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Abstract

Object placement aims to insert a foreground
object into a background image with a suitable
location and size to create a natural composi-
tion. To predict a diverse distribution of place-
ments, existing methods usually establish a one-
to-one mapping from random vectors to the place-
ments. However, these random vectors are not
interpretable, which prevents users from interact-
ing with the object placement process. To address
this problem, we propose an Interactive Object
Placement method with Reinforcement Learning,
dubbed IOPRE, to make sequential decisions for
producing a reasonable placement given an ini-
tial location and size of the foreground. We first
design a novel action space to flexibly and sta-
bly adjust the location and size of the foreground
while preserving its aspect ratio. Then, we pro-
pose a multi-factor state representation learning
method, which integrates composition image fea-
tures and sinusoidal positional embeddings of the
foreground to make decisions for selecting actions.
Finally, we design a hybrid reward function that
combines placement assessment and the number
of steps to ensure that the agent learns to place
objects in the most visually pleasing and semanti-
cally appropriate location. Experimental results
on the OPA dataset demonstrate that the proposed
method achieves state-of-the-art performance in
terms of plausibility and diversity.
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Figure 1. Illustration of the decision-making process. We first give
an initial location and size of the foreground object (depicted as a
boat in a green rectangle). Then, the agent continuously adjusts
the location and size (indicated by red arrows) of the boat until
the termination action is selected. Red (resp., Orange) rectangles
indicate the current (resp., last) location and size of the boat.

1. Introduction
Image composition (Niu et al., 2021) aims to paste a fore-
ground object from one image on another background image
to produce a realistic composite image, which has broad
application prospects in the realm of art, entertainment, com-
merce (Chen & Kae, 2019; Weng et al., 2020; Zhang et al.,
2020b), and data augmentation (Dwibedi et al., 2017; Re-
mez et al., 2018; Ouyang et al., 2018). Object placement is a
crucial aspect of image composition that focuses on estimat-
ing the location and size of the foreground object to make
the composition image natural. Learning object placement
is a very challenging task, as it requires taking into account
various factors such as location, size, and occlusion within
the background image (Niu et al., 2021).

Early methods (Georgakis et al., 2017; Remez et al., 2018;
Wang et al., 2019; Fang et al., 2019; Zhang et al., 2020b) at-
tempt to find reasonable locations and scales for foreground
objects by designing explicit rules. However, these meth-
ods struggle to cope with diverse and complex scenarios.

1



Interactive Object Placement with Reinforcement Learning

Recent work (Tripathi et al., 2019; Zhang et al., 2020a;
Zhou et al., 2022) employs deep learning-based methods,
specifically Generative Adversarial Networks (GANs), to
generate placements given a pair of foreground and back-
ground. TERSE (Tripathi et al., 2019) produces a single
placement, which ignores the diversity of object placement.
PlaceNet (Zhang et al., 2020a) and GracoNet (Zhang et al.,
2020a) combine foreground and background features with
sampled random vectors to predict a diverse distribution of
placements, which establishes a one-to-one mapping from
random vectors to the placements. However, these random
vectors are not interpretable, which prevents users from
interacting with the object placement process. In some sce-
narios, such as artistic creation and automatic advertising,
users often have specific expectations for the location and
size of the foreground in the background image. Unfortu-
nately, the above two methods usually first produce a large
number of reasonable candidate placements and then use a
post-processing procedure to search for placements based
on user expectations, which is inefficient and impractical.

In this paper, we propose an Interactive Object Placement
method with Reinforcement Learning, dubbed IOPRE, to
make sequential decisions for producing a reasonable place-
ment given an initial location and size of the foreground.
Our method mimics the manual compositing process, where
users typically first define an initial location and size of the
foreground object and then make small adjustments until
they are satisfied with the composite result. Specifically, the
proposed method takes the user-annotated initial location
and size of the foreground object as auxiliary inputs, which
are continuously adjusted during the decision-making pro-
cess to ensure that the final composite image is both realistic
and meets the specific expectations of users. In our method,
we first design a novel action space to flexibly and stably
adjust the location and size of the foreground while preserv-
ing its aspect ratio. Then, we propose a multi-factor state
representation learning method, which integrates composi-
tion image features and sinusoidal positional embeddings
of the foreground to make decisions for selecting actions.
Finally, we design a hybrid reward function that combines
placement assessment and the number of steps to ensure
that the agent learns to place objects in the most visually
pleasing and semantically appropriate locations. As shown
in Figure 1, the agent adjusts the location and size of the
foreground object until a reasonable object placement is
obtained. Our main contributions are as follows:

• We propose an interactive object placement method
with reinforcement learning to make sequential deci-
sions for producing a reasonable placement. To our
best knowledge, we are the first to take into account
the user-annotated initial location and size of the fore-
ground object, making it highly interactive and efficient

for image composition.

• We design an aspect ratio preserved action space, a
multi-factor state representation learning method, and a
hybrid reward function to make the agent learn to place
objects in the most visually pleasing and semantically
appropriate location.

• Experimental results on the OPA dataset demonstrate
that our method achieves interactive object placements.
The proposed method produces plausible and diverse
composite images and achieves state-of-the-art perfor-
mances in terms of various metrics.

2. Related Work
2.1. Object Placement

Traditional object placement methods (Georgakis et al.,
2017; Remez et al., 2018; Wang et al., 2019; Fang et al.,
2019; Zhang et al., 2020b) design explicit rules to find rea-
sonable placements for foreground objects. However, these
explicit rules have limited application scenarios.

Deep learning based object placement methods employ neu-
ral networks to predict reasonable placements, which can be
divided into category-specific and instance-specific meth-
ods (Niu et al., 2021). The category-specific methods (Tan
et al., 2018; Lee et al., 2018) aim to predict plausible bound-
ing boxes given a background image and a foreground cate-
gory. Some methods (Dvornik et al., 2018; 2019; Volokitin
et al., 2020) predict whether a bounding box is suitable for
certain foreground categories by modeling context. The
category-specific methods assume that any instance belong-
ing to the same foreground category can be placed in the
predicted bounding box, which is not reasonable.

The instance-specific methods (Lin et al., 2018; Tripathi
et al., 2019; Zhan et al., 2019; Kikuchi et al., 2019; Azadi
et al., 2020; Zhang et al., 2020a; Zhou et al., 2022) aim
to predict plausible spatial transformations given pairs of
foreground objects and background images. Tripathi et
al. (2019) propose a framework consisting of a generator,
discriminator, and target network to produce composite im-
ages. Zhang et al. (2020a) propose a PlaceNet that samples
random variables to predict multiple reasonable placements.
Zhou et al. (2022) treat object placement as a graph comple-
tion problem and design a dual-path framework to generate
plausible object placements. Liu et al. (2021a) and Niu et
al. (2022) focus on the object placement assessment (OPA)
task, which aims to verify whether a composite image is
plausible in terms of object placement.

2.2. Reinforcement Learning

Reinforcement learning aims to train an agent to learn the
optimal policy by interacting with an environment, which
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Figure 2. Architecture of the proposed IOPRE method. Given a background image Ibg , foreground image Ifg , foreground object mask
Mfg , and initial transformation vector t0, the composite module produces a composite image Ic0 and composite mask Mc

0 . At each
time step t, the backbone processes Ict and Mc

t to generate a feature vector ft, and tt is mapped to the positional embedding pt. The
observation ot is the concatenation of ft and pt. ft is fed into the object placement assessment (OPA) branch to output a rationality score
for computing the reward. The agent processes ot to generate the value and action output. The actor output is used to sample an action
from the action space to generate tt+1. The process ends when the terminal state is reached.

has been introduced in many computer vision tasks, includ-
ing object detection (Jie et al., 2016; Pirinen & Sminchis-
escu, 2018), image cropping (Li et al., 2018), and person
re-identification (Wu et al., 2022). Jie et al. (2016) propose a
Tree-structured Reinforcement Learning approach to incor-
porate global interdependency between objects into object
detection. Compared with typical region proposal networks,
drl-RPN (Pirinen & Sminchisescu, 2018) optimizes an ob-
jective closer to the final detection task by using reinforce-
ment learning. Li et al. (2018) propose a weakly supervised
aesthetics aware reinforcement learning framework for au-
tomatic image cropping. Wu et al. (2022) propose a novel
Temporal Complementarity-Guided Reinforcement Learn-
ing approach for image-to-video person re-identification.

In this paper, we formulate object placement as a sequential
decision-making process and utilize reinforcement learning
to achieve interactive object placement.

3. Method
3.1. Problem Formulation

Given a background image Ibg , foreground image Ifg , and
foreground object mask Mfg , the general object placement
model F aims to produce a composite image Ic and com-
posite mask M c, which is formulated as

< Ic,M c >= F(Ibg, Ifg,Mfg;W ) (1)

where W represents the parameters of F . To realize in-
teractive object placement, an initial transformation vector
t0 is required as an additional input to generate an object

placement, which is formulated as

< Ic,M c >= F(Ibg, Ifg,Mfg, t0;W ) (2)

where t0 indicates the initial location and size of Ifg in Ibg

and the detailed definition of the transformation vector is
introduced in Section 3.2.

Inspired by the manual compositing image process, we for-
mulate object placement as a sequential decision-making
process and propose an Interactive Object Placement
method with Reinforcement Learning, dubbed IOPRE, as
shown in Figure 2. Given the initial transformation vec-
tor t0, an agent interacts with an environment E and takes
actions step by step to adjust the location and size of the
foreground to obtain a reasonable placement. At the begin-
ning of this process, the composite module processes Ibg,
Ifg, Mfg, and t0 to produce a composite image Ic0 and
composite mask M c

0 . At each time step t, the agent receives
an observation ot according to the composite image Ict and
transformation vector tt, and combines it with historical
observations {o0,o1, ...,ot−1} to form the current state st.
Then, the agent selects an action at from the action space
A according to the policy π and executes at to get a new
transformation vector tt+1 for producing a new composite
image Ict+1 and composite mask M c

t+1. After the chosen
action at is executed, the agent obtains a reward rt accord-
ing to the rationality scores of Ict and Ict+1, and receives a
new state st+1. The agent and environment interact until
the terminal state is reached. During this process, the goal
of the agent is to find a reasonable object placement by
maximizing the expectation of the long-term accumulated
reward Rt =

∑∞
i=0 γ

irt+i for each time step t, where γ
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Figure 3. Illustration of the action space A in IOPRE. There are 7
pre-defined actions in A, which can be divided into three groups:
scaling actions, location translation actions, and a termination
action. The arrow indicates the moving direction of the foreground
image Ifg .

is the discount factor. In our method, we design an aspect
ratio preserved action space, a multi-factor state representa-
tion learning method, and a hybrid reward function to make
the agent learn to place objects in background images with
suitable locations and sizes.

3.2. Aspect Ratio Preserved Action Space

To ensure the realism of the composite image, the aspect
ratio of the foreground needs to be constant during the com-
positing process. Following (Zhou et al., 2022), we use a
transformation vector t = [tr, tx, ty] to indicate the loca-
tion and size of the foreground in the background. Specif-
ically, we use tr ∈ (0, 1) to represent the scaling ratio
of the whole foreground and W (resp., H) to denote the
width (resp., height) of the foreground image and back-
ground image. Consequently, the width w and height h of
the scaled foreground become trW and trH , respectively.
Suppose (x, y) indicates the background coordinate for the
left top pixel point of the scaled foreground, we then use
tx = x

W−w ∈ (0, 1) and ty = y
H−h ∈ (0, 1) to indicate the

relative horizontal and vertical location that the foreground
should be placed over the background image.

In our method, we design a set of 7 pre-defined actions to
construct the action space A, as illustrated in Figure 3. This
action space differs from previous methods (Jie et al., 2016;
Li et al., 2018) and is divided into three groups: scaling ac-
tions, location translation actions, and a termination action.
The first two groups aim to adjust the size and location of
the foreground, including 2 and 4 actions, respectively. The
agent stops the decision-making process and outputs the
current object placement as the final result when the termi-
nation action is executed. In addition, we limit the variation
range of each element in t to (0, 1) during the placement
process. The proposed action space has two key advantages.

Firstly, it preserves the aspect ratio of the foreground while
still providing flexibility in adjusting its size and location.
Secondly, it allows for the reliable placement of the entire
foreground object within the background, preventing any
parts of the object from being removed. In IOPRE, the first
two groups of actions adjust the size and location by 0.05 at
each time step.

3.3. Position-aware State Space

At each time step t, the state st in our method consists
of current and historical observations, which mimics the
human decision-making process. Specifically, st can be rep-
resented as st = {o0,o1, ...,ot−1,ot}, where ot denotes
the current observation of the agent. To provide multi-factor
information for the agent, we combine the feature of Ict
and the positional embedding of tt as ot. Since the goal
of the agent is to find a reasonable object placement, the
current composite image Ict is essential for it to make a de-
cision. Given Ibg , Ifg , Mfg , and tt, the composite module
produces Ict and M c

t . Our backbone takes the concatena-
tion of Ict and M c

t as input and outputs a feature vector
ft. To enable the agent to be aware of the size and loca-
tion of the foreground object, we map t = [tr, tx, ty] to a
384-dimensional sinusoidal positional embedding (Vaswani
et al., 2017) as the positional embedding p by

p = Cat(PE(tr),PE(tx),PE(ty)) (3)

where Cat(·, ·, ·) denotes the concatenation function and
PE(·) denotes the positional encoding function that maps
a float to a vector. In IOPRE, the current observation ot is
the concatenation of the feature vector ft and the positional
embedding pt. Since historical experience is usually valu-
able for future decision-making, we employ an LSTM unit
to memorize historical observations {o0,o1, ...,ot−1} and
combine them with the current observation ot to form the
current state st.

3.4. Object Placement Assessment Reward

The realism of the current composite image is crucial for the
agent to make a decision, so we use its rationality score to de-
sign a reward function. Inspired by (Liu et al., 2021a), we de-
sign an object placement assessment network to evaluate the
rationality degree of generated composite images. Specifi-
cally, this network takes the concatenation of Ic and M c as
input and predicts a rationality score sa(Ic,M c), where the
variation range of sa(Ic,M c) is (0, 1). sa(Ic,M c) is com-
pared to a threshold of 0.5 to produce a binary rationality
label. In our method, we discard the binary rationality label
and retain sa(I

c,M c) to compare the rationality between
Ict and Ict+1. The agent receives a positive reward if the
rationality score of the new composite image is higher than
the previous one, otherwise, it receives a zero or negative
reward. Inspired by (Li et al., 2018), we adopt an additional
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negative reward−λs×(t+1) at each time step to accelerate
the object placement process, where λs is a hyper-parameter
that controls the significance of this negative reward, t+ 1
represents the number of steps and t starts from 0. The
agent takes an action at under the state st and then receives
a reward rt(st, at) by

rt(st, at) =sign(sa(I
c
t+1,M

c
t+1)− sa(I

c
t ,M

c
t ))

− λs × (t+ 1)
(4)

where sign(·) denotes the sign function. To stabilize the
training process of IOPRE, we limit the variation range of
rt(st, at) to [−1, 1].

3.5. Network Architecture

IOPRE consists of a composite module, backbone, actor-
critic branch, and object placement assessment (OPA)
branch, which is illustrated in Figure 2. The composite
module first converts a transformation vector t to the affine
transformation parameter θSTN , which is defined as

θSTN =

[
1 \ tr 0 (1− 2tx)(1 \ tr − 1)
0 1 \ tr (1− 2ty)(1 \ tr − 1)

]
(5)

Then, it employs the Spatial Transformer Network
(STN) (Jaderberg et al., 2015) to produce a new foreground
image Ĩfg and a composite mask M c. Finally, a composite
image Ic is obtained by

Ic = Ĩfg ⊙M c + Ibg ⊙ (1−M c) (6)

We adopt Swin Transformer (Liu et al., 2021b) as the back-
bone, which takes the concatenation of Ict and M c

t as input
and outputs a 768-dimensional feature vector ft at each time
step t. The transformation vector tt is mapped to the posi-
tional embedding pt, and the current observation ot is the
concatenation of ft and pt. IOPRE has two branches, the
first one is the actor-critic branch, and the other is the OPA
branch. The actor-critic branch consists of 5 fully-connected
layers and an LSTM unit. ot is fed into the first three fully-
connected layers and the LSTM unit to produce the current
state st. The last two fully connected layers are used to
get an output respectively, the first one is the policy output
(Actor), and the other output is the value output (Critic).
The policy output is a probability distribution of 7 possible
outcomes, which corresponds to 7 pre-defined actions of
the action space A. The value output is the expected ac-
cumulated reward for the agent starting from state st. The
OPA branch consists of a single fully-connected layer and
outputs rationality scores to compute rewards.

The policy output provides the agent with the probability
of each action under the current state. For exploration dur-
ing the training process, the agent samples an action from
the multinomial distribution, with actions having higher

probabilities being more likely to be selected. During the
testing process, the agent chooses the action with the highest
probability to find a reasonable placement according to the
learned policy. Note that the OPA branch is only used in the
training process.

3.6. Optimization

Inspired by (Li et al., 2018), we modify the asynchronous
advantage actor-critic (A3C) algorithm (Mnih et al., 2016)
to train the agent for learning the object placement pol-
icy. Specifically, we use the mini-batch to replace the asyn-
chronous mechanism to add diversity to exploration during
the training process. At each time step t, the accumulated
reward Rt is obtained by

Rt =
k−1∑
i=0

γirt+i + γkV (st+k; θv) (7)

where γ ∈ (0, 1] is the discount factor, rt is the object
placement assessment reward, V (st; θv) is the value output
under state st, θv denotes the network parameters of the
Critic branch and k ranges from 0 to tmax. tmax means
the maximum number of steps the agent takes before up-
dating. For the policy output, the optimization objective
is to maximize both the advantage function (Mnih et al.,
2016) Rt − V (st; θv) and the entropy of the policy out-
put (Williams & Peng, 1991) H (π (st; θ)), where π (st; θ)
is the probability distribution of policy output, θ denotes the
network parameters of the Actor branch, and H(·) is the
entropy function. The entropy in the optimization objective
improves exploration by discouraging premature conver-
gence to suboptimal deterministic policies. Further, θ can
be updated by

dθ ←dθ +∇θ log π (at | st; θ) (Rt − V (st; θv))

+ β∇θH (π (st; θ))
(8)

where π (at | st; θ) is the probability of the sampled action
at under the state st and β is a hyper-parameter to control
the importance of H(·). We optimize the value output by
minimizing the distance between Rt and V (st; θv). So θv
can be updated by

dθv ← dθv +∇θv (Rt − V (st; θv))
2
/2 (9)

The detailed procedure for training our IOPRE is shown in
Algorithm 1.

4. Experiment
4.1. Experimental Setting

4.1.1. DATASET AND EVALUATION METRICS

We conduct all experiments on the Object Placement As-
sessment (OPA) dataset (Liu et al., 2021a), which contains
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Algorithm 1 Training procedure of IOPRE
Input: background image Ibg, foreground image Ifg,
object mask Mfg , initial transformation vector t0
Output: network parameters of Actor branch θ and net-
work parameters of Critic branch θv
< Ic0 ,M

c
0 >= Composite(Ibg, Ifg,Mfg, t0)

t← 0, dθ ← 0, dθv ← 0
repeat
ft = FeatureExtractor(Ict ,M

c
t )

pt = PositionalEmbedding(tt)
ot = Concat(ft,pt)
< V (st; θv) , π (at | st; θ) >= Actor-Critic(ot)
perform at to get tt+1 according to π (at | st; θ)
< Ict+1,M

c
t+1 >= Composite(Ibg, Ifg,Mfg, tt+1)

rt = Reward(Ict ,M
c
t , I

c
t+1,M

c
t+1, t)

t = t+ 1
until t == tmax or at−1 is termination action;

R =

{
0 if at−1 is termination action
V (st; θv) for other actions

for i = t− 1 to 0 do
R← ri + λR
dθ ← dθ +∇θ log π (ai | si; θ) (R− V (si; θv))
+β∇θH (π (si; θ))

dθv ← dθv +∇θv (R− V (si; θv))
2
/2

end for
Update θ with dθ and θv with dθv

73,470 composite images with binary rationality labels. This
dataset also provides foreground images, foreground ob-
ject masks, and background images for image composition.
Specifically, these composite images are divided into 62,074
training images and 11,396 test images. The training (resp.,
test) set contains 2,701 (resp., 1,436) unrepeated foreground
objects and 1,236 (resp., 153) unrepeated background im-
ages. Besides, the training (resp., test) set consists of 21,376
(resp., 3,588) positive samples and 40,698 (resp., 7,808)
negative samples. In this paper, we first train our object
placement assessment network on the training set and evalu-
ate it on the test set. Then, we train IOPRE on the positive
samples of the training set and evaluate it on the positive
samples of the test set.

Following (Zhou et al., 2022), we adopt user study, accuracy,
and Fréchet Inception Distance (FID) metric (Heusel et al.,
2017) to evaluate generation plausibility. Specifically, IO-
PRE generates a composite image for a pair of foreground
and background given a random initial transformation vec-
tor. The user study is conducted to compare the composite
images generated by various methods. For each pair of
foreground and background, 20 voluntary participants are
invited to choose the most reasonable composite image.
Then, each method is scored by the proportion of partic-
ipants who choose its composite images. We obtain the

final score of each method by averaging its scores over all
samples. Accuracy is the proportion of generated composite
images that are classified as positive by a binary classifier
SimOPA (Liu et al., 2021a) in terms of object placement.
We compute FID between the generated composite images
and the positive composite images in the test set to measure
the similarity of two groups of images. Generally, lower FID
indicates that generated composite images are more realistic
and plausible. We use the Learned Perceptual Image Patch
Similarity (LPIPS) metric (Zhang et al., 2018) to evaluate
generation diversity. IOPRE generates 10 composite images
for a pair of foreground and background given 10 random
initial transformation vectors. LPIPS is used to evaluate
the perceptual similarity between two composite images,
and higher LPIPS means they are more different. We first
compute LPIPS for all pairs of composite images among 10
generation results. Then, the averaged LPIPS is adopted to
evaluate diversity.

4.1.2. IMPLEMENTATION DETAILS

We employ Swin-Tiny (Liu et al., 2021b) pre-trained on
ImageNet (Deng et al., 2009) to build our object placement
assessment network, which is trained with batch size 64 for
30 epochs. The initial learning rate is 1e-4, and we reduce
it by a factor of 0.1 every 10 epochs. This network achieves
an F1-score of 0.813 and a balanced accuracy of 0.863
on the test set of the OPA dataset (Liu et al., 2021a). All
parameters of this network are frozen when training IOPRE.
IOPRE takes this network as the backbone, except that the
last fully-connected layer of this network is used as the OPA
branch of IOPRE. We set the learning rate as 2e-4 and use
AdamW (Loshchilov & Hutter, 2017) to train IOPRE with
batch size 64 for 15 epochs. For the assessment reward, we
set the hyper-parameter λs as 0.01. To train IOPRE, we set
the discount factor γ as 0.99, the weight of entropy loss β
as 0.08, and the maximum number of steps tmax as 20. In
the training phase, t0 is obtained by a random initialization.
In the test phase, the maximum number of steps is set as
100. All images are resized to 256× 256 before being fed
into all networks.

4.2. Comparison with the State-of-the-arts

We compare the proposed method with the state-of-the-art
methods: TERSE (Tripathi et al., 2019), PlaceNet (Zhang
et al., 2020a) and GracoNet (Zhou et al., 2022). Follow-
ing (Zhou et al., 2022), we remove the target network of
TERSE (Tripathi et al., 2019) and maintain the synthesizer
and the discriminator to generate composite images. Be-
cause we do not need to use the target network for down-
stream tasks, and the discriminator is enough to help the
synthesizer to generate the composite images that we need.
PlaceNet (Zhang et al., 2020a) and GracoNet (Zhou et al.,
2022) can be directly applied to predict object placements
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Table 1. Comparison with the state-of-the-art methods on the OPA dataset. Best results are denoted in boldface.

Method Plausibility Diversity
User Study↑ Acc.↑ FID↓ LPIPS↑

TERSE (Tripathi et al., 2019) 0.168 0.679 46.94 0
PlaceNet (Zhang et al., 2020a) 0.230 0.683 36.69 0.160
GracoNet (Zhou et al., 2022) 0.284 0.847 27.75 0.206
Our IOPRE 0.317 0.895 21.59 0.214

IOPRE

GracoNet

PlaceNet

TERSE

Figure 4. Qualitative comparison results against state-of-the-art methods. The foreground is outlined in red.

without further adjustment. For a fair comparison, we use
all training samples of the OPA dataset (Liu et al., 2021a) to
train the above methods. Additionally, since the above meth-
ods are non-interactive, our IOPRE takes randomly initial-
ized locations and sizes as inputs instead of user-specified
initial locations and sizes. As shown in Table 1, the results
show that our method performs favorably against state-of-
the-art methods in terms of plausibility and diversity. Note
that TERSE (Tripathi et al., 2019) outputs only one object
placement given a pair of foreground and background, so its
diversity is zero.

We also present some qualitative comparison results
against state-of-the-art methods on test images of the OPA
dataset (Liu et al., 2021a) in Figure 4. Our method also
takes randomly initialized locations and sizes as inputs to
predict placements for a fair comparison. Compared with
other methods, the locations and sizes of the foreground ob-
jects are more reasonable in the composite images generated
by IOPRE, which verifies the effectiveness of our method

in an intuitive way. Additionally, we have provided more
qualitative results in the appendix.

4.3. Qualitative Results

As shown in Figure 5, we display the intermediate results,
final results, and selected actions in the interactive object
placement process. Given a user-specified initial location
and size, the agent takes actions step by step to adjust the
location and size of the foreground and decides when to
stop this process to obtain a reasonable placement. The first
two rows of Figure 5 show that IOPRE can produce differ-
ent object placements when given different initial locations
and sizes for a foreground object in the same background,
demonstrating its ability to enable flexible and diverse place-
ments based on user preferences. Additionally, if the initial
size (resp., location) of the foreground object is reasonable,
only its location (resp., size) will be adjusted, as shown in
the second (resp., third) row of Figure 5. Moreover, we
discover that if the initial location (resp., size) of the fore-
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Figure 5. Qualitative results of the proposed method. Each row displays the intermediate results, final result, and selected actions. For
convenience, some repetitive actions are omitted in the process. The foreground is outlined in red.

ground object is close to a reasonable location (resp., size),
its location (resp., size) will be slightly adjusted, as shown
in the fourth (resp., fifth) row of Figure 5. These results
indicate that our method can finely perceive the size and
location of the foreground object. We also observe that
there are no opposite actions in the object placement pro-
cess, which indicates that the agent has learned an efficient
policy. These findings demonstrate the effectiveness of our
method for interactive object placement. More results are
available in the appendix.

4.4. Ablation Study

We first study the influence of positional embedding. In our
IOPRE, we map the transformation vector to the sinusoidal
positional embedding, which is combined with the feature of
the current composite image to form the current observation.
Firstly, we remove the sinusoidal positional embedding and
only utilize the feature of the current composite image as
the current observation, which is denoted as ‘w/o PE’ in Ta-
ble 2. Then, we replace the sinusoidal positional embedding
with a learnable positional embedding, which is denoted as
‘learnable PE’. The results presented in Table 2 demonstrate
that 1) modeling the location and size of the foreground
significantly impacts generation plausibility, and 2) the si-
nusoidal positional embedding better describes the spatial

Table 2. Ablation studies on the positional embedding, aspect ratio
preserved action space, usage of LSTM unit, and design of reward
function. Best results are denoted in boldface.

Method Plausibility Diversity
Acc.↑ FID↓ LPIPS↑

w/o PE 0.864 23.66 0.227
learnable PE 0.872 22.37 0.218
ratio free 0.558 21.57 0.229
w/o LSTM 0.588 20.25 0.244
w/o step 0.858 24.85 0.233
w/o sign 0.672 20.34 0.247

Our IOPRE 0.895 21.59 0.214

information of the foreground compared to the learnable
positional embedding. Note that there is generally a trade-
off between plausibility and diversity, and accuracy is more
important than other metrics because it directly reflects the
proportion of generated reasonable placements.

We then study the effect of preserving the aspect ratio of
the foreground during the process of composite. In our
IOPRE, we utilize tr to represent the scaling ratio of the
whole foreground to keep its aspect ratio constant. To ex-
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Table 3. Hyper-parameter analyses on the discount factor of the
reward γ, the coefficient of the entropy of loss β, and the hyper-
parameter λs in the reward function. Best results are denoted in
boldface.

Method Plausibility Diversity
Acc.↑ FID↓ LPIPS↑

γ = 0 0.771 20.48 0.217
γ = 0.5 0.754 19.62 0.186
β = 0.06 0.885 22.33 0.208
β = 0.1 0.885 23.70 0.214
λs = 0.05 0.794 21.66 0.239
λs = 0.001 0.842 32.29 0.262

Our IOPRE 0.895 21.59 0.214

plore the effect of disregarding the aspect ratio, we design
an aspect ratio free action space that utilizes two variables
to represent the scaling ratios for the width and height of
the foreground, respectively, which is denoted as ‘ratio free’
in Table 2. The experimental results show a decrease in ac-
curacy when using the aspect ratio free action space, which
demonstrates the importance of maintaining the aspect ratio
of the foreground.

Next, we study the impact of the LSTM unit in our IOPRE.
The LSTM unit is responsible for memorizing historical ob-
servations and combining them with the current observation
to form the current state. We replace the LSTM unit with
a fully-connected layer to only focus on the current obser-
vation without considering historical observations, which
is denoted as ‘w/o LSTM’ in Table 2. Experimental results
show that only focusing on the current observation leads
to a notable decrease in accuracy, which indicates the im-
portance of employing an LSTM unit to retain and utilize
information from historical observations.

Finally, we analyze the impact of different reward function
designs. In IOPRE, our hybrid reward function combines
object placement assessment and the number of steps. First,
we remove the negative reward in our reward function to ig-
nore the influence of the number of steps, which is denoted
as ‘w/o step’ in Table 2. Then, we remove the sign func-
tion to consider the difference in rationality scores between
composite images, which is denoted as ‘w/o sign’. The
results demonstrate that 1) considering the number of steps
is significantly important for generation plausibility, and 2)
the sign function makes the reward more stable, which is
beneficial for model convergence.

4.5. Hyper-parameter Analyses

We conduct ablation studies on major parameters, including
the discount factor of the reward γ, the coefficient of the

entropy of loss β, and the hyper-parameter λs in the reward
function, as shown in Table 3. We set γ to 0, 0.5, and 0.99 to
analyze the influence of future rewards during the training
process, where ‘γ = 0’ means that the agent only considers
the current reward and ignores future rewards. The results
demonstrate that our IOPRE achieves the highest accuracy
when γ is set to 0.99, indicating the significance of future
rewards in learning the placement policy. To investigate
the effect of the entropy in the optimization objective, we
set β to 0.06, 0.08, and 0.1. When β is set to 0.08, our
IOPRE achieves the best performance in both plausibility
and diversity because increasing the value of β improves
exploration. However, when β is too large, the probability
distribution of actions becomes close to the uniform dis-
tribution, which is not conducive to learning the optimal
policy. For the assessment reward, we set λs as 0.05, 0.01,
and 0.001 to study the effect of the negative reward based
on the number of steps. When λs is set to 0.01, IOPRE
achieves the best performance in plausibility, which shows
that too high or too low negative rewards will lead agents to
learn sub-optimal policies.

5. Limitation
One of the main limitations of our method is that it does not
take into account aesthetic evaluation during the placement,
which is crucial in real-world applications such as artistic
creation and automated advertising. We will overcome this
limitation in future work.

6. Conclusion
In this paper, we formulate object placement as a sequential
decision-making process and propose an interactive object
placement method with reinforcement learning to produce a
reasonable placement given an initial location and size of
the foreground. Specifically, we have designed an aspect
ratio preserved action space, a multi-factor state represen-
tation learning method, and a hybrid reward function to
make the agent learn to place objects in background images
with suitable locations and sizes. Experimental results on
the OPA dataset demonstrate that our method has achieved
interactive object placement and obtained state-of-the-art
performance in terms of plausibility and diversity.
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A. More Qualitative Comparison Results against State-of-the-art Methods
We present more qualitative comparison results against state-of-the-art methods on the test images of the OPA dataset (Liu
et al., 2021a) in Figure 6 and Figure 7. Specifically, we compare the proposed method, IOPRE, with TERSE (Tripathi et al.,
2019), PlaceNet (Zhang et al., 2020a), and GracoNet (Zhou et al., 2022). Our method demonstrates superior performance in
placing foreground objects with more reasonable locations and sizes compared to other methods.

IOPRE

GracoNet

PlaceNet

TERSE

IOPRE

GracoNet

PlaceNet

TERSE

Figure 6. Qualitative comparison results against state-of-the-art methods. The foreground is outlined in red.

B. More Qualitative Results of the Proposed Method
We show more intermediate results, final results, and selected actions during the interactive object placement in Figure 8.
Based on the user-specified initial location and size, the agent takes a series of actions according to the learned policy to
place an object with a suitable location and size.
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IOPRE

GracoNet

PlaceNet

TERSE

Figure 7. Qualitative comparison results against state-of-the-art methods. The foreground is outlined in red.

Figure 8. Qualitative results of the proposed method. Each row displays the intermediate results, final result, and selected actions. For
convenience, some repetitive actions are omitted in the process. The foreground is outlined in red.
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