
Under review as a conference paper at ICLR 2024

FUSIONSHOT: BOOSTING FEW SHOT LEARNERS WITH
FOCAL-DIVERSITY OPTIMIZED ENSEMBLE METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing optimal few-shot learners is challenging. First, it is hard to train a
few-shot model that can deliver the best generalization performance on all bench-
marks compared to existing state-of-the-art (SOTA) methods. Second, unlike tra-
ditional deep neural networks (e.g., CNN, auto-encoder), few-shot learners utilize
the metric space distance-based loss function to optimize the deep embedding
learning on complex or multi-modal data. Both the choice of latent similarity
computation methods and the choice of DNN embedding algorithms for latent
feature extraction will impact the generalization performance of few-shot learners.
This paper presents FUSIONSHOT, a focal diversity optimized few-shot ensemble
learning framework with three original contributions. First, we revisit the few-
shot learning architectures to analyze why some few-shot learners perform well
whereas other SOTA few-shot models fail miserably. Second, we explore and
compare two alternative fusion channels to ensemble multiple few-shot learners:
(i) the fusion of various latent distance methods, and (ii) the fusion of multiple
DNN embedding algorithms that learn/extract latent features differently. Finally,
we introduce a focal-diversity optimized few-shot ensemble learning framework
for further boosting the performance of few-shot ensemble learning. Extensive
experiments on representative few-shot benchmarks (mini-Imagenet and CUB)
show that our FUSIONSHOT can select the best performing ensembles from a pool
of base few-shot models, which outperform the representative SOTA models, on
novel tasks (unknown at training), even when a majority of the base models fails.
For reproducibility purposes, trained models, results, and code are made available
at https://anonymous.4open.science/r/fusionshot-0A44/.

1 INTRODUCTION

Few-shot learning is gaining increased attraction for its remarkable ability to perform novel tasks
that are unknown during model training, including recent advances in large language models,
e.g., ChatGPT4 (OpenAI, 2023). However, in image classification, designing an optimal few-shot
learner that can persistently outperform the state-of-the-art (SOTA) methods seems stalled in
recent years for a number of reasons. First, it is extremely hard to train an individual few-shot
learner that can compete and win persistently. Second, unlike conventional deep neural networks
(DNNs), e.g., auto encoder-decoder and CNN, which learn invariant and distinctive features about
data by building high-level features from low-level ones through learning hierarchical feature
representations; the few-shot learner employs the metric space learning, a distance metric based
approach, to learn deep embedding of input data for latent feature extraction. By combining deep
embedding learning with metric space distance learning through metric-space loss optimization,
the few-shot learners can map examples of similar features in the real world (input data space)
to the latent neural embedding representations with dual properties: (i) the examples of similar
features in the real world will be mapped to the latent feature vectors that are closer in the latent
embedding space, and (ii) the examples with large dissimilarity in the real world will be sharply
distant in the latent feature embedding space. This empowered the few-shot learners to classify
samples with limited supervision on novel tasks that are completely unknown during model training.

Related Work. The most relevant few shot algorithms include the recent SOTA individual few-
shot algorithms, e.g., SimpleShot (Wang et al., 2019), DeepEMD (Zhang et al., 2020), and opti-
mizations (Bateni et al., 2020; Ye et al., 2020), and the recent few-shot ensemble methods, e.g.,
Robust-20 (Dvornik et al., 2019). They improve the top-1 or top-5 performance over the traditional
few-shot learners, e.g., ProtoNet (Snell et al., 2017), MatchingNet (Vinyals et al., 2016), and re-

1

https://anonymous.4open.science/r/fusionshot-0A44/

Under review as a conference paper at ICLR 2024

Figure 1: Understanding Individual Few-shot models with illustrative Examples

lationNet (Sung et al., 2018). The key distinguishing property of these recent improvements can
be characterized from three observations. First, recent studies suggest to use more complex la-
tent distance function, such as Earth Mover’s Distance (Zhang et al., 2020), Mahalanibis (Bateni
et al., 2020), and other methods (Ye et al., 2020) for learning latent feature similarity. For example,
DeepEMD (Zhang et al., 2020) shows that under the same backbone DNN feature extractor, Earth
Mover’s Distance (EMD) metric performs better than other non-parametric distance metrics, e.g.,
cosine, Euclidean, and some popular parametric distance metrics, e.g., the relationNet (Sung et al.,
2018). Second, SimpleNet (Wang et al., 2019) shows that using k-nearest-neighbor and k-means
clustering with Cosine distance can be more effective for learning metric-space distance than tra-
ditional few-shot algorithms, such as MatchingNet, ProtoNet, RelationNet. Finally, other studies
also suggest leveraging supervised pre-training via transfer learning to optimize the initialization of
the DNN embedding backbone architecture for latent feature extraction and latent feature similarity
learning (Chen et al., 2019). Interestingly, most of the SOTA models fail to offer consistent and
stable performance. Figure 1 compares four few-shot models: ProtoNet, DeepEMD, SimpleShot,
and FUSIONSHOT (proposed in this paper). For Query-1, DeepEMD and FUSIONSHOT succeed in
top-1 prediction while SimpleShot and ProtoNet both fail. However, DeepEMD fails on Query-2,
whereas all others succeed with the correct top-1 result, and Query-3, whereas ProtoNet also fails,
but SimpleShot and FUSIONSHOT succeed. Query-4 is a novel test example where DeepEMD,
SimpleShot, and ProtoNet all fail, but FUSIONSHOT succeeds in finding the correct top-1 result by
integrating focal diversity optimized ensemble pruning and learn to combine.
Scope and Contributions. This paper propose FUSIONSHOT, a focal diversity optimized few-shot
ensemble learning framework and algorithms, by leveraging complimentary wisdom of multiple
few-shot models through two alternative channels of fusion methods. We aim to create the fusion
of feature learning embeddings by using either (i) the same feature extraction DNN architecture
with different latent distance functions or (ii) the different feature extraction architectures combined
with the same distance function. By revisiting the few-shot learning architectures and understanding
when and why the representative few-shot models may fail, we propose a learn-to-combine method-
ology for resolving the prediction disparity among multiple diverse few-shot models, and generate
robust prediction through our ensemble fusion on novel datasets that are unknown at training phase.
We further boost our ensemble fusion performance by introducing a focal-diversity optimized few-
shot ensemble pruning method. The proposed focal diversity metrics can accurately capture the
negative correlation among component models of a few-shot ensemble and ensure with high confi-
dence that an ensemble of high focal diversity will have high error diversity, low negative correlation,
and strong failure independence. To the best of our knowledge, Existing few-shot ensemble meth-
ods are mainly based on joint training of multiple feature extractors (Dvornik et al., 2019; Bendou
et al., 2022). FUSIONSHOT is the first to ensemble multiple independently trained few-shot models
through integrating learning to combine and focal diversity optimization. We evaluate the effec-
tiveness of FUSIONSHOT by comparing it with both existing individual SOTA few-shot models and
the representative few-shot ensemble methods on popular benchmarks (mini-Imagenet and CUB).
Our results show that given a pool of base few-shot models, our FUSIONSHOT can select the best
few-shot sub-ensembles, which offer better generalization performance on novel tasks, unknown
at training, compared to the existing SOTA few-shot learners and few-shot ensemble models, even
when the majority of the base models in a FUSIONSHOT ensemble team fails.

2 FEW-SHORT LEARNING: THE REFERENCE ARCHITECTURE

Few-shot algorithms learn to extract latent features of complex data through joint training of a DNN
embedding function fθ and a latent feature distance function gψ . The embedding function should
preserve the distance of input data in their latent embedding space such that (i) the pair of input data
should be close in the latent feature space and (ii) the input data with high similarity defined by the

2

Under review as a conference paper at ICLR 2024

Figure 2: A Reference Framework for Few Shot Learning

pairing relation should be also similar in the latent embedding space. Figure 2 gives a sketch of
the few-shot learning reference architecture. For classification, the few-shot learner is optimized to
keep the pairwise distance between samples from the same class much closer in the latent embedding
space than the pairwise distance between samples of different classes. This empowers the trained
model capable of transferring knowledge to novel data of UNSEEN classes.
We can formulate the problem as follows: Let D = {(Ii, yi)}Li=1 denote a dataset with each sam-
ple Ii paired with a corresponding class label yi and yi ∈ C = {c1, c2, . . . , cL}. Note that in-
stead of pairing with a label, one can also pair with another input for self-supervised learning,
such as a pair of food image and recipe text (Xie et al., 2021). To train a few shot learner, we
first partition D into Dtrain, Dval, and Dnovel, denoting training set, validation set, and novel test
set respectively, and Ltrain + Lval + Lnovel = L. Let B denote the number of samples per
class. We have |Dtrain| = Ltrain × B, |Dval| = Lval × B, and |Dnovel| = Lnovel × B. The
few-shot learning consists of two stages: episode-based meta-learning and episode-based meta-
testing (Vinyals et al., 2016). In meta-learning, we train the model by using Dtrain, and validate its
performance on the Dval, including tuning hyper-parameters. In meta-testing, the performance of
the trained few-shot model will be tested on Dnovel. Figure 2 gives a sketch of the episode based
few-shot learning architecture. We call one forward pass as an episode. For K-way N -shot learn-
ing (1 ≤ K << min{Ltrain, Lval, Lnovel}, 0 ≤ N << B), an episode consists of a query Q
and a support set S of K classes with N samples per class. Both Q and S are randomly sampled
from Dtrain or Dval or Dnovel to create the training episode set, the validation episode set, or the
novel episode set for testing respectively. The composition of an episode should meet the following
constraints: First, S = {{Ic11 , . . . , I

c1
N }, . . . , {IcK1 , . . . , IcKN }}, and |S| = N × K. Let Icji denote

an input sample i belonging to class cj . After creating the support set S, a query Q is randomly
sampled to pair with S for composing the episode. The query Q should meet the following criteria:
(i) Q should be drawn from samples in the training set, i.e., Q ∈ Dtrain \ S; and (ii) Q should refer
to a sample that does not exist in the support set S but belongs to one of the K classes used in S ,
i.e., Q /∈ S,Q = Icj cj ∈ {c1, . . . , cK}, S ⊂ Dtrain. The number of episodes used per epoch
for few-shot learning on both mini-Imagenet and CUB benchmark is 1, 600, 1, 600, and 600 for
training, validation, and novelty testing respectively. Episode-based training for a K-way N -shot
learner will iterate through all training episodes. The total number of iterations is a hyper-parameter,
usually larger than one epoch, and is set differently by different algorithms (detail in Appendix).
For each iteration, we send one episode (S,Q) to the DNN embedding function fθ(.) to generate a
total of |S| + 1 latent embedding mappings, denoted by Hi = {hci1 , . . . ,h

ci
N}, where h = fθ(I

ci)
(i = 1, . . . ,K), plus one query embedding hq = fθ(Q), as shown in the middle of Figure 2. Sec-
ond, the latent distance function gψ(.) takes all N latent embeddings of the same class ci to obtain a
per-class integrated latent embedding by taking the averaging, for each of the K classes in the sup-
port set, denoted by {ec1 , . . . eci , . . . , ecK}. Then we use a latent-distance-method z = dψ(hq, eci)
to compute the distance between query embedding hq and each of the K class embedding eci .
Followed by softmax and the entropy based loss, we obtain the meta-loss and perform stochas-
tic gradient descent and back-propagation to initiate the next iteration of the learning with a new
episode. This training process repeats until all training episodes are consumed. The latent-distance-
method dψ(.) is typically a neural network based on L2 or Cosine dos (Sung et al., 2018; Vinyals
et al., 2016; Koch et al., 2015; Snell et al., 2017). Thus, the DNN embedding function fθ(.) with
parameters θ and the latent similarity function gψ with parameters ψ are jointly trained.

3 DESIGN OVERVIEW OF FUSIONSHOT

In contrast to existing few-shot ensemble method that uses joint-model training (Dvornik et al.,
2019), FUSIONSHOT presents a novel design for few-shot ensemble learning from three perspec-
tives. (1) We use a selection of M independently trained few-shot models as a pool of base models.

3

Under review as a conference paper at ICLR 2024

Figure 3: An overview of FUSIONSHOT framework for learning ensemble fusion.

(2) We further optimize our ensemble learning through focal-diversity optimized ensemble pruning.
Instead of constructing an ensemble of all M base models, we utilize a focal-diversity optimized
method to identify those base models that often fail together through focal-diversity based ensemble
pruning, which recommends only those sub-ensembles of high focal diversity. (3) Instead of using
non-parametric consensus like the majority voting to generate ensemble prediction to each novel
query based on the m independent predictions from an ensemble team of size m, we use a paramet-
ric approach that learns to combine multiple independently trained models for different ensemble
team size m (2 ≤ m ≤ M). In this section we describe the first and the third design choices and
defer the discussion on the focal-diversity optimized ensemble pruning to Section 4. Figure 3 gives
a sketch of FUSIONSHOT design.
The first prototype of FUSIONSHOT ensemble method is dedicated to explore two alternative fusion
channels to construct a few-shot ensemble: the use of multiple latent distance functions, and the use
of multiple latent feature extractors. Both fusion channels will use a parametric approach to building
an ensemble fusion model, which learns to combine m independently trained few-shot models and
then generate the ensemble output for each novel episode.
Few-shot ensemble by latent distance fusion. Given a novel episode i, denoted by (Qi,Si), a
few-shot ensemble learner of M component models will send the episode i to all M individual
component models. Let each model j produce the output ŷji = p(y|Si,Qi; θ), where ŷji ∈ RK

is the probability vector. Each value in ŷji indicates the probability of the query Qi, belonging
to a class present in the support set Si. For each episode i, there are M component models and
M different predictions against the query Qi over the support set Si. Thus, we have ŷ1

i , . . . , ŷ
M
i .

The goal of the FUSIONSHOT ensemble model is to learn the most robust way to combine the
M different predictions to generate the ensemble output against the query Qi for each episode in
Enovel. Specifically, for an episode i, the objective is to maximize p(yi = k|ŷ1

i , . . . , ŷ
M
i) for

mapping the query Qi to the class ck. Here, we parameterize the likelihood with a Multi-Layer
Perception (MLP), p(yi = k|ŷ1

i , . . . , ŷ
M
i ; θens), to approximate the probability. We want to find

the best parameters θens to maximize the likelihood, which can be reduced to minimize the cross-
entropy loss (see Equation 3), and to optimize the parameters of the ensemble model. This approach
also enables FUSIONSHOT ensemble neural network to learn the novel ways to combine and to make
correct prediction even when a majority of the M component models fail.
Few-shot ensemble by leveraging multiple feature extraction embedding methods. Assume that
we want to construct a few-shot ensemble from Pfe different feature extraction embedding methods
and Pld different latent distance methods, there are Pfe × Pld number of component models which
we can choose to create a pool of base models. For example, if we choose M different DNN
backbones to generate M different feature extraction embedding for each episode i, then we can
choose also M different latent distance methods, one corresponding to each of the M backbone
algorithms. This will represent the most general way of constructing a few-shot ensemble, as shown
in the top left of Figure 3. Alternatively, we can choose ResNet18 as the single backbone DNN
for learning feature extraction embedding, and choose M different latent distance methods, e.g.,
protoNet, relationNet, MatchingNet, SimpleNet, DeepEMD, each is jointly trained with ResNet18,
and hence, we have also M different few-shot models, all with the same DNN embedding method
(ResNet18), but each has its own latent distance method. This will allow us to build a few-shot
ensemble learner of M few-shot models through the fusion of the M latent distance methods, as
illustrated in Figure 3 under the #1 scenario of the general ensemble method. Similarly, by using

4

Under review as a conference paper at ICLR 2024

M different backbone algorithms to learn M different feature extraction embedding, each is jointly
learned with one latent distance method, say simpleShot, we can create the #2 scenario.
Ensemble Fusion through Learning. In FUSIONSHOT, we first determine the fusion channel to use
for creating a pool ofM base models (M is a configurable hyper-parameter). Then we will construct
the FUSIONSHOT specific training dataset to train the FUSIONSHOT model for effective learning of
few-shot ensemble fusion. We learn a few-shot ensemble model in four steps. (1) We choose M
independently trained few-shot models as the pool of M base models. For example, the models can
be trained using one or M different backbone algorithms for feature extraction embedding and M
different latent distance methods, as shown in Figure 3. (2) We feed the training episodes, one at a
time, to the M component models. For each episode i ∈ Etrain, denoted by (Qi,Si), we collect
the query prediction probability vector of size K, denoted by (ŷ1

i , . . . , ŷ
K
i), each of the K values

corresponds to the confidence of matching the query Qi to one of the K classes in the support set
Si. Let Ltrain denote the number of training episodes, and M is the total number of base few shot
models. We have the ensemble fusion training set Ytrain = {ŷji }

M,Ltrain

i=1,j=1 . (3) We feed the ensemble
fusion training data collected for learning to combine using a MLP network with cross-entropy loss
optimization, as illustrated in Figure 3. (4) We use the validation episodes and novel episodes to
create Yval and Ynovel. We use the predictions of the novel dataset, Ynovel, as the performance
evaluation of each ensemble model in FUSIONSHOT.

4 FEW-SHOT ENSEMBLE PRUNING WITH FOCAL DIVERSITY

Given a pool of M base models, the total number of ensemble teams with size m (2 ≤ m ≤ M)
is 2M −M − 1. The number of ensemble sets grows exponentially as m gets larger, e.g., when M
grows from 3 to 6 to 10, the number of candidate ensemble teams will be 4, 57, 1013 respectively.
Ensemble pruning is critical for several reasons. First, a recent study shows that the ensemble of
M base models may not outperform some sub-ensembles of size m (m << M) (Wu et al., 2021).
Second, ensemble pruning may effectively narrow down to the small selection of good ensemble
teams. A key question is how to effectively perform ensemble pruning.

4.1 FOCAL NEGATIVE CORRELATION AND FOCAL DIVERSITY

In FUSIONSHOT we introduce two episode-based disagreement metrics: the focal negative correla-
tion metric, σfocal, and the focal diversity metric λfocal. The former is used to quantify the level
of error diversity among the component models of an ensemble with respect to each model within
the ensemble. The latter is used to quantify the general error diversity of the ensemble by taking
into account all focal negative correlation scores of an ensemble. Consider a few-shot ensemble Em,
composed of m models: {FS1, . . . , FSi, . . . , FSm}, we choose one of the m base models each
time as the focal model to compute the focal negative correlation score of this ensemble, denoted
as σfocal(Em;FSi). We define the focal diversity of this ensemble team by the average of the m
focal negative correlation scores. The procedure of computing the focal negative correlation score
of σfocal is as follows: (i) select a base model among the set of m base models as the focal model,
(ii) take all the validation episodes that the focal model has failed and calculate the focal negative
correlation score, (3) repeat the previous steps until all m focal negative correlation scores are ob-
tained. {σfocal1 , . . . , σfocalm }, and (4) compute the average over {σfocal1 , . . . , σfocalm } to obtain the
focal diversity of ensemble Em, denoted by λfocal(Em):

λfocal(Em) = 1/m×
m∑
i=1

σfocal(Em;FSi)

σfocal(Em;FSi) = 1−
∑M

j=1
j(j−1)

m(m−1)
pj/

∑M
j=1

j
M pj

(1)

Here pi is the probability that i number of models fail together on a randomly chosen episode.
We calculate as pi = ni/L

val where ni is the total number of episodes that i number of models
failed together on the Yval and Lval is the total number of validation episodes. The nominator
in σfocal represents the probability of two randomly chosen models simultaneously failing on an
episode, while the denominator represents one randomly chosen model failing on an episode. The
terms beneath pj values are the probability of the chosen model being one of the failures. For
example, when M = 3, there are three cases of model failures; one, two, or three models can fail
simultaneously. If one model fails, the chance of selecting the failed model is 1/3. Similarly, for two
models, it is 2/3, and for three models, it is 1. In the case of minimum diversity, the probability of
two randomly chosen models failing together comes down to the probability of one of them failing,

5

Under review as a conference paper at ICLR 2024

which makes the fraction term equal to 1 and σfocal = 0. Similarly, in the case of maximum
diversity, there are no simultaneous failures. Hence, the nominator equals 0 and σfocal = 1.

4.2 ENSEMBLE PRUNING STRATEGY AND OPTIMIZATION

Our goal is not only to select the ensemble with its component models making the most diverse
wrong predictions but also to encourage cooperation by working together to produce correct an-
swers. For example, an ensemble of two models can be diverse but failing when the two base
models make wrong predictions even though they may not have the same wrong prediction. In
this scenario, strategies that advocate cooperation is essential to capture and promote the collabo-
rative behavior among the base models for boosting ensemble fusion performance. To this end, we
enhance the ensemble of component models by incorporating the plurality voting into our focal di-
versity optimized ensemble pruning method. The plurality voting selects the most voted decision to
recommend as the final decision. If there is no plurality, then it randomly picks among the decisions
of the m component models of the ensemble Em. Also, we can use plurality voting to examine the
validation episodes to create a lower bound for the selection of the best ensemble models, which
allows us to filter the worst ensemble sets rapidly before running focal diversity ensemble pruning.
Figure 4a shows the plurality voting accuracy against focal diversity values of all candidate ensem-

(a) (b)

Base
Models

Time(s)
BF GA Gain%

5 9.4 9.9 -5.50
10 228.2 24.5 828
15 508.99 41.8 1116
20 16201.51 54.9 29402

(c)

Figure 4: Focal diversity optimized ensemble pruning with brute force or Genetic Algorithm (GA)

ble sets with the colors representing the size of the ensemble sets for a pool of 10 base models on
miniImageNet. Each dot represents a subset of the pool of M = 10 base models. We observe from
Figure 4a a clear correlation between focal diversity and ensemble accuracy: as the focal diversity
increases, the accuracy of the ensemble increases. Moreover, ensemble teams of small size show
high diversity and high accuracy compared to ensemble of large size. For example, in Figure 4a, the
best-performing ensembles with high focal diversity typically have 2-4 base models. This indicates
that with our focal diversity-optimized ensemble pruning, we can find high-performing ensembles
of low complexity. Consider those dots on the top-right of Figure 4a, they are the sub-ensembles of
small size with high focal diversity and high top-1 prediction accuracy. Thus, we create a pruning
score metric by taking the convex combination of the diversity and accuracy of each ensemble set,
i.e., si = w1ai + w2λi. While ai, λi ∈ [0, 1] represent accuracy and focal diversity scores for
ensemble set Ei. The weights w1 +w2 = 1 represent the importance that one can put on the metrics
to calculate the pruning scores. This allows us to create an ensemble selection strategy that focuses
more on diversity and less on accuracy and vice versa.

Speeding up ensemble pruning with genetic algorithm. In the beginning of this section, we
mention the exponential growth of the number of candidate ensemble sets, as M gets larger, for
ensembling from a pool of M base models. For example, for M = 20, we must compute the focal
diversity score for 1, 048, 555 candidate ensemble sets. Figure 4b shows the time of convergence
for the Genetic Algorithm (GA) (Mirjalili & Mirjalili, 2019) against the number of base models in
the pool. Figure 4c shows the comparison between Brute Force (BF) implementation and GA. From
Figure 4c, the Brute Force (BF) approach to compute the focal diversity and the plurality-based
accuracy for each candidate ensemble of size m (1 ≤ m ≤ M) is expensive. This motivates us to
implement a Genetic Algorithm, which takes significantly less time to reach the best combination,
as shown in Figure 4b and Figure 4c. The Genetic algorithm requires (i) the representation of a
candidate solution and (ii) a fitness function to evaluate the solutions. As shown in Figure 5, we
use the binary vector, where each index represents the presence of the base model in the ensemble
set, to represent a solution αi. We use our pruning score calculation as the fitness function, i.e.,
r(αi) = w1ai+w2λi. The initial population contains randomly created candidate solutions. During
selection, the most fitted solutions survive to the next population. As the last step, we reproduce

6

Under review as a conference paper at ICLR 2024

new solutions by performing a cross-over among the best-fitted solutions. The procedure is repeated
until we reach a plateau or a predetermined fitness function value. In Figure 4b, for 20 different base
models, we reach the best set under a minute.

Figure 5: We show the Genetic Algorithm procedure.

5 EXPERIMENTS

Ensemble Fusion Performance Table 1 shows the ensemble fusion performance of FUSIONSHOT
using five backbone algorithms (see columns) and five metric-space distance functions (see rows)
on mini-Imagenet dataset. In row-wise, we show that using the fusion channel for feature extraction
ensemble, FUSIONSHOT achieves the top-1 performance improvement by 7.69 9.78% over the
classical few-shot models, and 4% for Simpleshot. In column-wise, we show that using the fusion
channel for latent distance ensemble, we get up to 4% top-1 performance improvements.

Method Dist. Conv4 Conv6 ResNet10 ResNet18 ResNet34 EnsBB Gain
Matching Cosine 51.730.75 47.950.79 50.850.84 50.890.78 50.900.84 56.790.45 9.78%
Prototypical L2 48.420.79 49.170.79 53.010.78 51.720.81 53.160.84 57.390.45 7.96%
MAML MLP 45.510.77 47.130.84 50.830.84 47.570.84 48.920.83 54.740.44 7.69%
Relation CNN 48.570.82 48.860.81 49.260.85 47.070.77 48.300.77 53.750.47 9.11%
Simpleshot L2 48.900.73 50.260.75 61.380.81 62.610.80 61.960.77 65.090.45 3.96%
EnsDistance 53.280.48 52.700.45 62.360.44 64.260.44 64.460.41

Gain 3.00% 4.85% 1.60% 2.64% 4.03%

Table 1: Few-shot ensemble fusion gains for both the fusion channel of five feature extraction back-
bone algorithms (columns) and the fusion channel of five latent distance methods (rows)

(a) (b)

Figure 6: Performance of 1-shot 5-way ensembles (mini-Imagenet) produced (a) by latent distance
fusion and (b) by feature extraction fusion. The green and red texts represent the best and worst
performing sets among the candidate ensemble sets of the same team size. The horizontal line is the
performance of the best base model.

Ensemble Performance by Fusion of Latent Distance Methods. In this set of experiments, we
zoom in the column on ResNet18 in Table 1 to analyze the performance impact of ensemble fusion
by combining multiple latent distance comparison methods. We add DeepEMD to the collection
to get a total of six metric-space distance methods. We first train six few-shot models indepen-
dently, each is jointly optimized with ResNet18 for feature extraction by embedding, and one of
the six metric-space distance methods for query matching prediction. Figure 6a shows the perfor-
mance measurement of the trained ensemble models over novel set of the mini-Imagenet dataset in
the 1-shot 5-way few-shot setting. Figure 6a shows at the top the selection of the best performing
candidate ensembles of varying team sizes. We observe that multiple ensemble teams outperform
DeepEMD (Zhang et al., 2020), the best individual model in the pool of six latent distance models.
Note that DeepEMD is the best individual model with top-1 accuracy of 63.9%. From Figure 6a,
we observe that several ensembles in different team sizes can outperform the best member model −
DeepEMD. First, the ensemble of Simpleshot and DeepEMD further improves the top-1 prediction
over DeepEMD. By adding Protonet, the ensemble of the three models (145) outperforms most of

7

Under review as a conference paper at ICLR 2024

other ensembles, including the 2-model ensemble of Simplenet and DeepEMD, and the 6-model
ensembes (012345), showing the effectiveness of our FUSIONSHOT focal diversity optimized en-
semble pruning and our learn-to-combine parametric approach to ensemble fusion.

Method Backbone Dist.
Func.

Embedding
Dimension

mini-Imagenet
1-shot 5-shot

Simpleshot DenseNet121 L2 1024 63.530.79 79.110.55
Simpleshot WideResNet L2 640 64.340.79 78.800.59
DeepEMD ResNet12 EMD 640× 5× 5 64.210.75 80.510.54
TADAM ResNet12 L2 640 58.50†0.30 76.70†0.30
FEAT WideResNet Cosine 640 61.72†0.11 78.49†0.15
LEO WideResNet KLDiv 640 61.76†0.08 77.59†0.12
Robust-20 ResNet18 Cosine 512 63.73†0.62 81.19†0.43
FusionShotdist: ResNet18 × (L2, L2, EMD) 512 66.380.10 81.580.36

FusionShotbb: (RN18-34, DN121, WR, CN4)× L2 (512, 1024, 640, 1600) 66.970.10 81.120.36

(a)

Method Backbone Dist. Func. CUB mini-Image→CUB
1-shot 5-shot 5-shot (blind) 5-shot

Matching ResNet18 Cosine 73.490.89 83.640.60 52.170.74 53.07†0.74
Prototypical ResNet18 L2 72.070.93 85.010.60 55.240.72 62.02†0.74
Relation ResNet18 CNN 68.580.94 82.750.58 50.930.73 57.71†0.73
MAML ResNet18 MLP 68.421.07 82.700.65 46.850.72 51.34†0.72
Simpleshot ResNet18 L2 66.630.88 82.630.65 67.380.70 -
DeepEMD ResNet12 EMD 74.390.85 87.650.55 77.440.70 78.86†0.65
Robust-20 ResNet18 L2 - - - 65.04†0.57
FusionShotdist: ResNet18 × (L2, L2, EMD) 78.640.38 88.950.29 78.020.38

(b)

Table 2: Comparison with existing SOTA methods on 1-shot 5-way and 5-shot 5-way performance
using (a) mini-Imagenet and CUB and (b) cross-domain scenario. FusionShotdist is the distance fu-
sion of Protonet, Simpleshot, and DeepEMD with ResNet18 backbone architecture. FusionShotbb

is the backbone fusion of Conv4, ResNet18-34, WideResNet, and DenseNet121 with Simpleshot as
the metric-space distance method. Data with the † symbol is taken from the corresponding work.

Ensemble Fusion by Backbone Feature Extractors. The next set of experiments is conducted
to measure the effectiveness of ensemble fusion by combining multiple backbone algorithms for
feature extraction under one fixed latent distance comparison method. We choose Simpleshot in
this set of experiments and paired with one of the seven backbone DNN architectures: Conv4,
Conv6, ResNet10, ResNet18, ResNet34, WideResNet and DenseNet121. We first independently
train seven few-shot models by using Simpleshot as the metric-space distance method, jointly opti-
mized with one of the seven backbone DNN architectures for embedding based feature extraction.
From Figure 6b, we make two observations. (1) A large number of the ensemble teams show higher
performance than the best-performing base model, which is SimpleShot with WideResNet. (2) The
best-performing ensemble teams, highlighted in green, have highfocal diversity and the most di-
verse backbone architectures, e.g., the best performing 3-model ensemble {356} is composed of
ResNet18, DenseNet121 and WideResNet.
Comparison with existing SOTA Few-shot methods We choose the six latent distance comparison
methods with ResNet18 as the fixed backbone architecture for feature extraction, as illustrated in
Figure 6b. By focal diversity ensemble pruning, we obtain Protonet, SimpleShot, and DeepEMD
with ResNet18 as the best ensemble by distance fusion, denoted by FusionShotdist. Similarly, we
choose the seven DNN backbone architectures as shown in Figure 6a and obtain SimpleShot with
Conv4, ResNet18-34, DenseNet121, and WideResNet as our best ensemble of four models, denoted
by FusionShotbb. We include several recent representative SOTA algorithms in Table 2, including
TADAM (Oreshkin et al., 2018), FEAT (Ye et al., 2020), LEO (Rusu et al., 2018), and Robust-
20 (Dvornik et al., 2019). The ensemble models recommended by our focal-diversity optimized
ensemble pruning improves the top-1 prediction performance by up to 4%, compared to the other
methods on both mini-Imagenet and CUB datasets for 5-way 1-shot and 5-way 5-shot scenarios.
Interpretation of Ensemble Fusion. This set of experiments is designed to provide intuitions to
interpret the performance improvement of FUSIONSHOT ensemble fusion. Figure 7a compares the

8

Under review as a conference paper at ICLR 2024

performance of each base model with the FUSIONSHOT for each of the 20 novel classes of mini-
Imagenet. We make three observations. (i) The performance of FUSIONSHOT ensemble fusion can
serve as the upper bound for each base model. (ii) Protonet and Simpleshot show similar high-low
performance patterns in the set of novel classes. Although unlike Protonet, Simpleshot uses the k-
nearest neighbor distance comparison method, both use L2 distance as their vector similarity metric.
(iii) DeepEMD displays nearly uniform performance across all novel classes, likely due to the use
of earth movers’ distance (EMD). Figure 7b reports the results of another set of experiments. Here,
we analyze all the base model predictions in 45000 episodes and count the errors that each model
made individually or together. The red bars show the number of errors that each individual makes or
the number of errors made by all models in the 2-model or 3-model combinations, while the green
bar shows the number of episodes that are corrected by our focal diversity selected ensemble for
top-1 prediction performance. We make three observations. (1) The right-most red bar shows that
the ensemble of 3-distance methods (Protonet, Simpleshot, and DeepEMD) with ResNet18 back-
bone architecture failed together in 8270 episodes, and our ensemble fusion model can successfully
correct 97 of them (1.2%). (2) Consider the 2-model ensemble {1-2}, there are 11112 episodes that
both Simpleshot and DeepEMD made incorrect top-1 prediction, and our ensemble fusion method
can correct 891 of them (8%). Finally, for Protonet (left-most), our FUSIONSHOT ensemble can
correct 9178 out of 21728 incorrect episodes, offering over 42% performance improvement.
Cross-domain Performance This set of experiments evaluates the cross-domain performance of
our ensemble of base models by first training on the mini-Imagenet and then testing on the CUB
dataset. The ensemble consists of the base models trained on mini-ImageNet and never sees the new
CUB dataset during meta-learning. The CUB dataset is only in the novel set for testing. This blind
setting simulates closely the real-world scenarios. Table 2b shows the performance of FusionShot
in blind setting. Even though there is a 10% gap between the first two best-performing base models,
FUSIONSHOT shows comparable performance with the best base model. When we remove Deep-
EMD, FUSIONSHOT improves the best base model performance by up to 6% (see Appendix). We
also show that FUSIONSHOT outperforms Robust-20 (Dvornik et al., 2019), an ensemble method
using 20 ResNet18 models, which is not trained blindly for cross-domain scenario.

(a) (b)

Figure 7: (a) The accuracy of base models vs FUSIONSHOT on each novel class out of 45000
episodes. (b) Red bar: # errors made by single base model or all models in a team out of 45000
novel episodes (1-shot 5-way, mini-Imagenet). Green bars: # corrected episodes by FUSIONSHOT.

6 CONCLUSION

We have presented a focal diversity optimized few-shot ensemble learning approach, coined as FU-
SIONSHOT. First, we explore and compare two alternative fusion channels to ensemble multiple
few-shot models. One is the fusion of various latent distance comparison methods for distance based
loss optimization. The other is the fusion of multiple backbone DNN algorithms to learn and extract
latent features differently. Moreover, we introduce a focal-diversity optimized few-shot ensemble
pruning method for further boosting the performance of ensemble fusion. Extensive experiments
are conducted on popular few-shot benchmarks (mini-Imagenet and CUB) with three learning sce-
narios: object recognition, fine-grained image classification, and cross-domain classification. The
results show that our ensemble fusion approach can select the best performing ensembles from a
pool of base few-shot models, which outperform both the representative SOTA models and the best
base model used for composing the ensemble.

9

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY STATEMENT

We make the following effort to enhance the reproducibility of our results.

• For FUSIONSHOT implementation, a link to an anonymous downloadable source is in-
cluded in our abstract. We also briefly introduce the implementation of FUSIONSHOT in
Appendix C2.

• We show a brief description of the representative SOTA few-shot models in Appendix C1.
Detailed settings and the hyper-parameter selection logistics can be found in Appendix C2.

10

Under review as a conference paper at ICLR 2024

REFERENCES

Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal. Improved few-
shot visual classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14493–14502, 2020.

Yassir Bendou, Yuqing Hu, Raphael Lafargue, Giulia Lioi, Bastien Pasdeloup, Stéphane Pateux,
and Vincent Gripon. Easy—ensemble augmented-shot-y-shaped learning: State-of-the-art few-
shot classification with simple components. Journal of Imaging, 8(7):179, 2022.

John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, and Richard Turner. Tas-
knorm: Rethinking batch normalization for meta-learning. In International Conference on Ma-
chine Learning, pp. 1153–1164. PMLR, 2020.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Diversity with cooperation: Ensemble methods
for few-shot classification. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3723–3731, 2019.

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Selecting relevant features from a multi-
domain representation for few-shot classification. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16, pp. 769–786.
Springer, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Ahmed Fawzy Gad. Pygad: An intuitive genetic algorithm python library, 2021.

Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. arXiv preprint
arXiv:1711.04043, 2017.

Markus Hiller, Rongkai Ma, Mehrtash Harandi, and Tom Drummond. Rethinking generalization
in few-shot classification. Advances in Neural Information Processing Systems, 35:3582–3595,
2022.

Nathan Hilliard, Lawrence Phillips, Scott Howland, Artëm Yankov, Courtney D Corley, and
Nathan O Hodas. Few-shot learning with metric-agnostic conditional embeddings. arXiv preprint
arXiv:1802.04376, 2018.

Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph neural net-
work for few-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11–20, 2019.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

Kai Li, Yulun Zhang, Kunpeng Li, and Yun Fu. Adversarial feature hallucination networks for
few-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13470–13479, 2020.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representation learning from multiple do-
mains for few-shot classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9526–9535, 2021.

Lu Liu, William Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. A universal repre-
sentation transformer layer for few-shot image classification. arXiv preprint arXiv:2006.11702,
2020.

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang.
Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv
preprint arXiv:1805.10002, 2018.

11

Under review as a conference paper at ICLR 2024

Xu Luo, Longhui Wei, Liangjian Wen, Jinrong Yang, Lingxi Xie, Zenglin Xu, and Qi Tian. Recti-
fying the shortcut learning of background for few-shot learning. Advances in Neural Information
Processing Systems, 34:13073–13085, 2021.

Chunwei Ma, Ziyun Huang, Mingchen Gao, and Jinhui Xu. Few-shot learning as cluster-induced
voronoi diagrams: a geometric approach. arXiv preprint arXiv:2202.02471, 2022.

Jiawei Ma, Hanchen Xie, Guangxing Han, Shih-Fu Chang, Aram Galstyan, and Wael Abd-
Almageed. Partner-assisted learning for few-shot image classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10573–10582, 2021.

Puneet Mangla, Nupur Kumari, Abhishek Sinha, Mayank Singh, Balaji Krishnamurthy, and Vi-
neeth N Balasubramanian. Charting the right manifold: Manifold mixup for few-shot learning. In
Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 2218–
2227, 2020.

Seyedali Mirjalili and Seyedali Mirjalili. Genetic algorithm. Evolutionary Algorithms and Neural
Networks: Theory and Applications, pp. 43–55, 2019.

OpenAI. Gpt-4 technical report. arXiv preprint https://arxiv.org/pdf/2303.08774.pdf, 2023.

Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. Advances in neural information processing systems, 31,
2018.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1199–1208, 2018.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16,
pp. 266–282. Springer, 2020.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

Eleni Triantafillou, Hugo Larochelle, Richard Zemel, and Vincent Dumoulin. Learning a universal
template for few-shot dataset generalization. In International Conference on Machine Learning,
pp. 10424–10433. PMLR, 2021.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten. Simpleshot: Re-
visiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623,
2019.

Yanzhao Wu, Ling Liu, Zhongwei Xie, Ka-Ho Chow, and Wenqi Wei. Boosting ensemble accu-
racy by revisiting ensemble diversity metrics. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16469–16477, 2021.

12

Under review as a conference paper at ICLR 2024

Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, and Peihua Li. Joint distribution matters: Deep
brownian distance covariance for few-shot classification. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 7972–7981, 2022.

Zhongwei Xie, Ling Liu, Yanzhao Wu, Luo Zhong, and Lin Li. Learning text-image joint em-
bedding for efficient cross-modal retrieval with deep feature engineering. ACM Transactions on
Information Systems (TOIS), 40(4):1–27, 2021.

Shuo Yang, Lu Liu, and Min Xu. Free lunch for few-shot learning: Distribution calibration. arXiv
preprint arXiv:2101.06395, 2021.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adaptation
with set-to-set functions. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8808–8817, 2020.

Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image classifica-
tion with differentiable earth mover’s distance and structured classifiers. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12203–12213, 2020.

13

Under review as a conference paper at ICLR 2024

Organization of Appendix

A Few-short Learning: The Reference Architecture 15

A.1 Training, Validation and Novelty Testing . 15

A.2 Episode-based Meta-Learning and Meta-Testing 15

A.3 Pre-training before Few-shot Meta-training . 16

B Design Overview of FUSIONSHOT 16

B.1 Ensemble Fusion through Learning . 16

B.2 Size Sensitive Focal Diversity Pruning . 17

C Experiments 17

C.1 Experimental Setup . 17

C.2 Base Model Details . 18

C.2.1 Prototypical Networks . 18

C.2.2 Matching Networks . 19

C.2.3 Relation Networks . 19

C.2.4 MAML . 19

C.3 Simple Shot . 19

C.4 DeepEMD . 20

C.4.1 Base Model Implementation Details . 20

C.5 Base Model Performances on Novel Classes . 20

C.6 Additional Experiments on Interpretation of Ensemble Fusion 21

C.7 Additional Experiments for Cross-Domain Evaluation 22

C.8 FusionShot Vs Plurality Voting . 22

C.9 Additional Experiments on FUSIONSHOT Performance 23

C.9.1 Backbone Feature Extractors and Latent Distance Method Analysis 23

D More Discussions on Few-shot Recent Literature 28

14

Under review as a conference paper at ICLR 2024

APPENDIX

This appendix includes additional materials that elaborate the discussions in the main paper. We
organize the materials by using the same section name from Section 2 (Appendix Section B) to
Section 4 (Appendix D) to facilitate the reading. We also include a brief overview of the few-shot
recent literature in Appendix E.

A FEW-SHORT LEARNING: THE REFERENCE ARCHITECTURE

A.1 TRAINING, VALIDATION AND NOVELTY TESTING

In contrast to classical supervised learning, a few-shot learning model is trained, validated and tested
on strictly disjoint partitions of labeled data in terms of classes. Put differently, the classes in training
set, validation set and novel set are also disjoint. For example, the mini-Imagenet dataset consists
of 100 classes with 600 samples each. To train a few-shot learner, we split the 100 classes into 64,
16, and 20 disjoint partitions for training, validation, and novel test sets, containing 38400, 9600,
and 12000 samples respectively. We can formulate the problem as follows: Let D = {(Ii, yi)}Li=1
denote a dataset with each sample Ii paired with a corresponding class label yi and yi ∈ C =
{c1, c2, . . . , cL}. Note that instead of pairing with a label, one can also pair with another input for
self-supervised learning, such as a pair of food image and recipe text (Xie et al., 2021). To train a
few shot learner, we first partition D into Dtrain, Dval, and Dnovel, denoting training set, validation
set, and novel test set respectively, and Ltrain + Lval + Lnovel = L. Let B denote the number of
samples per class. We have |Dtrain| = Ltrain×B, |Dval| = Lval ×B, and |Dnovel| = Lnovel ×B.

A.2 EPISODE-BASED META-LEARNING AND META-TESTING

The few-shot learning consists of two stages: meta-learning and meta-testing. In meta-learning,
we train the model by using Dtrain, and validate its performance on the Dval, including tuning
hyper-parameters. In meta-testing, the performance of the trained few-shot model will be tested
on Dnovel. Figure 2 gives a sketch of the episode based few-shot learning architecture (Vinyals
et al., 2016). We call one forward pass as an episode. For K-way N -shot learning (1 ≤ K <<
min{Ltrain, Lval, Lnovel}, 0 ≤ N << B), an episode consists of a query Q and a support set S
of K classes with N samples per class. Both Q and S are randomly sampled from Dtrain or Dval

or Dnovel to create the training episode set, the validation episode set, or the novel episode set for
testing respectively. The composition of an episode should meet the following constraints: First,
S = {{Ici11 , . . . , Ici1N }, . . . , {IciK1 , . . . , IciKN }}, and |S| = N ×K. Let Iciji denote an input sample i
belonging to class cj . After creating the support set S, a query Q is randomly sampled to pair with S
for composing the episode. The query Q should meet the following criteria: (i) Q should be drawn
from samples in the training set, i.e., Q ∈ Dtrain \ S; and (ii) Q should refer to a sample that does
not exist in the support set S but belongs to one of the K classes used in S, i.e., Q /∈ S,Q = Icij

cij ∈ {ci1, . . . , ciK}, S ⊂ Dtrain. The number of episodes used per epoch for few-shot learning
on both mini-Imagenet and CUB benchmark is 1600, 1600, and 600 for training, validation and
novelty testing respectively. Episode based training for a K-way N -shot learner will iterate through
all training episodes and the total number of iterations is a hyper-parameter, usually larger than one
epoch, and is set differently by different few-shot algorithms (see Appendix for detail).

For each iteration, we send one episode (S,Q) to the DNN embedding function fθ(.) to generate a
total of |S| + 1 latent embedding mappings, denoted by Hi = {hci1 , . . . ,h

ci
N}, where h = fθ(I

ci)
(i = 1, . . . ,K), plus one query embedding hq = fθ(Q), as shown in the middle of Figure 2. Second,
the latent distance function gψ(.) takes all N latent embeddings of the same class ci to obtain a per-
class integrated latent embedding by taking the averaging, for each of the K classes in the support
set, denoted by S {ec1 , . . . eci , . . . , ecK}. Then we use a latent-distance-method z = dψ(hq, eci)
to compute the distance between query embedding hq and each of the K class embedding eci .
Followed by softmax and the entropy based loss, we obtain the meta-loss and perform stochastic
gradient decent and back-propagation to initiate the next iteration of the learning with a new episode.
This training process repeats until all training episodes are consumed. The latent-distance-method
dψ(.) is typically a neural network based on L2 or Cosine (Sung et al., 2018; Vinyals et al., 2016;
Koch et al., 2015; Snell et al., 2017). Thus, the DNN embedding function fθ(.) with parameters θ
and the latent similarity function gψ with parameters ψ are jointly trained.

15

Under review as a conference paper at ICLR 2024

A.3 PRE-TRAINING BEFORE FEW-SHOT META-TRAINING

Pretraining is one of the options to further improve the transfer-ability and adaptability of few-shot
learning to unseen novel data. Instead of beginning with randomly initialized weights, this opti-
mization will choose to pre-train the DNN embedding based feature extractor fθ(.) on the training
set by adding a supervised classifier layer. Let ỹi = softmax(WT fθ(Ii)) represent the predictions
based on the jointly trained model, where Ii ∈ Dtrain and WT ∈ Rm × z is the classifier layer, m
denotes the embedding dimensions of the feature extractor and Ltrain denotes the number of classes
in Dtrain. This approach jointly trains the embedding with the cross-entropy loss to minimize the
classification error:

Llog(θ,W) = −
z∑
k=1

ỹklog(p(ỹ = k | Ii; θ,W))

B DESIGN OVERVIEW OF FUSIONSHOT

B.1 ENSEMBLE FUSION THROUGH LEARNING

In FUSIONSHOT, we first determine the fusion channel to use for creating a pool of M base models
(M is a configurable hyper-parameter). Then we will construct the FUSIONSHOT specific training
dataset to train the FUSIONSHOT model for effective learning of few-shot ensemble fusion. We learn
a few-shot ensemble model in four steps. (1) We choose M independently trained few-shot models
as the pool of M base models. For example, the models can be trained using one or M different
backbone algorithms for feature extraction embedding and M different latent distance methods, as
shown in Figure 3. (2) We feed the training episodes, one at a time, to the M component models.
For each episode i ∈ Etrain, denoted by (Qi,Si), we collect the query prediction probability vector
of sizeK, denoted by (ŷ1

i , . . . , ŷ
K
i), each of theK values corresponds to the confidence of matching

the query Qi to one of the K classes in the support set Si. Let Ltrain denote the number of training
episodes, and M is the total number of base few shot models. We have the ensemble fusion training
set Ytrain = {ŷji }

M,Ltrain

i=1,j=1 . (3) We feed the ensemble fusion training data collected for learning to
combine using a MLP network with cross-entropy loss optimization, as illustrated in Figure 3. (4)
We use the validation episodes and novel episodes to create Yval and Ynovel. We use the predictions
of the novel dataset, Ynovel, as the performance evaluation of each ensemble model in FUSIONSHOT.

Query prediction probability vector. For each base model of K-way N -shot, the forward pass
in meta-learning (recall Figure 2) will be used to collect the episode-based prediction probability
vector, (ŷ1

i , . . . , ŷ
K
i), using the training episode set, For episode i ∈ Etrain, the probability vector

is of size K, and each of the K probability values indicates the confidence of matching Qi to one
of the K categories in the support set Si based on their latent features. The top-1 prediction for Qi

is the category with the highest probability value. The average top-1 performance is the average of
the top-1 probability over the set of novel episodes (Enovel). Therefore, given the set of training
episodes, Etrain, the probability vector is obtained by maximizing the likelihood of ϕ:

l(ϕ) = argmax
ϕ

Etrain∏
i=1

pϕ(y|Si,Qi), (2)

where ϕ denotes the model parameters that parameterize the probability function over each training
episode i ∈ Etrain. Note that the backbone embedding function (parameters θ) is jointly trained
with the latent distance function (parameters ψ) by maximizing the equation 2, which can reduce to
minimize the cross-entropy loss on the model with parameters ϕ and the probability pϕ(y|Si,Qi)
over the support set of K classes in each episode i ∈ Etrain:

Llog(ϕ) = argmin
ϕ

−
Etrain∑
i=1

y log pϕ(y|Si,Qi) (3)

Each iteration the parameters are updated using Stochastic Gradient Descent (SGD). Instead of the
cross-entropy loss (equation 3), one may also use other loss functions, e.g., MSE (Sung et al., 2018).

Let Wγ , bγ denote the learnable model parameters for the MLP (learn to combine) model. For each
ensemble of size m (1 ≤ m ≤ M), after each of the m base models (all K-way N -shot) produce
a query prediction vector, we concatenate the predictions of the ensemble of m base models, and
the model parameters are Wγ ∈ Rm×K . At the final step, the model performs softmax to produce

16

Under review as a conference paper at ICLR 2024

the probability for each of the K classes in the support set, as illustrated in Figure 3. The ensemble
learner will output the ensemble fusion optimized prediction based on the logits layer of the MLP
(learn to combine) model:

ỹfusion = softmax(WT
γ [ŷ

1, . . . , ŷP] + bγ), (4)

B.2 SIZE SENSITIVE FOCAL DIVERSITY PRUNING

In this section, we present a further formulation of our fitness function shown in section 4.2. There
is no limit on the size of the ensemble set in theory, however, there are practical bounds on the
number of ensemble models one can use. Thus, we present a fitness function formulation that is
set-size-sensitive:

si = w1ai + w2λi − β
m

M
(5)

Here we introduce the m/M term to penalize the fitness score based on the size of the ensemble set,
m, to the total number of available models M . To control the amount of importance one can put on
the ensemble size we multiply the penalty term with β value.

We test the effectiveness of this function on the largest model pool with M = 28 and the model
combinations are as follows: (Matching, Proto, Relation, MAML, Simpleshot) × (Conv4, Conv6,
Resnet10, Resnet18, Resnet34), Simpleshot × (WideResNet, DenseNet121), DeepEMD. Note that
the number of combinations one can produce is above 200 million. With our Genetic Algorithm-
powered Focal Diversity Pruning algorithm we pruned the sets in 66.31 seconds. We get a result
with size of 5 when we set the β = 0.1 and a result with size of 4 when we set the β = 0.2. The
resulting sets with the performance is as follows:

• (MAML-RN18, MAML-RN34, SimpleShot-WR, DeepEMD) → 66.39 ± 0.42
• (PN-RN18, MAML-RN18, MAML-RN34, SimpleShot-WR, DeepEMD) → 66.29 ± 0.44

We used (Gad, 2021) library to implement Genetic Algorithm.

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Datasets and Scenarios: To evaluate FUSIONSHOT against the existing SOTA few-shot models,
we use three different learning scenarios: object recognition, fine-grained image classification, and
cross-domain classification, as suggested by (Chen et al., 2019). We use mini-ImageNet benchmark
for the first scenario. The dataset contains 100 classes from ImageNet, 600 samples per class. The
partition of classes for training, validation, and novel datasets is random. For ease of comparison, we
follow the standard distribution suggested in (Ravi & Larochelle, 2016). For the second scenario, we
use the Caltech-UCSD Birds-200-2011 (CUB) dataset, containing 11,788 samples belonging to 200
classes and split it into 100 training, 50 validation, and 50 novel classes following (Hilliard et al.,
2018). The literature calls the second scenario a fine-grained image classification because the goal of
CUB is to distinguish the species of birds rather than what the object is, such as human or animal. For
the cross-domain scenario, the standard approach is to train the model on one dataset and evaluate
it on another, e.g., mini-ImageNet→CUB. The goal is to discover the effects of domain shifts to
the few-shot models. In the standard approach, however, the model experiences the new dataset’s
validation classes during training. Specifically, the model stops training when the performance
on the new dataset’s validation classes decreases. In this paper, we use the blind cross-domain
scenario, where the model sees the new dataset’s classes only in novel dataset testing. The goal is to
completely remove dependency on the training process and establish a consensus among few-shot
learners using the ensemble learning method.

Evaluation. We perform our experiments with the standard settings in few-shot learning, which
are 5-ways 1-shot and 5-ways 5-shot classification (N = {1, 5},K = 5). Since few-shot learners
perform episodic learning where each episode chooses its samples randomly, we report the mean ac-
curacy (%) and 95% confidence interval of the novel set, Ynovel, with 600 episodes for all scenarios.

Implementation Details. We first perform meta-training on all M base models of an ensemble set
using training and validation datasets. We then perform few-shot inference on the training, valida-
tion, and novel sets to create the inferece set for ensemble fusion, including to create the MLP for

17

Under review as a conference paper at ICLR 2024

learning to combine: Ytrain, Yval, and Ynovel. Since the episode creation process contains random-
ization, we must set the seed and keep the indexes of images during the inference so that inference
sets contain predictions of the base models on the same set of support and query images. Finally, we
train a neural network having two fully-connected hidden layers with 100 neurons, on the inference
prediction set for 300 epochs, with the sigmoid activations between layers, and the Adam optimizer
with a learning rate of 0.001. We will use seven backbone DNN architectues for evaluating the fu-
sion of feature extraction. They are Conv4-6 (Vinyals et al., 2016), ResNet10, ResNet12, ResNet18,
ResNet34, WideResnet and DenseNet121. For the fusion of multiple meta-methods for latent dis-
tance comparison, we consider six alternative parametric methods, such as ProtoNet, MatchingNet,
RelationNet, Model-Agnostic Meta-Learning (MAML) model, DeepEMD and Simpleshot. For all
the base models, we use the standard augmentation during training, incl., random crop and color
augmentation. While the classical methods do not apply any feature adaption method, DeepEMD
and Simpleshot methods perform pre-training on their backbones using the training set. Depending
on the backbone architecture, the size of the image fed to the model changes between 224×224 and
84× 84. The details on the size, speed, and complexity of each base model are provided in the next
subsection.

C.2 BASE MODEL DETAILS

Method #Train Episodes Input Dim. Train Aug.
protonet 60,000 3× 224× 224 Resize, CenterCrop, Normalize

MatchinNet 60,000 3× 224× 224 Resize, CenterCrop, Normalize
RelationNet 60,000 3× 224× 224 Resize, CenterCrop, Normalize

MAML 60,000 3× 224× 224 Resize, CenterCrop, Normalize
DeepEMD 5,000 3× 84× 84 RandomResizedCrop, Ran-

domHorizontalFlip, Normalize
SimpleShot 9,000 3× 224× 224 Resize, CenterCrop, Normalize

(a)
Method Distance Function Pre-Train Loss Meta-Loss Function Optimizer
protonet Euclidean - Cross Entropy Adam
matchingnet Cosine - Cross Entropy Adam
relationnet CNN - MSE Adam
maml MLP - Cross Entropy Adam
deepemd EMD Cross Entropy Cross Entropy SGD
simpleshot KNN (Cosine) Cross Entropy - SGD

(b)
Method Backbone Embed. Dim. Pretrain Episode Time Total Size
Protonet ResNet18 512 No 29ms 42.672 MB

MatchinNet ResNet18 512 No 60ms 70.719 MB
RelationNet ResNet18 512 No 28ms 69.707 MB

MAML ResNet18 512 No 161ms 42.682 MB
DeepEMD ResNet18 640× 5× 5 Yes 354ms 47.431 MB
SimpleShot ResNet18 512 Yes 94ms 42.768 MB

(c)

Table 3: We show the training setting of each base model in (a) and (b). The cost of each model in
terms of spatial and temporal is shown in (c)

In this section, we give details on our models, where each of them utilizes a different latent distance
function. For all the extracted query and support embeddings we use the notation of fθ(Q) = hq
and fθ(Ii) = hi, where Ii ∈ S and θ is the backbone parameters. On below we show that ŷk is the
kth value of probability vector ŷk.

C.2.1 PROTOTYPICAL NETWORKS

After the backbone architecture produces each embedding, Prototypical Networks take the average
of embeddings that are in the same class and call them class prototypes. Then, they classify the query

18

Under review as a conference paper at ICLR 2024

by looking at the nearest Euclidian distance from the query embedding to the class prototypes. When
all the distances are calculated, a probability value is calculated for each class as follows:

p(ŷk|Q,S) =
exp(−||hq − ek||22)∑
k′ exp(−||hq − ek′ ||22)

, (6)

where we use the same notation ek for class prototypes which we show earlier in Appendix section
A.1. Prototypical Networks suffer the cross-entropy loss.

C.2.2 MATCHING NETWORKS

Matching networks, however, in the simplest form calculate softmax over the cosine distances be-
tween the query and all the support embeddings, α(hq,hi) =

exp(cos(hq,hi)))∑|S|
j exp(cos(hq,hj))

which they call an

attention value to the class. Then, Matching Networks perform a linear combination of the support
labels:

p(ŷk|Q,S) =
|S|∑
i=1

α(hq,hi)1(yi = k), (7)

where 1 is the identity function which takes 1 corresponding to the calculated class probability.
Matching Networks, also, suffer the cross-entropy loss.

C.2.3 RELATION NETWORKS

Relation networks utilize another CNN architecture called ’relation module’ to perform a compari-
son between the query and support embeddings. The relation module takes the concatenated query
embedding and a support embedding to produce a relation score r representing the relation between
the query and the sample. In the case of multiple shots, the relation networks sum all the relation
scores for individual classes. Differently, the relation networks suffer mean squared error loss where
the matched pairs have similarity 1 and mismatched pairs have similarity 0.

C.2.4 MAML

MAML is also a parametric model that employs a linear layer with parameters W and b on top of
the backbone fθ(.) following a softmax operation. Differently, in each episode, it performs a small
number of learning steps on the given support set, starting from the initial parameters (W, b, θ).
The inner loop performs supervised learning by grouping the images in the same class and labeling
them. After the inner loop iteration, the model predicts the query as follows:

p(ŷk|Q,S) = softmax(b′ +W′fθ′(Q)), (8)

where (W′, b′, θ′) are the updated parameters by the inner loop by suffering the cross-entropy loss.
Normally, the model is trained by updating the second-order gradients from inner loop parameters
into the initial parameters but first-order approximation is taken to reduce the amount of memory
cost. Dissimilar to other methods, MAML aims to learn the best initialization parameters.

C.3 SIMPLE SHOT

Simple Shot does not perform meta-training. Simpleshot, first, trains a classifier on top of the
backbone using supervised labels by minimizing the cross-entropy loss, l(Wfθ(I), y). Secondly, it
removes the classifier and performs meta-testing by assigning the closest support embedding to the
query embedding, i.e., it performs nearest-neighbor classification:

ŷk = argmin
ci∈{c1,...,cK}

d(hq,h
ci) (9)

where d either can be Euclidian or cosine distance. Simpleshot provides simple transformations on
the embeddings by centering and L2 normalization.

19

Under review as a conference paper at ICLR 2024

C.4 DEEPEMD

Deep EMD, first, pre-trains its backbone architecture by following the process we show in Appendix
A.3. Second, it removes the classifier layer and performs meta-training. Deep EMD employs Earth
Mover’s Distance function as their distance metric to the extracted features of query and support
samples:

EMD(Q, I) =
∑
i,j

x̃i,jζi,j , (10)

where I ∈ S and x̃ is the maximum flow of sending query weights to support weights and ζ is
the cost between weights. DeepEMD calculates the distance by solving a linear program. Thus, it
calls an LP solver in each iteration. To perform end-to-end training on the backbone, it calculates the
Jacobian. After propagating the gradients coming from the distance function, it suffers cross-entropy
loss.

C.4.1 BASE MODEL IMPLEMENTATION DETAILS

In the implementation of the Protonet, Matchingnet, Relationnet, and MAML; we used the code
provided by (Chen et al., 2019). For the DeepEMD and Simpleshot we used the code provided by
(Zhang et al., 2020) and (Wang et al., 2019), respectively. We separately train each base model with
the hyperparameters shown in Table 3a and 3b. For all the hyperparameters we suggest checking
our library for the reader.

In terms of spatial and temporal cost, we provide the capacity of each model with a ResNet18
backbone, in Table 3c. Note that, ResNet18 has a size of 42.67MB alone. Secondly, we provided
the duration of one forward pass for each model. In an online set-up where each base model runs in
parallel, the bottle-neck model will be DeepEMD.

We show the meta-training algorithm in Algorithm 1. Note that in each epoch, we perform multiple
iterations of episode creation and forward pass of the created episode. The classes, K, are selected
randomly from the Ctrain. Then, we sample multiple images to create queries and a support set from
the corresponding samples of the classes. Note that, the sampled data is in K× (N +M) shape. We
take the first N columns as support set, and the other columns as queries. Thus, in each iteration,
we have M amount of query for each class. One forward pass on the model produces the logits, and
we compare the logits with the class IDs. The class IDs, y, are integers showing the positions of the
classes in the support set for each query. Note that, y is the same for each iteration regardless of the
class sampled from Ctrain. Lastly, we compare the logits with the y and obtain episode accuracy
and loss.

Secondly, we show the inference algorithm in Algorithm 2 to obtain predictions of the trained model
on Dtrain, Dval, and Dnovel. The episode creation process is the same as the training algorithm with
the difference of selected classes for the samples, i.e., Ctrain, Cval, and Cnovel. Since y is the same
for each iteration regardless of which class it is sampled from, the process is class invariant, which
makes the models few-shot learners.

C.5 BASE MODEL PERFORMANCES ON NOVEL CLASSES

We analyze and compare the performance of these base models in Figure 8. Hence, all these based
models are using the same backbone architecture ResNet18 as shown in Figure 8. We make two
interesting observations. First, by observing the performance increase and decrease, we can say that
most of the base models follow similar patterns over the novel classes. However, the variance of
the models’ performances in a particular class is high. Second, DeepEMD shows more stable and
overall better top-1 and top-5 performance across different novel classes. However, for some novel
classes, Simpleshot clearly outperforms DeepEMD, such as novel class IDs 85, 89, 94, 96 for both
top-1 and top-5 performance.

Despite the fact that the accumulative behavior of base models shows similar patterns in terms of
top-1 and top-5 performance ups and downs, Figure 9 shows that their individual episode decisions
tend to provide different probability densities across the novel classes in the corresponding support
sets. The ensemble fusion method can effectively refine the top-1 and top-5 predictions by not
only taking into account of the highest scores of the models but also resolving the top-1 and top-5
prediction inconsistencies among the component base models of the ensemble.

20

Under review as a conference paper at ICLR 2024

Algorithm 1: Training Algorithm
Input : N ← 1 ; // number of shots

1 K ← 5 ; // number of ways
2 M ← 15 ; // number of query samples per class
3 D ← Db ; // the base dataset
4 num epoch ; // number of epochs
5 num iter ; // number of iterations per epoch

Output: Accuracy (acc) over time
6 for epoch to num epoch do
7 Initialize acc← [] ; // list to store accuracies
8 for i to num iter do
9 Randomly select Ctrain classes: cls← random select(Ctrain,K) ; // select random K

classes from base classes
10 Initialize data← [] ; // list to store data
11 for j to K do
12 sampl← get cls samples(D, cls[j]) ; // get samples for class cls[j]
13 data[j]← random select(sampl, N +M) ; // randomly select N+M samples

14 Si ← data[:, : N] ; // first N samples
15 Qi ← data[:, N :] ; // remaining M samples
16 logits← model(Si,Qi) ; // compute logits
17 Initialize y ← [] ; // create labels
18 for j to K do
19 y[j]← repeat(j,M) ; // repeat class label j M times

20 y ← y.flatten() ; // flatten the label list
21 loss← cross entropy(logits, y) ; // compute loss
22 acc[i]← calc acc(logits, y) ; // compute accuracy

// Do something with epoch results, e.g., store or print

Algorithm 2: Inference Algorithm
Input : N ; // number of shots

1 K ; // number of ways
2 M ; // number of query samples per class
3 D ← Dn ; // select the novel dataset
4 model← load(model) ; // load the best model
5 num iter ; // number of iterations

Output: Report novel accuracy (novel acc)
6 Initialize novel acc← [] ; // list to store accuracies
7 for i to num iter do
8 Create Si,Qi, y ; // generate data and labels
9 logits← model(Si,Qi) ; // compute logits

10 novel acc[i]← calc acc(logits, y) ; // compute accuracy

11 novel acc← mean(novel acc) ; // calculate mean accuracy
12 Report test accuracy (novel acc)

C.6 ADDITIONAL EXPERIMENTS ON INTERPRETATION OF ENSEMBLE FUSION

This section provides additional results on the interpretation of Ensemble Fusion reported in Figure
7a and Figure 7b.

Figure 10a compares the 5-shot novel class performance of DeepEMD, SimpleShot, Protonet, and
FUSIONSHOT. We observe that FUSIONSHOT improves the top-5 performance of the best base
model even though the worst model fails miserably. Furthermore, FUSIONSHOT can reduce failure
rate in scenarios where the majority of the base models in an ensemble fail.

Figure 10b shows that a similar analysis we showed in Figure 7b is also applicable to the top-5
performance. Here we use SimpleShot as the latent distance function while changing the backbone
architectures. The percentage of corrections made by the FUSIONSHOT ensemble is 20% when the
minority of the base models in an ensemble make incorrect predictions and 10% when the majority

21

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 8: We show the performance of each base model on novel classes of mini-Imagenet, where
each model is trained on mini-Imagenet for 1-shot-5way(a) and 5-shot-5way

(a) (b)

(c)

Figure 9: For given queries, we show the probability densities assigned by each model to the support
images. We want to emphasize the importance of the secondary probabilities, i.e., the probabilities
that do not correspond to the ground truth.

of the base models in an ensemble make incorrect predictions. Even when all of the base models
in the ensemble make incorrect decisions, FUSIONSHOT selected ensembles can still improve the
top-5 performance by correcting 1% of the errors.

C.7 ADDITIONAL EXPERIMENTS FOR CROSS-DOMAIN EVALUATION

In addition to the results reported in Table 2, we perform FUSIONSHOT in the blind setting for a
pool of base models without DeepEMD, which outperforms other base models by about 10%. Table
4 shows that FUSIONSHOT selected ensembles can improve the Simpleshot performance by 2% and
improve other base model performances up to 6% when Simpleshot is removed.

C.8 FUSIONSHOT VS PLURALITY VOTING

This set of experiments evaluates the performance gain of using MLP (learn-to-combine) in ensem-
ble fusion stage. We compare FUSIONSHOT performance with plurality voting for all candidate

22

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 10: (a) We show the accuracy of base models and the FusionShot on each novel class out of
45000 episodes for the 5-shot 5-way performance. (b) We show the number of errors that each Sim-
pleshot model made individually or together out of 45000 novel episodes for 1-shot 5-way settings
in mini-Imagenet. The green bars show the number of corrected episodes by the ensemble model.

Method mini-Image→CUB (blind)
Matching 52.170.74
Prototypical 55.240.72
Relation 50.930.73
MAML 46.850.72
Simpleshot 67.380.70
MAML-Matching-Proto 59.820.46
MAML-Matching-Protonet-Relation 61.170.46
MAML-Matching-Protonet-Relation-SimpleShot 69.910.44

Table 4: Performing Cross-Domain experiments without DeepEMD. All the methods use the
ResNet18 backbone.

ensemble sets (x-axis) by measuring the respective ensemble accuracy (y-axis). Figure 11 shows
the sorted accuracy measurements for FUSIONSHOT learn to combine based ensemble fusion com-
pared to FUSIONSHOT plurality voting consensus based ensemble fusion on the Ynovel dataset of
mini-Imagenet benchmark.

Figure 11: Performance of ensemble methods applied to the base predictions of Matching, Proto,
MAML, Relation, DeepEMD, and SimpleShot methods with ResNet18 architectures.

C.9 ADDITIONAL EXPERIMENTS ON FUSIONSHOT PERFORMANCE

C.9.1 BACKBONE FEATURE EXTRACTORS AND LATENT DISTANCE METHOD ANALYSIS

Figure 12 provides some additional details for visual illustration of the results reported in Figure 6a
and 6b. The hyperparameters, learning rate, number of epochs, and FusionShot architecture are kept
the same. We use the same datasets, Ytrain,Yval,Ynovel, during training, validation, and testing. We
use the validation data to decide when to stop the learning process and select the best-performing
validation model.

23

Under review as a conference paper at ICLR 2024

Figure 12a shows the performances of several FUSIONSHOT models, each is trained by using a
different latent distance function under the same backbone DNN architectures. Figure 12b shows the
performances of several FUSIONSHOT models, each is trained by using a different backbone DNN
architecture but all using the same latent distance function for metric space comparison. We make
two observations: (i) Our ensemble fusion approach outperforms the best-performing component
base model, e.g., DeepEMD (64.21%). (ii) A fair number of ensembles can outperform DeepEMD
(see those after the vetical line in both figures), indicating the opportunity of few-shot ensemble
learning, and the opportunity for our focal diversity optimized ensemble pruning to effectively select
top performing ensemble teams.

Table 5 and Table 6 shows all the ensemble teams included in Figure 12a and Figure 12b respectively
using in a table, ranked by their novel accuracy in an ascending order. For Table 5, we make the
following four highlights. (1) The best-performing 3-model ensemble set is highlighed by 1 in
yellow. It shows the effectiveness of our focal diversity optimized ensemble pruning algorithm. (2)
In contrast, by removing the Protonet base model and simply putting the two best-performing base
models (DeepEMD and SimpleShot) into a 2-model ensemble does not yield the top-performing
ensemble, see highlight by 2 in yellow. (3) The four-model ensemble highlighted by 3 in yellow
cannot outperform the 2-model ensembles even when the two base models are selected from the
component models of this 4-model ensemble. However, all of them are outperforming DeepEMD
which has 64.21% novel accuracy. This shows that our ensemble fusion approach can effectively
compose the top-performing ensmble learners that outperform the SOTA method. (4) As highlighted
by 4 in yellow, we show that the best performing 4-model ensemble without including Simpleshot
or DeepEMD as a member base model. This indicates the important role of a strong few-shot
model in ensemble learning, as demonstrated by the top 16 performing ensemble teams identified by
FUSIONSHOT, although we have shown that FUSIONSHOT can compose ensembles that outperform
DeepEMD, as discussed in the observation (3).

Similar observations can be made for Table 6. (1) As highlighted by 1 in yellow, the best-performing
ensemble is the 4-model team, each trained using different backbone architectures. (2) As high-
lighted by 2 in yellow, the 3-model ensemble has 66.70% novel accuracy lower than the top-
performing 4-model ensemble (66.97%), but both outperform the ensemble with all 7 base mod-
els (66.13%). (3) We can also find the best performing 2-model ensemble that the majority of the
models, highlighted by 3 in yellow, followed by the second best performing 2-model ensemble,
highlighted by 4 in yellow, showing that the ensembe of the larger team size may not outperform the
ensemble of smaller size.

24

Under review as a conference paper at ICLR 2024

(a)

(b)

Figure 12: The sorted performances of each FusionShot model that is trained on each possible sub-
ensemble set predictions in 1-shot 5-way setting on mini-Imagenet dataset. We provide all the scores
in the Table 5 and 6 for more details.

25

Under review as a conference paper at ICLR 2024

Ensemble Enumeration Novel Accuracy Ensemble Enumeration Novel Accuracy
maml-rn 49.06 pn-maml-ss 64.02
mn-maml 51.63 mn-pn-EMD 64.10

mn-maml-rn 51.82 mn-pn-rn-EMD 64.12
mn-rn 52.09 mn-pn-ss 64.17
pn-rn 52.81 pn-rn-EMD 64.20

pn-maml 53.48 pn-EMD 64.26
pn-maml-rn 53.98 mn-pn-rn-ss 64.313

mn-pn 54.19 rn-ss 64.47
mn-pn-rn 54.37 pn-ss 64.48

mn-pn-maml 55.26 mn-ss 64.54
mn-pn-maml-rn 55.384 pn-rn-ss 64.56

mn-maml-rn-EMD 62.96 mn-rn-ss 64.62
mn-maml-EMD 62.97 mn-pn-maml-rn-EMD-ss 64.97
maml-rn-EMD 62.98 mn-pn-maml-EMD-ss 65.00
mn-maml-ss 63.14 mn-maml-rn-EMD-ss 65.06

mn-maml-rn-ss 63.18 mn-maml-EMD-ss 65.11
maml-EMD 63.22 maml-rn-EMD-ss 65.18

mn-pn-maml-rn-ss 63.28 maml-EMD-ss 65.43
maml-rn-ss 63.34 pn-maml-rn-EMD-ss 65.43

mn-pn-maml-rn-EMD 63.34 pn-maml-EMD-ss 65.76
rn-EMD 63.35 mn-pn-rn-EMD-ss 66.10
maml-ss 63.39 rn-EMD-ss 66.14

mn-pn-maml-ss 63.56 mn-EMD-ss 66.16
mn-pn-maml-EMD 63.58 EMD-ss 66.202

pn-maml-rn-EMD 63.75 mn-rn-EMD-ss 66.22
mn-rn-EMD 63.77 pn-rn-EMD-ss 66.23

mn-EMD 63.83 mn-pn-EMD-ss 66.24
pn-maml-rn-ss 63.94 pn-EMD-ss 66.381

pn-maml-EMD 63.94

Table 5: Comparison of FusionShot performance for each Few-shot Learning method combination
for ResNet18 in 1-shot 5-way setting on mini-Imagenet dataset. The highlighted data descriptions
are in Appendix Section D.4.1

26

Under review as a conference paper at ICLR 2024

Ensemble Enumeration Novel Accuracy Ensemble Enumeration Novel Accuracy
C4-C6 51.91 RN10-WR-DN121 65.70

C4-RN10 61.40 C6-RN10-WR-DN121 65.72
C4-C6-RN10 61.78 C4-C6-RN10-WR-DN121 65.74

C6-RN10 61.83 RN10-RN18-RN34-DN121 65.74
C4-RN34 62.26 C4-C6-RN10-RN18-WR 65.78
C6-RN34 62.73 C6-RN10-RN18-RN34-WR 65.79

C4-C6-RN34 62.73 RN10-RN34-WR 65.84
C4-RN18 63.09 C4-RN10-RN34-WR 65.84
C6-RN18 63.11 C4-RN10-RN18-RN34-DN121 65.86

C4-C6-RN18 63.50 C4-C6-RN10-RN18-RN34-DN121 65.86
C4-DN121 63.69 C6-RN10-RN18-WR 65.87

RN10-RN18 63.75 C4-RN18-WR 65.87
C4-C6-RN10-RN34 63.83 C6-RN18-RN34-DN121 65.88

C6-RN10-RN34 63.90 C4-RN10-RN18-RN34-WR 65.88
C4-C6-DN121 63.95 C4-RN10-RN18-RN34-WR-DN121 65.90

C6-DN121 63.96 C4-RN18-RN34-DN121 65.91
C4-RN10-RN34 64.01 C6-RN10-RN34-WR 65.91

RN10-RN34 64.05 C4-C6-RN10-RN18-RN34-WR 65.95
C4-RN10-RN18 64.13 C6-RN10-RN18-RN34-DN121 65.96
RN10-DN121 64.18 C6-RN10-RN18-RN34-WR-DN121 65.98

C4-RN10-RN18-RN34 64.27 WR-DN121 65.98
C4-RN18-RN34 64.50 C4-RN34-WR 65.99

C4-RN10-DN121 64.50 RN18-WR 65.99
C4-WR 64.52 C4-C6-RN10-RN34-WR 66.00

RN10-RN18-RN34 64.54 C4-C6-WR-DN121 66.00
C6-RN10-RN18 64.58 C4-RN18-RN34-WR 66.01

C4-C6-RN10-RN18 64.58 RN18-RN34-DN121 66.02
C4-C6-RN18-RN34 64.60 C6-RN18-WR 66.02

C4-C6-RN10-DN121 64.63 RN34-WR 66.043

RN18-RN34 64.64 C4-C6-RN18-RN34-DN121 66.04
C6-RN18-RN34 64.66 C4-WR-DN121 66.04

RN10-WR 64.67 C4-C6-RN18-WR 66.05
C6-WR 64.69 C4-C6-RN10-RN34-WR-DN121 66.08

C6-RN10-DN121 64.76 C6-WR-DN121 66.09
C4-C6-WR 64.78 C6-RN34-WR 66.11

C4-RN10-WR 64.78 C4-C6-RN10-RN18-RN34-WR-DN121 66.13
C6-RN10-WR 64.80 RN10-RN18-WR-DN121 66.14

C4-C6-RN10-WR 64.94 C4-RN10-RN18-WR-DN121 66.14
C4-C6-RN10-RN18-RN34 64.97 C4-C6-RN34-WR 66.22

C4-C6-RN10-RN18-DN121 65.09 C6-RN10-RN34-WR-DN121 66.25
C6-RN10-RN18-RN34 65.10 C4-RN10-RN34-WR-DN121 66.32

C4-RN10-RN18-DN121 65.16 RN10-RN34-WR-DN121 66.33
C4-C6-RN34-DN121 65.17 C6-RN18-RN34-WR 66.37

C6-RN10-RN18-DN121 65.18 C6-RN10-RN18-WR-DN121 66.37
C4-RN34-DN121 65.18 RN18-RN34-WR 66.39

RN10-RN18-DN121 65.21 C4-C6-RN18-RN34-WR 66.39
C6-RN34-DN121 65.22 RN10-RN18-RN34-WR-DN121 66.42

C6-RN10-RN34-DN121 65.30 C4-C6-RN10-RN18-WR-DN121 66.47
C4-RN18-DN121 65.30 C4-RN18-WR-DN121 66.47

C4-C6-RN10-RN34-DN121 65.33 C4-RN34-WR-DN121 66.54
RN34-DN121 65.364 RN34-WR-DN121 66.58

C4-C6-RN18-DN121 65.37 C4-C6-RN18-WR-DN121 66.65
RN10-RN34-DN121 65.44 C6-RN34-WR-DN121 66.66

RN18-DN121 65.45 C6-RN18-WR-DN121 66.67
C4-RN10-WR-DN121 65.54 C6-RN18-RN34-WR-DN121 66.69
C4-RN10-RN18-WR 65.57 RN18-WR-DN121 66.702

RN10-RN18-RN34-WR 65.57 C4-C6-RN18-RN34-WR-DN121 66.73
C6-RN18-DN121 65.58 RN18-RN34-WR-DN121 66.81
RN10-RN18-WR 65.59 C4-C6-RN34-WR-DN121 66.82

C4-RN10-RN34-DN121 65.67 C4-RN18-RN34-WR-DN121 66.971

Table 6: Comparison of FusionShot performance for each Few-shot Learning architecture com-
bination for SimpleShot in 1-shot 5-way setting on mini-Imagenet dataset. The highlighted data
descriptions are in Appendix Section D.4.1

27

Under review as a conference paper at ICLR 2024

D MORE DISCUSSIONS ON FEW-SHOT RECENT LITERATURE

Few-shot image classifiers can be categorized based on their learning strategies into two types: in-
ductive and transductive. The transductive learning methods can provide high accuracy, (Liu et al.,
2018), but they require comparison with the fitted data for every new query which limits their ap-
plicability to other datasets, and slows the inference time performance. The inductive methods,
however, aim for a task-agnostic function that can be applied to any dataset. In this work, we focus
on the few-shot classifiers that follow inductive learning.

Numerous efforts have been dedicated to improving the performance of the few shot classifiers in
the inductive setting by either designing a more complex latent distance function or improving the
expressiveness of the feature extractor. The precedential methods, (Koch et al., 2015; Snell et al.,
2017; Vinyals et al., 2016) focused on the non-parametric latent distance functions such as Manhat-
tan, Euclidian, and cosine distances. Following these works, relation networks (Sung et al., 2018),
and recent Graph-CNN variants (Garcia & Bruna, 2017; Kim et al., 2019) offered the parameter-
ized approaches by learning the distance function with neural networks. The SOTA works show
the importance of the correlations between the embeddings by measuring the joint distribution with
parameterized metrics, such as Earth Mover’s Distance (Zhang et al., 2020), Mahalanibis distance
(Bateni et al., 2020), and Brownian Distance (Xie et al., 2022).

On the other side, various works that focus on the feature extractor proposed different techniques for
training and testing. (Chen et al., 2019) performed a supervised pre-training on the feature extractor
fraught with a fully connected layer that is fine-tuned during test time with few samples. Subse-
quently, (Wang et al., 2019) simply implemented k-nearest-neighbor to the outputs of a pre-trained
feature extractor and showed the performance with various feature extractor architectures. (Tian
et al., 2020) defend that pre-trained embedding can outperform many classical methods. To further
enhance the feature extractor’s expressiveness, several approaches have been proposed, including
the addition of extra self-supervised loss (Mangla et al., 2020), the utilization of augmentation tech-
niques (Luo et al., 2021; Yang et al., 2021), and the generation of supplementary data (Li et al.,
2020). Research on feature extractor adaptation during test time (Finn et al., 2017; Rusu et al.,
2018) finds the best initial parameters for learning novel tasks in testing, and (Ye et al., 2020; Bateni
et al., 2020) shows adaptive embedding to the target class during testing.

In terms of task-agnostic and generalization capability of few-shot learners, the literature interest
shifted towards improving the generalization of few-shot learners in unseen datasets (Triantafillou
et al., 2019), which mirrors the setting we experimented with in the blind cross-domain setting. The
focus is on creating a universal representation to generalize to unseen domains (Bronskill et al.,
2020; Liu et al., 2020; Triantafillou et al., 2021), and creating few-shot learners that are able to
distinguish common features in between datasets (Dvornik et al., 2020; Li et al., 2021). A recent
approach, (Hiller et al., 2022) proposes the use of Vision Transformers to overcome the lack of
fine-grained labels and learn high-level statistics.

Many methods, including universal representation learners (Li et al., 2021), have enhanced the gen-
eralization of their approaches by employing multiple backbones. (Dvornik et al., 2019) used ensem-
ble methods to mitigate the variance of few-shot learning classifiers, and jointly train their multiple
backbones during supervised training with different penalizing terms for diversity and cooperation.
Similarly, (Bendou et al., 2022) exploited the multiple backbones and improved the expressiveness
of each backbone with self-supervised loss. In terms of leveraging other methods, (Ma et al., 2021)
leveraged dual prototype networks, while one model is pre-trained to regularize the learning of the
main encoder. Most recently, (Ma et al., 2022) proposed a geometric ensemble approach by using
Voronoi Diagrams to model class relationships on the latent space.

28

	Introduction
	Few-short Learning: The Reference Architecture
	Design Overview of FusionShot
	Few-shot Ensemble Pruning with Focal Diversity
	Focal Negative Correlation and Focal Diversity
	Ensemble Pruning Strategy and Optimization

	Experiments
	Conclusion
	Reproducibility Statement
	Few-short Learning: The Reference Architecture
	Training, Validation and Novelty Testing
	Episode-based Meta-Learning and Meta-Testing
	 Pre-training before Few-shot Meta-training

	Design Overview of FusionShot
	Ensemble Fusion through Learning
	Size Sensitive Focal Diversity Pruning

	Experiments
	Experimental Setup
	Base Model Details
	Prototypical Networks
	Matching Networks
	Relation Networks
	MAML

	Simple Shot
	DeepEMD
	Base Model Implementation Details

	Base Model Performances on Novel Classes
	Additional Experiments on Interpretation of Ensemble Fusion
	Additional Experiments for Cross-Domain Evaluation
	FusionShot Vs Plurality Voting
	Additional Experiments on FusionShot Performance
	Backbone Feature Extractors and Latent Distance Method Analysis

	More Discussions on Few-shot Recent Literature

