Point or Line? Using Line-based Representation for
Panoptic Symbol Spotting in CAD Drawings
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Abstract

We study the task of panoptic symbol spotting, which involves identifying both
individual instances of countable things and the semantic regions of uncountable
stuff in computer-aided design (CAD) drawings composed of vector graphical
primitives. Existing methods typically rely on image rasterization, graph con-
struction, or point-based representation, but these approaches often suffer from
high computational costs, limited generality, and loss of geometric structural in-
formation. In this paper, we propose VecFormer, a novel method that addresses
these challenges through line-based representation of primitives. This design pre-
serves the geometric continuity of the original primitive, enabling more accurate
shape representation while maintaining a computation-friendly structure, making it
well-suited for vector graphic understanding tasks. To further enhance prediction
reliability, we introduce a Branch Fusion Refinement module that effectively inte-
grates instance and semantic predictions, resolving their inconsistencies for more
coherent panoptic outputs. Extensive experiments demonstrate that our method
establishes a new state-of-the-art, achieving 91.1 PQ, with Stuff-PQ improved by
9.6 and 21.2 points over the second-best results under settings with and without
prior information, respectively—highlighting the strong potential of line-based
representation as a foundation for vector graphic understanding.

1 Introduction

Panoptic symbol spotting refers to the task of detecting and classifying all symbols within a CAD
drawing, including both countable object instances (e.g., windows, doors, furniture) and uncountable
stuff regions (e.g., walls, railings) [1, 2, 13]. This capability is crucial in CAD-based applications,
serving as a foundation for automated design review and for generating 3D Building Information
Models (BIM). However, spotting each symbol, which typically comprises a group of graphical
primitives, remains highly challenging due to factors such as occlusion, clutter, appearance variations,
and severe class imbalance across different symbol categories.

Earlier approaches to this problem either rasterize CAD drawings and apply image-based detection
or segmentation methods [, 4]], or directly construct graph representations of CAD drawings and
leverage GNN-based techniques [5, 16, [7]]. However, both paradigms incur substantial computational
costs, particularly when applied to large-scale CAD drawings. To better handle primitive-level
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data, recent methods treat CAD drawings as sets of points corresponding to graphical primitives
and leverage point cloud analysis for symbol spotting. For example, SymPoint [§] represents each
primitive as a point with handcrafted features, encoding attributes such as primitive type and length.
However, this manually defined representation is restricted to four predefined primitive types (line,
arc, circle, and ellipse) and struggles to accommodate the more complex and diverse shapes frequently
encountered in real-world CAD drawings. In contrast, the recent CADSpotting [9] forgoes explicit
primitive types by densely sampling points along each primitive and representing each point using
only its coordinate and color. Although this design eliminates reliance on primitive types, it lacks
geometric structure and primitive-level awareness, which may hinder the model’s ability to delineate
symbol boundaries, resolve overlapping symbols, and capture structural configurations essential for
accurate symbol spotting.

In this work, we propose VecFormer, a Transformer-based [[10] model built on a line-based represen-
tation that serves as an expressive and type-agnostic formulation for vector graphical primitives. It
employs line sampling to generate a sequence of line segments along each primitive, with each line
represented by its intrinsic geometric attributes and associated primitive-level statistics, forming a
compact and informative feature set. illustrates a visual comparison of different primitive
representations. SymPoint [8] encodes each primitive as a single point, which is too coarse to capture
the fine-grained structures, especially for long primitives commonly found in stuff regions, leading
to degraded performance. To ensure a fair comparison, we adopt the same sampling density across
sampling-based methods. As shown in[Figure ] unlike CADSpotting [9] which suffers from blurred
symbol boundaries, our line-based VecFormer yields results with clearer structure and better align-
ment to ground-truth, demonstrating higher geometric and structural fidelity. This more compact yet
expressive representation is also better suited for Transformer-based architecture, which is sensitive
to input sequence length. Further discussion on sequence length across different representations is

detailed in

Additionally, inspired by OneFormer3D [11]], we adopt a dual-branch Transformer decoder to guide
the representation learning of vector graphical primitives, leveraging its strong multi-tasking capability
to jointly model instance- and semantic-level information. To produce a more coherent panoptic
output, we further propose a lightweight, training-free post-processing module, termed Branch Fusion
Refinement (BFR), which combines predictions from the instance and semantic branches through
confidence-based fusion. This refinement enhances label consistency, mitigates mask fragmentation,
and improves the overall coherence of panoptic symbol predictions.

To summarize, our main contributions are:

(1) We introduce VecFormer, a novel approach that leverages a type-agnostic and expressive line-
based representation of vector graphcal primitives, instead of traditional point-based methods, leading
to more accurate and efficient panoptic symbol spotting.

(2) We propose a Branch Fusion Refinement (BFR) module that effectively integrates instance and
semantic predictions via confidence-based fusion, resolving their inconsistencies for more coherent
panoptic outputs, yielding a performance gain of approximately 2 points in panoptic quality (PQ) on
the FloorPlanCAD [1]] dataset.

(3) We conduct extensive experiments on the FloorPlanCAD [1]] dataset, where our VecFormer
achieves a PQ of 91.1, setting a new state-of-the-art in the panoptic symbol spotting task. Notably, it
improves Stuff-PQ by 9.6 and 21.2 points over the second-best results under settings with and without
prior information, respectively, underscoring its superior performance and robustness in real-world
CAD applications.

2 Related Work

2.1 Panoptic Image Segmentation

Panoptic segmentation [12] aims to unify semantic [[13}14}[15,[16}/17] and instance segmentation [18
19, 20, 21]] by assigning each pixel both a class label and an instance ID, effectively covering both
things (countable objects) and stuff (amorphous regions). Early approaches predominantly relied on
CNN-based architectures [22, 23} 24} 25]], which, while effective, often required separate branches
for different segmentation tasks. Recent advancements have seen a shift towards Transformer-based
models, which offer unified architectures for various segmentation tasks. Notably, Mask2Former [26]
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Figure 1: Visualization of primitive representations. Compared to the blurry visual representations
of point-based methods (b, c), our line-based approach (d) more closely reflects the ground truth
drawing (a). As the data is in vector format, please feel free to zoom in to observe finer differences.
Additional comparisons are provided in[Appendix Aland [Appendix Bl

unifies panoptic, instance, and semantic segmentation using masked attention. SegFormer [17]]
improves efficiency with hierarchical encoders and lightweight decoders. OneFormer [20] further
introduces task-conditioned training to jointly handle multiple segmentation tasks. Despite these
successes in raster image domains, pixel-centric segmentation models face challenges when applied
to vector graphics tasks, such as Panoptic Symbol Spotting in CAD drawings. Their reliance on dense
pixel grids overlooks the inherent structure of vector primitives, making it difficult to capture precise
geometric relationships, maintain topological consistency, and resolve overlapping symbols. These
limitations hinder performance in structured, symbol-rich vector environments.

2.2 Panoptic Symbol Spotting

The panoptic symbol spotting task, first introduced in [1]], aims to simultaneously detect and classify
architectural symbols (e.g., doors, windows, walls) in floor plan computer-aided design (CAD)
drawings. While earlier approaches [2] primarily addressed instances of countable things (e.g.,
windows, doors, tables), Fan ez al. [1], inspired by [12]], extended the task to include semantic regions
of uncountable stuff (e.g., wall, railing). To support this task, they introduced the FloorPlanCAD
benchmark and proposed PanCADNet as a baseline, which combines Faster R-CNN [27]] for de-
tecting countable things with Graph Convolutional Networks [28] for segmenting uncountable stuff.
Subsequently, Fan et al. [4] proposed CADTransformer, utilizing HRNetV2-W48 [29] and Vision
Transformers [30] for primitive tokenization and embedding aggregation. Zheng et al. 6] adopted
graph-based representations with Graph Attention Networks [31] for instance- and semantic-level pre-
dictions. Liu et al. [8] introduced SymPoint, exploring point-based representations with handcrafted
features, later enhanced by SymPoint-V2 [32] through layer feature encoding and position-guided
training. Recently, CADSpotting [9] densely samples points along primitives to generate dense
point data for feature extraction and employs Sliding Window Aggregation for efficient panoptic
segmentation of large-scale CAD drawings. Although point-based representations are widely adopted
in existing state-of-the-art methods [8l |32} 9]], they exhibit notable limitations in complex and densely
annotated CAD drawings, including redundant sampling, loss of geometric continuity, and reduced
ability to distinguish adjacent or overlapping symbols, as shown in [Figure ||

3 Method

In this section, we first describe how heterogeneous vector graphic primitives are converted into a
unified line-based representation. We then present the panoptic symbol spotting framework built
upon this representation. Finally, we introduce our post-processing optimization strategy, Branch
Fusion Refinement. An overview of the entire pipeline is shown in [Figure 2]

3.1 Line Sampling

Existing point-based representations [8 32, [9] suffer from limited geometric continuity, structural
expressiveness, and generality across diverse primitive types. To address these issues, we propose
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Figure 2: Overview of VecFormer. Given a CAD drawing, VecFormer first applies line sampling
to build a line-based representation of primitives. A Transformer backbone is then used to extract
line-level features, which are subsequently aggregated into primitive-level features. Next, these
primitive-level features are enhanced by a Layer Feature Enhancement module and fed into a
Transformer decoder for joint instance and semantic prediction. Finally, a Branch Fusion Refinement
module integrates both branches to produce the final panoptic symbol spotting result.

Line Sampling, a line-based approximation that encodes primitives as sequences of line segments,
enabling unified and geometry-preserving modeling of heterogeneous vector graphics.

Specifically, given a vector primitive with a unique identifier j, we first convert it into a vector path
7v;(t) : [0,1] — R2. Then, we perform uniform or dynamic path sampling over its parameter interval
to generate a sequence of sampled points P; = {p; =v;(t;) |t =1,...,K}. Here,0 = t; < t3 <
-+ < tg = 1, where the number of samples K and the sampling parameters ¢; can be dynamically
adjusted based on geometric features such as the length and curvature of the primitive.

For simplicity, we adopt a uniform sampling strategy defined as: t; = ;(;_11 and use a hyperparameter

called the sampling ratio to control the number of samples K. Specifically, for line primitives, we
initially set K = 2; for all other types of primitives, we initially set X = 9. Given a sampling
ratio Qisample, W€ constrain the maximum allowable distance between adjacent sample points to be
no greater than cgample - min(width, height), where width and height denote the dimensions of the
CAD drawing. If this condition is violated, we iteratively increase the number of samples by setting
K < K + 1 until the constraint is satisfied.

Next, adjacent sampling points are pairwise connected to construct a sequence of line segments:

L;={l;= (" p°)|p°=pi,P° =pPis1,i=1,..., K -1}, 1)

which approximates the geometric features of the original primitive.

3.2 Panoptic Symbol Spotting via Line-based Representation

The process of panoptic symbol spotting via the line-based representation consists of three main
stages: first, using a backbone to extract line-level features; second, pooling the line-level features
into primitive-level features; and third, utilizing a 6-layer Transformer decoder to generate instance
proposals and semantic predictions.

3.2.1 Backbone

We choose Point Transformer V3 (PTv3) [33]] as our backbone for feature extraction due to its
excellent performance in handling unordered data with irregular spatial distributions.

Given a sampled line 1;, with its starting point p* = (z1,y;) and endpoint p¢ = (z2,y2), the
primitive ID j indicates the primitive to which the line segment belongs, and the layer ID £ indicates
the layer on the CAD drawing where the primitive is located. we will now describe how to convert it
into the position vector coord; € R? and the corresponding feature vector feat; € R (C is the
dimensionality of the feature vector) suitable for input to the PTv3 backbone.

Normalization. The initial step involves the normalization of the raw line features to a standardized
range of [—0.5,0.5].



For the starting point p* = (21, y1 ), the normalization is performed as follows:

s T1 ZLorigin Y1 — Yorigin
_ 0.5, YL Yorigin__ 2
pr = (71, ( width 05, height 0 5) @

In this formulation, the coordinates (Zorigin, Yorigin) denote the origin of the coordinate system em-
ployed in the CAD drawing. The terms width and height denote the dimensions of the CAD drawing.
The normalization for the endpoint p® is achieved through an analogous transformation.

For the normalization of layer ID, let kp;, and kn,x represent the minimum and maximum layer ID
values observed within the CAD drawing, respectively. The normalized layer ID k is then calculated
as:
k — ki
F=—"0__0.5. 3)

kmax - kmin

Line Position. To simultaneously capture both the position information and the layer information,
we use the midpoint of the line (¢, ¢,) for the first two dimensions and the layer ID k for the third
dimension:

coord; = (x;, Y, 2i) = (Cz,¢y,1d) = (xl _5332, a1 ;yQ,kJ> . ()
Line Feature. We set the dimensionality C' = 7, and define the line feature feat; € R7 as:
feat; = (I, d;,dy, cz, ¢y, ch, ). 5)

Here, | = /(x5 — 21)2 + (y2 — y1)? represents the length of the line. The terms d,, = (71 — z2)/!
and dy, = (y1 — y2)/1 denote the unit vectors for displacement in the = and y directions, respectively.

The coordinates (¢, ¢,) specify the midpoint of the line. These features are chosen because any
point on the line can be expressed as: (x,y) = (cx + tdy, cy +tdy),t € [—£, £]. which provides a
parametric representation of the line segment based on its center and unit vector.

Furthermore, (c%, cb') indicates the geometric centroid of the primitive. This centroid is determined

by calculating the average of the midpoint coordinates from all lines sampled within the primitive j
to which the specific line belongs:

(ke

(©)

)

)= (Zl,;eﬁ_,» Ca Zliecj Cy) .

3.2.2 Line Pooling

To obtain primitive-level features, we apply Line Pooling, which combines max and average pooling
over line-level features within each primitive, effectively preserving geometric information and
enhancing feature richness.

For each primitive j, line features f; € R® from 1; € L; are aggregated via both max and average
pooling, whose results are summed to produce the final primitive feature F; € RC:

F; —FmaX+Favg—maXf+|£| E f;. @)
LEL,
LeLl;

3.2.3 Layer Feature Enhancement

Inspired by SymPoint-V2 [32]], we adopt a Layer Feature Enhancement (LFE) module in our method.
Specifically, we aggregate the features of primitives within the same layer using average pooling,
max pooling, and attention pooling, and fuse the resulting layer-level context back into each primitive
feature. This fusion enhances the model’s ability to capture intra-layer contextual dependencies and
improves the semantic discrimination of similar primitives.

3.2.4 Query Decoder

Motivated by OneFormer3D [11], we initialize the queries using a Query Selection strategy, which is
widely adopted in state-of-the-art 2D object detection and instance segmentation methods 34,135, 136].



Subsequently, a six-layer Transformer decoder performs self-attention on the queries and cross-
attention with key-value pairs derived from primitive features. The decoder outputs are then passed to
an Instance Branch for generating instance proposals and a Semantic Branch for producing semantic
predictions.

Query Selection. With the primitive features £ € R™V*¢ derived from the previous stage, where
N denotes the number of primitives and C'is the dimensionality of each feature vector, the Query
Selection strategy randomly selects a proportion aelect € [0, 1] of the primitive features to initialize
the queries Q € RMXC with M = agelect - N representing the number of queries. Following the
configuration in OneFormer3D [L1], we set select = 0.5 during training to reduce computational
cost, which also serves as a form of data augmentation. During inference, we set qigeleey = 1.0 in
order to preserve the complete information of the CAD drawings.

Instance Branch. In this branch, each query embedding is mapped to a K + 1 dimensional space
as class label logits, where K denotes the number of classes and an extra +1 for the background
predictions. Simultaneously, we use an einsum operation between the query embedding and the
primitive features to generate the instance mask.

Semantic Branch. This branch aims to produce dense, per-primitive semantic predictions. We
project the output queries from the decoder into a K + 1 dimensional space as semantic logits. The
prediction for each query is assigned to the primitive that was selected to initialize the query during
the Query Selection process, thereby providing semantic label of each primitive.

3.2.5 Loss Function
To jointly optimize instance and semantic predictions, we adopt a composite loss function:
Ltolal = /\clchls + /\bceLbce + /\diceLdice + /\semLsem- (8)

Here, L is a cross-entropy loss for instance classification, Lype. and Lgice [137, 138]] are used for
instance mask prediction to balance foreground-background accuracy and mask overlap, respectively.
Ly, denotes the cross-entropy loss for semantic segmentation. The weights Acis, Abces Adices Asem
control the influence of each term.

3.3 Branch Fusion Refinement

To effectively integrate information from both the Semantic Branch and the Instance Branch, we
propose a post-processing strategy named Branch Fusion Refinement (BFR). This method consists of
three steps: Overriding, Voting, and Remasking.

Overriding. This step is primarily designed to resolve conflicts between instance predictions and
semantic predictions at the per-primitive level. Given a primitive p;, the semantic branch outputs a
semantic label [ (p;) € {1,...,K + 1} and a corresponding confidence score sgm(p;) € [0, 1].
Meanwhile, if p; is assigned to IV instance proposals, each such proposal provides an instance label
B € {1,..., K + 1} and an associated confidence score s}, € [0,1], where j € {1,...,N}
indexes the proposals that include p;.

To resolve the conflict, we compare the semantic and instance confidence scores. If the highest
instance score for p; is greater than the semantic score, i.e., max; s} (p;) > Sem(p;), then the
semantic prediction for p; is overridden by the instance label and score of the highest-confidence
proposal:

lreﬁned refined

sem (pi) = li]nst(pi)a Ssem (pi) = Sijnst(pi)a Wherej* = argje{rlﬂ.a.‘?iN} Si]nst(pi)' ©

If no instance score exceeds the semantic score, the original semantic prediction is retained.

Voting. Given an instance proposal that contains M primitives, its instance label is refined based on
the most frequently occurring semantic class among those primitives. Formally, the instance label
lingt for this proposal is refined as:

M
o = arg | _max > Tlenm(pi) = k), (10)
=1



where I(-) is the indicator function that returns 1 if the condition is true and O otherwise. This
majority voting strategy ensures that the instance label aligns with the dominant semantic context of
its constituent primitives.

Remasking. For each primitive p;, if it belongs to an instance mask My, but its semantic label
lsem(p; ) disagrees with the instance’s majority-voted label I, it is removed from the mask:

Di S Minst and lsem(pi> 7é linst = Di ¢ Minst- (11)

This operation effectively eliminates label contamination in the mask caused by prediction incon-
sistencies, thereby improving the purity and semantic consistency of the instance segmentation
results.

4 Experiments

4.1 Dataset and Metrics

FloorPlanCAD [1]] dataset consists of 11,602 diverse CAD drawings of various floor plans, each
annotated with fine-grained semantic and instance labels. We follow the official data split, which
includes 6,965 samples for training, 810 for validation, and 3,827 for testing. The annotations cover
30 thing classes and 5 stuff classes.

Following [1}4]], we use the Panoptic Quality (PQ) defined on vector graphics as our main metric
to evaluate the performance of panoptic symbol spotting. The Panoptic Quality (PQ) serves as a
comprehensive metric that simultaneously evaluates the recognition correctness and segmentation
accuracy of symbol-level predictions in vector graphics. A graphical primitive is denoted as ¢ = (I, 2),
where [ is the semantic label, z is the instance index. A symbol is represented by a collection of
primitives and is defined as s = {e; € J |l = l;, z = z;}, where J is a set of primitives. The metric
is defined as:
|TP| Z(sp,sg)eTP IoU(sp, sg) Z(sp 54)ETP ToU(sy, sg)

P = X = -t . 12
@ |TP|+ 1|FP| + |FN]| |TP| ITP|+ 1|FP| + L|FN]| (12)

Here, s, = ({,, zp) is the predicted symbol, and s, = (4, z4) is the ground truth symbol. |T'P|, | F P,
and |F' N | represent the number of true positives, false positives, and false negatives, respectively. A
predicted symbol is matched to a ground truth symbol if and only if I, = I, and IoU(sp, s4) > 0.5.
The IoU between two symbols is defined as:

Eeiéspﬁsg 1Og(1 + L(el))
ZejEspUsg log(l + L(ej)) 7

where L(e) denotes the length of a geometric primitive e.

IoU(sp, 89) =

(13)

4.2 Implementation Details

During training, we adopt the AdamW [39] optimizer with a weight decay of 0.05. The initial
learning rate is set to 0.0001, with a warm-up ratio of 0.05, followed by cosine decay applied over
20% of the total training epochs. The model is trained for 500 epochs with a batch size of 2 per GPU
on 8 NVIDIA A100 GPUs. To improve model generalization, we apply several data augmentation
strategies during training, including random horizontal and vertical flips with a probability of 0.5,
random rotations, random scaling within the range [0.8, 1.2], and random translations up to 10%
of the CAD drawing size along both axes. Furthermore, we empirically set the loss weight as
Acls & Abee : Adice © Asem = 2.5 :5.0:5.0:5.0.

4.3 Quantitative Evaluation

Panoptic Symbol Spotting. We compare our method with existing approaches on FloorPlanCAD [1]]
for panoptic symbol spotting, as shown in Our method achieves the highest Panoptic
Quality (PQ) across Total, Thing, and Stuff categories, demonstrating superior and more balanced
performance. Existing methods tend to perform better on Thing than Stuff categories, revealing an
imbalance in recognition. For example, SymPoint [8] scores 84.1 in Thing-PQ but only 48.2 in



Table 1: Quantitative evaluation results

(a) Panoptic symbol spotting results on FloorPlanCAD [1]] dataset. A dash (-) indicates that the method does not
support this setting or that the result is not reported in the original paper.

Method w/o Prior w/ Prior
PQ PQu PQy PQ PQu PQy
PanCADNet [1] 59.5 65.6 58.7 - - -
CADTransformer [4]] 68.9 78.5 58.6 - - -
GAT-CADNet [6] 73.7 - - - - -
SymPoint [[8] 83.3 84.1 48.2 - - -
SymPoint-V2 [32] 83.2 85.8 49.3 90.1 90.8 80.8
CADSpotting [9] - - - 88.9 89.7 80.6
DPSS [40] 86.2 88.0 64.7 89.5 90.4 79.7

VecFormer (Ours) 88.4 22 90.9 29 859 212 91.1+1.00 91.8 +1.00 90.4 (+9.6)

(b) Primitive-level semantic quality. wF1: length-weighted F1.

Method GAT-CADNet [6] SymPoint [8] SymPoint-V2 [32] VecFormer (Ours)
F1 85.0 86.8 89.5 93.8 (+4.3)
wF1 82.3 85.5 88.3 92.2 (+3.9)

Stuff-PQ. In contrast, our method achieves more balanced results and shows a marked advantage in
the Stuff classes, in particular, surpassing the current state-of-the-art method, SymPoint-V2 [32]], by
9.6 in Stuff-PQ.

To reflect real-world conditions where detailed annotations (such as layers) are often unavailable,
we evaluate current mainstream methods without using prior information. As shown in
existing state-of-the-art methods exhibit strong reliance on prior, particularly for Stuff categories.
Specifically, SymPoint-V2 [32] and DPSS [40] suffer significant performance drops in Stuff-PQ
when evaluated without prior, decreasing by 31.5 and 15 points, respectively. In contrast, our method
VecFormer consistent performance across both settings by using primitive IDs instead of layer IDs
as z-coordinate of position vector, i.e., use coord; = (¢, ¢y, ), but not coord; = (cz, ¢y, k)
described in[subsection 3.1} As shown in[Table Ta] VecFormer achieves a PQ of 88.4 and 90.9 in
the Total and Thing categories, outperforming the second-best methods by 2.2 and 2.9, respectively.
For the more challenging Stuff category, VecFormer demonstrates particularly strong performance,
achieving a PQ of 85.9 with a notable gain of 21.2 over the second-best result.

These results demonstrate that VecFormer maintains excellent generalization and robustness even
without relying on prior information, making it more suitable for practical deployment in real-world
CAD scenarios.

Primitive-Level Semantic Quality. We assess the model’s semantic prediction performance for each
graphical primitive by computing the F1 and wF1 score. As summarised in our VecFormer
consistently surpasses all prior methods, achieving an improvement of 4.3 in F1 and 3.9 in wF1,
compared to SymPoint-V2 [32]]. The qualitative results are shown in For more qualitative

studies, please refer to

4.4 Ablation Studies

Impact of Sampling Strategy. As shown in[Table 24| line sampling outperforms point sampling in
both settings—with and without prior information. The point sampling variant omits line-specific
features (I, d, d, ), leading to inferior results, confirming the superiority of line-based representations
for vector graphic understanding.

Choice of Sampling Ratio. As shown in reducing the sampling ratio ctgample from 0.1 to
0.01 steadily improves performance, with the best PQ (91.1) at cigample = 0.01—also yielding peak
PQu and PQy scores. Further reduction to cigample = 0.005 slightly degrades performance while
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Figure 3: Qualitative comparison of primitive-level semantic quality between VecFormer and
SymPoint-V2. Each row shows a representative example, with (a) Ground Truth annotations, (b)
predictions from our VecFormer, and (c) predictions from SymPoint-V2. As shown, VecFormer
provides more accurate and consistent semantic predictions across various graphical primitives.

increasing computational cost, making cample = 0.01 the optimal trade-off between accuracy and
efficiency.

Table 2: Ablation studies on sampling strategy, sampling ratio, BFR, and prior information.

(a) Ablation studies on sampling strategy (b) Ablation studies on sampling ratio
Prior Strategy PQ PQy  PQy Ratio PQ PQs PQy
wlo Point 87.8 899 854 0.1 904 91.1 89.7
. 0.05 90.6 913 89.7
Line 88.4 909 859 001 911 918 904
w/ Point 89.8 90.0 895 0.005 904 91.0 89.8

Line 91.1 91.8 904

(c) Ablation studies on BFR (d) Ablation studies of prior information
Method PQ PQu PQy Base Layer LFE PQ PQu PQy
w/o BFR 892 904 88.1 v 884 909 859
w/BFR 91.1 91.8 904 v N 90.2 91.7 884

Gain +1.9)  (+14)  (+2.3) v v v 911 918 904

Effects of the Branch Fusion Refinement Strategy. We conduct controlled experiments to evaluate
the effectiveness of the proposed Branch Fusion Refinement (BFR) strategy. As shown in
incorporating BFR significantly boosts performance across all metrics, demonstrating its essential
role in improving prediction accuracy and robustness.

Effects of Prior Information. As shown in[Table 2d] replacing the primitive ID j with the layer ID k&
in the position vector boosts PQ from 88.4 to 90.2, highlighting the value of layer priors. Adding the
Layer Feature Enhancement (LFE) module further improves PQ to 91.1, demonstrating that structural
priors and LFE together enhance geometric understanding.



5 Conclusions

We present VecFormer, a novel method that employs an expressive and type-agnostic line-based
representation to enhance feature learning for vector graphical primitives by preserving geometric
continuity and structural relationships, which are critical for symbol-rich vector graphics. To unify
instance- and semantic-level predictions from a dual-branch Transformer decoder, we propose the
Branch Fusion Refinement (BFR) module, which resolves inconsistencies and improves panoptic
quality. A current limitation lies in the use of uniform line sampling for simplicity, which may
underperform in regions of high geometric complexity. Future work will explore a geometry-aware
dynamic sampling strategy to better adapt to diverse structural patterns in vector graphics. To the best
of our knowledge, the proposed method does not pose any identifiable negative societal risks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explicitly state the main contributions and the
scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient details in[section 3|and[section 4|to allow reproduction
of the main results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: This study is based on publicly available datasets. The code is available at
https://github.com/WesKwong/VecFormer,

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide sufficient implementation details in [section 3| and [section 4] to
facilitate the understanding of our experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In this submission, we report only the mean performance of each method from
a single experimental run. Owing to the high computational overhead, we did not assess
variability across different random seeds or data splits. Consequently, neither error bars nor
statistical significance analyses are provided.

Guidelines:

» The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed descriptions of the compute environment used for our
experiments. Details are included in of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research presented in this paper fully complies with the NeurIPS Code
of Ethics. It does not involve any personally identifiable information, human subjects, or
sensitive data. The experiments are conducted on publicly available datasets, and no risks of
misuse or negative societal impact have been identified. We also provide implementation
details to promote reproducibility.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss potential societal impacts infsection 5] The proposed method
can enhance automation and efficiency in CAD-based design workflows, reducing manual
effort and improving accuracy in symbol recognition. We have carefully examined the
potential societal impacts of our work and did not identify any foreseeable risks or negative
consequences.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any pretrained models or datasets associated with high
misuse risk. Only the training code and evaluation pipeline will be made available for
research purposes, which do not pose identifiable risks of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited all third-party assets used in our work. Specifically,
we utilized the FloorPlanCAD dataset, which is licensed under the Creative Commons
Attribution-NonCommercial 4.0 License (CC BY-NC 4.0). We have cited the original paper
in our paper. All usage complies with the dataset’s license terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release our code upon acceptance of the paper. The codebase will
include comprehensive documentation, including a README file with installation instruc-
tions, usage examples, and detailed comments within the code to facilitate reproducibility.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our study does not involve any human participants or crowdsourcing experi-
ments.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: Our research does not involve any human participants or crowdsourcing
experiments.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our research does not involve the use of Large Language Models (LLMs) in

the development of our core methodology. Any LLM tools used were solely for writing
assistance and did not influence the scientific content of the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Detailed Visual Comparisons across Different Representations.

We present additional fine-grained visualizations to facilitate a more detailed comparison of different
representations. As illustrated in[Figure 4] our proposed line-based representation demonstrates closer
visual alignment with the ground truth than point-based methods (e.g., SymPoint [§]], CADSpot-
ting [9]), effectively preserving geometric continuity and structural integrity across a variety of
primitive types.
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Figure 4: Visualization of how different representations perform on different primitives.
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B Visual Comparison under Varying Sampling Ratios

To further investigate the impact of sampling density on representation quality, we conduct a compar-
ative analysis across different representations under varying sampling ratios cigample. As shown in
Figure 3| our line-based representation consistently maintains higher geometric fidelity and structural
coherence, even under lower sampling densities. In contrast, point-based representations tend to
suffer from fragmentation and loss of continuity as the sampling ratio decreases.

These visual results highlight the robustness of our approach in preserving essential geometric and
topological features, suggesting its suitability for vector graphics tasks where structural integrity is
critical under constrained sampling conditions.
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Figure 5: Visual comparison of the effects of varying sampling ratios on different representations.
Since the data is in vector format, zooming in allows for a detailed examination of the differences
between representations.
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C Sequence Length Analysis of Point- and Line-based Representations

This section analyzes the differences in sequence length between point-based and line-based repre-
sentations on FloorPlanCAD [1]] dataset.

We begin by configuring the line-based representation with a sampling ratio of ogampe = 0.01,
consistent with our experimental setup. For the point-based representation, we set Qsample = 0.001,
which yields a similar sampling density to that used in CADSpotting [9], although the sampling
strategies differ. As illustrated in [Figure 6] this setting results in CADSpotting, the point-based
method, producing sequences that are approximately 8 times longer than our line-based counterpart.
Despite the significantly shorter sequence length, our method achieves higher Panoptic Quality (PQ),
as demonstrated in the main results (Table Ta).

To ensure a fair comparison, we further evaluate both representations under the same sampling ratio
of asample = 0.01. Even in this setting, the line-based representation yields approximately 15% fewer
tokens than the point-based representation. Moreover, ablation results in[Table 2a confirm that our
approach not only reduces sequence length but also achieves superior performance.

These findings underscore the efficiency and representational strength of the line-based approach:
by encoding primitives through fewer yet structurally meaningful elements, it preserves geometric
fidelity while enhancing learning effectiveness. This compact, structure-aware design leads to more
accurate segmentation and improved overall performance, making line-based representation a more
effective and scalable solution for vector graphic understanding.
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Figure 6: Comparison of sequence lengths between point-based and line-based representations on
FloorPlanCAD [1]] dataset. The vertical axis indicates different dataset splits, while the horizontal
axis represents the average sequence length of each representation across these splits.
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D Additional Qualitative Evaluation

This section provides additional qualitative results through visualizations. The color scheme for
each category is defined in[Figure 7} and further examples are illustrated in [Figure 8] [Figure 9] and
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Figure 7: Color map used for category visualization, adapted from [8]].
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Figure 8: More qualitative comparison of primitive-level semantic quality between VecFormer and
SymPoint-V2 [32]]. Each row shows a representative example, with (a) Ground Truth annotations, (b)
predictions from our VecFormer, and (c) predictions from SymPoint-V2 [32]]. As shown, VecFormer
provides more accurate and consistent semantic predictions across various graphical primitives.
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Figure 9: Results of VecFormer on FloorPlanCAD.
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Figure 10: Results of VecFormer on FloorPlanCAD.
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