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Abstract

Perturbation experiments allow biologists to discover causal relationships between
variables of interest, but the sparsity and high dimensionality of these data pose
significant challenges for causal structure learning algorithms. Biological knowl-
edge graphs can bootstrap the inference of causal structures in these situations, but
since they compile vastly diverse information, they can bias predictions towards
well-studied systems. Alternatively, amortized causal structure learning algorithms
encode inductive biases through data simulation and train supervised models to
recapitulate these synthetic graphs. However, realistically simulating biology is
arguably even harder than understanding a specific system. In this work, we take
inspiration from both strategies and propose an amortized algorithm for refining
domain knowledge, based on data observations. On real and synthetic datasets, we
show that our approach outperforms baselines in recovering ground truth causal
graphs and identifying errors in the prior knowledge with limited interventional
data.

1 Introduction

Large-scale perturbation experiments have the potential to uncover extensive causal relationships
between biomolecules (Replogle et al., 2022), which may facilitate myriad applications in drug
discovery, from disease understanding to mechanism of action elucidation (Schenone et al., 2013).
Causal structure learning (discovery) algorithms are designed to extract these very relationships
directly from data (Spirtes et al., 2001). Yet due to the high number of variables (genes), compounded
with the low numbers of observations (cells) per setting (perturbation) (Nadig et al., 2024), these
algorithms struggle to scale and perform robustly on such datasets. A key challenge is that causal
discovery algorithms must not only infer the causal direction between variables, but also which
variables are related in the first place. The latter can be alleviated in part by incorporating noisy
priors regarding the data, e.g. by initializing the graph prediction using a biological knowledge
graph (Ashburner et al., 2000). However, these graphs compile decades of discoveries from disparate
experiments, rendering their relevance and correctness uncertain in individual cellular contexts.
While the choice and quality of these priors generally does not impact consistency in the infinite
data limit (Hauser & Bühlmann, 2012; Hägele et al., 2023), there are rarely sufficient data for these
guarantees to hold in practice.

An orthogonal line of work aims to capture inductive biases that cannot be easily represented by
individual graphs via amortized inference over synthetic data (Ke et al., 2022; Lorch et al., 2022). A
simulator first generates pairs of “ground truth” causal graphs and datasets, following known rules
regarding the domain of interest. For example, biological networks have been hypothesized to be
scale-free (Barabási & Bonabeau, 2003), and transcription dynamics can be described through sets of
differential equations (Chen et al., 1999). Once these data have been generated, a neural network is
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Figure 1: Drawing inspiration from amortized causal discovery algorithms, we learn how to refine
graph priors, enabling robust graph predictions in low-data regimes.

trained to map the datasets to their associated causal graphs. Empirically, the resultant models are
more robust to low-data situations in real settings, as they have ideally seen similar, synthetic datasets
over the course of training (Wu et al., 2024). However, since these approaches incorporate inductive
biases via simulation, it is imperative that the simulators accurately reflect the true data. In reality, it
has been observed that truly scale-free graphs are the minority in biology (Broido & Clauset, 2019),
and transcription dynamics can be highly heterogeneous and discontinuous, even within the same cell
type (Lenstra et al., 2016).

In this work, we propose an amortized inference framework for refining noisy graph priors, to
identify causal relationships in low-data regimes. We are motivated by the idea that while simulating
biological data is hard, simulating the types of noise that occur may be easier. For example, gene-gene
relationships may increase/decrease in strength, or appear/disappear based on the cell state, but the
directionality of these relationships rarely changes (Belyaeva et al., 2021). Our model architecture is
based on the supervised causal discovery model in Wu et al. (2024), in which datasets are featurized
in terms of local causal graph estimates and summary statistics such as global correlation. During
training, we augment these inputs with a corrupted, undirected graph, sampled at varying levels of
noise. The neural network is forced to identify incorrect edges based on data, as well as orient edges
where feasible.

We perform extensive experiments on both synthetic datasets and the real-world Sachs proteomics
dataset (Sachs et al., 2005), evaluating the model’s ability to 1) predict the ground truth graph and 2)
detect errors in noisy priors, particularly under various down-sampling settings to assess performance
in low-data regimes. Across all noisy prior conditions and sample sizes, OURS consistently achieves
strong results in both causal structure learning and error detection in noisy priors. In contrast, baseline
methods are significantly affected by the quality of prior knowledge and the amount of data. We
conclude that high-quality graph priors provide strong starting points for inferring causal relationships,
especially when limited data are available, and learning to denoise these priors is more data-efficient
than using them to initialize graph predictions.

2 Background and related work

2.1 Biological network inference

Biological network inference is a classic systems biology problem, in which the goal is to un-
cover interactions between experimentally-quantifiable entities (e.g. genes, proteins) in the form of
graphs (Albert, 2007; Huynh-Thu & Sanguinetti, 2018). For example, graphs of interest include gene
regulatory networks (Badia-i Mompel et al., 2023), protein-protein interaction networks (Tsitsiridis
et al., 2022), and metabolic pathways (Milacic et al., 2024). Early efforts towards biological network
inference included the DREAM challenges (Marbach et al., 2012), which provided harmonized
microarray data and were evaluated against known interactions at the time. Probabilistic graphical
models are commonly used to infer gene regulatory networks in specific disease areas (Mao & Resat,
2004; Zhao & Duan, 2019; Dai et al., 2024). More recent works have also used graph neural networks
to predict “missing” edges in these graphs (Feng et al., 2023). However, while biological network
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inference algorithms have been applied to a variety of disease areas, many of these methods are
typically engineered towards their respective datasets and do not share reproducible code.

2.2 Causal structure learning

Causality provides a formal framework for inferring data-generating mechanisms from experimental
data. A causal graphical model is defined by a distribution PX over a random variables X , associated
with a directed acyclic graph G = (V,E), where each node i ∈ V corresponds to a random variable
Xi ∈ X , and each edge (i, j) ∈ E indicates a direct causal relationship from Xi to Xj (Spirtes
et al., 2001). It is common to assume that the data distribution PX is Markov to G, i.e. variables
Xi are independent of all other Xj ̸∈ Xδi ∪ Xπi

(not descendants or parents), given its parents
Xπi

. Causal graphical models introduce the concept of interventions on node i, by changing the
conditional distribution P (Xi |Xπi

) to a new distribution P̃ (Xi |Xπi
).

Causal structure learning is the task of predicting causal graph G from dataset D ∼ PX . Classical
discrete optimization methods operate over the combinatorial space of edge sets, and they make
discrete changes to add/delete/orient edges. These include constraint-based algorithms, such PC and
FCI for observational data (Spirtes et al., 1995), and JCI for mixed data (Mooij et al., 2020). While
these algorithms can be initialized with an undirected graph as a prior, they cannot recover edges
that are not present in this initial skeleton. There are also score-based methods that optimize a score,
which represents the “goodness” of a particular graph, with respect to the data. These include GES
(Chickering, 2002), GIES (Hauser & Bühlmann, 2012), CAM (Bühlmann et al., 2014), LiNGAM
(Shimizu et al., 2006) and IGSP (Wang et al., 2017). Algorithms like GIES iterate between adding
and deleting edges, so they can (in principle) identify edges that are missing from an initial estimate.
However, due to the exponential space of potential graphs and the reliance on statistical power for
discrete judgments, these classical approaches scale poorly with the number of variables and require
copious data for reliable performance.

On the other hand, continuous optimization methods approach causal discovery through constrained
continuous optimization over weighted adjacency matrices. Many of these approaches, exemplified by
NoTears (Zheng et al., 2018), DCDI (Brouillard et al., 2020), and GranDAG (Lachapelle et al., 2020)
train a generative model to capture the empirical data distribution, which is parameterized through
the adjacency matrix. Several works have also been specifically designed to address challenges in
biological problems. DCD-FG (Lopez et al., 2022) aims to scale to single-cell transcriptomics data
and proposes a low-rank extension of DCDI. The hybrid IGSP algorithm (Wang et al., 2017) has also
been applied to single-cell data. Prior knowledge can be used to initialize the graph parameters in
these frameworks, but the same limitations apply with regards to data-efficiency.

2.3 Biological knowledge graphs for perturbations

Knowledge graphs have been indispensable to modeling biological perturbations. They are com-
monly used as undirected graphs, over which graph neural networks predict the cellular effects of
unseen perturbation (Roohani et al., 2023; Bai et al., 2024) or infer perturbation targets for active
learning (Huang et al., 2023) and target discovery (Gonzalez et al., 2024). This work focuses on an
adjacent but distinct task: of inferring relationships between variables, rather their effects or identity
as targets.

3 Methods

Let D ∼ PX be a dataset containing M samples of N variables, and let G = (V,E) be the causal
graph that generated PX . Let G′ = (V,E′) be an undirected graph, where E + E⊺ ≈ E′ but
E + E⊺ ̸= E′. Given D and E′, the goal is to predict E.

3.1 Inference

When given a new dataset D and graph prior E′, we summarize D in terms of local and global
summary statistics, which are combined with E′ as input to an attention-based neural network,
trained to predict E (Figure 2A). We adapt the Sample, Estimate, Aggregate workflow (SEA, Wu
et al. (2024)) to the task of refining noisy graph priors based on data observations as follows.
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Figure 2: A) At inference, we use biological knowledge graphs as noisy graph priors, which we refine
with perturbation data. B) We train an attention-based model to denoise simulated graph priors.

1. (Sample) We sub-sample batches from dataset D to focus on sets of variables that are likely
to be related, using heuristics like correlation.

2. (Estimate) We compute pairwise correlation ρ between all variables as a summary statistic;
and run classical causal discovery algorithms over smaller batches, sampled in (1).

3. (Aggregate) A neural network is provided the N ×N noisy graph estimate E′, the N ×N
summary statistic, and T estimates of size k × k (where k = 5 is small compared to N ).
The final output is a N ×N matrix that represents the predicted causal graph, refined from
the noisy prior with edges oriented.

3.2 Training

At inference time, E′ is provided (either a corrupted synthetic graph or a biological knowledge graph).
During training, we sample graph priors by adding noise to the ground truth undirected graph. We
compute E′ as follows.

1. Sample noise level p ∼ Uniform(0, 0.5), and binary mask M ∈ 1N×N where

Mi,j = 1{zi,j ∼ Uniform(0, 1) < p}. (1)

2. Compute undirected graph Ẽ = E + E⊺.
3. Compute noisy prior E′ where

E′
i,j =

{
Ẽi,j Mi,j = 0

1− Ẽi,j otherwise.
(2)

We finetune all weights with the binary classification objective of predicting E, at the edge level.
Thus, the objective both encourages the model to denoise E′ and orient edges.

3.3 Implementation details

We adopt the same axial-attention architecture as SEA. Specifically:

1. The k × k × T marginal estimates (local graph structures, inferred by standard causal
discovery algorithms) are aligned by matching the same edges across estimates, and mapped
to a K × T × d marginal feature, where K is the number of unique edges.

2. E′ is embedding using the same edge embeddings as marginal graphs (since they are in the
same input space), and the result is added to that of the global statistic (since they are over
the same nodes). The result is a N ×N × d global feature.

3. A series of 2D axial attention layers (Ho et al., 2020) attend over the rows and columns of
both matrices. The final output is a N ×N matrix, which is supervised by the (synthetic)
ground truth E.

Our synthetic training set contains approximately 4000 datasets of size N = 10, 20 with linear
additive and neural network (additive and non-additive) causal mechanisms. We use pretrained SEA
weights with the GIES (Hauser & Bühlmann, 2012) estimation algorithm and inverse covariance as
the global statistic. The introduction of E′ does not add any new parameters, as we use the same
embeddings as the existing edge estimates, which support undirected edges.
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Figure 3: Visualization of ground truth Sachs consensus graph (Sachs et al., 2005) and CORUM
knowledge graph (Tsitsiridis et al., 2022). Blue: Undirected edges present in both CORUM and
Sachs. Orange: Undirected edges present in Sachs but not CORUM. 9 of 17 undirected edges in
Sachs are present on the CORUM graph; of the 38 pairs of nodes that have no relationship in Sachs,
26 also have no relationship in CORUM.

4 Experimental setup

We evaluate our approach against a variety of causal structure learning baselines on real and synthetic
datasets. While it would be ideal to evaluate entirely on real applications, synthetic experiments
allow us to systematically assess how performance changes based on the quality of our noisy priors
and the availability of interventional data. In real settings, it is difficult to quantify the relevance
of knowledge graphs to each cell line, disease type, or other factors, as these labels themselves are
inherently approximations to the underlying biology.

4.1 Data preparation

Biological experiments The Sachs proteomics dataset (Sachs et al., 2005) is a common benchmark
for causal structure learning approaches. In this work, we use the subset proposed by Wang et al.
(2017), which contains 1755 observational samples and 4091 interventional samples, associated with
a consensus graph of 11 nodes and 17 edges. We use both a corrupted version of the ground truth
graph (“Synthetic KG”) and the CORUM (comprehensive resource of mammalian protein complexes)
knowledge graph (Tsitsiridis et al., 2022) as noisy priors. CORUM focuses on physical interactions
between proteins, which are likely relevant for, but do not directly translate to quantifiable effects of
perturbing certain proteins on others. Figure 3 depicts the CORUM graph alongside the ground truth.

Synthetic experiments The raw synthetic datasets were generated following DCDI (Brouillard
et al., 2020): (1) sampling Erdős-Rényi graphs with N = 10, 20 nodes and E = N expected edges;
(2) sampling random instantiations of causal mechanisms (Linear, Neural Networks, Sigmoid with
additive Gaussian noise, and Polynomial mechanisms); and (3) iteratively sampling observations
in topological order. For each graph, we generated one observational regime and ten interventional
regimes, with each regime consisting of 1000 samples, i.e., 1000 × N data points, either entirely
observational or following a set of single-node perfect interventions.

Down-sampling In perturbation experiments, observational data are generally easy to collect and
abundant, while interventional data are costly and limited. For example, large-scale Perturb-seq
datasets may include thousands of non-targeting control cells, but only a median of ∼50 cells per
perturbation (Nadig et al., 2024). To emulate this setting on all datasets, we sub-sample 50 or 100
examples from each interventional regime, while preserving all observational examples. This allows
us to evaluate all models in realistic data settings.

4.2 Baselines

We compare our method to several state-of-the-art causal discovery algorithms, which are able to
incorporate prior knowledge by initializing their graph parameters based on these undirected graphs.
Specifically, the “vanilla” setting indicates that models do not consider prior knowledge, while
the other settings specify the noise level (10%, 25%) that the undirected graphs were subject to
(Section 3.2).
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Table 1: Causal discovery and noise detection results on real proteomics dataset (Sachs et al., 2005),
50 samples per intervention. The vanilla setting is not evaluated on noise detection since there is no
graph prior. The best results in each category are indicated in bold.

Prior
Knowledge

Model Graph Noise

mAP ↑ SHD ↓ F1 ↑ Acc ↑

Vanilla

DCDI-G 0.14 23 — —
DCDI-DSF 0.14 29 — —
BACADI 0.15 20 — —
SEA 0.20 17 — —

Synthetic KG
(10% noise)

DCDI-G 0.14 21 0.55 0.73
DCDI-DSF 0.15 18 0.53 0.75
OURS 0.25 17 0.73 0.80

Synthetic KG
(25% noise)

DCDI-G 0.19 19 0.67 0.76
DCDI-DSF 0.15 23 0.35 0.60
OURS 0.24 17 0.78 0.80

CORUM KG
(34% noise)

DCDI-G 0.14 24 0.44 0.73
DCDI-DSF 0.15 20 0.67 0.82
OURS 0.21 16 0.70 0.78

• DCDI-G and DCDI-DSF (Brouillard et al., 2020) are two variations of DCDI, each employ-
ing a different density approximator. DCDI-G utilizes simple Gaussian distributions, while
DCDI-DSF leverages the more expressive deep sigmoidal flows to represent non-linear
causal relationships. To incorporate prior knowledge, we initialize the parameters of the
Gumbel adjacency matrix such that the initial weighted adjacency reflects to the noisy graph.
The “vanilla” DCDI initializes these parameters to a matrix of ones, i.e. a fully connected
graph.

• BACADI (Hägele et al., 2023) is a fully Bayesian approach for inferring complete joint
posterior over causal structure, parameters of causal mechanisms, and interventions in each
experimental context.

• SEA (Wu et al., 2024) is the “vanilla” version of our model, which does not incorporate any
prior knowledge and was not trained to denoise external information.

4.3 Metrics

We evaluate our models and all baselines on their ability to 1) predict the ground truth causal graph
and 2) detect errors in the prior knowledge. To assess the quality of the predicted graphs, we report
standard causal discovery metrics (discrete and continuous).

1. Structural Hamming Distance (SHD) measures the graph edit distance between the
predicted DAG and the ground-truth DAG, as defined in Tsamardinos et al. (2006). Lower
is better (0 is best). The discretization threshold is set to 0.5.

2. Mean Average Precision (mAP) calculates the area under the precision-recall curve for
each edge and averages it across the entire graph. mAP ranges from 0 to 1 (best).

We treat error (noise) detection as an edge-level binary classification task. Since graph priors are
symmetric, we symmetrize predicted graphs and omit the diagonal for this analysis. A “positive”
label is an edge that is flipped in the noisy prior, while a “positive” prediction is an edge whose
presence in the prediction differs from that in the noisy prior. We binarize with the standard threshold
of 0.5.

1. Acc is the un-weighted accuracy of identifying errors in the undirected graph.
2. F1 Score is the harmonic mean of precision and recall, which provides a unified measure

that considers both false positives and negatives.
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Table 2: Causal discovery results on synthetic datasets where N = 10, E = 10. Each setting is the
mean over five distinct datasets. Best results for each data setting are denoted in bold. Each dataset
contains 1000 observational samples and the specified number of samples per intervention. The
symbol † indicates that OURS and SEA were not trained on this setting (for fair comparison to SEA).

Samples Noise Model Linear NN non-add. Sigmoid† Polynomial†

mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓ mAP ↑ SHD ↓

50

Vanilla

DCDI-G 0.27±0.15 12.7±4.22 0.44±0.12 9.1±3.56 0.25±0.15 8.9±3.88 0.27±0.10 8.5±1.36

DCDI-DSF 0.26±0.09 17.6±5.08 0.16±0.04 27.6±4.34 0.13±0.05 26.8±5.23 0.11±0.03 28.7±3.82

BACADI 0.42±0.23 11.8±4.49 0.39±0.14 14.3±4.50 0.39±0.18 11.0±4.15 0.28±0.11 12.4±2.62

SEA 0.94±0.05 2.0±1.55 0.84±0.07 5.4±1.43 0.78±0.18 4.2±2.36 0.64±0.15 6.2±2.48

p = 0.10
DCDI-G 0.45±0.14 4.8±1.17 0.69±0.13 3.7±2.00 0.36±0.25 6.7±3.23 0.35±0.14 6.5±2.33

DCDI-DSF 0.41±0.16 7.0±1.84 0.42±0.11 7.8±2.09 0.28±0.18 9.6±3.44 0.18±0.11 11.1±3.70

OURS 0.95±0.05 1.7±1.19 0.88±0.06 4.1±1.70 0.83±0.17 3.6±2.65 0.67±0.12 6.2±2.44

p = 0.25
DCDI-G 0.36±0.13 6.1±1.45 0.58±0.20 6.0±3.69 0.34±0.18 6.9±1.92 0.33±0.12 6.8±1.72

DCDI-DSF 0.38±0.17 8.5±4.15 0.23±0.05 16.8±2.64 0.18±0.09 15.4±5.61 0.13±0.03 15.4±4.10

OURS 0.93±0.07 1.9±1.51 0.84±0.08 6.4±2.73 0.80±0.14 4.5±2.46 0.64±0.12 6.5±2.62

100

Vanilla

DCDI-G 0.48±0.15 4.3±1.27 0.56±0.12 5.9±2.21 0.34±0.19 7.1±3.36 0.39±0.16 6.6±2.11

DCDI-DSF 0.22±0.05 21.2±4.85 0.19±0.05 25.9±3.36 0.17±0.09 24.4±5.71 0.10±0.03 28.3±4.27

BACADI 0.36±0.23 11.8±3.68 0.40±0.11 14.5±3.93 0.38±0.15 11.1±3.81 0.27±0.12 13.3±3.38

SEA 0.93±0.06 2.2±1.25 0.84±0.07 5.5±2.33 0.84±0.16 3.8±2.32 0.63±0.15 6.1±2.66

p = 0.10
DCDI-G 0.48±0.18 4.2±1.40 0.63±0.17 4.5±2.66 0.39±0.22 6.4±2.94 0.38±0.15 6.3±1.49

DCDI-DSF 0.41±0.21 7.4±3.83 0.45±0.21 8.6±4.29 0.23±0.14 10.1±3.08 0.21±0.10 9.5±1.91

OURS 0.94±0.06 1.8±1.17 0.90±0.05 4.3±1.79 0.85±0.15 3.3±2.41 0.69±0.17 6.2±2.44

p = 0.25
DCDI-G 0.45±0.17 4.9±1.37 0.66±0.14 4.5±3.11 0.31±0.24 7.8±4.42 0.34±0.20 6.8±1.66

DCDI-DSF 0.31±0.17 11.1±4.64 0.27±0.07 14.0±3.52 0.19±0.11 17.0±4.38 0.14±0.04 14.9±3.62

OURS 0.95±0.05 1.5±0.92 0.86±0.05 4.9±1.81 0.82±0.15 4.1±2.26 0.67±0.16 6.3±2.69

5 Results

5.1 Real experiments

Table 1 illustrates our results on the Sachs proteomics dataset with varying graph priors. Incorporating
synthetic KGs with 10% and 25% noise consistently improves performance in predicting the ground
truth graph for OURS on mAP, but the effect is less evident on SHD. When provided with the CORUM
KG, which contains a much higher noise level (34%), the advantage of leveraging prior knowledge
diminishes. In terms of identifying noisy edges, OURS maintains robust performance across all prior
knowledge settings, while the baselines are less consistent.

5.2 Synthetic experiments

Given the limited availability and challenges of evaluating real-world datasets – particularly in
biological contexts where no standard evaluation exists – we perform a comprehensive comparison
across synthetic datasets under various settings to assess the performance of each model (Table 2,
Figure 4). We make the following observations.

Graph priors are useful in low-data scenarios, even at higher levels of noise. Incorporating
graph priors improves performance for both our model and the DCDI baselines. For DCDI-G and
DCDI-DSF, the performance with a prior noisy graph containing 25% noise is significantly better
than that of the vanilla setting, particularly in the down-sampling scenario with only 50 samples per
interventional regime. Our model is more sensitive to noise (perhaps because the SEA baseline starts
at a high level), but a graph prior with 10% is consistently helpful across both data settings.

Graph priors are particularly helpful on hard settings. On easy settings (e.g. linear), the
SEA baseline already achieves near-perfect mAP and SHD scores, as the assumptions of SEA’s
summary statistics (inverse covariance) match the linear Gaussian setting exactly. Correspondingly,
our approach’s improvement is less pronounced on linear Gaussian. However, there is slight mismatch
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between SEA’s assumptions and the remaining three settings; and as expected, providing a graph
prior on those cases leads to larger improvements.

Additional observations OURS outperforms DCDI at noise detection across noise levels (Figure 4).
As an amortized inference method, OURS also achieves runtimes that are orders of magnitude faster
than DCDI (Figure 5). The inclusion of a graph prior does not negatively impact runtime, compared
to SEA.

6 Conclusion

In this work, we have presented an amortized inference algorithm for refining prior knowledge
into data-dependent graphs. We demonstrated in synthetic and real settings that incorporating prior
knowledge is particularly helpful in low-data settings, and that our approach is able to detect errors
in these priors with high accuracy. However, we also observed that biological knowledge graphs
contain high levels of noise in their connectivity alone, so it could be valuable to incorporate semantic
information regarding the graphs and/or data for future work.
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