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Abstract

Organisms constantly pivot between tasks such as evading predators, foraging,
traversing rugged terrain, and socializing, often within milliseconds. Remarkably,
they preserve knowledge of once-learned environments sans catastrophic forgetting,
a phenomenon neuroscientists hypothesize, is due to a singular neural circuitry
dynamically overlayed by neuromodulatory agents such as dopamine and acetyl-
choline. In parallel, deep learning research addresses analogous challenges via
domain generalization (DG) and continual learning (CL), yet these methods remain
siloed, despite the brain’s ability to perform them seamlessly. In particular, prior
work has not explored architectures involving associative memories (AMs), which
are an integral part of biological systems, to jointly address these tasks. We propose
Memory-Integrated Reconfigurable Adapters (MIRA), a unified framework that
integrates Hopfield-style associative memory modules atop a shared backbone.
These memory modules store adapter-weight updates as values and retrieve them
via learned keys. Associative memory keys are learned post-hoc to index and
retrieve an affine combination of stored adapter updates for any given task or
domain on a per-sample basis. By varying only the task-specific objectives, we
demonstrate that MIRA seamlessly accommodates domain shifts and sequential
task exposures under one roof. Empirical evaluations on standard benchmarks
confirm that our AM-augmented architecture significantly enhances adaptability
and retention: in DG, MIRA achieves SoTA out-of-distribution accuracy, and in
incremental learning settings, it outperforms architectures explicitly designed to
handle catastrophic forgetting using generic CL algorithms. Extensive ablation
studies validate the necessity of both associative memory storage and post-hoc key
learning for robust interpolated retrieval of adapters. By unifying adapter-based
modulation with biologically inspired associative memory, MIRA delivers rapid
task switching and enduring knowledge retention in a single extensible architecture,
charting a path toward more versatile and memory-augmented AI systems. 1

1Project Page: https://snimm.github.io/mira_web/
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1 Introduction

Organisms across the animal kingdom navigate myriad environments and behavioral demands,
flexibly switching between survival tasks (such as foraging for food or evading predators) and
complex social interactions, within fractions of a second. Concrete examples include: echolocating
bats, which adjust their sonar pulse rates from 20 to 200 Hz in milliseconds when tracking evasive prey,
while simultaneously computing three-dimensional flight paths to avoid obstacles [25, 73], or jazz
pianists among humans who instantaneously transition between playing a memorized composition
and spontaneous improvisation, a cognitive shift marked by distinct prefrontal activation patterns
[8, 61]. Similarly, many animals (including humans) learn to navigate a particular environment, such
as intricate pathways of a dense forest, or subtle acoustic cues of a predator’s approach, and retain that
knowledge indefinitely, without the catastrophic forgetting that plagues AI systems [95, 21]. Such
phenomena are commonly attributed to the brain’s capability to rapidly repurpose the same circuitry
for multiple tasks without dismantling its core wiring [18, 62, 9]. Some neuroscientific observations
indicate the presence of overlapping sets of neurons that encode multiple task rules simultaneously
[62, 71, 99], with neuromodulatory signals that regulate the active rule at a given time [51].

From another perspective, the field of deep learning has developed a rich taxonomy of paradigms that
echo these natural behaviors. Domain generalization (DG) methods ensure robustness to distribution
shifts [89]; for example, a driver-assistance model that has learned to drive during daytime adapts to
driving at night. Domain-incremental learning (DIL) [38] seeks to learn and identify the same objects
in new orientations, abstractions, and settings; for example, a model learns objects from cliparts and
then learns to identify the same objects in anime or real world. Class-incremental learning (CIL)
[38] aims to accumulate knowledge of newer classes as they arrive over time without forgetting;
for example, a model that learns to identify flora and fauna being introduced to data from a new
continent. Although these paradigms differ in terms of data availability, distributional shifts, and
forgetting dynamics (and are treated so most commonly in literature), they share a common thread:
adapting efficiently to new tasks or environments. Efforts in these paradigms have largely progressed
in isolation, unlike in the brain where such adaptation tasks are handled conjointly [62, 71, 99]. We
seek to address this gap in this work. An ancillary line of work on parameter-efficient fine-tuning
(PEFT) has attempted adaptation with an objective of parameter efficiency by freezing a given base
model and adapting it to new tasks or domains via small, task-specific “adapters". These adapters are
overlaid over the base model to allow switching between different tasks. Techniques such as LoRA
[36], VeRA [47], and FourierFT [23] instantiate this idea.

Figure 1: Associative memories can enable networks to quickly
adapt to diverse tasks, by storing and recalling task-specific weights
on-demand. MIRA proposes a framework for such an approach.

However, despite a conceptual resem-
blance to neural task-switching, ex-
isting work has predominantly over-
looked explicit memory-based mech-
anisms that biology suggests are fun-
damental to rapid and efficient adapta-
tion [44]. Motivated by this observa-
tion, we propose a novel architecture
and learning methodology that explic-
itly integrates biologically plausible
associative memory models into deep
learning frameworks, as illustrated in
Figure 1. Diverging from contempo-
rary work in associative memories that
stores raw data or their representa-
tions, our architecture stores weight

adapters as values within an associative memory. Furthermore, instead of using fixed keys, we learn
retrieval keys post hoc to optimally recall adapters for task-specific modulation of the substrate
network. These keys facilitate accurate and context-sensitive retrieval through a Hopfield network,
effectively generating affine combinations of adapter adjustments required for task-specific modula-
tion at inference time, thus enhancing knowledge retention and out-of-domain generalization. Our
proposed neuro-inspired framework thus establishes a common umbrella architecture capable of
simultaneously and effectively addressing DG, CIL, and DIL scenarios. Our approach differentiates
itself by serving all these settings through only minor adjustments in task-specific objective functions.
Our key message in this work is to expound the utility of integration of associative memories into DL
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architectures for improved efficacy on multiple tasks, rather than any specific heuristic or method to
outperform baselines on one given setting. Our main contributions comprise:

• Unified Framework: We introduce MIRA, a framework that leverages biologically-inspired
associative memories to propose a unified architecture for DG, CIL, and DIL.

• Key Refinement of Hopfield Networks: Our core technical novelty lies in embedding Hopfield
networks in every ViT layer, dynamically aligning their keys to preceding layer activations instead
of using static indexing keys, thus allowing the model to learn appropriate indexing rules.

• Comprehensive empirical evaluation: We study MIRA on standard benchmarks across multi-
ple settings, attaining state-of-the-art (SoTA) accuracy in multiple settings, outperforming task-
specialized architectures by as much as 10% in some cases.

2 Background and Related Work

Memory in Deep Learning: Traditional Hopfield networks [34] pioneered the computational models
of associative memories by allowing a set of stored binary patterns to be retrieved via energy
minimization. Recent variants, including Modern Continuous Hopfield Networks (MCHN) [69] and
Universal Hopfield Networks (UHN) [63] improved upon the original to achieve exponentially greater
storage capacity in addition to storing and retrieving real-valued vectors. Other forms of explicit
memory have also been previously used in various architectures [100, 81, 28, 29], integrating explicit
read/write operations to an external memory module to support long-range dependency handling,
albeit each having its own distinct formulation. Recent works have also studied memory networks
that can operate via Predictive Coding to better emulate biological memories [106, 82].

Recent advancements have explored the integration of associative memory mechanisms into diverse
machine learning paradigms. Saliency-Guided Hidden Associative Replay (SHARC) [5] framework
utilizes associative memory to store and replay salient data representations, enhancing retention of
prior knowledge. [43] present a spiking neural network model that emulates associative memory
functions for classifying neuroimaging data. [103] develop a neuromorphic computing framework
that integrates global and local learning mechanisms, drawing inspiration from the brain’s associative
memory processes. These works only consider memories as a storage medium for data, independent
of the main forward pass. [2] postulates that associative memories can store and retrieve neuromodu-
latory signals given the input context, achieving performance comparable to storage and retrieval of
model weights from disk. However, it considers the AM as a disjoint module from the main neural
network, posing it as akin to a biologically-plausable storage medium. We instead use AMs as an
integral part of the forward pass, adjustable via backpropagation.

Adapters in Contemporary Models: The surge in large pre-trained models has led to methods that
minimize the computational and storage overhead associated with fine-tuning. Techniques like LoRA
[36] and its variants [47, 24, 107, 40, 105, 19] factorize weight updates into low-rank matrices, while
Prefix Tuning [55], Adapter Layers [35], LayerNorm Tuning [108], and BitFit [7] similarly constrain
the number of trainable parameters. These methods significantly reduce computational and storage
overhead by constraining trainable parameters to minimal subsets or low-rank structures.

Unified Frameworks for Multiple ML Settings: Machine Learning literature tackled multiple
paradigms like Domain Generalization (DG) [109], Continual Learning (CL) [90], and multi-task
learning (MTL) [15] largely in isolation with few exceptions [49, 65]. Our work focuses on a unified
framework driven by the practical necessity of robust models that generalize across new and previously
unseen tasks, or learning new tasks and domains without forgetting prior knowledge. Unlike existing
methods, our MIRA framework brings a fresh approach, providing both high adaptability and robust
knowledge retention in a single extensible architecture, marking a significant innovation in handling
diverse and evolving ML challenges.

3 Method

Preliminaries and Notation. Formally, a task t ∈ [T ] is defined by a dataset,Dt =
{
(x

(t)
i , y

(t)
i )
}Nt

i=1
,

sampled from a probability distribution P(t)(X (t)×Y(t)). Here, T denotes the total number of tasks,
and X (t), Y(t), the domains of features and labels for task t respectively.
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Figure 2: Overview of MIRA for Domain Generalization and Continual Learning scenarios. In DG,
all training tasks are provided together to both the Adaptation and the Consolidation stages. In the CL
scenarios, the dataset for each task arrives sequentially, and each dataset is passed to both stages. The
Adaptation stage trains adapters for each task, while the Consolidation stage learns the associated
keys for the stored adapters.

Our method is demonstrated over a frozen substrate network F (e.g., a ViT) consisting of L layers. At
each layer ℓ ∈ L, we attach rank-r LoRA adapters to the Query and Value matrices of the transformer,
jointly represented by a flattened vector θ(t)ℓ ∈ Rdv .

Adapters are stored in UHN memory unitsMℓ attached to each layer. Each memory unit is equipped
with a write operation, denoted by W(Mℓ, k, θ), and a read operation R(Mℓ, q). A write operation
in the default UHN writes a key-value pair (k, θ) (in that order) toMℓ and a read operation retrieves
a weighted combination of values stored in Mℓ when prompted with a query q. Concretely, if
Kℓ ∈ Rdk×N and Θℓ ∈ Rdv×N represent N keys-value pairs respectively:

R(Mℓ, q) ≡ Θℓ sep
(
sim(K⊤

ℓ , q)
)
, (1)

where sep is a separation function such as Softmax, and sim is a similarity function like the Euclidean
inner product.

The Modern Hopfield Network [68] (MHN) was proposed with the Softmax function to achieve
superlinear storage capacity with respect to the query embedding dimension. [63] generalized the
notion proposed by the MHN to accommodate functions besides Softmax, dubbed "Separation
functions" as these functions are responsible for assigning weights to stored memories during recall.
Separation functions facilitate accurate retrieval of a specific memory by assigning a very high weight
to the concerned memory, or allow for recall of a superposition of memories by assigning diffused
weights. We primarily use an affine function to compute the weights of the combination.

We illustrate the efficacy of our approach on three learning paradigms comprising DG, DIL, CIL.
The primary differences between these settings lies in how data is made available (summarized in
Table 1), while the overarching objective in all these settings is to achieve high accuracy on the test
distribution using optimally trained parameters φ across all training tasks, i.e.:

min
φ

E(x,y)∼Dtest
[[F(x;φ) ̸= y]]. (2)

Conceptual Framework. The chosen settings underscore the need for the trained parameters φ to
consolidate knowledge adapted from diverse tasks, enabling effective use of relevant information
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Data Availability DG DIL CIL
Tasks arrive sequentially? ✗ ✓ ✓
Same label sets across tasks? ✓ ✓ ✗
Task identifier available at inference? ✗ ✗ ✗
Test distribution seen during training? ✗ ✓ ✓

Table 1: Comparison of data availability across ML settings.

during inference. This is usually done via multiple "expert" models, each learning a subset of the
tasks at hand, making their individual predictions [4, 14, 72]. Heuristics then dictate which output is
considered at the end. At their core, however, all these methods rely on the parameters learned per
task, which serve as reservoirs of task-specific knowledge acquired during training. Memory systems
capable of storing and retrieving such parameters based on a (possibly transformed) input query are
thus a natural fit in such settings, as they allow retrieval of input-specific weight combinations on
demand. The central question, then, is how to efficiently retrieve an appropriate set or ensemble of
parameters on a per-sample basis at test time. Formally, for an input dataset D, this can be posed as
an optimization problem over the weights of the combination, a.k.a:

{α∗
t,l}T,L := argmin

αt,l

E(x,y)∼D

[[
F

(
x;

T∑
t=1

L∑
l=1

αt,l(x)θt,l

)
̸= y

]]
. (3)

In general the above problem is highly non-convex and may involve first/second order methods to
solve, which is computationally demanding at a per-sample level. We critically observe that, for
an arbitrary key matrix M , Euclidean inner product as the similarity function, and values Θℓ, the
associative memory retrieves consolidated parameters for F if αt,ℓ = sep(⟨M, gℓ(x)⟩) for some
function gℓ(x). The following lemma formalizes this intuition:
Lemma 1. Let Hk denote the reproducing-kernel Hilbert space induced by the kernel k(·, ·), and
assume an optimal solution to Eqn. 3 {α∗

t,l(x)}T,L admits a representation in a finite eigenbasis of the
integral operator associated with k. Then, for any dataset D drawn from a distribution encountered
during training, AM retrieval allows obtaining the minimum characterized by Eqn. 3.

Proof. By Mercer’s theorem on compact spaces [64], Hk always has an orthonormal eigenbasis.
Since we assume {α∗

t,l(x)}T,L to admit a representation via some finite number of eigenfunctions
fi, 1 ≤ d ≤ q, we can pick the function gℓ to be the function that outputs [f1(x), f2(x) . . . fq(x)]T,
the key matrix M as the corresponding eigenvalues. Since such a choice is subsumed under the AM
retrieval dynamics elucidated in Equation 1, the assertion in the lemma follows.

Importantly, this retrieval operates per-sample at inference without requiring gradient computation.
Thus, motivated by AM systems, and specifically UHNs, we propose a simple and general mechanism
for retrieving adapter weights. Assuming the availability of appropriate keys indexing into the
adapters, retrieving an effective ensemble reduces to computing inner products between the query xtest

(or its processed representation) and the stored keys. Consequently, the adapter weight combination is
dictated by the geometry of the inner product space in which the UHN operates. This strategy yields
a single, task-agnostic model that dynamically composes per-task adapters via an AM. Conceptually,
training proceeds in two distinct stages. The first involves standard training of independent adapters
per task using any suitable method for the setting of interest, followed by storing these adapters into
the associative memory. This storage requires a set of keys capable of indexing the adapters, which
may be either fixed or randomly initialized. The second stage aims to ensure that the consolidated
adapter weights retrieved via associative memory, when loaded into the backbone network F , perform
effectively on their corresponding tasks. If performance is suboptimal, the retrieval keys are refined
to improve alignment between the retrieved adapter ensemble and the task it was originally trained
for. Conceptually, this constitutes a constrained variant of the first stage, where updates are restricted
to lie in the subspace spanned by the similarity-weighted combination of adapters learned earlier.
Viewed differently, this stage attempts to solve Equation 3 over a training set where ytrain is known.
Crucially, it facilitates implicit consolidation of cross-task knowledge via retrieval dynamics of the
shared AM. Unlike prior uses of associative memories for storing raw content such as images or
feature representations [5, 106, 74], our formulation embeds the Hopfield network directly into
the training loop. Moreover, standard strategies to mitigate catastrophic forgetting can be readily
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incorporated, as the adapter combinations themselves are treated as trainable parameters. Finally,
whereas the first stage trains separate adapters per task and layer ℓ, the refinement of retrieval keys in
stage two depends on the specific learning scenario: for DG, all domain data is jointly accessible
and thus the partition is the whole dataset itself, whereas for continual learning settings, tasks
are discarded sequentially, and so the partitions in this case are the individual tasks themselves.

Algorithm 1: MIRA: Training

Require: Tasks {Dt}Tt=1, frozen backbone F , AM models
⋃L

ℓ=1Mℓ

1: for t = 1 to T do
2: Adaptation(Dt,F ,

⋃L
ℓ=1M) :={

/* Train adapters θt,ℓ,i via method specific loss. */

/* Write θt,ℓ,i 7→ M via placeholder keys. */

3: if Setting == CL then
4: Consolidation(Dt,F ,

⋃L
l=1Mℓ) :={

/* Finetune only keys via second pass over data. */

/* Apply CL heuristics to handle catastrophic forgetting. */

5: end if
6: end for
7: if Setting == DG then
8: for t = 1 to T do
9: Consolidation(Dt,F ,

⋃L
l=1Mℓ)

10: end for
11: end if

This two-stage blueprint is formally outlined in Algorithm 1.

Method Design. We now delve into specific design choices we make as we instantiate Algorithm 1.
Note that both subroutines described below assume the task given as input, as allocating the right
task to each subroutine is handled in Algorithm 1.

Two-Stage Training. The first of the two stages, dubbed Adaptation, involves training the base
network to adapt to a single new task. We perform this adaptation by training LoRA-style adapters for
each layer, using the provided dataset. Once trained, these adapters are then stored in the associative
memory. Since such storage requires data in the form of key-value pairs, we initially randomly
choose keys for each adapter by sampling from N (0, σ2I). Notably, our method is not constrained
to storing LoRA adapters; infact, entire weight matrices can be stored into the associative memory.

Algorithm 2: MIRA: Adaptation

Input: Dataset D, frozen backbone F , AM models
⋃L

ℓ=1Mℓ, hyperparameter σ2

1: for (x, y) ∈ D do
2: Train memory adapters θℓ on D with Cross-Entropy loss, ∀ℓ ∈ L
3: end for
4: for l ∈ L do
5: Sample kℓ∼N (0, σ2I)
6: W(Mℓ, kℓ, θℓ)
7: end for

We choose LoRA adapters for simplicity and ease of implementation. To produce consolidated
parameters for a given input, we explicitly train the randomly initialized keys using backpropagation
in the second stage dubbed Consolidation, to yield adapter ensembles that minimize cross-entropy
over the training set.
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Algorithm 3: MIRA: Consolidation

Input: Dataset D, backbone F , AMs
⋃L

ℓ=1Mℓ, frozen
⋃L

ℓ=1 Θℓ, initial keys
⋃L

ℓ=1 Kℓ

1: for (x, y) ∈ D do
2: for ℓ ∈ L do
3: Compute layer inputs hℓ−1 using θℓ−1 // h0 ← x
4: qℓ ← gℓ(hℓ−1) // gℓ :query module for layer ℓ

5: Read θ̂ℓ = R(Mℓ,⨿ℓ)
6: end for
7: Compute Cross-Entropy loss and back-propagate
8: Update only

⋃L
ℓ=1 Kℓ and

⋃L
ℓ=1 gℓ

9: end for

For a fixed value stored in the UHN, the keys pointing to the values are continuously updated across
sequential task exposures. Specifically, a query input to the ViT backbone F passes sequentially
through a stack of layers, each prepended with a lightweight query module gℓ : Rdh → Rdk . This
module transforms the output hℓ−1 ∈ Rdh of the previous layer into a query vector for layer ℓ. The
module can be instantiated as an identity map, a linear transformation, or a small neural network.

The transformed query qℓ = gℓ(hℓ−1) is then matched against the keys at layer l to compute similarity
scores, which are normalized using their sum (as opposed to the norm of the sum) and used to weight
the corresponding adapters in the associative memory. This weighted ensemble is loaded onto the
current layer, and the modulated layer output becomes the input for the next layer, hℓ+1.

Both the keys and the query modules are updated via backpropagation. The query module serves
to align the geometry of the layer outputs with the key space, as these may naturally lie in different
representational domains. Ultimately, the joint training of keys and query modules aims to produce
the appropriate adapter combinations for inputs sampled from the task distribution encountered during
training. In continual learning settings, where catastrophic forgetting is a concern, we incorporate
standard mitigation techniques such as DualGPM [59] within this framework. During inference, the
architecture follows the procedure in Algorithm 3, except that no parameter updates are performed.

4 Experiments and Results

We rigorously evaluate MIRA across the three scenarios - Class-incremental Learning (CIL), Domain-
incremental Learning (DIL), and Domain Generalization (DG), on several benchmark datasets.
Details regarding training protocols and hyperparameter tuning are provided comprehensively in the
Appendix. Following PEGO [37], we make use of the ViT-B/16 architecture [16] initialized with
CLIP [69] weights, and use LoRA with rank 4 for adapting to downstream tasks.

Datasets. For the CIL and DIL scenarios, we adhere to the established setup from [65], benchmarking
primarily on the widely-used datasets: iDigits, CORe50, and DomainNet [66]. For CIL, we partition
the dataset classes into five sequential tasks, each consisting of a mixture from all available domains.
In contrast, the DIL setup constructs sequential tasks, each encompassing all classes from a single
domain. Additionally, we expand our benchmarking to incorporate more recent and challenging
datasets: ImageNet-R [32] split into both 5-task and 10-task scenarios in CIL, and the popular CDDB
[53] dataset along with the recent DN4IL dataset [26] for the DIL setting. For the DG scenario, our
evaluation covers four prominent datasets: PACS [54], VLCS [85], OfficeHome [87], and DomainNet.

Baselines. We benchmark MIRA against an extensive suite of SoTA baselines tailored specifically to
each scenario. For the CIL and DIL settings, we include classical regularization-based approaches,
such as Elastic Weight Consolidation (EWC) [46] and Learning without Forgetting (LwF) [57]. More-
over, we compare against cutting-edge parameter-efficient fine-tuning (PEFT) methods, including
S-Prompts [39], L2P [98], DualPrompt [98], CODA-Prompt [93], and LAE [94]. We further compare
to ICON [65], designed specifically for unified handling of CIL and DIL scenarios, though lacking
inherent DG capabilities. For the DG scenario, we benchmark against state-of-the-art methods
including popular methods like SWAD [50] and CoOP [110], and more recent works like PEGO [37].

Evaluation Metrics. We employ two principal metrics extensively utilized in incremental learning
literature: Average Accuracy (Avg. Acc↑), where higher values indicate superior overall performance,
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Table 2: Comparison with SoTA CIL and DIL methods on three standard datasets. Baseline numbers
have been taken from prior work. In the CIL setting, we divide all classes into 5 distinct tasks, while
in the DIL setting, every domain serves as a separate task. MIRA outperforms all baselines on
average accuracy, with minimal forgetting. Best results are highlighted in bold, and results within 2%
of the best are underlined.

Dataset Method CIL DIL Avg. Acc

Avg. Acc.↑ Forgetting↓ Avg. Acc.↑ Forgetting↓

iDigits

Fine-tuning 30.32±0.77 48.01±0.72 33.04±0.89 23.23±0.74 31.68
EWC [45] 34.16±0.32 38.72±0.59 68.62±0.92 25.94±0.98 51.39
LwF [56] 39.88±0.91 33.35±0.52 69.61±0.33 25.81±0.69 54.75
L2P [97] 63.17±0.88 28.53±0.81 73.83±0.26 23.43±0.65 68.50

S-Prompts [91] 55.09±3.27 25.61±1.62 75.11±2.31 25.66±6.23 65.10
DualPrompt [96] 68.82±0.97 11.81±1.77 76.42±0.46 26.33±0.62 72.62

CODA-P [80] 69.97±1.02 19.83±2.28 77.42±0.71 22.20±0.18 73.70
LAE [22] 65.77±0.83 28.47±0.77 79.09±1.03 21.86±0.40 72.43
ICON [65] 71.53±0.68 19.36±1.17 84.83±0.51 12.67±0.61 78.18

Ours (MIRA) 83.00±1.29 10.62±2.80 82.46±0.12 8.49±0.43 82.73

CORe50

Fine-tuning 21.54±1.91 74.05±1.31 23.52±0.26 3.09±0.11 22.53
EWC [45] 33.89±0.83 50.18±0.30 73.86±0.38 1.09±0.12 53.88
LwF [56] 34.53±0.55 41.05±0.30 74.35±0.52 0.81±0.27 54.44
L2P [97] 70.03±0.51 6.51±0.59 80.72±0.39 0.51±0.28 75.38

S-Prompts [91] 68.27±3.92 11.79±0.24 86.50±0.46 0.92±0.31 77.39
DualPrompt [96] 71.96±0.37 5.04±0.71 81.41±0.22 0.21±0.76 76.69

CODA-P [80] 77.85±0.44 4.78±0.37 84.36±1.04 0.64±0.14 81.11
LAE [22] 77.11±0.31 18.38±1.67 83.09±0.71 0.17±0.51 80.10
ICON [65] 80.85±0.23 7.68±0.52 89.01±0.33 0.17±0.21 84.93

Ours (MIRA) 83.39±0.24 7.99±1.43 93.89±0.33 0.00±0.00 88.64

DomainNet

Fine-tuning 35.43±0.58 47.79±0.28 39.52±0.32 28.81±0.64 37.48
EWC [45] 53.04±0.53 24.41±0.48 41.58±0.26 26.79±0.15 47.31
LwF [56] 53.79±0.61 19.41±0.11 43.74±0.27 18.23±0.10 48.77
L2P [97] 60.90±0.69 8.23±0.90 48.55±0.81 19.71±1.29 54.73

S-Prompts [91] 39.78±0.62 19.29±1.04 50.80±0.63 4.20±0.53 45.29
DualPrompt [96] 62.55±0.92 7.62±1.07 51.33±0.10 9.60±1.41 56.94

CODA-P [80] 65.21±0.24 15.01±0.21 49.13±0.83 25.96±1.13 57.17
LAE [22] 65.06±0.18 9.68±0.84 44.67±0.62 28.99±0.64 54.87
ICON [65] 65.43±0.15 9.72±0.46 54.44±0.21 13.32±0.46 59.94

Ours (MIRA) 67.29±0.19 7.60±1.06 69.18±0.10 4.07±0.15 68.24

and Forgetting, where lower values imply better retention of previously learned tasks. We follow
standard protocol [65, 96, 80] for reporting these metrics, emphasizing the final task accuracy after
completing all incremental tasks.

Main Results. Table 2 summarizes the extensive experimental results in DIL and CIL scenarios.
We utilize numbers reported from prior work where available to ensure fair comparison. MIRA
consistently outperforms the state-of-the-art methods by a significant margin in both Avg. Accuracy
and Forgetting metrics across these scenarios. For instance, on the iDigits dataset, MIRA achieves a
notable Avg. Accuracy of 83% and a remarkably low Forgetting of just 10.62%, clearly surpassing
the next best ICON by a significant margin. It should be noted that ICON was designed to handle
both CIL and DIL tasks - MIRA achieves SoTA on both these settings, in addition to being suitable
for DG. Similar trends are evident on CORe50 and DomainNet datasets, highlighting the robustness
and effectiveness of our approach. We see similar trends in the case of the DG setting, with MIRA
achieving SoTA performance on three out of four benchmark datasets, and being comparable to
SoTA in the remaining dataset. The margin achieved by MIRA over baseline methods on the harder
OfficeHome and DomainNet datasets are particularly significant. As in the case of CIL and DIL
settings, the baseline methods were specifically proposed for DG, and are not directly applicable to
Continual Learning settings.

Additional Datasets. To evaluate MIRA extensively, we employ additional benchmark datasets used
by recent CIL and DIL works. In particular, in the DIL setting, we use the challenging CDDB-hard
dataset, achieving SoTA performance as shown in Table 6. We also benchmark on the recently
proposed DN4IL [26] dataset (Table 4), which currently lacks widespread use. We compare against
methods that evaluate on it, and outperform them by a significant margin, setting a new SoTA baseline.
Notably, we outperform methods that use a replay buffer with 200 exemplars, without using Exemplar
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Table 3: Comparison with SoTA DG methods on 4
standard DG datasets. Bold = best; underlined = within
2% of best.
Method PACS VLCS OfficeHome DomainNet Avg

SWAD [11] 91.30±0.1 79.40±0.4 76.90±0.1 51.70±0.8 74.33
CLIP [67] 96.20±0.1 81.70±0.1 82.00±0.1 57.50±0.1 79.85

SMA [4] 92.10±0.2 79.70±0.2 78.10±0.1 55.90±0.2 76.95
ERM [86] 93.70±0.1 82.70±0.1 78.50±0.1 53.80±0.1 77.68

CoOp [111] 96.20±0.1 77.60±0.2 83.90±0.1 59.80±0.1 79.88

MIRO [12] 95.60±0.2 82.20±0.2 82.50±0.1 54.00±0.3 78.58

SEDGE [58] 96.10±0.1 82.20±0.2 80.70±0.2 54.70±0.1 78.43

GESTUR [52] 96.00±0.0 82.80±0.1 84.20±0.1 58.90±0.1 80.48

PEGO [37] 96.50±0.1 83.20±0.3 84.20±0.1 57.30±0.3 80.30

Ours (MIRA) 97.01±0.0 82.10±0.5 87.36±0.3 61.19±0.1 81.92

Table 4: DN4IL (DIL, 200-
exemplar buffer): single- vs
multi-model methods.

Method Last Acc.↑

ER [70] 27.45±0.94

DER++ [10] 35.74±0.67

DARE [42] 40.59±0.73

CLS-ER [3] 41.70±1.41

DUCA [27] 44.45±0.18

DARE++ [42] 44.11±0.98

Ours (MIRA) 78.40±0.29

Table 5: Comparison of recent SoTA methods
on the Imagenet-R dataset in 5-task and 10-task
CIL settings.

Tasks 5 10

Method ACC5 (↑) ACC10 (↑)

Joint 81.14 ± 0.34 81.14 ± 0.34
Sequential 58.74 ± 1.28 46.07 ± 1.15

L2P [97] 64.13 ± 0.78 62.54 ± 0.24
DualPrompt [96] 67.88 ± 0.17 65.41 ± 0.52
CODA-P [80] 73.09 ± 0.21 71.47 ± 0.35
C-LoRA [79] 75.85 ± 0.31 71.89 ± 0.45
LAE [22] 73.84 ± 0.14 71.70 ± 0.39

Ours (MIRA) 78.06 ± 0.76 73.08 ± 0.46

Table 6: Comparison of recent
SoTA DIL methods on the CDDB
dataset. ’Joint’ refers to training on
all experiences at once in a static
setting instead of continually train-
ing, and serves as an upper bound
on performance.

Method Average Acc (↑)

EWC [45] 50.59
LwF [56] 60.94
DyTox [17] 51.27
L2P [97] 61.28
S-iPrompts [92] 74.51
Ours (MIRA) 77.37 ± 0.21

Joint 85.50

Replay ourselves. To evaluate MIRA over longer learning timeframes, we also evaluate it in 5-task
and 10-task splits of the ImageNet-R dataset, outperforming recent baselines as seen in Table 5.

Effectiveness of Separation Functions. In addition to Softmax, other memory models have proposed
the use of various separation functions - Identity (classical Hopfield Networks [34]), Polynomial
(Dense Associative Memories [48]), ReLU (proposed in [33]) and Linear (Tolman-Eichenbaum
Machine (TAM) [101, 102], which attempts to model the Hippocampus).

We investigate the influence of different separation functions in our model architecture. Specifically,
we explore variants employing affine transformation, Softmax normalization, and ReLU and Tanh
activations. Note that affine and Tanh functions allow "removing" destructive information from the
output representations by allowing negative weights to be assigned to certain adapters, while Softmax
and ReLU can at most "mask" such information with zero or very low coefficients.

The affine variant (used in our primary experiments) intuitively allows flexible linear transformations,
capturing nuanced task relationships, in addition to reflecting the TAM model. Alternatively, the
Softmax variant ensures a probabilistic distribution over adapter activations, potentially beneficial in
scenarios demanding explicit competition among adapters. The ReLU variant introduces sparsity,
which might reduce interference by selectively activating only relevant adapters. Finally, the Tanh
activation offers an alternative to the affine variant, while providing nearly equal weights for relevant
adapters and allowing deteriorating information to be actively removed using negative coefficients.

Our results, as tabulated in Table 7, indicate that the ability to actively remove interfering information
is key to the CIL setting, with the affine and Tanh variants achieving the best performance. On the
other hand, allowing negative coefficients may result in removing relevant information, which may
explain their reduced performance in the DIL setting. However, the DG setting clearly establishes that
having a non-uniform selection of adapters, along with the ability to remove interfering information,
holds the key to out-of-distribution generalization. We conclude that while all separation functions
perform well, the affine function achieves the best performance overall.
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Impact of Adapter Count. We conduct a detailed analysis examining the sensitivity of MIRA to the
number of task-specific adapters employed (1, 2, 5, and 10 adapters per task). The results, tabulated
in Table 8, indicate a clear improvement as the number of adapters per task or domain increases,
highlighting the importance of capturing diverse task-specific nuances. However, increasing the
adapter count beyond 5 yields marginal returns in performance improvement. Thus, our experiments
suggest an optimal trade-off around five adapters per task, balancing efficiency and accuracy effec-
tively. However, since efficiency is not the main concern of this work, we use 10 adapters per domain
or task in all our experiments, since this gives us the best absolute results.

Table 7: Comparison of different sepa-
ration functions used for retrieval from
memory.

Sep. Func CIL Acc. DIL Acc. DG Acc. Avg.

Affine 67.29 69.18 61.19 65.89
Softmax 66.87 69.21 60.82 65.63
ReLU 66.60 69.20 60.90 65.57
Tanh 66.73 68.96 60.94 65.54

Table 8: Effects of number
of adapters trained for each
task/domain.

#Adapters CIL Acc. DIL Acc. DG Acc. Avg.

1 63.75 69.08 61.21 64.68
2 66.93 69.04 61.19 65.72
5 67.21 69.10 61.01 65.77
10 67.29 69.18 61.19 65.89

Performance Overhead of Hopfield Keys. We measure the inference-time latency and memory
overhead introduced by trained integrated Hopfield keys (after Algorithm 3) on an adapters-loaded ViT
backbone, relative to the same backbone without keys (i.e., using standard LoRA). On DomainNet-
DIL with ViT-B/16 (LAION initialization), the average latency is 0.0241s with keys vs. 0.0240s
without, i.e., a negligible ∼ 0.4% overhead. Using the identity-based query module with 5 adapters
per task across 6 tasks and key dimension 768 adds only ∼ 276K parameters to an 86M-parameter
model (< 0.4% increase in memory).

5 Conclusion

We presented MIRA, an architecture inspired by biologically plausible AMs, that unifies DG, DIL,
and CIL scenarios. It uses an explicit UHN module for storing and retrieving low-rank weight
adapters. Empirically, MIRA delivers SoTA performance across all three settings, often surpassing
specialized baselines by significant margins, while requiring only minor objective tweaks rather
than entire architectural changes. Beyond raw accuracy, our results demonstrate that coupling
deep networks with neuro-plausible memory mechanisms yields flexible, reusable circuitry that
can continually incorporate new information and adapt swiftly to distributional shifts. We believe
MIRA marks a step toward closing the gap between neural task-switching in biology and continual
adaptation in artificial systems, and opens a rich avenue for exploring memory-centric, learning
paradigms at scale, from vision to multimodal generative models.
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A.1 MIRA: A Multi-Perspective Analysis

Our method, MIRA is a generic framework that can be viewed from four contemporary, broad
perspectives in the general context of machine learning, going beyond the perspective introduced in
the main paper. We elaborate on those perspectives below.

A.1.1 Meta-learning (Hypernetworks)

Hypernetworks are models that predict weights of other models [30, 13, 6]. They offer a single-loop
approach to meta-learning by eliminating the need for an inner-loop adaptation (as in MAML [20]),
instead learning to output task-specific parameters in one forward pass. Since MIRA predicts adapters
at each consecutive block hierarchically, the associative memories in MIRA’s architecture can be
viewed as a specific type of hypernetwork. However, hypernetwork training is often unstable and
is unable to support large models such as ViT architectures. We address this issue by providing a
"supervision" to guide the direction of learning of the underlying hypernetwork. Hypernetworks then
essentially become models that map a deterministic set of inputs to their outputs deterministically,
resembling the behavior of associative memories, and can be implemented as such. We posit this
perspective in this work, wherein weight retrieval is achieved by storing the adapter weights over
tasks defined over the training set, and retrieving them differentiably, instead of attempting to both
learn and memorize them simultaneously as done in traditional hypernetwork-based learning. Thus,
Hopfield Networks [69], Predictive Coding Networks [106, 83], and any such AM may in theory be
used in this framework. Practical experiments, however, indicated that despite PCNs [106] exhibiting
better compression properties than Hopfield Nets, they usually have unsatisfactory retrieval quality
when the vectors to be retrieved have very high dimension. This is expected behavior, especially in
the context of storing weight adapters of large foundational models. In addition, their reliance on
algorithms incompatible with backpropagation makes it difficult to integrate them into models that
need to be trained end-to-end. Hopfield Nets, on the other hand, provide high fidelity in retrieving
such high-dimensional vectors at scale, and are implicitly differentiable.

A.1.2 Functional Interpolation/Extrapolation

In this work, we utilize affine combinations of task-specific adapters for retrieval across different
domains. However, our associative memory-centric learned retrieval framework is versatile and can
seamlessly accommodate richer, non-linear retrieval mechanisms by modifying the underlying simi-
larity metric strategy. In principle, one could design much more expressive (non-linear) combination
schemes to merge knowledge from multiple domains, rather than restricting to linear interpolation
[112]. This is an interesting direction of future work for this paper. Such non-linear retrieval ap-
proaches have been explored in recent literature, such as in sparsely-gated mixture-of-experts models
[78] use a learned gating function to dynamically select only a subset of expert parameters for each
input (instead of a fixed weighted average) [31], or in using learned retrieval functions (e.g., trainable
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hashing or routing instead of standard nearest-neighbor search) yields better scaling and can capture
latent structure in the memory, outperforming fixed similarity measures [31]. Crucially, there is both
practical and theoretical evidence of directly retrieving such non-linear ensembles of experts/adapters
in Hopfield Networks, such as in [76].

Thus, our method can be viewed as retrieving an interpolated task-specific knowledge proxy (adapter)
in a space defined by the chosen functional form of combination. With a sufficiently expressive
interpolation function, this approach can even enable extrapolation to out-of-distribution tasks. In
settings like DG, the target domain may lie outside the convex hull of the source domains, wherein
the model must generalize beyond any seen domain mixture. A suitably rich, non-linear combination
strategy could, in principle, facilitate extrapolation of the memorized adapter weights to novel task
distributions [1]. Our approach thus offers a generalizable framework capable of both capturing
nuanced relationships between known tasks and extending learned knowledge to new domains beyond
the scope of training distributions. We leave the exploration of such function schemes to future work.

A.1.3 Test Time Adaptation

At test time, the optimal combination of adapters for a given input may not be obtained using
pre-defined weight coefficients. In general, determining the adapter coefficients that best serve
a new downstream sample can require solving an optimization problem on a per-sample basis,
as posited in Equation 3. In other words, Equation 3 formalizes the idea that the best adapter
composition {α∗

t,l(x)}T,L for an input x is obtained by minimizing a suitable objective for that
specific sample at inference time (instead of applying a fixed combination rule). This perspective
aligns with the paradigm of test-time adaptation in literature, wherein models trained only on source
data are adapted to target data during inference time [104, 41]. As an example, Tent (Fully Test-Time
Entropy Minimization) performs online model updates during testing by minimizing the entropy of
its predictions for each test batch, thereby adjusting normalization parameters to increase the model’s
confidence on the target distribution [88]. One could view our MIRA framework as implementing
this idea via a memory-based inference mechanism. Since MIRA learns a set of key representations
(i.e., associative memory slots in a Hopfield network) during training that are used to derive weights
on a per-sample basis, it can also use the learned keys at test time on a per-sample basis effectively,
performing adaptation via associative recall. By casting test-time adaptation as an integral part of
inference (through solving a Hopfield memory retrieval optimization akin to Equation 3), MIRA
can be viewed also as a test-time adaptation strategy within a unified, optimized memory-based
framework.

A.1.4 Biological Perspective

Notably, MIRA can also be perceived as a biologically plausible framework that solves multiple set-
tings such as DG, CIL, and DIL. While Hopfield Nets are well known as biologically implementable
AM mechanisms, even the affine combinations that we adopt are well-founded in biological mecha-
nisms. Specifically, Tolman-Eichenbaum Machine (TAM) [101, 102], a model of the Hippocampus,
proposes linear combinations of stored memories as implementable (illustrated in Section A.2). We
further observe that the incremental learning settings, when accompanied by DualGPM [60] as the
strategy to mitigate catastrophic forgetting, resolve into Generalized Hebbian learning principles [75]
in the gradient space of stored memories.
Lemma 2 (DualGPM–Hebbian Gradient Subspace Equivalence). Let Gt = {gi}Nt

i=1 ⊂ Rd be the set
of gradient vectors observed while training on task t and let the empirical second–moment matrix be

Σt =
1

Nt

Nt∑
i=1

gig
⊤
i .

In the DualGPM algorithm, for a given energy budget ε ∈ (0, 1), we define:

k := arg min
k∈[d]

∑k
j=1 λj∑d
j=1 λj

≥ ε.

where λ1 ≥ · · · ≥ λd are the eigenvalues of Σt.

Let Ut ∈ Rd×k be the orthonormal basis produced by the DualGPM memory update for the energy
budget ε. Independently, let Wt ∈ Rd×k be the weight matrix obtained as a stationary point of the
Generalised Hebbian (Oja) update averaged over each gradient in Gt (with row sums equal to 1).
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Then,
span(Ut) = span(Wt).

Proof. Step 1: Optimality of DualGPM. We first note that the precise objective that DualGPM tries
to solve is given by:

Ut = arg min
U⊤U=Ik

Tr
[
(I − UU⊤)Σt

]
By the Eckart-Young-Mirsky theorem, the optima is attained at those U , whose columns are the
k eigenvectors (subject to permutation and sign inversion) of Σt corresponding to the k largest
eigenvalues, λ1, . . . , λk. Hence, Ut satisfies the eigenvalue equation

ΣtUt = UtΛ, Λ = diag(λ1, . . . , λk). (4)

Step 2: Fixed points of the Hebbian rule. The Generalized Hebbian update rule [? ] for a gradient
vector g ∈ Gt is given by:

∆W (g) = η
(
gg⊤W −W diag(W⊤gg⊤W )

)
.

Considering the weight update averaged over all g ∈ Gt and imposing stationary conditions on the
same yields:

ΣtW −W diag(W⊤ΣtW ) = 0.

Pre-multiplying by W⊤
t and noting that each row sum of W⊤

t equals one, shows that the diagonal
term on the right is precisely the eigenvalue matrix of the projected covariance, so the above is
identical to (4) with Ut replaced by Wt.

Consequently, Ut and Wt have the same k-dimensional eigenbasis, corresponding to the k eigenvec-
tors of Σt with the k-largest eigenvalues, which proves the assertion.

Thus, Lemma 2 implies that there exists an orthogonal matrix Rk×k such that Ut = WtR.

Implications. This lemma elevates the biological analogy behind DualGPM into a provable equiv-
alence: the algorithm’s batch SVD update computes exactly the same principal gradient subspace
that an online Oja-style Hebbian learner would converge to. The result has three immediate conse-
quences: (i) Theoretical grounding: Any optimal variance or noise filtering guarantees enjoyed by
Hebbian PCA now apply to DualGPM’s memory, providing a principled basis for its strong empirical
resistance to catastrophic forgetting; (ii) Algorithmic unification: Projection-based continual learn-
ing methods can be re-interpreted through the lens of gradient-space Hebbian consolidation; and
(iii) Neuro-inspired design: By demonstrating that protecting past tasks is tantamount to a Hebbian
consolidation step, the lemma bridges continual learning research with synaptic consolidation theories
in neuroscience, motivating biologically grounded extensions such as local online updates or neural
gating via associative memory.

A.2 Additional Experiments

Multiple Initializations and Backbones. For completeness, Table A1 reports DIL results for MIRA
across architectures and initializations. In addition to the ViT-B/16 backbone used in the main paper,
we include ViT-B/32, whose performance is generally lower, reflecting the sensitivity of Hopfield
components to both initialization and backbone choice. We also report results with the ViT-in21k
initialization alongside the LAION initialization used in the main results.

Comparable experiments for the DG setting appear in Table A2. Notably, using ViT-in21k, we
compare MIRA against a bare ViT-B/16 backbone with the same initialization but without adapters,
and find that adapters with learned Hopfield keys yield substantial gains even over such strong
baselines.

Choice of g(). In the tables in the main paper, we set g described in the conceptual framework to
be an identity function. We tabulate the results below for different choices of g. We find that this
function has minimal impact on performance, indicating that the transformations performed within
the different layers of ViT are strong and fairly sufficient by themselves to constitute an eigenbasis
wherein the appropriate keys can be found via gradient descent.
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Table A1: Comparison with SoTA DIL methods on three standard datasets. Baseline numbers have
been taken from prior work. MIRA is evaluated on multiple ViT backbones and initializations for
completeness. Best results are highlighted in bold, and results within 2% of the best are underlined.

Dataset Method DIL Avg. Acc

Avg. Acc.↑ Forgetting↓

iDigits

Fine-tuning 33.04±0.89 23.23±0.74 31.68
EWC [45] 68.62±0.92 25.94±0.98 51.39
LwF [56] 69.61±0.33 25.81±0.69 54.75
L2P [97] 73.83±0.26 23.43±0.65 68.50

S-Prompts [91] 75.11±2.31 25.66±6.23 65.10
DualPrompt [96] 76.42±0.46 26.33±0.62 72.62

CODA-P [80] 77.42±0.71 22.20±0.18 73.70
LAE [22] 79.09±1.03 21.86±0.40 72.43
ICON [65] 84.83±0.51 12.67±0.61 78.18

Main (MIRA) 82.46±0.12 8.49±0.43 82.46

ViT-B/32 (MIRA) 83.06±0.12 18.42±0.43 83.06

CORe50

Fine-tuning 23.52±0.26 3.09±0.11 22.53
EWC [45] 73.86±0.38 1.09±0.12 53.88
LwF [56] 74.35±0.52 0.81±0.27 54.44
L2P [97] 80.72±0.39 0.51±0.28 75.38

S-Prompts [91] 86.50±0.46 0.92±0.31 77.39
DualPrompt [96] 81.41±0.22 0.21±0.76 76.69

CODA-P [80] 84.36±1.04 0.64±0.14 81.11
LAE [22] 83.09±0.71 0.17±0.51 80.10
ICON [65] 89.01±0.33 0.17±0.21 84.93

Main (MIRA) 93.89±0.33 0.00±0.00 93.89

ViT-B/32 (MIRA) 91.28±0.33 0.00±0.00 91.28

DomainNet

Fine-tuning 39.52±0.32 28.81±0.64 37.48
EWC [45] 41.58±0.26 26.79±0.15 47.31
LwF [56] 43.74±0.27 18.23±0.10 48.77
L2P [97] 48.55±0.81 19.71±1.29 54.73

S-Prompts [91] 50.80±0.63 4.20±0.53 45.29
DualPrompt [96] 51.33±0.10 9.60±1.41 56.94

CODA-P [80] 49.13±0.83 25.96±1.13 57.17
LAE [22] 44.67±0.62 28.99±0.64 54.87
ICON [65] 54.44±0.21 13.32±0.46 59.94

Main (MIRA) 69.18±0.10 4.07±0.15 69.18

ViT-in21k (MIRA) 59.44±0.10 12.06±0.15 59.44

ViT-B/32 (MIRA) 59.36±0.10 11.60±0.2 59.36

Prefixes as memories. The proposed MIRA framework bears resemblance to the complementary
learning system implemented by hippocampal-cortical connections in the brain [77]. This framework,
however, models the hippocampus as a memory storage for representations, rather than neural
overlays. The analogue to such a mechanism in contemporary deep learning architectures is Prompt
Tuning [98] in PEFT literature. In particular, the prefix tuning [55] variant of prompt tuning can be
directly integrated into the MIRA framework to implement a system analogous to a neuroscientific
framework, with the pretrained network serving the role of the cortical circuits with powerful
generalization capabilities, and the prefixes - stored in associative memories - serving as task-specific
representations. We compare the prefix-tuning based approach with our original MIRA framework.
Our results indicate that this variant maintains comparable performance to storing overlay weights,
showing that MIRA can be adapted to different PEFT methods.

A.3 Experimental Details

For training task-specific adapters in the Adaptation stage across all datasets and settings, we use
rank-4 LoRA adapters trained for 5 epochs with a learning rate of 1e-3. For CIL and DIL experiments,
we set the DualGPM threshold to 0.7. The AdamW optimizer is used with a weight decay of 1e-3
across all experiments as well. All our experiments are performed on a single RTX A6000 Ada GPU
with 48GB VRAM, on a machine having a 96-core Intel Xeon CPU and 128GB RAM.

In the Consolidation stage, all experiments in DIL and CIL settings ran for 2 epochs. In addition, we
initialized the CIL classifiers in the Consolidation stage with the weights learned in the Adaptation

4



Table A2: Comparison with SoTA DG methods on 4 standard DG datasets with different initializations
and ViT backbones. Bold = best; underlined = within 2% of best.

Method PACS VLCS OfficeHome DomainNet Avg

SWAD [11] 91.30±0.1 79.40±0.4 76.90±0.1 51.70±0.8 74.33
CLIP [67] 96.20±0.1 81.70±0.1 82.00±0.1 57.50±0.1 79.85

SMA [4] 92.10±0.2 79.70±0.2 78.10±0.1 55.90±0.2 76.95
ERM [86] 93.70±0.1 82.70±0.1 78.50±0.1 53.80±0.1 77.68

CoOp [111] 96.20±0.1 77.60±0.2 83.90±0.1 59.80±0.1 79.88

MIRO [12] 95.60±0.2 82.20±0.2 82.50±0.1 54.00±0.3 78.58

SEDGE [58] 96.10±0.1 82.20±0.2 80.70±0.2 54.70±0.1 78.43

GESTUR [52] 96.00±0.0 82.80±0.1 84.20±0.1 58.90±0.1 80.48

PEGO [37] 96.50±0.1 83.20±0.3 84.20±0.1 57.30±0.3 80.30

Main (MIRA) 97.01±0.0 82.10±0.5 87.36±0.3 61.19±0.1 81.92

ViT-in21k (Base model) 68.89±0.0 73.00±0.5 81.23±0.3 42.35±0.1 66.36

ViT-in21k (MIRA) 71.28±0.0 74.18±0.5 82.52±0.3 46.99±0.1 68.74

ViT-B/32 (MIRA) 94.11±0.0 81.68±0.5 79.60±0.3 53.07±0.1 77.11

Table A3: Comparison of different choices of g for DIL and DG settings.
g DIL DG
Identity 69.18 61.19
Linear 69.22 60.98
3-layer MLP 69.22 61.12

Table A4: Comparison of Prefix Tuning vs LoRA tuning in MIRA.
MIRA Variant DIL DG
MIRA-default 69.18 61.19
MIRA-Prefixes 69.61 60.72

stage for the corresponding label set. Note that this is not effective in the DIL setting, as even though
the label sets are the same, the distribution of inputs to the classifier changes, and hence the scope of
knowledge transfer in the linear classifier head is limited in this setting. In the Consolidation stage of
the DG setting, we run PACS, OfficeHome, and VLCS for 10 epochs, while DomainNet is just run
for one epoch. We rescale all images to 256 × 256 during both training and evaluation and take a
224 × 224 crop from this rescaled image (random crop during training, center crop at inference) as
input to the model. We apply a random horizontal flip as a training augmentation in all cases, and an
additional mixup augmentation for the DG setting. In all CIL and DIL settings, we use the AdamW
optimizer with a weight decay and learning rate of 1e-3, while in the DG setting, we set the learning
rate to 7e-4.

A.4 Dataset Details

DomainNet. DomainNet is a large-scale benchmark comprising approximately 600,000 images
across 345 categories, distributed over six distinct domains: Real, Clipart, Infograph, Painting,
Quickdraw, and Sketch. Each domain introduces a unique visual style, presenting significant domain
shifts. In the DIL setup, each domain is treated as a separate experience, with the model sequentially
exposed to data from one domain at a time while maintaining a consistent label space. This setup
challenges models to generalize across diverse visual domains without forgetting previously learned
knowledge. In the CIL setup, the dataset is divided into 5 experiences, each experience containing 69
classes from all 6 domains combined. Unlike the DIL setting, the label space in the CIL setting grows
with each experience. In the DG setup, models are trained on 5 domains conjointly and evaluated on
the 6th unseen domain.

DN4IL. DN4IL is a curated subset of DomainNet, specifically designed for evaluating domain-
incremental learning methods. It retains the six domains from DomainNet but focuses on a reduced
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set of 100 classes to facilitate controlled experiments on domain shifts. The dataset emphasizes
the challenges posed by significant distributional differences between domains, making it a suitable
benchmark for assessing the robustness of continual learning algorithms.

iDigits. iDigits is a domain-incremental benchmark constructed by combining four digit recognition
datasets: MNIST, SVHN, MNIST-M, and SYN. Each dataset represents a distinct domain with
varying visual characteristics. In the DIL setting, the model is trained sequentially on each domain to
maintain performance across all domains despite the domain shifts. This benchmark is particularly
useful for studying the effects of domain shifts in simpler classification tasks. In the CIL setting, all
datasets are jointly split into 5 training experiences, each experience containing 2 classes from each
of the 4 datasets.

CORe50. CORe50 is a dataset designed for continuous object recognition, consisting of 50 household
objects recorded under 11 different environmental conditions. Each condition introduces variations
such as background changes, lighting, and occlusions. In the domain-incremental setup, each
environmental condition is treated as a separate domain, and the model learns to recognize the same
set of objects across these varying conditions. A key difference from other DIL datasets is that
CORe50 uses 3 of the 11 domains as the test set and incrementally trains on the other 8 domains.
This setup evaluates a model’s ability to generalize object recognition across different real-world
scenarios. It can thus also be viewed as a combination of DIL and DG settings, where the test set
comprises of unseen domains. A forgetting of ≤ 0 indicates that the models’ performance remains
the same or improves on the unseen domains as new domains are incrementally learned. The CIL
setting is similar to DomainNet and iDigits - the dataset is split into 5 experiences of 10 classes each,
encompassing all 11 training domains.

CDDB. CDDB (Continual Deepfake Detection Benchmark) is a dataset aimed at evaluating continual
learning methods in the context of deepfake detection. It comprises a collection of deepfake videos
generated using various known and unknown generative models. In the DIL framework, each
generative model represents a different domain, and the model is sequentially trained to detect
deepfakes from these diverse sources. CDDB challenges models to adapt to new types of deepfakes
while retaining the ability to detect previously encountered ones. We particularly evaluate on the
CDDB-hard subset, comprising five domains: GauGAN, BigGAN, WildDeepfake, WhichFaceReal,
and SAN.

ImageNet-R. ImageNet-R is a dataset comprising 30,000 images of 200 ImageNet classes, with
images rendered in various styles such as art, cartoons, graffiti, embroidery, and video games. This
dataset is designed to evaluate the robustness of models to distribution shifts. In the CIL setup, the
200 classes are divided into 5 or 10 tasks, each containing 40 or 20 unique classes. The model is
trained sequentially on these tasks to learn new classes while maintaining performance on previously
learned ones.

VLCS. VLCS is a benchmark dataset for domain generalization, comprising images from four distinct
domains: PASCAL VOC2007, LabelMe, Caltech-101, and SUN09. Each domain contains images
labeled across five shared object categories: bird, car, chair, dog, and person. The dataset includes
a total of 7,510 images, with domain-specific distributions. In the DG setup, models are trained
on three domains and tested on the remaining one, evaluating their ability to generalize to unseen
domains.

PACS. PACS is an image dataset designed for domain generalization, consisting of four domains:
Photo, Art Painting, Cartoon, and Sketch. Each domain contains images from seven categories: dog,
elephant, giraffe, guitar, horse, house, and person. The dataset comprises a total of 9,991 images,
with varying numbers across domains. PACS introduces significant domain shifts due to the diverse
visual styles, making it a challenging benchmark for DG methods.

OfficeHome. OfficeHome is a benchmark dataset for domain adaptation and generalization, con-
taining images from four domains: Art, Clipart, Product, and Real-World. Each domain includes
65 categories of everyday objects, totaling approximately 15,500 images. The dataset presents
substantial domain shifts due to differences in image styles and acquisition methods. In the DG setup,
models are trained on three domains and evaluated on the fourth, assessing their ability to generalize
to unseen domains.
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A.5 Theoretical Underpinnings

Lemma 1 stated that the MIRA’s AM formulation accommodates the optimal solution for Equation 3,
as long as the optimal coefficients come from a kernel. It, however, does not prove that MIRA attains
those optimal coefficients, specifically via the Consolidation phase of the training. Under certain
mild assumptions on the kernel detailed below, we show that our method indeed converges to the true
optimal coefficients. Our proof strategy largely follows [84], where, for convenience we also assume
that the similarity function is softmax instead of an affine function as we have stated in the main text.
Theorem 1. LetHk denote the reproducing-kernel Hilbert space induced by the kernel k(·, ·), and
assume an optimal solution to Eqn. 3 {α∗

t,l(x)}T,L admits a representation in a finite eigenbasis of
the integral operator associated with k. Further along the lines of Att-SVM in [84], define

W (x) = K ·
T,L∑

t=1,l=1

α∗
t,l(x)Q

T
t,l. (5)

Assume that the kernel k is such that the following condition is true:

{α∗
t,l(x)}T,L = argmin

α
∥W (x)∥, s.t. (xiopti

− xit)W
Txi1 ≥ 1, ∀t ̸= opti, i ∈ [n]. (6)

Then the Consolidation stage of MIRA induces the query modules and learnable keys to converge to
the optimal coefficients, α∗

t,l(x)Q
T
t,l.

Proof. The proof follows from [84], by replacing the matrix W by our ensemble of adapters and
inheriting their assumptions as is, specifically in Lemmas 1, 2, 4, 12, and Theorem 4.

A.6 Limitations

This work highlights the benefits of incorporating neuroscientific insights into deep learning archi-
tectures, especially in the context of biologically plausible memory mechanisms. In particular, it
proposes a potential mechanism in which such task-switching can occur in biological systems with
the aid of associative memories. The work constraints to task settings such as CIL, DIL, and DG;
extensions to related settings such as Versatile Incremental Learning or Multi-Task Learning, or even
other PEFT methods, would be interesting future extensions of our framework. All experiments
provided are based on computational models from deep learning research; analogous neuroscience
experiments may need to be conducted to conclusively declare if memory mechanisms are indeed
used in the stated manner in biological systems. Besides, validating this framework on non-ViT
architectures such as ResNets is also possible, and may help extend this work more generally to all
architectures.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The sections of the papers address all claims made in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitations section has been included in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All proofs have been provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: High-level details have been provided in the Experiments and Results section.
Additional details have been included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code shall be publicly released upon acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The required details have been provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The presented results include the mean and standard deviations across three
runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All details regarding required compute have been provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have confirmed to the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work does not have any societal impacts, as it proposes a general technique
in improving ML systems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All appropriate sources have been cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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