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ABSTRACT

Graph diffusion models achieve state-of-the-art performance in graph generation but
suffer from quadratic complexity in the number of nodes—and much of their capacity is
wasted modeling the absence of edges in sparse graphs. Inspired by latent diffusion in
other modalities, a natural idea is to compress graphs into a low-dimensional latent
space and perform diffusion there. However, unlike images or text, graph generation
requires nearly lossless reconstruction, as even a single error in decoding an adjacency
matrix can render the entire sample invalid. This challenge has remained largely
unaddressed. We propose LG-Flow, a latent graph diffusion framework that directly
overcomes these obstacles. A permutation-equivariant autoencoder maps each node into
a fixed-dimensional embedding from which the full adjacency is provably recoverable,
enabling near-lossless reconstruction for both undirected graphs and DAGs. The size of
this latent representation scales linearly with the number of nodes, eliminating the
quadratic bottleneck and making it feasible to train larger and more expressive models.
In this latent space, we train a Diffusion Transformer with flow matching, enabling
efficient and expressive graph generation. Our approach achieves competitive results
against state-of-the-art graph diffusion models, while achieving up to 1000 speed-up.

1 INTRODUCTION

Generative modeling of graphs has advanced rapidly in recent years, with diffusion models achieving state-
of-the-art performance across various domains, including molecules (Igashov et al.;2024)), combinatorial
optimization (Sun and Yang, |2023), and neural architecture search. However, most existing graph
diffusion models operate directly in graph space, which entails quadratic computational complexity in the
number of nodes (Vignac et al., 2023)). These models typically learn both node and edge representations,
since predicting edges solely from node features has proven insufficient across benchmarks (Qin et al.}
2023)). As a result, scalability remains limited. Quadratic complexity also leads to disproportionate
memory consumption relative to the number of parameters, which restricts model capacity compared to
image-based diffusion. In addition, attempts to adapt scalable auto-regressive sequence models to graphs
break permutation equivariance when graphs are linearized, e.g.,/Chen et al.|(2025)), which limits their
applicability.

In contrast, latent diffusion has advanced image generation by shifting the generative process into a
compressed latent space (Esser et al., 2024; Rombach et al.| 2022). A VAE maps data into low-dimensional
representations, where Gaussian diffusion or flow models operate more efficiently, avoiding wasted
capacity on imperceptible details. This yields efficient training, faster inference, and supports high-capacity
architectures.

Adapting this principle to graphs is highly appealing but presents unique challenges. Unlike in images,
where minor decoding errors are visually negligible, a single mistake in reconstructing an adjacency matrix
can destroy structural validity—for instance, by deleting a chemical bond or misclassifying its type.
Compression must therefore not come at the expense of reconstruction fidelity. The decoder must achieve
near-lossless reconstruction to guarantee valid samples. Unfortunately, graph autoencoders are rarely
evaluated for reconstruction quality (Kipf and Welling, [2016} Lee and Min| 2022; |Li et al., 2020), with the
notable exception of Boget et al.| (2024)).

Despite these obstacles, the latent diffusion paradigm is particularly promising for graphs. Most real-world
graphs are sparse (see Table[T)), which means diffusion models trained in graph space devote most
of their capacity to modeling the absence of edges. A latent approach can alleviate this inefficiency,
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reduce quadratic complexity, and enable the training of larger and more expressive generative models.
This motivates designing latent graph representations whose size—understood as the total number
of dimensions—scales linearly with the number of nodes, for example, by assigning each node a
fixed-dimensional latent vector.

Latent diffusion offers modularity and reusability: instead of designing graph-

specific diffusion models, one can employ generic denoising architectures, Table 1: Average density of
reusing methods and optimization techniques from the thriving image training graphs across com-
generation community such as the Diffusion Transformer (DiT) (Peebles and| mon benchmarks.

Xie}, 2023). Once the encoder is trained, the diffusion stage is uniform across
modalities (see, e.g., Joshi et al.| (2025)). In the graph domain, this approach  Dataset Density
unifies undirected graph (Qin et al.l 2025} |Vignac et al.,[2023)) and directed
acyclic graph (DAG) generation (Carballo-Castro et al.,[2025; L1 et al.| 2025a)), Planar 0.09
which are typically treated separately. The latter is especially relevant to highly ~ LI€€ 0.03
impactful applications like chip design and circuit synthesis (Mishchenko Ego 0.04
and Miyasakal [2023; [Li et al., 2025b; [Phothilimthana et al., 2023b). This ~ Moses 0.11
modular view shifts the focus to designing strong, cheaper-to-train graph ~ Guacamol  0.09
autoencoders, which rely on linear-complexity (Message-Passing) Graph TPU Tile 0.06
Neural Networks (MPNNSs) (Gilmer et al., 2017 Scarselli et al., [2009).

From these considerations, we derive four requirements for a principled latent graph diffusion model. (R1)
The autoencoder must provide provable reconstruction guarantees that ensure the structural validity of
decoded graphs. (R2) The size of a graphs’ latent representations should scale linearly with the number of
nodes, enabling scalability to large graphs. (R3) Graph-specific inductive biases should be encapsulated in
the autoencoder, allowing the diffusion model itself to remain generic. (R4) The overall framework should
maintain competitive generative performance while avoiding the quadratic complexity of graph-space
diffusion.

However, as argued above, existing latent graph diffusion models fail to satisfy all four requirements. Most
lack reconstruction guarantees (Yang et al. 2024b; |[Fu et al.| 2024), while others forfeit efficiency by
relying on ad-hoc transformer designs (Nguyen et al.| [2024)) or a quadratic number of edge tokens (Zhou
et al., [2024).

Present work Hence, to address the above requirements R1-R4, we propose a latent graph diffusion
framework. Concretely, we

1. derive the Laplacian Graph Variational Autoencoder (LG-VAE), a principled permutation-
equivariant graph autoencoder with provable reconstruction guarantees, extending theory from
positional encodings in Graph Transformers (GTs) to both undirected graphs and DAGs.

2. Our autoencoder maps each node to a fixed-dimensional embedding from which the adjacency
matrix is recoverable, yielding compact latent representations that scale linearly with graph size.

3. In this latent space, we apply flow matching with a DiT architecture, achieving competitive
performance across benchmarks while maintaining scalability and architectural simplicity. Our
approach (LG-Flow) delivers competitive results on both synthetic and real-world benchmarks,
while achieving speed-ups ranging from 10x to 1000 x.

Overall, our LG-Flow enables diffusion-based graph generative models to scale to larger graph sizes with
significantly improved inference efficiency, paving the way for their application to domains previously out
of reach.

2 RELATED WORK

Here, we discuss related work. A more detailed discussion is provided in Appendix A} including an
overview of prior graph diffusion models.

Graph generation Graph generation methods are typically categorized into two main groups.
Autoregressive models build graphs by progressively adding nodes and edges (You et al.| 2018 |Jang et al.,
2024). Their main advantage is computational efficiency, since they do not need to materialize the full
adjacency matrix. However, they depend on an arbitrary node ordering to transform the graph into a
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sequence, either learned or defined through complex algorithms, which breaks permutation equivariance. In
contrast, one-shot models generate the entire graph at once, thereby preserving permutation equivariance.
Many approaches have been explored in this class, starting with GVAEs (Kipf and Welling, |2016) and
GANs (Martinkus et al.,[2022). Following their success in other modalities such as images, diffusion
models (Ho et al., [2020; |Song et al.l|2021; Lipman et al.| [2023)) quickly emerged as the dominant approach
for graph generation.

Latent diffusion models Latent diffusion models (LDMs) (Rombach et al.l 2022) generate data by
applying the diffusion process in a compressed latent space rather than pixel space, typically using a VAE
for encoding and decoding. This reduces computation while preserving detail, and underlies models such
as Stable Diffusion. More recently, DiTs (Peebles and Xiel 2023) emerged as effective denoisers across
modalities (Esser et al., [2024; |Joshi et al., 2025). For graphs, however, latent diffusion has not matched the
performance of discrete diffusion models (Fu et al.,2024; Nguyen et al., 2024} Yang et al.,2024a). Only
Nguyen et al.| (2024) evaluate autoencoder reconstruction, and only on small QM9 graphs, with an ad-hoc
transformer that materializes the full attention matrix, reducing efficiency. Similarly, Zhou et al.| (2024)
achieve competitive results on MOSES but rely on n? edge tokens from the full adjacency matrix, also
limiting efficiency. Other works target only molecule generation (Ketata et al.,[2025; |Wang et al.;[2024;
Bian et al.| 2024) or tasks like link prediction (Fu et al., 2024) and regression (Zhou et al.| 2024). In
contrast, our approach ensures the adjacency matrix is provably recoverable from the latent space.

3 BACKGROUND

In this section, we introduce theoretical tools used throughout the paper, including graphs, adjacency-
identifying positional encodings, and Laplacian positional encodings. For completeness, the formal
introduction of flow matching is deferred to Appendix [B] Note that since flow matching and Gaussian
diffusion are essentially equivalent, we use the two terms interchangeably (Gao et al.| 2024)).

Notations LetN := {1,2,...} and for n € N define [n] := {1,...,n} C N. We denote by R™* the
set of strictly positive real numbers. We consider node- and edge-labeled undirected graphs G, i.e.,
tuples (V(G), E(G), {4, £.) with up to n nodes and m edges, without self-loops or isolated nodes.
Here, V(G) is the set of nodes, F(G) the set of edges, £,.: V(G) — [a], for a € N, assigns each
node one of a discrete labels, and ¢.: E(G) — [b], for b € N, assigns each edge one of b discrete
labels. An undirected edge {u,v} € E(G) is written either (u, v) or (v, u). We also consider node-
and edge-labeled directed acyclic graphs (DAGs), defined analogously except that (u, v) denotes a
directed edge from u to v and the graph contains no directed cycles. Throughout, we assume an arbitrary
but fixed ordering of nodes so that each node corresponds to a number in [n]. The adjacency matrix
of G is denoted A(G) € {0,1}"*", where A(G);; = 1 if and only if nodes ¢ and j are connected.
We construct a node feature vector X € [a]™ consistent with ¢, so that X; = X if and only if
0,(i) = £,(4). Similarly, we define an edge feature matrix E € [b]™ consistent with A and /., so that
E,;; = Ejy; if and only if £.((4, j)) = £.((k,1)). For any matrix M, we denote by M, its -th row. For a
real-valued matrix M € R™*™ M7 denotes its transpose, and for a complex matrix IN, IN* denotes its
Hermitian transpose. For two binary matrices P and @, we denote their logical disjunction P v Q where
(PVQ);; =1if P,; =1orQ;; =1, and 0 otherwise. Let u and v be two vectors; u ® v denotes the
element-wise product between them. Finally, the graph Laplacian is L := D — A, where D € N"*" s
the degree matrix. Its eigenvalue decomposition is L :== UAU ", where A := (\q,...,\,) is the vector
of eigenvalues (possibly repeated) and U € R™*™ the matrix of eigenvectors, with the i-th column U,
corresponding to eigenvalue \;. We denote by I; the d-dimensional identity matrix.

3.1 ADJACENCY-IDENTIFYING POSITIONAL ENCODINGS

The design of our autoencoder extends adjacency-identifying positional encodings, introduced in the
literature on positional encodings for GTs (Miiller and Morris| [2024). Intuitively, such encodings guarantee
that the adjacency matrix of an undirected graph can be reconstructed by the attention mechanism from
node embeddings, provided the positional encoding is chosen appropriately.
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Formally, let G be a directed graph (V (G), E(G)) with n nodes, and let P € R™*4 denote a matrix of
d-dimensional node embeddings. Define

~ 1 T
P=—PW? (PWK 1
7 ( ) (1)

where W, WK € R4 We say that P is adjacency-identifying if there exist W<, W such that for

every row 7 and column j, P;; = maxy, Py, <= A(G);; = 1, where A(G) denotes the adjacency
matrix of G. Note that in connected graphs, each row has between one and (n — 1) maxima. We further say
that a matrix Q € R™*? is sufficiently adjacency-identifying if it approximates an adjacency-identifying
matrix P to arbitrary precision, i.e., |[P — Q||g < ¢, forall e > 0.

LPE The Laplacian Positional Encoding (LPE), introduced in [Dwivedi et al.| (2022); Miiller and Morris
(2024), is an example of a sufficiently adjacency-identifying positional encoding, constructed as follows.
Let € € R be a learnable vector initialized to zero. Let ¢: R? — R? denote a feedforward network,
applied row-wise, and let p: R"*¢ — R? denote a permutation-equivariant neural network applied
row-wise. For an eigenvector matrix U of the graph Laplacian and its corresponding eigenvalues A, we
define

(U, A) = [6(U | A+0),....0(U. | A+e) | € R, o

where U, || A + € € R™*?2 denotes row-wise concatenation. The network ¢ is applied on the last
dimension, which yields ¢(U; || A + €) € R™*9, for each i € [n]. Stacking these outputs over all nodes
produces ¢(U, A).

The LPE is then obtained by aggregating contributions across all eigenvectors and eigenvalues. Specifically,

n
LPE(U, A) = p (Z o(U, A)} ) : 3)
i=1
where (U, A)] € R"*? denotes the i-th column of ¢(U, A) € R"*"*4_ Intuitively, this means that
for each node we combine the information from all Laplacian (linearly independent) eigenvectors and
eigenvalues, and then apply a DeepSet (Zaheer et al., 2017) over the (multi)set {o(U; || A + €) }1- ;.

4 PRINCIPLED LATENT DIFFUSION FOR GRAPHS

We now present our latent diffusion framework for graphs. The core idea is to design an autoencoder with
provable reconstruction guarantees (see Figure[I] for an overview), covering both undirected graphs and
DAGs, and train a diffusion model in the resulting latent space. An overview of the whole framework is
provided in Figure

4.1 LAPLACIAN GRAPH VARIATIONAL AUTOENCODER

In latent diffusion models, the expressive power of the decoder sets an upper bound on the quality of
generated samples. For graphs, even a single incorrect edge can invalidate the entire structure, e.g., by
breaking chemical validity in molecules, so strong reconstruction guarantees are essential. However, most
existing graph autoencoders are not benchmarked for reconstruction accuracy, raising concerns about their
reliability (Fu et al.,|2024; [Nguyen et al., [2024)).

We address this by building on LPEs; see Section [3.1] In fact, we require node embeddings that are
expressive enough to preserve all structural information, so that the adjacency matrix can be provably
recovered from them. The LPE is a natural choice: by construction, it yields embeddings that are sufficiently
adjacency-identifying, i.e., they preserve all information necessary for reconstructing the adjacency matrix.
This property also provides a natural recipe for the decoder: adjacency can be recovered through a bilinear
layer (as in Equation (T))), followed by a row-wise argmax. This design satisfies two of our requirements:
(R1) provable reconstruction guarantees and (R2) graph latent representations size that scales linearly with
the number of nodes.

Building on this foundation, we introduce the Laplacian Graph Variational Autoencoder (LG-VAE).
Following the VAE framework, the encoder £ maps a graph G with node features X € R"™, edge features
E € R™, and Laplacian L = UAU " to the parameters of a Gaussian posterior with mean gz and
log-variance log o z2. Latents Z € R™*¢ are then sampled using the reparameterization trick and passed

to the decoder D, which reconstructs G = D(Z); see Figure|l|for an overview.
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Figure 1: Overview of the LG-VAE. The encoder £ (left) encodes structure via ¢ and node/edge labels, then aggregates
them with p. Latents Z are sampled using the reparameterization trick and passed to the decoder D (right). Node
labels are decoded directly, while adjacency is decoded by (a) computing scores via bilinear dot products for b + 1
heads, (b) processing scores with a row-wise DeepSet, and (c) concatenating outputs across heads. The final adjacency

A is obtained with an argmax.

Encoder The encoder extends the LPE to incorporate node and edge labels. We compute

Hy =Y ¢U,A)] eR™ Hy=XWX4+b¥ eR™  Hp:=EW"+b"” e R"*,
=1

where WX, W ¥ are projection matrices, and b~ , b¥ the associated bias, and feed them into p, yielding
pnz,logoz? = EG,X,E,U,A)=p(Hx + Hy,Hg). ()

Here H, is treated as an additional node feature, and p can be any permutation-equivariant network. In our
experiments, we use GIN (Xu et al.;2019) and GINE (Hu et al., 2020). A latent sample is then obtained as

Z:uz+0'z®6, GNN(O,Id).

Note that, as detailed in Appendix and depicted in Figure[T} we only use the eigenvectors associated to
the k lowest eigenvalues, as using the full matrix eigenvectors might be impractical for large graphs.

Decoder The decoder reconstructs both node and edge labels as well as the adjacency matrix. Node
labels are predicted as

X = D,(Z) = softmax(ZWP= + bP=), X e R"™*?,

where WP= € R%*@ is a projection matrix and b”+ is a bias. To reconstruct the adjacency matrix, we
first process Z to produce bilinear scores,

Z = ZZWP(2ZWHX)T e R

In principle, because the LPE is sufficiently adjacency-identifying, we should be able to detect edges by

looking at multiple maxima over the rows of Z, which is impractical. Instead, we treat the detection of
maxima—and thus of edges—as a binary classification problem. Since rows may have variable lengths, as
graphs have varying sizes, and since we need to preserve permutation equivariance, we instantiate this

classifier as a DeepSet. It takes the rows of Z as inputs and outputs individual logits for each A”
Formally, our decoder can be written as

A=D.(Z)=0 (DeepSet (Z)) , AeR™™,

where DeepSet: R™ — R™ is applied row-wise and o (+) is a point-wise applied sigmoidal function. To
decode edge labels along with the graph structure, we extend the bilinear layer to a multi-headed version;
see Appendix [B.1|for details.

Loss function Following standard practice in VAESs, the training objective combines node and edge
reconstruction losses, with KL regularization:

L(é) = £n0de(X7X) + Eedge(Ay A) + ﬁ‘CKL(,UZa O-Z)7 ﬂ > 0;

where Lpoae(X,X) = CrossEntropy(X, X), Legge(A, A) = CrossEntropy(A, A), and
Lxi(nz,0z) = Dkr, (N(Z; pz,0z) || N(O, Id)). Note that the decoder can be readily adapted
to continuous features by outputting a scalar instead of a categorical vector and replacing the cross-entropy
loss with a standard mean-squared error.
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Lorm(0) = Evz, [[[va(Ze,t) — (21 — Zo)|,]

Training Z=2Z R e———— 7, = (1- )2y + tZ,
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Sampling Zy ~ N(0.10)

Figure 2: Overview of LG-Flow. During training (top), the frozen encoder maps graphs into latent representations Z.
Noisy latents Z; are sampled along a linear interpolation path and passed through the DiT, which predicts ve and is
optimized with the conditional flow matching loss. During sampling (bottom), noise is generated and iteratively
denoised using the trained DiT. The final latents are then decoded into synthetic graphs using the frozen decoder.

4.2 LATENT FLOW MATCHING

Once the LG-VAE is trained, we freeze its parameters and train a generative model in the latent space of
the LG-VAE. We adopt FM (Lipman et al.| [2023), implemented with a DiT (Peebles and Xie}, 2023)) and
name our latent flow matching model LG-Flow. Given latents Z € R™*¢, we sample ¢ € [0, 1] and from
Z,=(1-1t)Z + tZy with Zy ~ N (0, I). We follow the logit-normal time distribution (Esser et al.,
2024), which emphasizes intermediate timesteps, and optimize the FM objective

Leem(0) = By z [||vo(Ze,t) — (Z — Zo)||,] -

This latent formulation yields several benefits. First, training is efficient since DiT operates on low-
dimensional node embeddings rather than directly predicting the full adjacency matrix. While the
Transformer architecture has quadratic complexity in theory, efficient implementations yield near-linear
scaling. Consequently, the only step with quadratic complexity is decoding, handled by our lightweight
decoder. Secondly, using a modality-agnostic FM backbone highlights modularity, i.e., the encoder handles
all graph-specific complexity, while the diffusion stage remains generic.

4.3 EXTENDING TO DAGS

The LG-VAE described so far applies to undirected graphs. The central role of DAGs in applications such
as chip design and logical circuit synthesis motivates extending the LG-VAE and LG-Flow framework
beyond undirected graphs to the directed setting. Extending it to DAGs is non-trivial, since the LPE relies
on the eigenvalue decomposition of the symmetric Laplacian, which discards edge directionality when
applied to directed graphs. To preserve this information, we adopt the magnetic Laplacian (Forman),
1993} |Shubin, [1994; |Colin de Verdiere, 2013} [Furutani et al., | 2019; |Geisler et al.,|2023)), a Hermitian
matrix that generalizes the Laplacian to directed graphs. It is defined as L, := D, — A, ©® €0 ,
where A, := AV A" is the symmetrized adjacency, D, its degree matrix, ©(4) = 2rnq(Aij — Aji),
and ¢ € R™* is a fixed real parameter. This matrix admits an eigendecomposition L, = U AU* with
eigenvectors in C”, which we use to introduce the magnetic LPE (mLPE).

The mLPE mirrors the construction of the LPE but separates the real and imaginary parts of the
eigenvectors, allowing the use of standard real-valued neural networks. Concretely, let U = R(U) and
U’ = 3(U) be the real and imaginary part of U, respectively. We then define

(U, U", A) = [¢(Uf" UL A+e),...,o(UER | U} ||A+e)] € RPxnxd.

where ¢: R?® — R? is applied row-wise, on the last dimension of U{* || U{ || A + ¢ € R"*"*3 and
e € R! is a learnable, zero-initialized vector. The mLPE is then obtained by aggregating across eigenvectors
as

mLPE(UR, U, A) = p (Z o(U", U, A)?) ;
i=1

with p: R"*4 — R? is an equivariant feed-forward neural networks.



Under review as a conference paper at ICLR 2026

To characterize adjacency recovery in the directed setting, we introduce the notion of out-adjacency-
identifiability. Given node embeddings P € R"*¢, we compute

Pt = L (PWEr)(PWOr)T, Pl = S (PWR)(PW)T,
with learnable matrices W &= W®@r WE:r WQr ¢ R4X4 and combine them as
P =Pty 2= Pl ¢ =cos(2mq), s=sin(2mq).
We say that P is out-adjacency-identifying if for each node ¢,

We further say that a matrix Q € R™*? is sufficiently out-adjacency-identifying if it approximates an
adjacency-identifying matrix P to arbitrary precision, i.e., |[P — Q||z < €, forall € > 0.

Now, the result below shows that the mLPE produces node embeddings from which the full directed
adjacency of a DAG can be recovered with arbitrarily high accuracy. In other words, no structural
information is lost in the encoding step.

Theorem 1. The magnetic Laplacian positional encoding (mLPE) is sufficiently out-of-adjacency-
identifying.

Proofs and the full DAG autoencoder specification are provided in Appendix [C.2] This result ensures that,
by replacing the LPE with the mLPE, the LG-VAE naturally extends to DAGs while preserving node-level
latent representations that are compatible with latent diffusion.

5 EXPERIMENTAL STUDY

We now investigate the performance of our approach in relation to the requirements we derived in the
introduction. Specifically, we answer the following questions.

Q1 How faithfully does LG-VAE reconstruct the graph’s structure?
Q2 How does LG-Flow compare to prior graph diffusion models in generative performance?

Q3 How efficient is LG-Flow in inference time compared to state-of-the-art graph diffusion models?

Datasets We evaluate the generative performance of our approach on six datasets: three synthetic
datasets—EXTENDED PLANAR, EXTENDED TREE, and EGO—, two molecular datasets—MOSES and
GUACAMOL-, and TPU TILE, a DAG generation datasets. An extensive description of those datasets is
available in Appendix [E. ]

5.1 Q1: AUTOENCODER RECONSTRUCTION ABILITY

We begin by empirically evaluating our autoencoder’s ability to reconstruct adjacency matrices faithfully.
We focus on two simple, unlabeled datasets with strong structural constraints—EXTENDED PLANAR and
EXTENDED TREE. For these distributions, near-lossless reconstruction is crucial to ensure that decoded
graphs maintain their structural properties, specifically planarity and tree structure.

Baselines We evaluate LG-VAE on EXTENDED PLA-

NAR and TREE, and compare it against two prior graph  Table 2: Autoencoder reconstruction performance.
autoencoders: DGVAE (Boget et al.,|2024)) and the Best results are in bold. Only LG-VAE achieves
autoencoder used in GLAD (Nguyen et al., [2024). near-lossless reconstruction, as shown by the SAMPLE
We also conduct ablations of LG-VAE’s components, ACCURACY metric.

(i) removing the positional encoder ¢ to obtain a raw
GNN.E.NCODER, and (ii) replacipg our decoder W.ith Method Fige Ave. Sample Acc. Fige Ace, Sample Ace
the original GVAE DECODER, yielding a GVAE-like GLAD 09129 0. 0.9366 0.

EXTENDED PLANAR EXTENDED TREE

variant that retains ¢ as positional encoder. DOVAP 09347 o o7 o
., GVAE DECODER 0.9000 0. 0.6351 0.
5 GNN ENCODER 0.9977 0.7734 0.2539 0.
O LG-VAE 1.0000 0.9961 1.0000 0.9844

Metrics Our primary evaluation metric is SAMPLE
ACCURACY, i.e., the fraction of test graphs that the
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decoder reconstructs exactly, including node/edge labels when present. We also report EDGE ACCURACY,
i.e., the proportion of correctly reconstructed edges in the test set.

Results We report results in Table [2] Except for LG-VAE, no method achieves near-lossless reconstruction
in terms of SAMPLE ACCURACY. However, all methods attain EDGE ACCURACY above 0.9, only
LG-VAE and its raw GNN ENCODER variant obtain non-zero SAMPLE ACCURACY.

Consequently, these findings highlight the limitations of current VAEs, whose latent representations are
less expressive than those of LG-VAE. They struggle to reconstruct samples from latents with high
accuracy, casting doubt on their ability to recover the required structural properties. For instance, even if a
latent diffusion model perfectly matches the latent distribution, the decoder is not guaranteed to yield
planar graphs or trees.

5.2 Q2 & Q3: ASSESSING GENERATIVE PERFORMANCE AND INFERENCE EFFICIENCY

In this section, we evaluate our latent diffusion model on various benchmarks, including synthetic graphs,
molecules, and DAGs.

Baselines We evaluate LG-Flow against several prior graph diffusion models, two discrete-time methods,
DIGRESS (Vignac et al., 2023) and its sparse counterpart, SPARSEDIFF (Qin et al., 2023)), two continuous-
time methods, COMETH (Siraudin et al.l 2024) and DEFOG (Qin et al,[2025). Note that Disco (Xu et al.,
2024) and COMETH are highly similar methods, and either could have been evaluated. We chose to focus
on COMETH due to the inherent high computational cost of discrete graph diffusion models. On DAGs, we
assess our approach against diffusion models tailored to DAGs, namely LAYERDAG, an autoregressive
diffusion model that generates DAGs layer by layer, and DIRECTO, a recent adaptation of DEFOG to DAG
generation.

Metrics For synthetic graphs and DAGs, we evaluate generation quality using the standard Maximum
Mean Discrepancy (MMD) metrics between test and generated sets, computed on various statistics, e.g.,
degree or clustering coefficient. Validity for trees, planar graphs, and DAGs is defined by structural
constraints (planarity, tree property, or acyclicity). For molecular datasets, we assess validity based on
fundamental chemical rules, uniqueness, and novelty, complemented by benchmark-specific scores. A
detailed description of all metrics is deferred to Appendix

Across all datasets, we also measure sampling time (Time) to assess inference efficiency. All models were
sampled using equal batch sizes whenever possible, or otherwise with batch sizes chosen to maximize GPU
utilization.

Results on synthetic graphs Our results are shown in Table [3a} Our approach is competitive across all
distribution metrics and achieves strong performance on V.U.N. In terms of sampling time, it delivers a
50x speed-up on EXTENDED PLANAR and a 10x speed-up on EXTENDED TREE. On EGO, our method
matches the performance of DEFOG while reducing sampling time by up to 1000x.

To further demonstrate the efficiency of LG-Flow, we plot memory requirements during sampling as a
function of batch size in Table 3] Due to the DiT’s efficient implementation, the memory usage of our
method scales linearly with the batch size, allowing the entire test batch of 151 samples to fit into memory.
In contrast, DEFOG runs out of memory once the batch size exceeds 32.

Results on molecular generation Our results are summarized
in Table@ On GUACAMOL, our method achieves strong
performance on validity, uniqueness, and novelty, consistently
outperforming DIGRESS and D1sCo. On KL div, we reach
state-of-the-art results, with performance close to DEFOG.
Most notably, we surpass all baselines on FCD by a large - b s
margin, highlighting the method’s ability to capture the -
underlying chemical distribution.

On MOSES, LG-Flow remains competitive across all metrics, Figure 3: We compare molecular validity and
outperforming DIGRESS and DISCO on validity again. Sampling time. The ideal lies in the top-left
Crucially, while maintaining competitive accuracy, our method Conﬁerci V;i;th hlih Vahdgy afl;dhlow cost. Olilr
delivers substantial inference efficiency gains, achieving 2;202 d;)fflii(?n fﬁfégz ¢-off than prior graph-
a 36.4x speedup on GUACAMOL and a 58 x speedup on ’

MOSES compared to the state-of-the-art DEFOG. To put
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Table 3: Generation results on synthetic graphs. In the table, best results are in bold, second best are underlined. In
Table[3] empty squares indicate out-of-memory errors. While our method scales linearly with batch size and can
accommodate the entire test batch of 151 samples on a single GPU, DEFOG runs out of memory at batch size 64.
MMD metrics are reported with a 10% factor.

(a) Generation results on the Extended Planar and Extended Tree datasets.

Dataset Extended Planar Extended Tree
Method Deg.(}) Orbit(}) Cluster.(|) Spec.(!) V.UN.(1) Time (|) ‘ Deg.(}) Orbit(}) Cluster.(]) Spec.(l) V.UN.(1) Time (})
SparseDiff  0.8x01  0.9+0.1 20.9+1.3 1.9+02  741x21 121 x10% | 0.0 0.+0. 0.40. 12402  953+15  11.5 x 10?
Cometh 0.7+01 22403 20.0+1.1 13402  96.7+0s 9.7 x 10? 0.+0. 0.+0. 0.40 14404  93.8+16 9.7 x10?
DeFog 0.3+0.1 0.1+0.1 9.7+0.3 1.3+01 99.6+0.4 8.9 x 10? 0.1+o0. 0.+0. 0.+0 1.2+0.2 98.1+0.7 8.9 x 102
LG-Flow 0.3+0.1 0.5+0.2 10.1+3.1 1.0+0.2 99.0+0.2 4.6+0. 0.1+0 0.+0. 0.+0 1.6+0.3 93.3+0.8 9.0-+0.
(b) Generation results on large graphs: Ego. Bao]
230

Dataset Ego g

Method Deg. (/) Orbit(]) Cluster.(]) Spec.(]) Ratio(]) Time (s)(]) g 20

Training Set 0.2 6.8 7.1 1.0 1.0 = P

DiGress 8.9+1.6 30+3 S54+4 19+3.2 19+3.1 - © o 5 = 160 %0

SparseDiff  3.7+0.4 20+4 3241 5.6+08  7.9+0.9 5.3 x 10? Batch size

Cometh 8.1+01  19.6+2.0 37.4+15 129416  154+1.7 1.3 x 10* .

DeFog 18505 2ldsze 307433 62412  S52+0s 13 x 100 (c) Comparison of memory use for DE-

LG-Flow 1.9+05  15.5+3.8 224428 6.2+1.1 5.3+1.0 11.6+0.6

FoG and our method on the Ego dataset.

Table 4: Generation on molecular datasets : MOSES & GuacaMol. Best results are denoted in bold and second best
are underlined.

Dataset GuacaMol MOSES

Model V.(1) V.U.(1) V.UN(1) KLdiv(h) FCD(1) Time(s)(l) | Val (1) Unique. () Novel (1) Filters(t) FCD(l) SNN(1) Scaf. (1) Time (s) ()
Training Set  100.0  100.0 0.0 99.9 92.8 - | 1000 100.0 0.0 100.0 0.01 0.64 99.1 -
DiGress 85.2 85.2 85.1 92.9 68.0 - 85.7 100.0 95.0 97.1 119 0.52 14.8 -
DisCo 86.6 86.6 86.5 92.6 59.7 - 88.3 100.0 97.7 95.6 1.44 0.50 15.1 -
Cometh 989 989 97.6 96.7 72.7 1.0 x 10* 90.5 99.9 92.6 99.1 127 0.54 16.0 1.9 x 10*
DeFoG 99.0 99.0 97.9 91.7 738 4.0 x 10* 92.8 99.9 92.1 98.9 1.95 0.55 14.4 1.8 x 10*
LG-Flow 93.0 93.0 91.5 97.2 81.8 1.1 x 10® 88.4 999 90.5 989 143 0.55 123 3.1 x 10%

these results into perspective, we plot validity against sampling efficiency in Figure 5] Our method exhibits
a significantly better trade-off than prior diffusion models that operate directly in graph space.

Results on DAG generation Our results are reported in Table 5] As already noted in [Carballo-Castro et al.
(2025), LAYERDAG's strong performance on V.U.N is misleading: it collapses on distributional metrics,
clearly failing to capture the underlying distributional characteristics.

In contrast, we outperform DIRECTO on Cluster., Spec., Wave., and, most importantly, on Valid. LG-Flow
shows slightly higher memorization than DIRECTO, likely due to the limited diversity of the training data.
Most importantly, our approach is dramatically more efficient at inference, achieving up to a 680 x
speed-up over DIRECTO.

Table 5: Generation on DAGs: TPU Tile dataset. We highlight best results in bold.

Method Out Deg. In Deg. Cluster. Spec. Wave. Valid Unique Novel V.UN Time
Training Set 0.3 0.3 0.7 0.6 0.2 1.0 1.0 0. 0. -
LayerDAG ~ 193.3x90.5 222.5+305 15124522 50.1x206 76.5+25.1 100.0+0.0 99.5t10 98.5+30 98.5+3.0 -
Directo 3.9+1.7 37.6+5.1 21.1+11.7 12.6+2.2 6.2+0.9 90.5+3.3  90.5+4.6 97.5£32 80.5+a6 3.4 x 10°
LG-Flow 12.8+3.6 81.8+6.3 5.9+2.5 8.1+1.3 4.0+1.3 98.5+2.6 94.0+3.3 77.5+39 T74.5+38  0.5+03

6 CONCLUSION

We proposed a latent diffusion framework for graphs, built on a permutation-equivariant Laplacian
autoencoder with provable reconstruction guarantees for undirected graphs and DAGs. By mapping nodes
to fixed-dimensional embeddings, our method removes the quadratic cost of graph-space diffusion and
supports high-capacity backbones such as Diffusion Transformers. Experiments show near-lossless
reconstruction, competitive or superior generative performance, and sampling up to three orders of
magnitude faster. This framework shifts the focus from graph-specific diffusion design to cheaper, more
expressive autoencoders, unifies graphs and DAGs generation, enables transferring conditional methods
from image generation, and paves the way for scaling generative models to much larger graphs.
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Appendices

A EXTENDED RELATED WORK
Here, we discuss more related work.

Graph generation Graph generation methods are typically categorized into two main groups.
Autoregressive models build graphs by progressively adding nodes and edges (You et al.| 2018 |Jang et al.,
2024). Their main advantage is computational efficiency, since they do not need to materialize the full
adjacency matrix. However, they depend on an arbitrary node ordering to transform the graph into a
sequence, either learned or defined through complex algorithms, which breaks permutation equivariance. In
contrast, one-shot models generate the entire graph at once, thereby preserving permutation equivariance.
Many approaches have been explored in this class, starting with GVAEs (Kipf and Welling, [2016)) and
GANs (Martinkus et al.,[2022). Following their success in other modalities such as images, diffusion
models (Ho et al.,[2020; |Lipman et al.| [2023}; [Song et al.| [2021)) quickly emerged as the dominant approach
for graph generation.

Graph diffusion models Diffusion models can be grouped according to two criteria: whether they
operate in continuous or discrete state spaces, and whether they train on a continuous or discrete time
axis. Discrete-time diffusion models (Austin et al., {2021} |Ho et al.,[2020) were successfully adapted
to graph generation, with discrete-state models (Chen et al., 2023bj |Vignac et al., [2023)) showing an
advantage over their continuous-state counterparts (Jo et al.| [2022; Niu et al.} 2020). However, these
models relied on a fixed time discretization during training, which limited their flexibility. They were later
extended to continuous-time, both in continuous (Lipman et al.,|2023;|Song et al.,|2021) and discrete state
spaces (Campbell et al.l 2022} |Gat et al., 2024; |Lou et al.} 2024), and also adapted to graph generation,
once again confirming the superiority of discrete-state approaches (Siraudin et al., [2024} Qin et al., [2025;
Xu et al.;2024). Previous graph diffusion models relied on Laplacian decompositions but pursue objectives
that differ from ours. Regarding Minello et al.| (2025), the approach is fundamentally different from ours: it
generates approximate eigenvalues and eigenvectors and then reconstructs the adjacency matrix through a
separate prediction module, whereas we embed structural information in the latent space by feeding
eigenvectors and eigenvalues to the encoder. Concerning |Zhu et al.| (2025)), the scope of the paper is
different from ours. The authors focus on representation learning using graph diffusion models, while our
method is evaluated solely for generation. In contrast to traditional graph diffusion models that target
the whole adjacency matrix, they train their model to reconstruct only the low-frequency Laplacian
eigenvectors. Overall, these methods aim to reconstruct spectral components of the Laplacian, whereas we
use them to encode structural information into the latent space.

Latent diffusion models Latent diffusion models (LDMs) are a popular framework, first introduced for
image generation (Rombach et al.|[2022). They extend traditional diffusion models by operating in a
compressed latent space rather than directly in pixel space. An autoencoder—typically a VAE—is used to
encode high-resolution data into a lower-dimensional latent representation. The diffusion process then
unfolds within this latent space, substantially reducing computational cost, while the decoder reconstructs
fine-grained details. This paradigm underlies widely used models such as Stable Diffusion. More recently,
DiTs (Peebles and Xie} 2023)) have been introduced as the main denoising architecture and have achieved
strong results across modalities (Esser et al., 2024; Joshi et al.,[2025). Although some works have attempted
to adapt latent diffusion to graph generation, none have demonstrated competitive performance compared
to prior state-of-the-art discrete diffusion models (Fu et al., 2024} Nguyen et al.,2024; |Yang et al., 2024a).
To the best of our knowledge, only [Nguyen et al|(2024) evaluate the reconstruction performance of their
autoencoder, and only on the QM9 dataset, which contains very small graphs. Additionally, they employ an
ad-hoc transformer architecture that materializes the full attention score matrix, which limits computational
efficiency. While Zhou et al.| (2024)) appears to report competitive results on MOSES, it encodes the full
adjacency matrix through n? edge tokens, with n the number of nodes, which prevents efficiency gains.
Other works are specific to molecule generation (Bian et al.| 2024} |Ketata et al.| [2025; Wang et al.| [2024).
Finally, some focus on tasks other than graph generation, such as link prediction (Fu et al., 2024) or
regression (Zhou et al., 2024). The key difference between these works and ours is that we design our
autoencoder to ensure that the adjacency matrix can be provably recovered from the latent space.
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B ADDITIONAL BACKGROUND AND NOTATIONS
Here, we provide additional notation and background.

B.1 NOTATIONS

Let N := {1,2,...} and for n € N define [n] :== {1,...,n} C N. We denote by R** the set of
strictly positive real numbers. We consider node- and edge-labeled undirected graphs G, i.e., tuples
(V(G), E(G), £y, L.) with up to n nodes and m edges, without self-loops or isolated nodes. Here, V (G)
is the set of nodes, E(G) the set of edges, ¢,.: V(G) — [a], for a € N, assigns each node one of a
discrete labels, and £.: E(G) — [b], for b € N, assigns each edge one of b discrete labels. An undirected
edge {u,v} € E(G) is written either (u,v) or (v, u). We also consider node- and edge-labeled directed
acyclic graphs (DAGs), defined analogously except that (u,v) denotes a directed edge from u to v
and the graph contains no directed cycles. Throughout, we assume an arbitrary but fixed ordering
of nodes so that each node corresponds to a number in [n]. The adjacency matrix of G is denoted
A(G) € {0,1}™*™, where A(G);; = 1 if and only if nodes ¢ and j are connected. We construct a node
feature vector X € [a]™ consistent with £, so that X; = X; if and only if £, (i) = £,(j). Similarly,
we deﬁne an edge feature matrix E € [b]"™ consistent with A and /., so that E;; = Fj; if and only
if £o( =/ T( ). For any matrix M, we denote by M its i-th row. For a real-valued matrix
M 6 ]R”X” denotes its transpose, and for a complex matrix /N, IN* denotes its Hermitian transpose.
For two binary matrices P and @, we denote their logical disjunction P VV Q where (P V Q);; = 1 if
P;; = 1or Q;; = 1, and 0 otherwise. Let u and v be two vectors; u ® v denotes the element-wise
product between them. Finally, the graph Laplacian is L == D — A, where D € N™*"™ is the degree
matrix. Its eigenvalue decomposition is L := UAU ", where A := (\1,...,\,) is the vector of
eigenvalues (possibly repeated) and U € R™*™ the matrix of eigenvectors, with the i-th column U,"
corresponding to eigenvalue \;. We denote by I; the d-dimensional identity matrix.

Flow Matching Flow Matching (FM) (Lipman et al.l|2023) is a generative modeling framework that
transports samples from a base distribution py to a target distribution p; by gradually denoising them.
The method relies on a time-dependent velocity field v; : [0, 1] x R? — R, which defines a flow map
Py: [0,1] x RY — R? through the ordinary differential equation

d

o V() = vy (%(93)), Yo(z) = .
The flow induces a family of intermediate distributions (p¢)¢co,1), Where p; is the pushforward of po by
¢ In other words, if &g ~ po, then ¥ (xg) ~ p, and in particular 1)1 (xg) ~ p1. The probability path

(p¢) is arbitrary as long as it is differentiable in time and satisfies the boundary conditions at ¢ = 0 and
t=1

In practice, the true velocity field v, is intractable. FM therefore relies on conditional probability paths
pt(x | 1) for which the conditional velocity u¢(x | &1) can be computed in closed form. A standard
choice is the linear interpolation

z(t) = (1 — t)xo + tz1, Tg ~ Po, T1 ~ P1,

with corresponding velocity
L1 — &

1—t°

u(x | 1) =

To train a generative model, the intractable v, is replaced by a neural network vg (¢, ), with parameters
0 that learns to match the conditional velocities u;. This is achieved by minimizing the conditional
flow-matching loss

£(0) = Bvana, |[[vo(t, (1 = o + twn) = (@1 - @o)||"]

This formulation avoids integrating the ODE during training, which makes FM both efficient and
straightforward to implement. After training, new samples are obtained by combining the learned velocity
field vg from ¢ = O to ¢t = 1, yielding «; ~ p; deterministically. We refer to Lipman et al.| (2024)) for a
comprehensive description of the framework. Since flow matching and Gaussian diffusion are essentially
equivalent, we use the two terms interchangeably (Gao et al.| 2024).
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Variational Autoencoders A Variational Autoencoder (VAE), also referred to as a KL-regularized
autoencoder, is a latent-variable generative model that extends the autoencoding framework with a
probabilistic formulation. Given data € R™*%, the encoder parameterizes an approximate posterior
¢4(z | =), where z denotes the latent, z € R™*P, p < d. The decoder defines the conditional likelihood
po(x | z). Training maximizes the Evidence Lower Bound (ELBO),

L(0,¢;x) = Eq,(zj2)[logpo(x | 2)] — Dxr(gs(z | @) | p(2)),
where the first term enforces reconstruction fidelity and the second regularizes the posterior toward a prior
p(z), typically N'(0, I,,). To enable backpropagation through the latents, the reparameterization trick is
employed, i.e, the encoder predicts the mean and log-variance of the posterior distribution, g, and log o 4,
and z is sampled according to
z=py(x) +oy(x)e, e~N(0,1).

This formulation yields a continuous and structured latent space, supporting interpolation and generative
sampling.

GIN A Graph Isomorphism Network (GIN) is a message-passing graph neural network designed to
maximize expressive power under the neighborhood aggregation framework (Xu et al.| 2019). Let

each node 7 have features hgl) at layer [ > 0, and let N (¢) denote its neighbors. GIN updates node
representations via

(+1) ._ (14+1) O O]
R = MLPED(1 4 e h 4+ 3 R,
JEN(5)
and hEO) is the initial node feature after being fed through an MLP. A natural extension, termed GINE,
incorporates edge features into this aggregation by modifying each neighbor’s contribution, formally,

+1 l l l
BT = MLPED(1 4 h 4+ Y (B 4 el)),
JEN(3)

where e(-lz denotes the edge feature between nodes j and ¢; this model retains the aggregation mechanism

of GIN while leveraging edge-level information.

Diffusion Transformers (DiT) A Diffusion Transformer (DiT) is a diffusion-based generative model in
which the denoising backbone is a Transformer model. Importantly, conditioning signals—such as the
timestep ¢ or additional context c—are incorporated via adaptive layer normalization (AdaLN) within each
block, following a formulation of the form,

AdaLN(h, ¢) := v(c) LayerNorm(h) + 5(c),

where v(c) and 3(c) are learned affine modulations derived from c. This injection method preserves
the scalability and expressive capacity of standard Transformers while enabling effective conditional
generation across data modalities.

C METHOD DETAILS AND PROOFS
Here, we describe additional details and outline missing proof from the main paper.

C.1 DECODING EDGE LABELS

As a practical solution to decode edge labels along with the graph structure, we use a multi-headed

version of the bilinear layer, where (W%, WKX) € R4 h € [b+ 1] define b parallel projection heads,
corresponding to the b possible edge labels, and an additional head for the absence of an edge. Formally,

1
Vd
A= {DeepSet (Ao) ,...,DeepSet (Ab)} e R (041

Ay = =ZWR(ZWE)T e R ™ heb+1),

A = D.(Z) = softmax(A) € R?*"x(0+1)

where the softmax is applied over the last dimension of A. At inference, the node (respectively edge)
labels are given by the argmax over the scores across the a (resp. b + 1) classes.
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C.2 FORMAL DEFINITION OF DAG AUTO-ENCODER

In this section, we formally define the architecture of our auto-encoder for DAGs.

Encoder We instantiate p, as GIN architecture, wrapped into a PYTORCH GEOMETRIC’s
DirGNNConv (Rossi et al., [2023)), which use one layer for in-neighbors and one for out-neighbors. We
implement ¢ as a row-wise MLP.

The encoder is defined in a similar way to that for undirected graphs, except it takes both the real and
imaginary parts of the eigenvectors as input. Given a DAG G with node features X € R"™, edge features
E € R™*", and magnetic Laplacian L, = U AU*, the encoder produces the mean pz € R? and

log-variance log oz € R? of a Gaussian variational posterior:

Hy =Y ¢(U" U A)] e R,

i=1
Hy = XWX 4+ b¥ e R"¥9,
HE — EWE + bE c Rmxd7
pzlogoz® =E(G, X, E, U U, A)=p(Hx,H,, Hp).
A latent sample Z € R™*¢ is then obtained using the reparameterization trick,
Z=pz+0oz0e e~N(01,),

where o7 = exp (1 logoz?).
Decoder Similarly to the undirected case, the node decoder D, reconstructs node labels directly from the

latents Z. Then an edge decoder D, is defined consistently with our definition of out-adjacency-identifying
encodings, as follows,

X =D,(Z)=ZWP"* + b=, X e R™™,

Zp = izwfg(zwgf

Vd
. 1
Z; = —ZWR(ZWKT
1 \/E I( 1)
A
S

A=D.(Z)=0 (DeepSet (Z)) , AeR™"

where ¢ := cos(2rq) and s == sin(27q), W € R¥*@ and W3, WK, W W e R4 are a
learnable weight matrices and the MLP is applied row-wise.

C.3 PROOFS
We first prove the following lemma, which provides a sufficient condition for node embeddings to be
out-adjacency-identifying.

Lemma 2. Let G be a directed graph with magnetic Laplacian Ly. Let P € R™*4 a matrix of node
embeddings . If there exists WEr W@r WK1 WQr ¢ R4 sych that

BT = (PWRR(PWONT = (L)
P = L (pwkn (Pwe)T — (L),

S

then P is out-adjacency-identifying.
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Proof. Note that if there exist W5z, WQr WEr WQr ¢ R4¥d gyuch that
pR = §):E(‘Lq)a
Pl =g(L,),
there also exists WEr, WEOr WEr W& ¢ Rixd guch that
PR = _%(Lq)a
P! = —3(L,).
The negative magnetic Laplacian is —L, = A, ® ¢i®*’ — D,. Note that since D is a diagonal matrix,

it does not affect the off-diagonal coefficients of —L,. Denote ¢ := cos (27¢) and s := sin (27q), and
consider the different cases.

1. (i,j) € B(G): =Ly ;j = A, ;j€®™ = e"2™4_Therefore, —R(L,)i; = cand —S(Ly);; = s.

In that case, P;; = ¢ + %5 =2.

2. (jyi) € E(G): —Lg;; = As;e” 2™ = e 74 Therefore, —R(L,);; = c and

—S(Ly)ij = —s. Inthat case, Pjj = c — 2=¢s = 2(c — 1) < 0.

S

3. (4,4), (4,i) & E(G): =Lg; = 0= —R(Lq)i; = —S(Ly)y;. In that case, P;; = 0.
4. Since we consider DAGs, the case where (i, ) € E(G) and (4,7) € E(G), i.e., G contains a
2-node cycle, never occurs.
The maximum over a row of P is therefore 2, and we have that
131']' = mgxf’ik <~ AlJ =1,

which concludes the proof. O

The following uses Lemma[2]as a sufficient condition for identifying out-adjacency.
Lemma 3. Let G be a directed graph with magnetic Laplacian L, with eigendecomposition L, = U AU

and let X +iY = UAY?. Then for any permutation matrices Mx, My € R"™ ", the matrix
P = [XMx,Y My] € R"*?" js out-adjacency-identifying.

Proof. The idea is to find a pair of suitable bilinear projections to invoke Lemma 2] Note that since M x
and My are permutation matrices, MXM; = MyM;/r =1,. For (WKR, WQR), we choose

WHR = VdI,,,

WO = I,
Therefore, ﬁ(PWKR)(PWQR)T = XMxMi{X"+YMyM, Y = XX"+YY' =
R(L,). For (W1 WCr), we choose

K 0 M/
wW _x/E{MYT 07],

M 0
Qr _ X
W —[0 —Mﬂ'

In that case, = (PWX1)(PW )T = [Y My My, X Mx M| [X Mx M}, ~YMy M| =
Y, X][X,-Y]' =YX - XY =3(L,).
Applying Lemma [2] concludes the proof. O

We are now ready to prove the main theorem.
Theorem 4. Theorem|l| restated) The mLPE is sufficiently out-adjacency-identifying.
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Proof. Let us start by recalling some notations. Let G be a n-order directed acyclic graph, with magnetic
Laplacian L, = U AU*. Further write UAY? = X 4+iY, and denote UF = R(U) € R" the real
part of U and U! = $(U) € R™ the imaginary part of U. In what follows, j refers to a column of U#

or U, and i refers to the index of a node. We denote uﬁ the 4-th component of j-th eigenvector of U %,

I

and similarly for u;;.

We divide up the d-dimensional space of the mLPE into two g- dimensional sub-spaces, adj . and adj;,,,
i.e. we write, for a node v;,
mLPE(v) = [adjp, (v:), adj 1, (v:)] € RY,

where

adjp, (Vi) = pre | D Sre(uft, uls, i +¢) |
j=1

adjy,,, (0:) = prm | D Srm(uls uly, N +¢j) |
j=1
and where we have chosen p to be a sum over the first dimension of its input, followed by a feed-forward

neural network pr. and py.,,. For convenience, we also fix an arbitrary ordering over the nodes in V' (G)
and define

-adee(Ul)
QR = :
_adee(vn)
-adem(Ul)
QI — .
_adjfm(vn)7

where v; is the i-th node in our ordering. Note that both adj . (v;) and adj;,,, (v;) are DeepSets over the
multiset
M; = {{(ug,ufj, A +e€) )

To prove that [QR, Q' ] is sufficiently out-adjacency-identifying, we show that [QR, Q' ] approximates
[X Mx,Y My arbitrarily close, for M x, My some permutation matrices. To that extent, we
demonstrate how adj 5, (v;) (tesp. adj;,,, (v;)) approximates X; (respectively Y;) arbitrarily close for all 4.
Since adjg, and adj;,,, are DeepSets, they can approximate any continuous permutation-invariant function
over a compact set over the real numbers. Therefore, it remains to show that there exists a permutation
invariant function f% (respectively f7) such that ff(M;) = X; M (respectively f1(M;) = Y; My)
for all ¢+ and some permutation matrix M x (respectively My ). To this end, note that the magnetic
Laplacian graph G of order n has at most n distinct eigenvalues. Hence, we can choose ¢; such that
A;j + €; is unique, for all j. In particular, let

ej:j-é,

where we choose 0 < min; , |A\; — Ao| > 0, i.e., the smallest non-zero difference between two eigenvalues.

Now let
fR(Mi) = {ugl'\/)\1+81~5, ,uﬁn~\/)\n+tn~6],
M) = [uftl VA0, .l An+tn.5],

where the {s; }7_, (respectively {¢)}7_,) are indices in [n] such that the A; + si - § (respectively
A1 + tg - 9) are sorted in ascending order. This ordering is reflected in some permutation matrix M x
(respectively My ).

Then, note that, since A1/? a is real-valued, diagonal matrix, X = %(UA1/2) = §)?(U)/11/2 =UkAY/2,
similarly Y = (U AY?) = S(U)AY? = U! A'/2. The i-th row of U®A'/? is equal to

X, = (UfAY?Y, =Wk N, el VN

in
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and, similarly,
Y, = (UIAY?), = [ul, -V, o ud

Since we can choose § arbitrarily small, we can choose it such that:

IF(M;) = Xill < R,
1F7(M:) = Vil <,

for any yg,y7 > 0. Since ff and f! are continuous permutation-invariant functions over a compact set, a
Deepset can approximate them arbitrarily close, and as a result, we have

Hadee(U’i) - X’LMX” <R,
ladj,, (vi) = YiMy || <,
for all i and arbitrarily small v%, . In matrix form, it gives
Q" — X Mx|| < g,
1Q" — Y My || <1,

and, further
|| [QR7 QI] - [XMXa YMY] || <,

where v = max(vg, 7r). We know by Lemma[3|that [ X My, Y My| is out-adjacency-identifying.
Since the mLPE can approximate it arbitrarily close, we can, in turn, conclude that mLPE is sufficiently
out-adjacency-identifying. O

D IMPLEMENTATION DETAILS
Here, we outline implementation details.

D.1 AUTOENCODER

Number of eigenvectors Our definition of the LPE and mLPE assumes that we have access to all n
eigenvectors. However, this might be impractical for large graphs. In our implementation, we only take the
k smallest eigenvalues and their corresponding eigenvectors. In practice, ¢ is therefore instantiated as

¢(U:,:k,A:k) = [¢(U1,:k ||A;k; +€)7...,¢( ik ||Ak +6):| € Rnxkxd7

where U. ., denotes the k first columns of U, A.j, the k first eigenvalues, Uj .i, the £ first columns of i-th
row of U.

Sign invariance The eigenvectors of the graph Laplacian are not unique, e.g., if v is an eigenvector, then
so is —v (Lim et al.|[2023). Hence, GNNSs should ideally be sign invariant, i.e., represent v and —v
identically. To account for this symmetry, we adopt a SignNet-like mechanism (Lim et al.| [2023), which
randomly flips the signs of eigenvectors during training.

Decoder DeepSet Recall the definition of our edge decoder,
Z = 2ZW(ZWX)"
A = g(DeepSet(Z)), A eR™™.

Here, we describe the architecture of the DeepSet. Let

_ 1 Z (ZWEC +b%).; € R ps

3

DeepSet(Z) := W"_‘“ (GeLU (Z Wit 4 CW™ bin)) + b

where
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o« WC ¢ R'*ps and b® € RS are learnable parameters; the summation is taken over the
projected input rows.

o Win ¢ RIxdos Wetx ¢ Rdpsxdps and b € R9Ps are learnable parameters. We view
Z as a tensor in R%ps Xdpsx1 yielding a projection in R™*"X40s  with C'W °* broadcast
across columns.

o Wout ¢ Rdpsx1 and b ¢ R are the final learnable parameters.

On the problem of structurally equivalent nodes Our encoder assigns latent representations to nodes.
To avoid handling permutations in the decoder and the loss function, we preserve the nodes’ ordering when
feeding graphs to the autoencoder. Consequently, a reconstructed edge is considered correct by the loss
function only if it exactly matches an edge in the original graph. However, in some situations, this
assumption becomes problematic.

Consider the case illustrated in Figure ] Structurally equivalent nodes are
colored identically; they belong to the same orbit. Structurally equivalent
nodes also correspond to identical rows in the eigenvector matrix U, which
in turn means that ¢ will assign them identical representations. Since GNNs
aggregate information based on neighborhoods, such nodes inevitably receive
identical embeddings from p as well. For example, the encoder assigns the N
same representation to all four yellow nodes. The same applies to the two red
nodes, which also form an orbit. Consequently, when decoding edges between
yellow and red nodes, the decoder should treat a yellow node as equally likely
to connect to either red node. Although both predictions are structurally correct, Figure 4: Example of fail-
the preserved node ordering forces the loss function to mark one of them e case for the decoder.
as incorrect. Similar observations were made in (Laabid et al., 2025; [Morris| ~ Solid lines denote original
et al., [2024). edges, while the dashed line

. . . denotes a structurally cor-
We experimentally found that this would lead to poor reconstruction performance, .. prediction that w}i,ll be

particularly in trees, where cases similar to Figure[d]are common. Therefore, we  ¢onsidered as incorrect by
designed a principled way to perturb the input of nodes belonging to non-trivial  the loss function.

orbits (i.e., non-singleton orbits) to make them distinguishable in the latent

space and ease the decoder’s task.

During preprocessing, we identify non-trivial orbits using the final node colorings from the 1-WL
algorithm. Although 1-WL does not always distinguish non-equivalent nodes, prior work (Morris et al.,
2024) suggests that identical 1-WL colorings serve as a good practical solution to detect structural
equivalence. Before feeding eigenvectors to ¢, we slightly perturb the rows of U corresponding to nodes in
non-trivial orbits by applying a low-magnitude Gaussian modulation. Formally,

Uperturb = (]- + nMe)Uv

where 7 is a small modulation coefficient (typically n = 0.005), M € R™*" is a mask with rows equal
to 1 if a node belongs to a non-trivial orbit and O otherwise, and € is a matrix whose rows are independent
Gaussian random vectors.

In simple terms, this modulation injects Gaussian noise into the rows of U corresponding to nodes in
non-trivial orbits. Since nodes in the same orbit have different inputs to ¢, the corresponding latents will be
slightly different. This provides a simple, parsimonious way to make structurally equivalent nodes
distinguishable in the latent space. In particular, we found it to yield much better reconstruction results than
previously proposed symmetry-breaking methods, such as assigning node identifiers (Bechler-Speicher
et al.,[2025}; You et al., 2019).

D.2 DIT

Self-conditioning We implement self-conditioning (Chen et al.,[2023a) in all our experiments.
Self-conditioning provides the denoiser at step ¢ with its own prediction from the previous step as an
additional input. During training, this input is dropped with probability 0.5. When conditioning is active,
the model first produces a prediction without conditioning, which is then reused as input for a second pass.
Gradients are not backpropagated through the first prediction. We find that this approach consistently
improves the quality of our results.
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Logit-normal time step sampling Following Esser et al.|(2024), instead of sampling diffusion times ¢
uniformly from [0, 1], we draw them from a logit-normal distribution. Formally,

Logit(t) = log(ﬁ> ~N(p, %), te(0,1).

In practice, this is implemented by sampling

1

~ N(p,0?), t= .
z (1,07) 5o

The resulting density is

plt) o 1 xp<(Lgt“)‘“)) |

t(1— 1) 202

which biases training towards intermediate time steps, the most informative region for flow matching
models.

E EXPERIMENTAL DETAILS
Here, we outline details on the experiments.

E.1 DATASET DETAILS

E.1.1 SYNTHETIC DATASETS

Description We experiment on three synthetic datasets: EXTENDED TREE, EXTENDED PLANAR, and
EGo. The first two extend the benchmarks introduced in Martinkus et al.| (2022), namely TREE and
PLANAR, which originally consisted of random trees and planar graphs with a fixed size of 64 nodes.
These original datasets contained only 200 samples, split into 128/32/40 for train/validation/test, which is
too small and leads to high variance during evaluation. Following Krimmel et al.| (2025)), we extend these
benchmarks to 8,192 training samples and 256 samples each for validation and test. The EGO dataset,
proposed in |You et al.| (2018), consists of 757 3-hop ego networks extracted from the Citeseer network,
with up to 400 nodes.

Metrics On synthetic graphs, we evaluate our method using the Maximum Mean Discrepancy (MMD)
metric, as introduced in Martinkus et al.| (2022)). For each setting, we compute graph statistics on a set of
generated samples and the test set, embed them via a kernel, and compute the MMD between the resulting
distributions. We report MMD scores for the degree distribution (Deg.), counts of non-isomorphic
four-node orbits (Orbit), clustering coefficient (Cluster.), and Laplacian spectrum (Spec.). For the
EXTENDED TREE and EXTENDED PLANAR datasets, we also report the proportion of valid, unique, and
novel graphs (V.U.N.), where validity is defined by the dataset constraints (e.g., planarity or tree structure).

E.1.2 MOLECULAR DATASETS

Description We next evaluate our method on the Moses benchmark (Polykovskiy et al.| [2020), derived
from the ZINC Clean Leads collection (Sterling and Irwin, 2015), which comprises molecules with 8 to 27
heavy atoms, filtered according to specific criteria. We also consider the Guacamol benchmark (Brown
et al.l |2019), based on the ChEMBL 24 database (Mendez et al.,|2019). This dataset comprises synthesized
molecules tested against biological targets, ranging in size from 2 to 88 heavy atoms. Consistent with prior
work (Vignac et al.| [2023; Siraudin et al., [2024), the GUACAMOL dataset undergoes a filtering procedure:
SMILES strings are converted into graphs and then mapped back to SMILES, discarding molecules for
which this conversion fails. We utilize the implementation presented in[Vignac et al.| (2023) for this process.
The standard dataset splits are used.

Metrics For both datasets, we evaluate validity (Valid), uniqueness (Unique), and novelty (Novel).
Following |Qin et al.[(2025), for GUACAMOL we instead report the percentages of valid (V.), valid and
unique (V.U.), and valid, unique, and novel (V.U.N.) samples. Each benchmark also includes specific
metrics: MOSES compares generated molecules to a scaffold test set, reporting the Fréchet ChemNet
Distance (FCD), the Similarity to the Nearest Neighbor (SNN)—the average Tanimoto similarity
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Table 6: Hyperparameters of LG-VAE on the different datasets.

Dataset Planar Tree Ego Moses GuacaMol TPU Tile
Number of eigenvectors 16 64 64 16 32 64
Latent dim. d 16 24 24 24 24 24
Modulation magnitude 0 0.005 0.005 0.005 0.05 0.05
Number of layers ¢ 2 2 2 2 2 2
Embedding dim ¢ 256 256 256 256 384 256
Number of layers p 16 16 16 16 16 12
Embedding dim p 256 256 256 256 384 256
Decoder DeepSet embedding dim 16 16 16 24 24 24

between fingerprints of generated molecules and those of a reference set—and Scaffold similarity (Scaf),
which measures the frequency match of Bemis—Murcko scaffolds between generated and reference sets.
Finally, Filters indicates the percentage of generated molecules passing the dataset’s construction filters.
GUACAMOL reports two metrics: the Fréchet ChemNet Distance (FCD) and the KL divergence (KL)
between distributions of physicochemical descriptors in the training and generated sets.

E.1.3 DAG DATASET

Description We evaluate our DAG generation variant using the TPU Tiles dataset (Phothilimthana et al.
2023a)). It consists of computational graphs extracted from Tensor Processing Unit workloads. We split the
dataset into 5 040 training, 630 validation, and 631 test graphs.

Metrics We compute MMD over statistics analogous to those used for undirected graphs, replacing the
degree distribution with incoming (In Deg.) and outgoing (Out Deg.) degree distributions, and adding
features from the graph wavelet transform (Wave.). Samples are considered valid if they satisfy the DAG

property.
E.2 RESOURCES

All our models, both autoencoders and DiTs, are trained on two Nvidia L40 GPUs with 40GB VRAM. All
models were sampled using a single Nvidia L40 GPU, and we optimized the batch size to fully utilise its
memory.

E.3 TRAINING DETAILS

All our autoencoders are trained using the AdamW optimizer, a weight decay of 1e~*, a KL coefficient of
1e~5, and a cosine learning rate schedule. We train our DiTs using a constant learning rate of 2%, and
maintain Exponential Moving Average (EMA) weights for evaluation.

E.4 HYPERPARAMETERS

Autoencoder We use a different number of eigenvectors depending on the dataset, as well as a different
value for d. Our hyperparameters are listed in Table[6]

DiT We experiment using three variants of the DiT: two variants coming from the original DiT paper,
DiT Small (DiT-S) and Base (DiT-B), and one smaller variant, coined DiT Tiny (DiT-T), since some of our
datasets are smaller than those used in image generation. We detail their hyperparameters in Table[7]

E.5 ADDITIONAL EXPERIMENTAL RESULTS

Reconstruction performance See Table [§| for results on reconstruction performance. Note that
reconstruction performance on EGO is noticeably lower than on the other datasets. This can be attributed to
two factors: the small dataset size (only 606 training samples) and the inclusion of the validation set within
the training data, which limits reliable assessment of generalization during training. Nevertheless, EGO
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Table 7: Hyperparameters of DiT variants used in our experiments.

Variant DiT-T  DiT-S DiT-B
Number of layers 6 12 12
Number of heads 6 6 12
Embedding dimension 384 384 768

Number of parameters 16.2M 322M 1284 M

does not impose strong structural constraints, and the Edge. Acc. remains high (0.9957). As a result, the
latent diffusion model can still be trained and generate samples that statistically resemble the training
distribution.

Table 8: Reconstruction accuracy of our autoencoder across datasets. Edge Sample Acc. and Node Sample Acc.
denote the proportion of graphs in which, all edges and all nodes, respectively, are correctly reconstructed. For datasets
without node labels, Edge Sample Acc. coincides with Sample Acc..

Edge Sample Node Sample

Datasets Acc. Ace. Sample Acc.
Extended Planar 0.9961 - 0.9961
Extended Tree 0.9844 - 0.9844
Ego 0.0861 - 0.0861
Moses 0.9967 1.0 0.9967
GuacaMol 0.9973 1.0 0.9973
TPU Tile 0.9493 1.0 0.9493

Ablation on the number of eigenvectors k& We conducted an ablation on the number of eigenvectors
used in LG-VAE to better assess the influence of this hyperparameter on reconstruction and generative
performance. To this end, we ran experiments on Extended Tree and Extended Planar with & €
[4, 8,16, 32, 64]. Our results are presented in Tables |§|and

On EXTENDED PLANAR, the number of eigenvectors & has only a minor influence on reconstruction
accuracy, although MMD metrics worsen for small k, consistent with the loss of high-frequency structural
information. In contrast, on EXTENDED TREE, k has a much stronger impact on reconstruction quality;
interestingly, the best results are obtained with only 25-50% of the eigenvectors, showing that including
high-frequencies do not necessarily yield better performance.

Table 9: Ablation study : number of eigenvectors on the EXTENDED PLANAR dataset.

eli‘fg umber of - Gample Ace.  Deg. (1) Orbit (1) Cluster. (1) Spec.(}) V.UN. (1)
4 0.9922 0.3+0.0 0.7+0.2 13.4+2.2 1.2+0.3 99.4-+0.7
8 0.9844 0.3+0.2 1.0+0.3 12.9+3.2 1.0+0.1 99.9+0.1
16 0.9961 0.3+0.1 0.5+0.2 10.1+3.1 1.0+0.2 99.0+0.2
32 0.9844 0.2+0.0 0.1+0.1 7.6+1.2 1.1+0.1 99.1+0.3
64 0.9961 0.3+0.1 0.5+0.4 12.8+2.3 1.1+0.1 99.0+0.4

Table 10: Ablation study : number of eigenvectors on the EXTENDED TREE dataset.

eli\;‘éfvbgtgrfs Sample Acc. Deg.(]) Orbit(]) Cluster. () Spec.(!) V.UN.(?)
4 0.4648 1.3+0.1 0.1+0.0 0.0+0.0 6.1+0.4 42.3+3.2
8 0.4688 0.7+0.0 0.0+0.0 0.0+0.0 5.1+0.6 44.1+1.3
16 0.9727 0.1+0.0 0.0+0.0 0.0+0.0 1.1+0.1 92.3+1.2
32 0.9883 0.1+0.0 0.0+0.0 0.0+0.0 1.7+0.2 92.9+1.3
64 0.6680 0.1+0.1 0.1+0.0 0.0+0.0 1.6+0.2 499+28
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Experiments on larger planar graphs See results in Table[I1] To evaluate scalability, we trained
LG-VAE and LG-Flow on planar graphs of increasing sizes (128, 256). We denote by PLANAR 128 the
dataset of planar graphs with 128 nodes, and similarly for 256 and 512. Recall that EXTENDED PLANAR
originally contained graphs with 64 nodes.

LG-Flow preserves high performance as graph size grows, achieving strong V.U.N scores and low MMDs,
while its inference time increases sub-quadratically. In contrast, DeFoG’s performance degrades sharply
with graph size, especially on V.U.N. Its quadratic complexity restricts batch sizes during training (6 for
PLANAR 256, 2 for PLANAR 512), leading to slow convergence and long training times. LG-Flow, by
contrast, supports substantially larger batches (256 for PLANAR 128 and PLANAR 256, 128 for PLANAR
512). This efficiency yields speedups of 340, 262x, and 470 on the corresponding datasets.

Table 11: Reconstruction and generation on larger planar graphs.. We highlight best results in bold.

[V Model Sample Acc. Deg. (/) Orbit(]) Cluster.(]) Spec.(]) V.UN.(1) Time (s) ()

64 DeFog - 0.3+0.1 0.1:+0.1 9.7+0.3 1.3+0.1 99.6+0.4 8.9 x 102
LG-Flow 0.9661 0.3+0.1 0.5+0.2 10.1+43.1 1.0+0.2 99.0+0.2 4.6+0.
128 DeFog - 0.0+0.0 0.7+0.2 3.1+038 1.4+0.2 91.9+1.2 3.8 x 10°
LG-Flow 1.0000 0.1+0.0 0.3+0.2 44+11 0.4+0.1 99.1+0.5 11.2+0.
256 DeFog - 0.8+0.1  28.6+18 49.6+3.1 2.9+0.1 16.8+2.7 1.5 x 10*
LG-Flow 0.9727 0.2+0.1 2.0+0.8 17.1+8.0 0.2+0.0 97.9+0.5 57.2+0.0
51y DeFog 12401  56.5+29  114.8x77  1.5x00 1.4+08 6.1 x 10*

LG-Flow 0.8945 0.2+0.1 1.1+0.4 20.3+6.3 0.1+0.0 84.4+3.2 1.3 x 102

Additional DAG dataset In addition to TPU TILE, we evaluated LG-Flow on a synthetic dataset of
DAGs generated using Price’s model, the DAG analogue of the Barabdsi—Albert model. We compare our
generation results against Directo in Table T2} Both models were sampled with batch size 256 for a fair
evaluation of inference efficiency. LG-Flow performs on par with Directo on this dataset while yielding a
244 x inference speed-up.

Table 12: Generation on DAGs: Price’s dataset.

Method Out Deg. InDeg. Cluster. Spec. Wave. V.UN Time

Directo 2.5+0.2 0.2+00 9.1+06 2.8404 0.5+01 98.9+03 1.1 x 103
LG-Flow 2.7+0.4 0.3+01 12.6455 5.5+42 0.6+0.5 98.8+0.7 4.5+0.0

E.6 EXPERIMENTAL DETAILS ON BASELINES

For fair inference-time evaluation, we used a fixed batch size for all baselines; when this was not feasible,
we tuned the batch size to optimize GPU usage. On EXTENDED PLANAR and EXTENDED TREE, all
models were sampled with a batch size of 256. On Ego, discrete diffusion models could not fit the full
151-sample test batch on GPU and were sampled with a batch size of 32. On GuacaMol and MOSES, all
models were sampled with a batch size of 1000. On TPU Tile, we sampled both Directo and LG-Flow
using a batch size of 40, i.e. the full test batch.

F LIMITATIONS

The primary limitation of our approach is the requirement for sufficient data to train the autoencoder to
achieve nearly lossless reconstruction. Yet, most existing graph generation datasets are relatively small, as
they were primarily designed for diffusion models operating directly in graph space—a computationally
costly setting. Since our model scales much more efficiently, it opens the possibility of leveraging
substantially larger datasets, which in turn mitigates this limitation. Training on parametric distributions
such as Stochastic Block Models also proves difficult, since nodes are stochastically indistinguishable and
thus structurally equivalent. Nevertheless, we argue that such datasets offer limited practical value, as these
simplistic random models fail to capture the complexity of real-world graph distributions.
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