in the main text. However, we use different
point-clouds which are also used in Appendix D.1.

Results. We show the quantitative results in Table 4 and the corresponding qualitative result in
Figure 3. Overall, we observe the same phenomenon as in the main text. In particular, the control
variate estimators i.e., LCV-SW, UCV-SW help to drive the flows to converge faster to the target
point-cloud than the conventional estimator i.e., SW. It is worth noting that the computational time of
the control variate estimators is only slightly higher than the conventional estimator for both settings
of the number of projections L = 10, 100.

D.3 Deep Generative Modeling

Setting. We denote µ as our data distribution. We then design the model distribution νϕ as a push
forward probability measure that is created by pushing a unit multivariate Gaussian (ϵ) through a
neural network Gϕ that maps from the realization of the noise to the data space. We use a second
neural network Tβ that maps from data space to a single scalar. We denote Tβ1 is the sub neural
network of Tβ that maps from the data space to a feature space (output of the last Resnet block), and
Tβ2

that maps from the feature space (image of Tβ1
) to a single scalar. More precisely, Tβ = Tβ2

◦Tβ1
.

We use the following neural networks for Gϕ and Tβ :
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SW L=10 LCV-SW L=10 UCV-SW L=10
Figure 4: Random generated images of distances on CIFAR10 and CelebA.

SW L=1000 LCV-SW L=1000 UCV-SW L=1000

Figure 5: Random generated images of distances on CIFAR10 and CelebA.

• CIFAR10:

– Gϕ: z ∈ R128(∼ ϵ : N (0, 1)) → 4×4×256(Dense, Linear) → ResBlock up 256 →
ResBlock up 256 → ResBlock up 256 → BN, ReLU, → 3× 3 conv, 3 Tanh .

– Tβ1
: x ∈ [−1, 1]32×32×3 → ResBlock down 128 → ResBlock down 128 →

ResBlock down 128 → ResBlock 128 → ResBlock 128.
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Figure 6: Point-cloud gradient flows for L = 10 from SW, LCV-SW, and UCV-SW respectively.

– Tβ2
: x ∈ R128×8×8 → ReLU → Global sum pooling(128) →

1(Spectral normalization).
– Tβ(x) = Tβ2(Tβ1(x)).

• CelebA:
– Gϕ: z ∈ R128(∼ ϵ : N (0, 1)) → 4×4×256(Dense, Linear) → ResBlock up 256 →

ResBlock up 256 → ResBlock up 256 → ResBlock up 256 → BN, ReLU, →
3× 3 conv, 3 Tanh .

– Tβ1 : x ∈ [−1, 1]32×32×3 → ResBlock down 128 → ResBlock down 128 →
ResBlock down 128 → ResBlock 128 → ResBlock 128.

– Tβ2 : x ∈ R128×8×8 → ReLU → Global sum pooling(128) →
1(Spectral normalization).

– Tβ(x) = Tβ2
(Tβ1

(x)).

We use the following bi-optimization problem to train our neural networks:

min
β1,β2

(Ex∼µ[min(0,−1 + Tβ(x))] + Ez∼ϵ[min(0,−1− Tβ(Gϕ(z)))]) ,

min
ϕ

EX∼µ⊗m,Z∼ϵ⊗m [S(T̃β1,β2
♯PX , T̃β1,β2

♯Gϕ♯PZ)],

where the function T̃β1,β2
= [Tβ1

(x), Tβ2
(Tβ1

(x))] which is the concatenation vector of Tβ1
(x) and

Tβ2
(Tβ1

(x)), S is an estimator of the sliced Wasserstein distance. The number of training iterations
is set to 100000 on CIFAR10 and 50000 in CelebA. We update the generator Gϕ every 5 iterations
and we update the feature function Tβ every iteration. The mini-batch size m is set to 128 in all
datasets. We use the Adam [11] optimizer with parameters (β1, β2) = (0, 0.9) for both Gϕ and Tβ

with the learning rate 0.0002. We use 50000 random samples from estimated generative models Gϕ

for computing the FID scores and the Inception scores. In evaluating FID scores, we use all training
samples for computing statistics of datasets.

Results. In addition to the result in the main text, we provide generated images from the conventional
estimator (SW) and the control variate estimator (LCV-SW and UCV-SW) with the number of
projections L = 1000 in Figure 5. Overall, we see that by increasing the number of projections, the
generated images are visually improved for all estimators. This result is consistent with the FID
scores and the IS scores in Table 2.

E Computational Infrastructure

For comparing empirical probability measures over images and point-cloud application, and the
point-cloud gradient flows application, we use a Macbook Pro M1 for conducting experiments. For
deep generative modeling, experiments are run on a single NVIDIA V100 GPU.
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